JPWO2020188824A1 - 旋動式破砕機、並びに、その過負荷検出装置及び方法 - Google Patents

旋動式破砕機、並びに、その過負荷検出装置及び方法 Download PDF

Info

Publication number
JPWO2020188824A1
JPWO2020188824A1 JP2021506119A JP2021506119A JPWO2020188824A1 JP WO2020188824 A1 JPWO2020188824 A1 JP WO2020188824A1 JP 2021506119 A JP2021506119 A JP 2021506119A JP 2021506119 A JP2021506119 A JP 2021506119A JP WO2020188824 A1 JPWO2020188824 A1 JP WO2020188824A1
Authority
JP
Japan
Prior art keywords
mantle
pressure
hydraulic
oil pressure
cone cave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021506119A
Other languages
English (en)
Other versions
JP7116842B2 (ja
Inventor
信之 梶田
敦志 大山
崇 木島
純 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Earthtechnica Co Ltd
Original Assignee
Earthtechnica Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Earthtechnica Co Ltd filed Critical Earthtechnica Co Ltd
Publication of JPWO2020188824A1 publication Critical patent/JPWO2020188824A1/ja
Application granted granted Critical
Publication of JP7116842B2 publication Critical patent/JP7116842B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2/00Crushing or disintegrating by gyratory or cone crushers
    • B02C2/02Crushing or disintegrating by gyratory or cone crushers eccentrically moved
    • B02C2/04Crushing or disintegrating by gyratory or cone crushers eccentrically moved with vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

偏心旋回運動する主軸に固定されたマントルと、マントルとの間に原石を噛み込んで圧砕する破砕室を形成するコーンケーブと、マントル及びコーンケーブの所定のセットを保持するようにマントル又はコーンケーブに破砕力に対抗する油圧力を与える油圧シリンダとを備える旋動式破砕機において、油圧シリンダの油圧力を検出し、当該油圧力を検出時刻と関連付けて記憶し、油圧シリンダが再加圧を行っていない所定の検出期間内において、油圧力が所定の圧力閾値を上回る時間を積算し、その積算された時間の検出期間に対する割合が所定の割合閾値を超える場合に、破砕機が過負荷状態で運転されていることを検出する。

Description

本発明は、岩石や鉱石などの破砕に利用される旋動式破砕機において、破砕機が過負荷状態で運転されていることを検出する技術に関する。
従来から、円錐筒状のコーンケーブの内側に配置された円錐台状のマントルを偏心旋回運動させて、原石をコーンケーブとマントルとの間に噛み込んで圧砕する旋動式破砕機が知られている。コーンケーブとマントルの二つの破砕面の間隙は周期的に変化し、その間隙の最も狭い位置における開き(セット)の寸法によって、粉砕物の粒度が定まる。旋動式破砕機は、セットを変更する方式によって油圧式と機械式とに種別される。
特許文献1には、機械式の旋動式破砕機が開示されている。この旋動式破砕機は、マントルが固定された主軸を支持する下部フレームと、コーンケーブを支持する上部フレームと、マントルに対しコーンヘッドを昇降させる昇降装置とを備える。この機械式の旋動式破砕機では、昇降装置でマントルに対しコーンヘッドを昇降させることによりセットが変化する。機械式の旋動式破砕機は、コーンヘッドの周囲に周方向に分散して配置された複数のフレームシリンダ(油圧シリンダ)を更に備える。フレームシリンダによって破砕力に抗する油圧力がコーンケーブに付与されることによって、セットが所定の値に保持される。
特許文献2には、油圧式の旋動式破砕機が開示されている。この旋動式破砕機は、マントルが固定された主軸を支持する下部フレームと、コーンケーブを支持する上部フレームと、マントルを旋回駆動する駆動電動機と、主軸を支持する主軸スラスト軸受とを備える。主軸スラスト軸受は、油圧シリンダによって昇降するラムを含み、ラムの変位によってコーンケーブに対しマントルが昇降することによりセットが変化する。油圧式の旋動式破砕機では、油圧シリンダの油圧力によって、破砕力に抗する油圧力がマントルに付与されることによって、セットが所定の値に保持される。
上記のような機械式及び油圧式の旋動式破砕機では、マントル及びコーンケーブに作用する破砕力が油圧力を上回ってタッピングが生じることがある。タッピングは、破砕機の運転の異常過負荷状態を表す、又は、異常過負荷状態の前兆となりうる。タッピングの原因の一つは、マントルとコーンケーブとの間の破砕室で生じるパッキングである。パッキングは、破砕室内に原石が隙間なく詰まったり、それが圧縮されて過密となっている状態のことをいう。パッキングの原因は、セットが狭いこと、原石に付着した細粒分が多いこと、原石が水分を多く含んでいることなど、様々である。破砕機の異常過負荷状態の運転が継続されると、著しく破砕能力が低下し、更には、破砕機の要素が破損するおそれがある。
そこで、特許文献1では、コーンヘッドを支持する球面スラスト軸受の潤滑油のライン圧力を検出し、検出された圧力を設定値と比較することにより、破砕機が過負荷状態で運転されていることを検出する。
特開平6−182240号公報 特開昭53−137467号公報
特許文献1では、球面スラスト軸受の潤滑油のライン圧力を検出するが、コーンヘッドが破砕力を受けて球面スラスト軸受に押し付けられて潤滑油の流路が狭められることによって、潤滑油のライン圧力が変化する。このように旋動破砕においては、破砕力が定常的に変動するため、潤滑油のライン圧力は定常的に変動する。また、油圧式の旋動式破砕機においても、同様に、主軸受けの油圧シリンダの油圧値は定常的に変動する。機械式の旋動式破砕機において、フレームシリンダの油圧力(フレーム圧力)は、上部フレームと下部フレームをクランプするために所定の圧力が封入されている。しかし、内部リーク等によりフレーム圧力は次第に低下する。そこで、フレーム圧力が所定以上低下すると再加圧が行われ、フレーム圧力が一定の範囲内に保持される。このように、フレーム圧力は定常的に大きく変動しており、定常的に変動する測定値を過負荷状態の検出に利用する場合には、測定値から異常要素を誤りなく抽出することは容易ではない。
本発明は以上の事情に鑑みてされたものであり、その目的は、旋動式破砕機において、定常的に変動する測定値を利用しながらも、破砕機が過負荷状態で運転されていることを高精度に検出することにある。
本発明の一態様に係る旋動式破砕機の過負荷検出装置は、偏心旋回運動する主軸に固定されたマントルと、前記マントルとの間に原石を噛み込んで圧砕する破砕室を形成するコーンケーブと、前記マントル及び前記コーンケーブの所定のセットを保持するように前記マントル又は前記コーンケーブに破砕力に対抗する油圧力を与える油圧シリンダとを備える旋動式破砕機が、過負荷状態で運転されていることを検出する装置であって、
前記油圧シリンダの前記油圧力を検出する油圧センサと、
前記油圧センサから前記油圧力に関する情報を取得してサンプリング時刻と関連付けて記憶する記憶装置と、
連続する複数のサンプリング区間を検出期間とし、当該検出期間内において前記油圧力が所定の圧力閾値を上回る時間を積算し、その積算された時間の前記検出期間に対する割合が所定の割合閾値を超える場合に、前記破砕機が過負荷状態で運転されていることを検出する演算装置と、を備えるものである。
また、本発明の一態様に係る旋動式破砕機は、
マントルと、
前記マントルが固定されて偏心旋回運動する主軸と、
前記主軸を支持する下部フレームと、
前記マントルとの間に原石を噛み込んで圧砕する破砕室を形成するコーンケーブと、
前記コーンケーブを支持する上部フレームと、
前記マントル及び前記コーンケーブの所定のセットを保持するように前記マントル又は前記コーンケーブに破砕力に対抗する油圧力を与える油圧シリンダと、
前記過負荷検出装置とを備えるものである。
また、本発明の一態様に係る旋動式破砕機の過負荷検出方法は、偏心旋回運動する主軸に固定されたマントルと、前記マントルとの間に原石を噛み込んで圧砕する破砕室を形成するコーンケーブと、前記マントル及び前記コーンケーブの所定のセットを保持するように前記マントル又は前記コーンケーブに破砕力に対抗する油圧力を与える油圧シリンダとを備える旋動式破砕機が過負荷状態で運転されていることを検出する方法であって、
前記油圧シリンダの前記油圧力を検出し、当該油圧力をサンプリング時刻と関連付けて記憶すること、及び、
連続する複数のサンプリング時間を検出期間とし、当該検出期間内において前記油圧力が所定の圧力閾値を上回る時間を積算し、その積算された時間の前記検出期間に対する割合が所定の割合閾値を超える場合に、前記破砕機が過負荷状態で運転されていることを検出すること、を含むものである。
上記旋動式破砕機、並びに、その過負荷検出装置及び方法によれば、検出期間が設定され、その検出期間における油圧力が圧力閾値よりも高くなる時間の割合で、破砕機の負荷状態を推定する。このように検出期間が設定されることにより、油圧力の短期の変動の影響が抑えられている。これにより、過負荷状態の誤検知を抑制することができる。よって、本発明によれば、定常的に変動する油圧力の測定値を利用しながらも、破砕機が過負荷状態で運転されていることを高精度に検出することができる。
本発明によれば、定常的に変動する測定値を利用しながらも、破砕機が過負荷状態で運転されていることを高精度に検出することができる。
図1は、本発明の第1実施形態に係る過負荷検出装置を備える旋動式破砕機の概略構成を示す図である。 図2は、第1実施形態に係る過負荷検出装置及びフレームシリンダの油圧系統の構成を示す図である。 図3は、通常運転時のフレーム圧力の時系列変化を表すグラフである。 図4は、過負荷検出装置による過負荷検出処理のフローチャートである。 図5は、過負荷運転時のフレーム圧力の時系列変化を表すグラフである。 図6は、検出期間を説明する図である。 図7は、本発明の第2実施形態に係る過負荷検出装置を備える旋動式破砕機の概略構成を示す図である。 図8は、第2実施形態に係る過負荷検出装置及び軸受シリンダの油圧系統の構成を示す図である。
〔第1実施形態〕
次に、図面を参照して本発明の第1実施形態を説明する。図1は、本発明の第1実施形態に係る過負荷検出装置9を備える旋動式破砕機10の概略構成を示す図である。本実施形態に係る旋動式破砕機10は、機械式の旋動式破砕機10である。
〔旋動式破砕機10の概略構成〕
図1に示す旋動式破砕機10は、コーンケーブサポート組立1と、フレーム組立2と、主軸組立3と、偏心スリーブ組立6と、電動機18とを備える。
コーンケーブサポート組立1は、投入ホッパ11とコーンケーブ12とが、コーンケーブサポート14を介して一体に接合されてなる。コーンケーブサポート14には、歯車板13が固定されている。また、コーンケーブサポート14の外周には外ネジが形成されている。
フレーム組立2は、上部フレーム21と下部フレーム22とを備える。上部フレーム21は、コーンケーブサポート組立1を上下動可能に支持する。下部フレーム22は、製品となる砕石を外に案内するダクトを形成すると共に、偏心スリーブ組立6を収納する。上部フレーム21と下部フレーム22は、フレームシリンダ4によって上下方向に挟み込まれることによって固定されている。より詳細には、フレームシリンダ4はシリンダとシリンダロッドからなる油圧シリンダであって、フレームシリンダ4のシリンダが下部フレーム22に取り付けられ、フレームシリンダ4のシリンダロッドが上部フレーム21に係止されている。そして、シリンダロッドの位置を保持する油圧力によって、上部フレーム21の浮き上がりが抑制されている。
上部フレーム21には、コーンケーブサポート14の外ネジと螺合する内ネジが形成されている。また、上部フレーム21には、セット調整架台23が固定されている。セット調整架台23には、歯車板13の歯車と噛合するギア24と、ギア24を回転駆動するモータ27とが設けられている。
偏心スリーブ組立6は、横軸62と偏心スリーブ65とを含む。横軸62は、下部フレーム22に軸受を介して支持されている。横軸62の一方の端部にはVプーリ61が固定されており、他方の端部にはベベルピニオン63が固定されている。偏心スリーブ65は、下部フレーム22に設けられた垂直な縦孔に回転可能に嵌合して、垂直な回転軸の周りに回転する。偏心スリーブ65には、偏心位置に中心軸が回転軸上の一点(頂点66)で交わる縦孔が設けられていて、この縦孔に主軸31が挿入される。偏心スリーブ65には、ベベルピニオン63と噛合したベベルギア64が固定されている。
電動機18からの回転動力は、VベルトとVプーリ61を介して横軸62に伝達され、更に、ベベルピニオン63及びベベルギア64を介して偏心スリーブ65に伝達される。これにより、主軸31は、軸が上方の頂点66を通るような擂り粉木運動(いわゆる歳差運動)をする。このような主軸31の擂り粉木運動をここでは旋動と呼ぶ。
主軸組立3は、主軸31と、マントルコア33と、マントル34とを含む。マントルコア33は、主軸31に固定されている。マントルコア33の下端部には、下部フレーム22に固定されたダストリング25が挿入される周溝が形成されている。マントルコア33の外周にマントル34が固定されている。マントル34は、中心頂部に孔があいた漏斗形状をしており、例えば高マンガン鋳鋼などの高い耐摩耗性を有する材料で形成される。
コーンケーブ12とマントル34との間には、下に行くほど径が拡がる断面形状を有する破砕室47が形成される。破砕室47の空間の厚みは、投入ホッパ11から下に向かうほど薄くなって、最下端の周状開口で狭幅となる。
破砕したい原石67の性状や製品砕石68の粒度に応じて、破砕室47におけるマントル34とコーンケーブ12の距離(セット)が調整される。セット調整架台23のギア24の駆動により、コーンケーブサポート14が回転すると、上部フレーム21に対するコーンケーブサポート14のねじ込み深さが変化する。これにより、マントル34とコーンケーブ12の距離が変化し、セットを調整することができる。セットの大きさは、上部フレーム21に設けられた超音波式のセットセンサ26で計測される。
上記構成の旋動式破砕機10では、主軸31の偏心旋回運動により、破砕室47におけるコーンケーブ12とマントル34の間の距離が広挟を繰り返す。投入ホッパ11から破砕室47に圧下した原石67は、コーンケーブ12とマントル34との間で圧砕される。破砕室47の原石67は、圧砕と落下とを繰り返して、下落していくに従い徐々に細かくなる。所定の大きさになるまで細かくなった原石67は、破砕室47の下端開口を通って所定粒度の製品砕石68として下部フレーム22から排出される。
〔旋動式破砕機10の過負荷検出装置9〕
旋動式破砕機10の運転中に、原石67の性状や水分量、投入ホッパ11内の原石67のレベルの変化、金属片などの異物の混入などの外乱に起因して破砕負荷が変動する。ここで「破砕負荷」とは、破砕に伴って電動機18に掛かる負荷を意味する。なお、電動機18は、その出力軸に所定以上の過負荷が発生すると、出力軸の回転がロックされ、過負荷保護回路の作動によって非常停止する。そこで、本実施形態に係る旋動式破砕機10は、フレームシリンダ4の油圧力を監視し、その変化に基づいて過剰な破砕負荷を検出する過負荷検出装置9を備える。
図2に示すように、フレームシリンダ4には油圧回路70が接続されている。油圧回路70は、フレームシリンダ4のピストン後退側の第1油圧室4aへ作動油を供給する第1油路72と、フレームシリンダ4のピストン進出側の第2油圧室4bへ作動油を供給する第2油路73と、油タンク71から第1油路72及び第2油路73のうち一方へ選択的に給油する給油路75と、第1油路72及び第2油路73からから油タンク71へ作動油を排出する排油路74とを含む。給油路75には、作動油を圧送するギアポンプ76が設けられている。ギアポンプ76はポンプモータ77により回転駆動される。給油路75には、第1油路72と接続された状態、第2油路73と接続された状態、並びに、第1油路72及び第2油路73と接続されない状態、を切り替える切替弁78が設けられている。第1油圧室4aと連通された第1油路72には、アキュムレータ42が接続されている。但し、油圧回路70の構成は上記に限定されない。
上記構成の油圧回路70は、シリンダ制御装置44によって制御される。シリンダ制御装置44は、ポンプモータ77、及び、切替弁78と電気的に接続されており、これらの機器に対し制御信号を出力する。また、シリンダ制御装置44は、セットセンサ26及び油圧センサ41と電気的に接続されており、油圧センサ41で検出された油圧情報を取得する。
第1油圧室4aに作動油が流入することにより、フレームシリンダ4の油圧力(以下、「フレーム圧力」と称する)が上昇する。破砕室47に破砕不能な異物の混入や、原石67の投入量の一時的な増加、又は、パッキングにより、旋動式破砕機10が過負荷状態となると、コーンケーブ12が押し上げられる。これによりフレーム圧力が上昇し、それを吸収するようにアキュムレータ42へ作動油が流入する。過負荷状態が解消されると、アキュムレータ42内の作動油がフレームシリンダ4へ流れ、元の破砕間隙に戻り、通常運転に復帰することができる。
図3は、通常運転時のフレーム圧力の時系列変化を表すグラフであり、縦軸がフレーム圧力、横軸が時間を表す。このグラフに示されるように、作動油の内部リーク等によって、フレーム圧力は時間の経過に伴って緩やかに低下する。なお、グラフでは直線状に見えるが、拡大すれば、フレーム圧力は定常運転時においても上下に細かく変動している。フレームシリンダ4では、フレーム圧力を所定範囲内に保持するために、再加圧(即ち、強制加圧)が自動的に行われる。再加圧は、意図してフレーム圧力を強制的に上昇させる処理である。再加圧は、例えば、所定量の作動油をフレームシリンダ4へ送ること、所定の時間だけ作動油をフレームシリンダ4へ送ること、フレーム圧力が所定量回復するまでフレームシリンダ4へ作動油へ送ること、のうちいずれか1つであってよい。
シリンダ制御装置44は、予め定められたタイミングで再加圧を行う。再加圧のタイミングは、例えば、前回の再加圧から所定の時間が経過したとき、フレーム圧力が所定の閾値を下回ったとき、予めスケジュールされた時刻が到来したとき、のうちいずれか1つであってよい。シリンダ制御装置44は、再加圧において、作動油をフレームシリンダ4へ送るように油圧回路70を制御する。このような再加圧により、フレーム圧力は急上昇する。
前述の通り、フレーム圧力は、緩やかな降下と再加圧による急上昇とを1サイクルとし、このサイクルが繰り返される。フレーム圧力は絶えず変化し、一定値には定まらない。過負荷検出装置9は、このように変動するフレーム圧力の測定値から所定のロジックで過負荷による圧力変動を抽出することにより、過負荷を検知する。
過負荷検出装置9は、PLC(プログラマブルコントローラ)などの、一種のコンピュータとして具現化されてよい。過負荷検出装置9は、演算装置9aと、揮発性及び不揮発性の記憶装置9bとを備える。演算装置9aは、CPU、MPU、GPUなどで構成され、記憶装置9bに格納された各種プログラムを読み出して実行することで、過負荷検出処理を行う。過負荷検出装置9は、シリンダ制御装置44と電気的に接続されている。過負荷検出装置9は、シリンダ制御装置44から再加圧のタイミングを取得する。過負荷検出装置9は、油圧センサ41と電気的に接続されており、油圧センサ41から検出された油圧情報(フレーム圧力)を取得する。
図4は、過負荷検出装置9による過負荷検出処理のフローチャートである。図5は、過負荷時のフレーム圧力の時系列変化を表すグラフである。なお、図5では、図3のグラフとはスケールが異なり、フレーム圧力の変動が読み取れるように十分に拡大されている。
過負荷検出装置9は、旋動式破砕機10の運転中に、油圧センサ41の検出値である油圧力(即ち、フレーム圧力P)を取得し、フレーム圧力Pをサンプリング時刻と関連付けて記憶装置9bに逐次記憶する。そして、過負荷検出装置9は、シリンダ制御装置44から送られてくる信号に基づいて、フレームシリンダ4が再加圧のタイミングを、記憶装置9bに記憶する。
過負荷検出装置9は、前述のように蓄積されたフレーム圧力Pの時系列データと、取得したフレーム圧力Pとに基づいて、過負荷状態の検出を行う。図4に示すように、過負荷検出装置9は、フレームシリンダ4が再加圧中であるかどうかを判断する(ステップS1)。過負荷検出装置9は、フレームシリンダ4が再加圧中であるか否かを、シリンダ制御装置44から送られてくる信号に基づいて判断することができる。過負荷検出装置9は、再加圧中でなければ(ステップS1でNO)、検出期間タイマを初期化(t1=0)し、積算タイマを初期化(t2=0)する(ステップS2)。そして、過負荷検出装置9は、検出期間タイマで検出時間t1のカウントを開始する(ステップS3)。図6に示すように、検出期間T1は、連続するMのサンプリング区間Sを含む。区間数Mは任意の自然数(複数)であり、過負荷検出装置9に予め記憶されている。1サンプリング区間Sの時間は、即ち、油圧センサ41の検出周期である。
過負荷検出装置9は、現在のサンプリング区間Sにおいて、油圧センサ41の検出値であるフレーム圧力Pnを取得し、圧力閾値αと比較する(ステップS4)。
圧力閾値αは、蓄積されたフレーム圧力Pの時系列データから求め得る。圧力閾値αは、フレーム圧力Pの移動平均Pmに係数Cを掛けた値であってよい。係数Cは、1以上の実数である。係数Cは予め定められて、過負荷検出装置9に記憶されている。移動平均Pmは、連続するN個のサンプリング区間Sn−N+1〜Sn−1のフレーム圧力Pn−N+1〜Pn−1の相加平均である。区間数Nは任意の自然数であり、過負荷検出装置9に予め記憶されている。なお、図6に示すNはMより小さいが、NはMより大きくてもよい。N個のサンプリング区間Sn−N+1〜Sn−1には、現在のサンプリング区間Sの直前のサンプリング区間Sn−1が含まれる。
過負荷検出装置9は、フレーム圧力Pが圧力閾値αよりも大きければ(ステップS4でYES)、その区間の時間(その区間のうちフレーム圧力Pが圧力閾値αよりも大きくなる時間)を積算タイマでカウントする(ステップS5)。過負荷検出装置9は、フレーム圧力Pが圧力閾値α以下であれば(ステップS4でNO)、その区間の時間を積算タイマでカウントしない。
過負荷検出装置9は、上記のステップS4〜S5を、検出期間タイマでカウントされている検出時間t1が所定の検出期間T1以上となるまで繰り返す(ステップS6)。これにより、検出期間T1において、フレーム圧力Pが圧力閾値αよりも大きい時間の積算値T2が得られる。
過負荷検出装置9は、検出期間T1に対するフレーム圧力Pが圧力閾値αよりも大きい時間の積算値T2の割合Rを求め(ステップS7)、それを所定の割合閾値βとを比較する(ステップS8)。割合閾値βは、シミュレーションや実験等により予め決定され、過負荷検出装置9に記憶されている。過負荷検出装置9は、検出期間T1に対する積算値T2の割合Rが割合閾値βより大きい場合は(ステップS8でYES)、過負荷を検出したと判断し(ステップS9)、所定の過負荷検出後処理を行って(ステップS10)、過負荷検出処理を終了する。過負荷検出後処理は、図示されない原石フィーダへの停止指令の出力、図示されないモニタへの過負荷検出表示出力、図示されない報知機への過負荷検出表示出力、シリンダ制御装置44への過負荷検出信号の出力、のうち少なくとも1つが含まれてよい。過負荷検出装置9は、検出期間T1に対する積算値T2の割合Rが割合閾値β以下の場合は(ステップS8でNO)、過負荷ではないとして、過負荷検出処理を終了する。過負荷検出装置9は、旋動式破砕機10の運転中に、上記の一連の過負荷検出処理を繰り返してよい。
以上に説明したように、本実施形態の旋動式破砕機10は、マントル34と、マントル34が固定されて偏心旋回運動する主軸31と、主軸31を支持する下部フレーム22と、マントル34との間に原石67を噛み込んで圧砕する破砕室47を形成するコーンケーブ12と、コーンケーブ12を支持する上部フレーム21と、マントル34及びコーンケーブ12の所定のセットを保持するようにコーンケーブ12に破砕力に対抗する油圧力を与えるフレームシリンダ4(請求の範囲の「油圧シリンダ」に相当)と、過負荷検出装置9とを、備える。過負荷検出装置9は、フレームシリンダ4の油圧力を検出する油圧センサ41と、記憶装置9bと、演算装置9aとを有する。記憶装置9bは、油圧センサ41から油圧力に関する情報を取得してサンプリング時刻と関連付けて記憶する。演算装置9aは、連続する複数のサンプリング区間を検出期間T1とし、油圧力(本実施形態では、フレーム圧力)の移動平均を用いた圧力閾値αを求め、検出期間T1内において油圧力が圧力閾値αを上回る時間を積算し、その積算された時間T2の検出期間T1に対する割合(T2/T1)が所定の割合閾値βを超える場合に、旋動式破砕機10が過負荷状態で運転されていることを検出する。
また、本実施形態に係る旋動式破砕機10の過負荷検出方法は、フレームシリンダ4(請求の範囲の「油圧シリンダ」に相当)の油圧力であるフレーム圧力を検出し、当該フレーム圧力をサンプリング時刻と関連付けて記憶すること、及び、連続する複数のサンプリング時間を検出期間T1とし、当該検出期間T1内においてフレーム圧力が所定の圧力閾値αを上回る時間を積算し、その積算された時間T2の検出期間T1に対する割合(T2/T1)が所定の割合閾値βを超える場合に、旋動式破砕機10が過負荷状態で運転されていることを検出すること、を含む。
本実施形態に係る旋動式破砕機10の過負荷検出装置9及び方法によれば、検出期間T1が設定され、その検出期間T1におけるフレーム圧力が圧力閾値αよりも高くなる時間T2の割合で、旋動式破砕機10の負荷状態を推定する。このように検出期間T1が設定されることにより、フレーム圧力の短期の変動の影響が抑えられている。これにより、過負荷状態の誤検知を抑制することができる。よって、定常的に変動するフレーム圧力の測定値を利用しながらも、破砕機10が過負荷状態で運転されていることを高精度に検出することができる。
また、本実施形態に係る旋動式破砕機10の過負荷検出装置9及び方法では、現在のサンプリング区間Sの油圧力に対する圧力閾値αが、当該サンプリング区間Sの直前のサンプリング区間Sn−1の検出値を含む移動平均Pmに1以上の係数Cを掛けた値である。
これにより、定常的に変動するフレームシリンダ4の油圧力に対して、圧力閾値αを適切に設定することができる。
また、本実施形態に係る旋動式破砕機10の過負荷検出装置9及び方法では、検出期間T1にフレームシリンダ4による再加圧の期間が含まれない。
これにより、検出期間T1の検出値からは、周期的且つ大きな変動が除かれる。よって、圧力閾値αの値が適切に設定される。また、旋動式破砕機10の過負荷状態をより高精度に検出することがきる。
〔第2実施形態〕
次に、本発明の第2実施形態を説明する。図7は、本発明の第2実施形態に係る過負荷検出装置109を備える旋動式破砕機110の概略構成を示す図である。本実施形態に係る旋動式破砕機110は、油圧式の旋動式破砕機110である。なお、本実施形態の説明においては、前述の実施形態と同一又は類似の部材には図面に同一の符号を付し、説明を省略する。
従来の油圧式の旋動式破砕機では、破砕できない異物が投入されたり、過剰な原料が投入されたりすると、マントル及びコーンケーブに作用する破砕力が当該破砕力に対抗する油圧力を上回ってタッピングが生じることがある。タッピングが生じている状態で運転が継続されると、破砕機本体が損傷を受けたり、原料が溢れたりする。そのため、タッピングが発生すると、運転を一旦停止して、破砕室内の原料を取り除かねばならず、著しく生産性が低下する。また、タッピングが発生すると、負荷が急上昇するため、破砕機の駆動モータのサーマルリレーでは異常を検知できない。そこで、駆動モータの電流値や破砕圧に相当する主軸の保持圧を測定し、その測定値が所定の閾値を超える状態が所定時間継続していることによって、異常を検知することが行われている。しかし、油圧式の旋動式破砕機では、旋動破砕に起因する短い周期の負荷変動や、原料性状、原料サイズ、及び原料水分量などの変化に起因する負荷変動が生じることから、上記のような従来の異常検知方法で確実に過負荷異常を検出することは困難であった。そこで、以下では、第1実施形態に係る機械式の旋動式破砕機10と同様に、油圧式の旋動式破砕機110においても過負荷状態をより高精度に検出する方法を説明する。
〔旋動式破砕機110の概略構成〕
図7に示すように、旋動式破砕機110は、被破砕物を貯留するホッパ11と、ホッパ11から落下した被破砕物を噛み込んで破砕するマントル34及びコーンケーブ12と、マントル34の旋回駆動手段である電動機18と、電動機18からマントル34へ回転動力を伝達する動力伝達機構19と、マントル34をコーンケーブ12に対し昇降させる軸受シリンダ8(油圧シリンダ)とを備える。
旋動式破砕機110は、上部フレーム21及び下部フレーム22からなるフレーム組立2を更に備える。上部フレーム21と下部フレーム22は、上下に突合された状態で固定されている。上部フレーム21の内周に、円錐筒状のコーンケーブ12が設けられている。コーンケーブ12の内側には、円錐台状のマントル34が配置されている。間隙を隔てて対峙するコーンケーブ12の破砕面とマントル34の破砕面との間に、下に行くほど径が拡がる断面形状を有する破砕室47が形成される。破砕室47の空間の厚みは、投入ホッパ11から下に向かうほど薄くなって、最下端の周状開口で狭幅となる。破砕したい原石67の性状や製品砕石68の粒度に応じて、破砕室47におけるマントル34とコーンケーブ12の距離(セット)が調整される。セット調整装置80は、マントル34をコーンケーブ12に対し昇降させる。
マントル34は、主軸31の上部に固定されたマントルコア33に取り付けられている。マントルコア33の外周にマントル34が固定されている。マントルコア33の下端部には、下部フレーム22に固定されたダストリング25が挿入される周溝が形成されている。主軸31は、その軸心が鉛直方向から傾いた状態で、フレーム組立2内に配置されている。主軸31の上端は、上部フレーム21の上端部に設けられた上部軸受35に、回転自在に支持されている。主軸31の下部は、インナーブッシュ51に嵌挿されている。インナーブッシュ51は偏心スリーブ65に固定されている。偏心スリーブ65は、下部フレーム22に設けられたアウターブッシュ53に嵌挿されている。主軸31の下端は、軸受シリンダ8のラム81に設けられた滑り軸受82に支持されている。
電動機18は、フレーム組立2の外に配置されている。動力伝達機構19は、電動機18からマントル34が固定された主軸31へ動力を伝達する。電動機18からの回転動力は、VベルトとVプーリ61を介して横軸62に伝達され、更に、ベベルピニオン63及びベベルギア64を介して偏心スリーブ65に伝達される。電動機18の出力を受けて偏心スリーブ65が回転すると、偏心スリーブ65に挿嵌された主軸31が偏心旋回する。これにより、マントル34が位置固定されたコーンケーブ12に対して偏心旋回運動、いわゆる歳差運動を行う。マントル34の破砕面とコーンケーブ12の破砕面とのセット(開き)は主軸31の旋回位置に応じて変化する。
本実施形態に係る旋動式破砕機110は、セット調整装置80としての軸受シリンダ8を備える。軸受シリンダ8は、シリンダチューブ83と、シリンダチューブ83内を摺動するラム81とからなる油圧シリンダである。ラム81は主軸スラスト軸受82を支持し、ラム81の昇降に伴って主軸スラスト軸受82が昇降する。主軸スラスト軸受82の昇降に伴って、マントル34がコーンケーブ12に対して昇降移動して、コーンケーブ12とマントル34の二つの破砕面の間隙の最も狭い位置におけるセット(クローズドセット)を変化させる。ラム81又は主軸スラスト軸受82の変位を検出するセットセンサ126(図8、参照)が設けられている。セットセンサ126で検出されたラム81の位置からコーンケーブ12に対するマントル34の高さ方向の位置が求まり、コーンケーブ12とマントル34との相対的位置関係からセットが求まる。
図8は、第2実施形態に係る過負荷検出装置109及び軸受シリンダ8の油圧系統の構成を示す図である。図7及び図8に示すように、軸受シリンダ8のシリンダチューブ83内には、ラム81の変位によって容量の変化する油圧室85が形成されており、この油圧室85に油圧回路90が接続されている。油タンク71の作動油が油圧回路90を通じて油圧室85へ給油されることにより、ラム81が上昇する。また、油圧室85の作動油が油圧回路90を通じて油タンク71へ排油されることにより、ラム81が降下する。
油圧回路90は、油圧室85の下部と連通された連通管91、連通管91に設けられたアキュムレータ92(又は、バランスシリンダ)、連通管91と接続された給油管93、及び、給油管93と接続された排油管94を含む。連通管91には、油圧室85の作動油の圧力を検出する油圧センサ86が設けられている。給油管93には、油タンク71の作動油を油圧室85へ圧送するギアポンプ76が設けられている。ギアポンプ76はポンプモータ77によって駆動される。給油管93には、ノーマルクローズの開閉弁98が設けられている。排油管94には、ノーマルクローズの開閉弁99が設けられている。但し、油圧回路90の構成は本実施形態に限定されない。
上記構成の油圧回路90は、シリンダ制御装置144によって制御される。シリンダ制御装置144は、ポンプモータ77、開閉弁98、及び、開閉弁99と電気的に接続されており、これらの機器に対し制御信号を出力する。また、シリンダ制御装置144は、セットセンサ126と電気的に接続されており、セットセンサ126で検出された情報を取得する。シリンダ制御装置144は、セットセンサ126で検出されるセットが所定の値となるように、ポンプモータ77、開閉弁98、及び開閉弁99を動作させる。
軸受シリンダ8の油圧力は、主軸31(マントル34)の旋回運動によって変動する。また、破砕室47に破砕不能な異物の混入や、原石67の投入量の一時的な増加、又は、パッキングにより、旋動式破砕機110が過負荷状態となると、マントル34が押し下げられる。これにより軸受シリンダ8の油圧力が上昇し、それを吸収するようにアキュムレータ92へ作動油が流入する。過負荷状態が解消されると、アキュムレータ92内の作動油が軸受シリンダ8へ流れ、元の破砕間隙に戻り、通常運転に復帰することができる。このようにして、軸受シリンダ8の油圧力は絶えず変化し、一定値には定まらない。本実施形態に係る過負荷検出装置109は、このように変動する軸受シリンダ8の油圧力の測定値から所定のロジックで過負荷による圧力変動を抽出することにより、過負荷を検知する。
過負荷検出装置109は、PLC(プログラマブルコントローラ)などの、一種のコンピュータとして具現化されてよい。過負荷検出装置109は、演算装置109aと、揮発性及び不揮発性の記憶装置109bとを備える。演算装置109aは、CPU、MPU、GPUなどで構成され、記憶装置109bに格納された各種プログラムを読み出して実行することで、過負荷検出処理を行う。過負荷検出装置109は、電気的に油圧センサ86と接続されており、油圧センサ86から検出された油圧情報を取得する。
ここで、過負荷検出装置109による負荷検出処理の流れを説明する。本実施形態に係る過負荷検出装置109の処理の流れは、前述の第1実施形態に係る過負荷検出装置9の処理とステップS1を除いて実質的に同じであり、図4において「フレーム圧力」とあるのを「油圧力」に読み替えることにより説明できる。
図4を参照して、過負荷検出装置109は、旋動式破砕機110の運転中に、油圧センサ86の検出値である油圧力(即ち、軸受シリンダ8の油圧力)を取得し、油圧力をサンプリング時刻と関連付けて記憶装置109bに逐次記憶する。過負荷検出装置109は、前述のように蓄積された油圧力の時系列データと、取得した油圧力とに基づいて、過負荷状態の検出を行う。過負荷検出装置109は、検出期間タイマを初期化(t1=0)し、積算タイマを初期化(t2=0)する(ステップS2)。そして、過負荷検出装置109は、検出期間タイマで検出時間t1のカウントを開始する(ステップS3)。
過負荷検出装置109は、現在のサンプリング区間Sにおいて、油圧センサ86の検出値(瞬時値)である油圧力Pnを取得し、圧力閾値αと比較する(ステップS4)。過負荷検出装置109は、油圧力Pが圧力閾値αよりも大きければ(ステップS4でYES)、その区間の時間(その区間のうち油圧力Pが圧力閾値αよりも大きくなる時間)を積算タイマでカウントする(ステップS5)。過負荷検出装置109は、油圧力Pが圧力閾値α以下であれば(ステップS4でNO)、その区間の時間を積算タイマでカウントしない。
過負荷検出装置109は、上記のステップS4〜S5を、検出期間タイマでカウントされている検出時間t1が所定の検出期間T1以上となるまで繰り返す(ステップS6)。これにより、検出期間T1において、油圧力Pが圧力閾値αよりも大きい時間の積算値T2が得られる。
過負荷検出装置109は、検出期間T1に対する油圧力Pが圧力閾値αよりも大きい時間の積算値T2の割合Rを求め(ステップS7)、それを所定の割合閾値βとを比較する(ステップS8)。過負荷検出装置109は、検出期間T1に対する積算値T2の割合Rが割合閾値βより大きい場合は(ステップS8でYES)、過負荷を検出したと判断し(ステップS9)、所定の過負荷検出後処理を行って(ステップS10)、過負荷検出処理を終了する。過負荷検出装置109は、検出期間T1に対する積算値T2の割合Rが割合閾値β以下の場合は(ステップS8でNO)、過負荷ではないとして、過負荷検出処理を終了する。過負荷検出装置109は、旋動式破砕機110の運転中に、上記の一連の過負荷検出処理を繰り返してよい。
以上に説明したように、本実施形態の旋動式破砕機110は、マントル34と、マントル34が固定されて偏心旋回運動する主軸31と、主軸31を支持する下部フレーム22と、マントル34との間に原石67を噛み込んで圧砕する破砕室47を形成するコーンケーブ12と、コーンケーブ12を支持する上部フレーム21と、マントル34及びコーンケーブ12の所定のセットを保持するようにマントル34に破砕力に対抗する油圧力を与える軸受シリンダ8(請求の範囲の「油圧シリンダ」に相当)と、過負荷検出装置109とを、備える。過負荷検出装置109は、軸受シリンダ8の油圧力を検出する油圧センサ86と、記憶装置109bと、演算装置109aとを有する。記憶装置109bは、油圧センサ86から油圧力Pに関する情報を取得してサンプリング時刻と関連付けて記憶する。演算装置109aは、連続する複数のサンプリング区間を検出期間T1とし、当該検出期間T1内において油圧力が圧力閾値αを上回る時間を積算し、その積算された時間T2の検出期間T1に対する割合(T2/T1)が所定の割合閾値βを超える場合に、旋動式破砕機110が過負荷状態で運転されていることを検出する。
また、本実施形態に係る旋動式破砕機110の過負荷検出方法は、軸受シリンダ8(請求の範囲の「油圧シリンダ」に相当)の油圧力Pを検出し、当該油圧力Pをサンプリング時刻と関連付けて記憶すること、及び、連続する複数のサンプリング時間を検出期間T1とし、当該検出期間T1内において油圧力Pが所定の圧力閾値αを上回る時間を積算し、その積算された時間T2の検出期間T1に対する割合(T2/T1)が所定の割合閾値βを超える場合に、旋動式破砕機110が過負荷状態で運転されていることを検出すること、を含む。
本実施形態に係る旋動式破砕機110の過負荷検出装置109及び方法によれば、検出期間T1が設定され、その検出期間T1における油圧力が圧力閾値αよりも高くなる時間T2の割合で、旋動式破砕機110の負荷状態を推定する。このように検出期間T1が設定されることにより、油圧力Pの短期の変動の影響が抑えられている。これにより、過負荷状態の誤検知を抑制することができる。よって、定常的に変動する油圧力Pの測定値を利用しながらも、破砕機110が過負荷状態で運転されていることを高精度に検出することができる。
また、本実施形態に係る旋動式破砕機110の過負荷検出装置109及び方法では、現在のサンプリング区間Sの油圧力に対する圧力閾値αが、当該サンプリング区間Sの直前のサンプリング区間Sn−1の検出値を含む移動平均Pmに1以上の係数Cを掛けた値である。
これにより、原料性状、原料サイズ、及び、原料水分量などの変化に起因して定常的に変動する油圧力Pに対応して圧力閾値αの値が与えられる。よって、油圧力の短期の変動の影響を更に効果的に抑えることができる。
以上に本発明の好適な実施の形態(第1実施形態及び第2実施形態)を説明したが、本発明の思想を逸脱しない範囲で、上記実施形態の具体的な構造及び/又は機能の詳細を変更したものも本発明に含まれ得る。
例えば、上記実施形態では、検出期間T1に対する積算値T2の割合Rに基づいて、旋動式破砕機10,110の運転が過負荷状態であるか定常状態であるかが判断される。これに代えて、過負荷検出装置9,109は、積算値T2に関する基準値を予め記憶しておき、積算値T2が基準値を上回る場合に旋動式破砕機10,110の運転が過負荷状態であると判断してもよい。
また、例えば、上記実施形態では、検出期間T1内において、油圧力が所定の圧力閾値αを上回る時間の積算値T2を求める。但し、時間の積算値T2に代えて、検出期間T1内において、所定の圧力閾値αを上回る油圧力の積算値(即ち、図5における斜線部分の面積)を求め、これを所定の閾値と比較することによって、旋動式破砕機10,110の過負荷状態を判断してもよい。
また、例えば、上記実施形態では、サンプリング区間の油圧力に対する圧力閾値が、当該サンプリング区間の直前のサンプリング区間の検出値を含む移動平均に基づいて求めた値であるが、圧力閾値の算出方法はこれに限定されない。例えば、サンプリング区間の油圧力に対する圧力閾値は、当該サンプリング区間よりも前の複数のサンプリング区間の検出値に基づいて求めた最新の時間平均値であってもよい。或いは、サンプリング区間の油圧力に対する圧力閾値は、当該サンプリング区間の直前のサンプリング区間を含む複数のサンプリング区間の検出値に所定の一次遅れフィルタを適用した値であってもよい。いずれの場合も、定常的に変動する油圧力に対応した圧力閾値を与えることができ、油圧力の短期の変動の影響を抑えることができる。
1 :コーンケーブサポート組立
2 :フレーム組立
3 :主軸組立
4 :フレームシリンダ(油圧シリンダ)
4a :第1油圧室
4b :第2油圧室
6 :偏心スリーブ組立
8 :軸受シリンダ(油圧シリンダ)
9,109 :過負荷検出装置
9a,109a :演算装置
9b,109b :記憶装置
10,110 :旋動式破砕機
11 :投入ホッパ
12 :コーンケーブ
13 :歯車板
14 :コーンケーブサポート
18 :電動機
19 :動力伝達機構
21 :上部フレーム
22 :下部フレーム
23 :セット調整架台
24 :ギア
25 :ダストリング
26,126 :セットセンサ
27 :モータ
31 :主軸
33 :マントルコア
34 :マントル
41 :油圧センサ
42,92 :アキュムレータ
44,144 :シリンダ制御装置
47 :破砕室
61 :Vプーリ
62 :横軸
63 :ベベルピニオン
64 :ベベルギア
65 :偏心スリーブ
70,90 :油圧回路
71 :油タンク
72 :第1油路
73 :第2油路
74 :排油路
75 :給油路
76 :ギアポンプ
77 :ポンプモータ
78 :切替弁
80 :セット調整装置
81 :ラム
82 :主軸スラスト軸受
83 :シリンダチューブ
85 :油圧室
86 :油圧センサ
91 :連通管
93 :給油管
94 :排油管
98 :開閉弁
99 :開閉弁

Claims (5)

  1. 偏心旋回運動する主軸に固定されたマントルと、前記マントルとの間に原石を噛み込んで圧砕する破砕室を形成するコーンケーブと、前記マントル及び前記コーンケーブの所定のセットを保持するように前記マントル又は前記コーンケーブに破砕力に対抗する油圧力を与える油圧シリンダとを備える旋動式破砕機が、過負荷状態で運転されていることを検出する装置であって、
    前記油圧シリンダの前記油圧力を検出する油圧センサと、
    前記油圧センサから前記油圧力に関する情報を取得してサンプリング時刻と関連付けて記憶する記憶装置と、
    連続する複数のサンプリング区間を検出期間とし、当該検出期間内において前記油圧力が所定の圧力閾値を上回る時間を積算し、その積算された時間の前記検出期間に対する割合が所定の割合閾値を超える場合に、前記破砕機が過負荷状態で運転されていることを検出する演算装置と、を備える、
    旋動式破砕機の過負荷検出装置。
  2. 前記サンプリング区間の前記油圧力に対する前記圧力閾値が、当該サンプリング区間の直前のサンプリング区間の検出値を含む移動平均に1以上の係数を掛けた値である、
    請求項1に記載の旋動式破砕機の過負荷検出装置。
  3. マントルと、
    前記マントルが固定されて偏心旋回運動する主軸と、
    前記主軸を支持する下部フレームと、
    前記マントルとの間に原石を噛み込んで圧砕する破砕室を形成するコーンケーブと、
    前記コーンケーブを支持する上部フレームと、
    前記マントル及び前記コーンケーブの所定のセットを保持するように前記マントル又は前記コーンケーブに破砕力に対抗する油圧力を与える油圧シリンダと、
    請求項1又は2に記載の過負荷検出装置とを、備える、
    旋動式破砕機。
  4. 偏心旋回運動する主軸に固定されたマントルと、前記マントルとの間に原石を噛み込んで圧砕する破砕室を形成するコーンケーブと、前記マントル及び前記コーンケーブの所定のセットを保持するように前記マントル又は前記コーンケーブに破砕力に対抗する油圧力を与える油圧シリンダとを備える旋動式破砕機が過負荷状態で運転されていることを検出する方法であって、
    前記油圧シリンダの前記油圧力を検出し、当該油圧力をサンプリング時刻と関連付けて記憶すること、及び、
    連続する複数のサンプリング時間を検出期間とし、当該検出期間内において前記油圧力が所定の圧力閾値を上回る時間を積算し、その積算された時間の前記検出期間に対する割合が所定の割合閾値を超える場合に、前記破砕機が過負荷状態で運転されていることを検出すること、を含む、
    旋動式破砕機の過負荷検出方法。
  5. 前記サンプリング時間の前記油圧力に対する前記圧力閾値が、当該サンプリング時間の直前のサンプリング時間の検出値を含む移動平均に1以上の係数を掛けた値である、
    請求項4に記載の旋動式破砕機の過負荷検出方法。
JP2021506119A 2019-03-20 2019-03-20 旋動式破砕機、並びに、その過負荷検出装置及び方法 Active JP7116842B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/011920 WO2020188824A1 (ja) 2019-03-20 2019-03-20 旋動式破砕機、並びに、その過負荷検出装置及び方法

Publications (2)

Publication Number Publication Date
JPWO2020188824A1 true JPWO2020188824A1 (ja) 2021-11-04
JP7116842B2 JP7116842B2 (ja) 2022-08-10

Family

ID=72519198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021506119A Active JP7116842B2 (ja) 2019-03-20 2019-03-20 旋動式破砕機、並びに、その過負荷検出装置及び方法

Country Status (4)

Country Link
JP (1) JP7116842B2 (ja)
AU (1) AU2019435553B2 (ja)
WO (1) WO2020188824A1 (ja)
ZA (1) ZA202106712B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022070156A (ja) * 2020-10-26 2022-05-12 株式会社アーステクニカ 破砕機の破砕負荷制御装置及び方法
CN114160242B (zh) * 2021-11-12 2023-02-10 南昌矿机集团股份有限公司 一种大型双腔多缸圆锥破碎机及开机调节方法
CN115487893B (zh) * 2022-09-29 2024-03-19 珠海市聚兆科技有限公司 便于剔除异物的圆锥破碎机
JP2024058002A (ja) * 2022-10-13 2024-04-25 株式会社アーステクニカ 旋動式破砕機並びにその制御装置及び制御方法
CN116273426B (zh) * 2023-05-19 2023-08-25 四川磊蒙机械设备有限公司 一种砂石处理监控系统及方法
CN118090047B (zh) * 2024-04-29 2024-06-28 山东鲁北企业集团总公司 一种水泥制备用高速破碎辊用动平衡检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141942A (ja) * 1985-12-13 1986-06-28 株式会社神戸製鋼所 破砕頭浮遊型旋動破砕機
JPH10272375A (ja) * 1997-03-31 1998-10-13 Kurimoto Ltd 旋動式破砕機の制御方法
JPH10272374A (ja) * 1997-03-31 1998-10-13 Kurimoto Ltd 旋動式破砕機の制御方法
JP2000070752A (ja) * 1998-08-31 2000-03-07 Kurimoto Ltd 破砕機の監視システム
US20070051837A1 (en) * 2005-09-06 2007-03-08 Johnson Crushers International Rock crusher having overload detection
WO2013153283A1 (en) * 2012-04-12 2013-10-17 Metso Minerals, Inc. A system and a method for monitoring and controlling a crusher, a crusher and a method for adjusting a crusher
WO2014191617A2 (en) * 2013-05-28 2014-12-04 Metso Minerals, Inc. A method for operating a crusher, a crushing system and a crushing plant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141942A (ja) * 1985-12-13 1986-06-28 株式会社神戸製鋼所 破砕頭浮遊型旋動破砕機
JPH10272375A (ja) * 1997-03-31 1998-10-13 Kurimoto Ltd 旋動式破砕機の制御方法
JPH10272374A (ja) * 1997-03-31 1998-10-13 Kurimoto Ltd 旋動式破砕機の制御方法
JP2000070752A (ja) * 1998-08-31 2000-03-07 Kurimoto Ltd 破砕機の監視システム
US20070051837A1 (en) * 2005-09-06 2007-03-08 Johnson Crushers International Rock crusher having overload detection
WO2013153283A1 (en) * 2012-04-12 2013-10-17 Metso Minerals, Inc. A system and a method for monitoring and controlling a crusher, a crusher and a method for adjusting a crusher
WO2014191617A2 (en) * 2013-05-28 2014-12-04 Metso Minerals, Inc. A method for operating a crusher, a crushing system and a crushing plant

Also Published As

Publication number Publication date
WO2020188824A1 (ja) 2020-09-24
AU2019435553A1 (en) 2021-10-07
AU2019435553B2 (en) 2022-12-15
ZA202106712B (en) 2023-06-28
JP7116842B2 (ja) 2022-08-10

Similar Documents

Publication Publication Date Title
WO2020188824A1 (ja) 旋動式破砕機、並びに、その過負荷検出装置及び方法
CA2817208C (en) System and method for monitoring operational characteristics of pulverizers
CA2911747C (en) A grinding apparatus
AU2019313327B2 (en) Gyratory crusher including a variable speed drive and control system
US8496195B2 (en) Hydraulic circuit and method for controlling a gyratory cone crusher
CN111201087B (zh) 材料粉碎系统依赖于负载操作的方法
JP2012531300A (ja) 粉砕機の必須のばね装置のための力監視装置
AU681052B2 (en) Cone crusher
JP2010279927A (ja) 竪型粉砕機
CN114768923A (zh) 一种圆锥破碎机衡功率自动控制装置
JPH10272375A (ja) 旋動式破砕機の制御方法
JP5668902B2 (ja) 竪型粉砕機
WO2024080324A1 (ja) 旋動式破砕機並びにその制御装置及び制御方法
RU2782545C2 (ru) Гирационная дробилка, включающая привод с регулируемой скоростью и систему управления
JPS61141942A (ja) 破砕頭浮遊型旋動破砕機
JPS6155424B2 (ja)
JP2020116546A (ja) 竪型粉砕機及びその運転方法
CN213160979U (zh) 一种单缸圆锥破碎机排料口尺寸调整装置
JP7080970B2 (ja) 粉砕装置及び粉砕装置の制御方法
OA17724A (en) A grinding apparatus.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220729

R150 Certificate of patent or registration of utility model

Ref document number: 7116842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150