JPWO2020175381A1 - 粒子分離計測デバイスおよび粒子分離計測装置 - Google Patents

粒子分離計測デバイスおよび粒子分離計測装置 Download PDF

Info

Publication number
JPWO2020175381A1
JPWO2020175381A1 JP2020530399A JP2020530399A JPWO2020175381A1 JP WO2020175381 A1 JPWO2020175381 A1 JP WO2020175381A1 JP 2020530399 A JP2020530399 A JP 2020530399A JP 2020530399 A JP2020530399 A JP 2020530399A JP WO2020175381 A1 JPWO2020175381 A1 JP WO2020175381A1
Authority
JP
Japan
Prior art keywords
flow path
inflow port
separation
flow
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020530399A
Other languages
English (en)
Other versions
JP6761152B1 (ja
Inventor
将史 米田
将史 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Application granted granted Critical
Publication of JP6761152B1 publication Critical patent/JP6761152B1/ja
Publication of JPWO2020175381A1 publication Critical patent/JPWO2020175381A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1023Microstructural devices for non-optical measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1484Optical investigation techniques, e.g. flow cytometry microstructural devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/491Blood by separating the blood components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0636Focussing flows, e.g. to laminate flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/148Specific details about calibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/168Specific optical properties, e.g. reflective coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/149Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • G01N2015/016White blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1028Sorting particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Ecology (AREA)
  • Fluid Mechanics (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Optical Measuring Cells (AREA)

Abstract

本開示の粒子分離計測デバイス1は、分離対象の粒子を含む第1流体が流出する分離後流出口13を有する第1流路デバイス2と、第1流路デバイス2が載置され、第1流体が流入する第1流入口23を有する第2流路デバイス3とを備える。下面に分離後流出口13が配置された第1流路デバイス2が、第1領域21の上面に第1流入口23が配置された第2流路デバイス3に載置されて、分離後流出口13と第1流入口23とが対向して接続されている。第1流入口23の開口から第1流路16に到る接続流路23aは、上下方向に配されており、第1流入口23の開口から第1流路16側に向かって小さくなっている。

Description

本開示は、液体中に含まれた複数種類の粒子から特定の粒子を分離して計測するのに用いられる粒子分離計測デバイスおよび粒子分離計測装置に関する。
従来、流入口と複数の流出口とを有する、幅が数μm〜数百μmの微小な流路構造(マイクロ流路)を用いて、液体中の粒子を分離して抽出する粒子分離デバイスが知られている(例えば、特開2012−76016号公報を参照)。このような粒子分離デバイスでは、例えば、複数種類の粒子(例えば、赤血球および白血球)を含む液体(例えば、血液)を流入口から流入させると、その中の特定の粒子(例えば、白血球)を分離して、特定の粒子とそれ以外の粒子とを複数の流出口から別々に抽出することができる。
また、その後に、分離抽出した特定の粒子について、その種類または数もしくは濃度、あるいは光学特性などを計測することが行なわれる。
本開示の粒子分離計測デバイスは、分離対象である特定の粒子を含む流体を流入させる分離前流入口、該分離前流入口に接続された主流路、該主流路にそれぞれ接続された複数の分岐流路、および分離された前記特定の粒子を含む第1流体が流出する分離後流出口を有する板状の第1流路デバイスと、該第1流路デバイスが載置される第1領域および前記特定の粒子の計測領域となる第2領域を有し、前記第1流体が流入する第1流入口、前記特定の粒子を含まない第2流体が流入する第2流入口、ならびにそれぞれ前記第2領域に配置された、前記第1流入口に接続されて前記第1流体が通過する第1流路および前記第2流入口に接続されて前記第2流体が通過する第2流路を有する板状の第2流路デバイスとを備え、下面に前記分離後流出口が配置された前記第1流路デバイスが、前記第1領域の上面に前記第1流入口が配置された前記第2流路デバイスに載置されて、前記分離後流出口と前記第1流入口とが対向して接続されており、前記第2流路デバイスにおける前記第1流入口の開口から前記第1流路に到る接続流路は、上下方向に配されており、前記第1流入口の開口から前記第1流路側に向かって小さくなっている。
本開示の粒子分離計測装置は、上記の粒子分離計測デバイスと、該粒子分離計測デバイスの前記第1流路および前記第2流路のそれぞれの計測部に光を照射するとともに、前記第1流路および前記第2流路の計測部を通過したそれぞれの光を受光する光学センサと、該光学センサによって得られる前記第1流路の計測部を通過した光の強度および前記第2流路の計測部を通過した光の強度を比較することによって、前記特定の粒子を計測する制御部とを備える。
本開示の実施形態に係る粒子分離計測デバイスの例を示す上面図である。 本開示の実施形態に係る粒子分離計測デバイスの例を示す断面図である。 本開示の実施形態に係る粒子分離計測デバイスにおける第1流路デバイスの例を示す平面図である。 本開示の実施形態に係る粒子分離計測デバイスにおける第1流路デバイスの例の一部を示す平面図である。 本開示の実施形態に係る粒子分離計測デバイスの例の一部を示す断面図である。 本開示の実施形態に係る粒子分離計測デバイスの例の一部を示す断面図である。 本開示の実施形態に係る粒子分離計測デバイスの例の一部を示す断面図である。 本開示の実施形態に係る粒子分離計測デバイスにおける第2流路デバイスの例を示す平面図である。 本開示の実施形態に係る粒子分離計測デバイスにおける第2流路デバイスの例の一部を示す平面図である。 本開示の実施形態に係る粒子分離計測デバイスの例を示す断面図である。 本開示の実施形態に係る粒子分離計測デバイスを有する粒子分離計測装置の例を示す断面図である。 本開示の実施形態に係る粒子分離計測装置の全体構成の例を模式的に示すブロック図である。 本開示の実施形態に係る粒子分離計測デバイスにおける第2流路デバイスの例を示す平面図である。 本開示の実施形態に係る粒子分離計測デバイスにおける第2流路デバイスの例の一部を示す平面図である。
マイクロ流路を用いて液体中の特定の粒子を分離するには、主流路に複数の分岐流路が接続された構成のマイクロ流路を用い、分離対象の粒子とともに複数種類の粒子を含む液体である検体と、主流路から分岐流路への押付け流れを発生させる流体とをそれぞれ流入させる構成を有する粒子分離デバイスが用いられる。次に、粒子分離デバイスによって分離された粒子の濃度などを計測するために、その粒子を含む液体を続いて粒子計測デバイスに流入させて、計測部の流路に導入して計測が行なわれる。そして、これらの作業を一連の手順で行なうために、これら粒子分離デバイスと粒子計測デバイスとを接続した粒子分離計測デバイスが用いられる。
この粒子分離計測デバイスにおいては、粒子分離デバイスから粒子計測デバイスに分離された粒子を含む液体をスムーズに流入させ、接続部における粒子の滞留などの不具合の発生を抑制するのに有利な構成を備えたものが望まれている。
本開示の粒子分離計測デバイスおよび粒子分離計測装置によれば、粒子分離デバイスである第1流路デバイスの分離後流出口と、粒子計測デバイスである第2流路デバイスの第1流入口とが対向して接続されている。また、第2流路デバイスにおける第1流入口の開口から第1流路に到る接続流路が、上下方向に配されており、第1流入口の開口から第1流路側に向かって小さくなっている。これにより、第1流路デバイスによって分離された特定の粒子が第1流路デバイスと第2流路デバイスとの接続部において滞留するといった不具合の発生を抑制することができる。従って、第1流路デバイスで分離された特定の粒子を含む第1液体を第2流路デバイスにスムーズに流入させて、安定した計測を行なうことができる。
以下、本開示の粒子分離計測デバイスおよびそれを備える粒子分離計測装置の実施形態の例について、図面を参照しつつ説明する。本開示では、便宜的に直交座標系(X,Y,Z)を定義してZ軸方向の正側を上方とする。しかし、本開示は、いずれの方向が上方または下方とされてもよい。以下の内容は本開示の実施形態を例示するものであって、本開示はこれらの実施形態に限定されるものではない。
(粒子分離計測デバイス)
図1および図2に、本開示の実施形態に係る粒子分離計測デバイスの例を模式的に示す。図1は、粒子分離計測デバイス1の上面図である。図2は、図1に示したA−A線で粒子分離計測デバイス1を切断したときの断面図である。
粒子分離計測デバイス1は、分離対象である特定の粒子を含む流体(検体)を、粒子分離デバイスである第1流路デバイス2中に流すことによって、検体中の特定の粒子である分離対象の粒子を分離して回収する。その特定の粒子(分離した粒子)を、第1流路デバイス2に接続した粒子計測デバイスである第2流路デバイス3中に流すことによって、その特定の粒子を計測することができる。例えば、粒子分離計測デバイス1は、血液から特定の成分である白血球を分離して回収し、白血球の数を計測することができる。
図3に、粒子分離デバイスである第1流路デバイス2の例を模式的に示す。図3は第1流路デバイス2を上面透視したときの平面図である。
(粒子分離デバイス:第1流路デバイス)
第1流路デバイス2は、分離対象である特定の粒子を始めとして複数種類の粒子を含む液体(検体)から分離対象である特定の粒子を分離して回収することができる、粒子分離デバイスである。この第1流路デバイス2は、分離対象である特定の粒子を含む流体を流入させる分離前流入口12、この分離前流入口12に接続された主流路5、この主流路5にそれぞれ接続された複数の分岐流路6、および分離された特定の粒子を含む第1流体が流出する分離後流出口13を有する。
第1流路デバイス2は全体として板状であり、板状の基体2aの内部に、分離用流路4を有している。分離用流路4は、直線状の主流路5と、主流路5から分岐するように接続された複数の分岐流路6とを有している。本開示の第1流路デバイス2においては、第1流路デバイス2内を流れる検体(例えば血液)は、主流路5に流入し、特定の粒子(第1粒子、例えば白血球)とは異なる粒子(第2粒子、例えば赤血球)が主流路5から分岐流路6に流れ込むことによって、検体中の特定の粒子(第1粒子)を分離することができる。なお、第2粒子が分岐流路6に流れ込むことによって、検体中から第2粒子を分離することもできる。
なお、分岐流路6は、主流路5からの分岐によって第2粒子が流れ込むように設計するが、分岐流路6には必ずしも第2粒子のみが流れ込むとは限らない。分岐流路6には、第2粒子とは異なる粒子(第3粒子など)が流入することもある。
図4に、主流路5および分岐流路6によって第1粒子と第2粒子とが分離される様子を模式的に示す。図4は、図3の破線部を拡大して示した平面図である。図4において、図中の大きい円が第1粒子P1を示し、小さい円が第2粒子P2を示す。また、X軸方向に沿ったハッチングを施した矢印が主流の流れを示し、Y軸方向に沿った白抜きの矢印が、後述する「押付け流れ」を示す。さらに、図中のハッチングを施した領域は、後述する「引込み流れ」を示す。
本開示の分離用流路4は、1つの主流路5と、1つの主流路5の途中の側面に対して直交する方向に接続された複数の分岐流路6とを有している。第1流路デバイス2では、主流路5および分岐流路6のそれぞれの断面積および長さ、ならびに検体の流速などを調整することによって、主流路5内に、主流路5から分岐流路6へ流れ込む「引込み流れ」を発生させることができる。そして、第1流路デバイス2では、分離用流路4に、主流路5内を流れる検体を分岐流路6側に押付け可能な押付け流れを発生させている。その結果、図4に示したように、引込み流れが流れ込む分岐流路6の幅を、検体中を流れる特定の粒子としての第1粒子P1の大きさよりも小さく、また他の粒子としての第2粒子P2の大きさよりも大きくすることによって、分岐流路6に第2粒子P2を引き込むことができる。また、押付け流れによって押し付けられて主流路5の分岐流路6側を流れる引込み流れの幅を、検体中を流れる第2粒子P2の重心位置よりも大きく、また第1粒子P1の重心位置よりも小さくすることによって、分岐流路6に第2粒子P2を効果的に引き込むことができる。これにより、検体中の特定の粒子である第1粒子P1を分離し、主流路5の流れに乗せて回収することができる。なお、これと同時に、検体中から第2粒子P2を分離して、分岐流路6の流れに乗せて回収することもできる。
本開示の第1流路デバイス2は、特に、検体としての血液中の赤血球と白血球とを分離するのに好適に使用できる。ここで、血液中の赤血球の大きさは例えば6〜8μmであり、重心位置は例えば縁から3〜4μmの位置である。また、白血球の大きさは例えば10〜30μmであり、重心位置は例えば縁から5〜15μmの位置である。この場合、主流路5は、例えば、断面積が300〜1000μm2で、長さが0.5〜20mmであればよい。断面の寸法は、上記の断面積の範囲で、例えば、幅が30μm程度で、高さが20μm程度であればよい。また、分岐流路6は、例えば断面積が100〜500μm2で、長さが3〜25mmであればよい。断面の寸法は、上記の断面積の範囲で、例えば、幅が15μm程度で、高さが20μm程度であればよい。また、分離用流路4内の流速は、例えば0.2〜5m/sにすればよい。その結果、引込み流れの幅を、例えば2〜15μmに設定することができ、血液から赤血球と白血球を効果的に分離することができる。
また、特定の粒子としては、白血球または赤血球の他にも、例えば種々の細胞外小胞であってもよく、エクソソーム(Exosome、大きさ30〜200nm)、マイクロベシクル(Microvesicle、大きさ200〜1000nm)、ラージオンコソーム(Large oncosome、1〜10μm)などであってもよい。また、特定の粒子は無機物であってもよく、微粉末を含む懸濁液などの流体中の特定の微粒子であってもよい。いずれの場合も、分離対象である特定の粒子の大きさなどに応じて分離用流路4の形状および寸法を適宜設計すればよい。
第1流路デバイス2は、基体2aの上面および下面の少なくとも一方に開口した複数の第1開口9を有している。第1開口9のうちの少なくとも2つは、主流路5に検体および流体を流入させるための流入口である。流入口は、主流路5に向けて分離対象である特定の粒子(例えば第1粒子P1)を含む流体である検体が流入する分離前流入口12と、主流路5に対して複数の分岐流路6の上流側に位置する反対側の側面に対して直交する方向に接続された、押付け流れを発生させる流体が流入する押付流入口15とを含んでいる。
このとき、分離前流入口12としての第1開口9は、形状を円形状として、その大きさは例えば1〜3mmとすればよい。また、各流路の高さは、分離用流路4として同じ高さに設定すればよく、分離前流入口12の深さは、基体2aの例えば上面の開口から主流路5の底面までの深さとすればよい。
押付流入口15としての第1開口9は、形状を円形状として、その大きさは例えば1〜3mmとすればよい。押付け流れ用の流路の高さは、分離用流路4として同じ高さに設定すればよく、押付流入口15の深さは、基体2aの例えば上面の開口から主流路5の底面までの深さとすればよい。
分離用流路4は、主流路5に接続した回収流路7をさらに有しており、回収流路7によって、分離した第1粒子P1を回収することができる。本開示では、分離用流路4により、押付け流れを利用して、回収流路7に第1粒子P1を回収することができる。
また、分離用流路4は、複数の分岐流路6に接続した廃棄流路7′を有していてもよい。廃棄流路7′によって、分岐流路6で分離された第2粒子P2を回収してもよいし、廃棄してもよい。なお、複数の分岐流路6によって第2粒子P2を回収する場合には、複数の分岐流路6が接続した1つの廃棄流路7′は、第2粒子P2を回収する流路として機能する。この場合は、主流路5から回収流路7まで流れた第1粒子P1を含む流体は、廃棄してもよい。
第1流路デバイス2は、板状の基体2aからなる部材である。板状の基体2aの内部には、分離用流路4が配されている。また、第1流路デバイス2は、厚み方向(Z軸方向)の上下に位置する一対の第1上下面8を有している。分離用流路4は、一対の第1上下面8の少なくとも一方に配されて開口している複数の第1開口9を有している。
本開示では、説明の便宜上、一対の第1上下面8の一方を第1上面10とし、他方を第1下面11とする。一対の第1上下面8のうち、第1上面10はZ軸の正側に位置した面であり、第1下面11はZ軸の負側に位置した面である。本開示では、複数の第1開口9の少なくとも1つは、第1下面11に位置している。
複数の第1開口9は、少なくとも主流路5に検体が流入する分離前流入口12と、回収流路7から分離した特定の粒子である第1粒子P1を含む流体を第1流体として流出させて回収する分離後流出口13と、検体から第1粒子P1を除いた成分を回収する少なくとも1つの廃棄流出口14とを有している。また、本開示では、第1開口9は、検体を分岐流路6側に押し付ける押付け流れのための流体が流入する押付流入口15を有している。なお、本開示では、廃棄流出口14は、主流路5および廃棄流路7′に接続されている。廃棄流出口14から流出する流体は、後述する第2流路デバイス3に形成された貫通孔14′を介して回収される。
本開示の第1流路デバイス2の平面形状は、矩形状である。また、第1上下面8のそれぞれは、平坦面である。なお、第1流路デバイス2の平面形状は、矩形状には限られない。また、第1上下面8のそれぞれは、平坦面には限られない。第1上下面8は、第1上面10および第1下面11が異なる形状であってもよい。
第1流路デバイス2は、例えば、PDMS(ポリジメチルシロキサン)またはPMMA(ポリメチルメタクリレート:アクリル)などの材料で形成される。第1流路デバイス2の厚みは、例えば1〜5mmであればよい。第1流路デバイス2の平面形状は、矩形状の場合、例えば短辺が10〜20mm、長辺が10〜30mmであればよい。第1流路デバイス2は、例えば、2つの基板を準備し、一方に分離用流路4となる溝を形成し、この溝を塞ぐように他方の基板を貼り合わせて内部に分離用流路4を有する基体2aとすることによって作製することができる。
(粒子計測デバイス:第2流路デバイス)
第2流路デバイス3は、第1流路デバイス2で分離して回収した特定の粒子を計測するための流路デバイスであり、第1流路デバイス2とともに粒子分離計測デバイスを構成するものである。この第2流路デバイス3は、第1流路デバイス2が載置される第1領域21および特定の粒子の計測領域となる第2領域22を有し、第1流体が流入する第1流入口23、後述する特定の粒子を含まない第2流体が流入する第2流入口、ならびにそれぞれ第2領域22に配置された、第1流入口23に接続されて第1流体が通過する第1流路16および第2流入口に接続されて第2流体が通過する、後述する第2流路を有しており、全体として板状である。
図2に示すように、第2流路デバイス3は、第1流路デバイス2の分離用流路4に接続した第1流路16を有している。そして、第2流路デバイス3は、透光性である。その結果、第2流路デバイス3は、第1流路デバイス2で分離して回収した特定の粒子を含む第1流体を第1流路16に流し、後述する光センサを使用して、特定の粒子を計測することができる。具体的には、第1流路16における特定の粒子を含む第1流体を通過した光の強度を測定することによって、特定の粒子を計測する。
第2流路デバイス3は、板状の基体の内部に流路が形成されている部材である。板状の基体の内部には、第1流路16が配されている。また、第2流路デバイス3は、厚み方向(Z軸方向)の上下に位置する一対の第2上下面17を有している。第1流路16は、一対の第2上下面17の少なくとも一方に配されて開口している複数の第2開口18を有している。
なお、本開示では、説明の便宜上、一対の第2上下面17の一方を第2上面19、他方を第2下面20とする。一対の第2上下面17のうち、第2上面19はZ軸の正側に位置した面であり、第2下面20はZ軸の負側に位置した面である。
本開示の第2流路デバイス3の平面形状は、矩形状である。また、第2上下面17のそれぞれは、平坦面である。なお、第2流路デバイス3の平面形状は、矩形状には限られない。また、第2上下面17のそれぞれは、平坦面には限られない。第2上下面17は、第2上面19および第2下面20が異なる形状であってもよい。
第2流路デバイス3は、例えば、PMMAまたはCOP(シクロオレフィンポリマー)で形成される。第2流路デバイス3の厚みは、例えば0.5〜5mmであればよい。第2流路デバイス3の平面形状は、矩形状の場合、例えば短辺が20〜40mm、長辺が20〜80mmであればよい。第2流路デバイス3は、例えば、2つの基板を準備し、一方に第1流路16となる溝を形成し、この溝を塞ぐように他方の基板を貼り合わせて内部に第1流路16を有する基体とすることによって作製することができる。
図5に、粒子分離デバイスである第1流路デバイス2と粒子計測デバイスである第2流路デバイス3とを有する粒子分離計測デバイス1の例の一部を模式的に示す。図5は、図2の破線部を拡大した断面図である。
本開示の第2流路デバイス3では、複数の第2開口18の少なくとも1つは、第2上面19に位置している。そして、第2上面19の第1領域21の上には、第1流路デバイス2が第1下面11を介して載置されており、第1下面11に位置した第1開口9のうちの分離後流出口13と、第2上面19に位置した第2開口18のうちの第1流入口23とが接続されている。したがって、本開示の粒子分離計測デバイス1は、第1流路デバイス2の流路が直接、第2流路デバイス3の流路に接続されており、検体中の特定の粒子の分離、回収から計測までを連続して実行できることから、処理効率を向上させることができる。また、板状の第1流路デバイス2および第2流路デバイス3を厚み方向に積み上げるように配置していることから、粒子分離計測デバイス1を小型化することができる。
本開示の第2流路デバイス3は、第2上面19に第1流路デバイス2が載置される第1領域21および特定の粒子の計測領域となる第2領域22を有している。また、平面視したときに、第2流路デバイス3の第1流路16は第1領域21から第2領域22にわたって配されており、第1流路デバイス2は、第2流路デバイス3の第1領域21のみに配されている。その結果、第2領域22に第1流路16が第1流路デバイス2に重ならないように位置していることから、第2領域22を粒子の計測領域として使用することができ、第2領域22に位置する第1流路16を計測用流路として使用することができる。
なお、粒子分離計測デバイス1は、後述するように、光を反射することができる部材を第2領域22に配置してもよい。
第1流路デバイス2は、第2流路デバイス3と異なる材料で形成されていてもよい。本開示では、例えば、第1流路デバイス2はPDMSなどで形成され、第2流路デバイス3はCOPなどで形成されている。
また、本開示のように、第1流路デバイス2は第2流路デバイス3の上側に位置している。具体的には、第2流路デバイス3の第2上面19の第1領域21に第1流路デバイス2が配されている。その結果、第1流路デバイス2で分離して回収した特定の粒子を含む第1流体を、重力も利用して第2流路デバイス3に効率よく流入させることができ、特定の粒子を含む第1流体が途中の流路、例えば第1流路デバイス2と第2流路デバイス3との接続部の流路で滞留してしまうことを低減することができる。
なお、本開示は、第1流路デバイス2が第2流路デバイス3の第2下面20に配されている実施形態を排除するものではない。
複数の第2開口18は、第1流路16に分離した特定の粒子を含む第1流体が流入するための第1流入口23と、第1流路16からその第1流体を回収するための第1流出口24とを有している。第1流入口23は、その開口が第2上面19に配されており、第1流路デバイス2の分離後流出口13に対向して接続されている。第1流出口24は第2下面20に配されている。その結果、重力を利用することによって、第1流入口23で第1流路デバイス2から第1流体を流入しやすくすることができ、第1流出口24で第1流体を回収しやすくすることができる。
(第1流路デバイスと第2流路デバイスとの接続構造)
第1流路デバイス2は、第2流路デバイス3の第2上面19の第1領域21に載置されている。そして、第1流路デバイス2の分離後流出口13と、第2流路デバイス3の第1流入口23とが、対向して接続されている。そして、本開示においては、図5に示すように、両者の接続構造において、第2流路デバイス3における第1流入口23の開口から第1流路16に到る接続流路25は、上下方向に配されており、第1流入口23の開口から第1流路16側に向かって小さくなっている。これにより、第1流路デバイス2と第2流路デバイス3との接続部において、接続流路25を通過する第1流体に含まれる特定の粒子が接続流路25の内壁に偏って分布して、第1流路16に流入するときにその分布の影響を受けてしまうという不具合を低減することができる。その結果、接続流路25から第1流路16に流入する特定の粒子の分布の偏りを低減して、第1流路16中で良好に分散させることができ、良好な計測を行なうことができるようになる。
ここで、分離後流出口13の開口の大きさは、例えば0.5〜3mm、好適には2mm程度であればよい。これに対して、第1流入口23の開口(接続流路25の入口)の大きさは、例えば0.5〜3mm、好適には1.5〜2mmであり、分離後流出口13の開口の大きさよりも大きいことが好ましい。また、分離後流出口13の開口の大きさと第1流入口23の開口の大きさとは、実質的に同じ大きさであってもよい。ここで、実質的に同じ大きさとは、製造における許容誤差程度の違いを含むものは同じ大きさとみなしてよいということである。また、接続流路25の第1流路16側の開口(接続流路25の出口)の大きさは、例えば0.5〜1mmで、第1流入口23の開口(接続流路25の入口)の大きさよりも小さいものとする。このように、分離後流出口13の開口の大きさよりも、第1流入口23の開口(接続流路25の入口)の大きさが大きい場合は、分離後流出口13の開口と第1流入口23の開口との段差に粒子が溜まるような現象を低減することができる。
なお、分離後流出口13の開口の大きさよりも、第1流入口23の開口(接続流路25の入口)の大きさが小さい場合は、分離後流出口13の開口と第1流入口23の開口との段差に粒子が溜まりがちになることがある。そのような場合であっても、接続流路25によって特定の粒子の分布の偏りを低減して第1流路16に粒子を供給することができる。分離後流出口13の開口の大きさよりも第1流入口23の開口の大きさが小さく、両者の間に段差がある場合であっても、その段差に粒子が溜まりがちになる傾向の程度は、流体および粒子の特性あるいは流路の内壁と粒子との相互作用の程度などによって異なる。従って、流体および粒子に対して、流路を構成する材料の選定あるいは流路の設計を適切に行なうことによって、段差による粒子の滞留の影響は実用上特に問題ない程度に軽減することができるので、本開示による効果が損なわれるものではない。
分離後流出口13および第1流入口23の開口の形状、ならびに接続流路25の断面の形状は、円形状である。なお、この接続流路25の断面とは、横断面であり、XY平面に平行な断面である。第1流入口23の開口の形状および接続流路25の断面の形状が円形状であることにより、接続流路25を流れる第1流体に含まれる特定の粒子を、澱みあるいは分布の偏りを生じさせずに接続流路25の中央部に集めて流すことができる。また、接続流路25の形状の変化、具体的には内壁の傾斜の具合については、基本的には直線的な変化であればよい。また、入口(第1流入口23の開口)側から出口(第1流路16との接続部)側にかけて、傾斜すなわち径が小さくなる割合が次第に大きくなるようなもの、いわゆるおわん型のようなものであってもよい。このように接続流路25の内壁が上下方向において曲面になっている場合には、第1流体に含まれる特定の粒子を接続流路25の内部に一旦溜めるようにして流すことができる。これにより、第1流体を安定して流すことができるとともに、内壁が直線的に変化する接続流路25に比べて、第1流体を第1流路16に供給する時間を調整することができる。
なお、分離後流出口13および第1流入口23の開口の形状、ならびに接続流路25の断面の形状は、特定の粒子および第1流体の性質に応じて、楕円形状としてもよく、正方形状、長方形状あるいは菱形状などの矩形状としてもよい。楕円形状とする場合は、開口に近接する他の流路がある場合にはその方向を短径側とし、周囲に余裕がある方向を長径側とすることによって、他の流路との干渉などの影響を低減することができる。また、菱形状とする場合は、第1流体の流速に中央部と周辺部とで差をつけやすくなるので、接続部における流れの制御を行なえる場合がある。
また、分離後流出口13と第1流入口23とは、基本的には同心状に対向するように、中心を合わせるようにして配置される。しかし、組立時の製造誤差のようなずれが許容されるのはもちろん、互いの中心をずらせて対向するように配置してもよい。第1流入口23の中心に対して、分離後流出口13の中心を第1流路16の下流側に寄るようにずらせた場合には、後述する第2流体の流れなどとの関係で、第1流体が第1流路16の下流側に流れやすくなる傾向がある。
接続流路25が接続されている第1流路16は、接続流路25に接続しているとともに平面の一方向に沿って第2領域22に延びている平面部26を有している。第1流路16は、接続流路25が接続されていることによって、分離用流路4との接続部で第1流体の滞留を低減するとともに、分離した特定の粒子の分布の偏りを低減することができる。また、第1流路16は、平面部26を有することによって、粒子の計測に際して平面部26中に第1流体を保持することができ、安定して計測することができる。
なお、第1流路16との接続部における接続流路25の幅(出口の大きさ)は、前述のように例えば0.5〜1mmであり、平面部26の幅は、例えば1.5〜6mmであればよい。接続流路25の長さは、例えば0.5〜1mmであり、平面部26の高さは、例えば0.5〜2mmであればよい。
なお、図2においては、第1流路デバイス2と第2流路デバイス3との間にシート部材44を配している例を示している。このシート部材44は必須のものではないので、図5に示す例においてはそれを用いない例を示している。第1流路デバイス2の第1下面11または第2流路デバイス3の第2上面19の少なくとも一方にシランカップリング剤などを塗布することによって、両者を直接接続することができる。
これに対して、図6に図5と同様の断面図で示すように、第1流路デバイス2の第1下面11と第2流路デバイス3の第2上面19との間には、図2に示す例におけるように、シート部材44を介在させてもよい。すなわち、粒子分離計測デバイス1は、第1流路デバイス2と第2流路デバイス3との間に配されたシート部材44を有していてもよい。すなわち、第1流路デバイス2がシート部材44を介して第2流路デバイス3に載置されて、分離後流出口13と第1流入口23とが、シート部材44の貫通孔45を介して接続されていてもよい。このとき、シート部材44の貫通孔45の開口の大きさは、分離後流出口13の開口の大きさと同等にすればよい。また、シート部材44の貫通孔45の開口の大きさは、第1流入口23の開口の大きさよりも小さいことが好ましい。
第1流路デバイス2と第2流路デバイス3との間にシート部材44を介在させることにより、第1流路デバイス2と第2流路デバイス3とが難接着の材料同士でできている場合であっても、両者を良好に接合するための中間層としてシート部材44を機能させることができ、粒子分離計測デバイス1を安定して構成することができるようになる。また、分離後流出口13と第1流入口23との間に介在する貫通孔45の開口の大きさを、上下の開口の大きさの中間の大きさで適宜に設定することにより、第1流路デバイス2と第2流路デバイス3との接続部において第1流体および特定の粒子の滞留を効果的に防止することができる。
シート部材44は、第1流路デバイス2と第2流路デバイス3との接着面からの第1流体などの漏洩を抑制するとともに、難接着性の材料同士を接合するための中間層としての機能を有している。シート部材44は、例えばシリコーンまたはPDMSなどの材料で形成されていればよい。また、シート部材44を介在させることによって、接着面としての第1下面11および第2上面19の表面のうねりなどを吸収することができる。なお、シート部材44は、分離後流出口13と第1流入口23との間の他にも、必要に応じて複数の貫通孔を有していてもよい。これら貫通孔45を含む複数の貫通孔は、複数の第1開口9および第2開口18に対向している。その結果、第1流路デバイス2と第2流路デバイス3との間で、これら貫通孔を介してそれぞれ流体が流れることになる。
シート部材44の厚みは、例えば0.5〜3mm程度であればよく、2mm程度とすれば、接着する面のうねりなどを良好に吸収することができるとともに、分離後流出口13と第1流入口23との間の距離を不必要に大きくすることもない。また、第1流路デバイス2と第2流路デバイス3との接着の際にクラックなどが発生するのを抑制することができる。
また、シート部材44の大きさ(面積)は、貫通孔45の周辺で必要な接着ができる大きさ以上で、第1流路デバイス2の第1下面11の大きさ以下であれば、適宜に設定可能である。また、シート部材44は必ずしも1枚である必要はなく、所定の形状および大きさの複数のものを組み合わせたものであってもよい。
本開示の第1流路デバイス2と第2流路デバイス3は、シート部材44との間が直接に接続されていてもよく、シート部材44の上下面に塗布された接着剤を介して接続されていてもよい。接着剤は、例えば紫外線で硬化する光硬化性樹脂または熱可塑性樹脂などであればよい。
次に、本開示の粒子分離計測デバイス1においては、図7に図6と同様の断面図で示すように、シート部材44の貫通孔45の大きさは、分離後流出口13側から第1流入口23側に向かうにつれて小さくなっていることが好ましい。本例においては、貫通孔45の分離後流出口13側の開口は、分離後流出口13の開口と同程度の大きさであり、貫通孔45の第1流入口23側の開口は、第1流入口23側の開口の大きさよりも小さくなっている。このような貫通孔45の開口の大きさとしては、例えば、分離後流出口13側の開口が2mm程度であり、第1流入口23側の開口が1.7mm程度である。これにより、分離後流出口13から第1流入口23への貫通孔45を介する第1流体の流れが、これら接続部において滞留するのを効果的に抑制することができる。この場合に、貫通孔45の内壁の断面形状は、図7に示すような直線状の他にも、分離後流出口13側から第1流入口23側に向かうにつれて曲面状に小さくなっている、いわゆるR形状で狭くなっている形状であってもよい。
本開示の粒子分離計測デバイス1においては、第1流路デバイス2と第2流路デバイス3との間に配されたシート部材44を有する場合に、第1流路デバイス2の硬度よりもシート部材44の硬度が高く、このシート部材44の硬度よりも第2流路デバイス3の硬度が高いことが好ましい。これにより、第1流路デバイス2とシート部材44との間では、相対的に柔らかい第1流路デバイス2に形成される流路の形状が、平坦で相対的に硬い土台となるシート部材44の上にしっかり保持できるようになる。また、第2流路デバイス3とシート部材44との間では、相対的に硬い土台となる第2流路デバイス3と、これに接合されるシート部材44との密着力を上げて、両者の接合を強固なものにすることができる。またこのとき、第1流路デバイス2とシート部材44との接合面およびシート部材44と第2流路デバイス3との接合面は、それぞれ同等の表面粗さであることが望ましい。それら接合面の表面粗さは、具体的には算術平均粗さRaで0.005〜0.05μm程度が好ましい。
このとき、各部材の硬度については、一般的にゴム成型品の硬さは国際ゴム硬さIRHD(International Rubber Hardness Degree)で評価され、樹脂成型品はロックウェル硬度で評価される。ここでは、それぞれの硬度を相対評価する上ではIRHDで評価すればよい。例えば第1流路デバイス2の硬度はIRHDで30以上80未満であり、シート部材44の硬度はIRHDで80程度であり、第2流路デバイス3の硬度はIRHDで80を超えていることが好ましい。このような硬度の組合せとなる材料としては、例えば第1流路デバイス2がPDMSからなり、シート部材44がシリコーンシートからなり、第2流路デバイス3がCOPまたはPMMAからなるものとすればよい。これらの材料であれば、具体的にはPDMSがIRHDで30程度、シリコーンシートがIRHDで80程度、COPはIRHDで80を超えており(ロックウェル硬さでR50程度)、硬度の組合せとして好ましい。
なお、硬度の測定方法としては、測定する対象の表面に鋭利ではない針(押針、インデンタ)を所定の力で押し込んで、その変形量を測定して数値化する方法を適用すればよい。針を押し込む力には、スプリングを用いるデュロメーター硬さと、分銅などで一定の定荷重を用いる国際ゴム硬さIRHD(International Rubber Hardness Degree)とがある。ここでは、前者の方が、測定器が簡便であることから一般に広く普及しているので、これを採用すればよい。
図8および図9に、粒子分離計測デバイス1に用いる第2流路デバイス3の例を模式的に示す。図8は、第2流路デバイス3を上面透視したときの平面図である。図9は、図8に示した破線部を拡大した平面図である。なお、図8中のA−A線は、図1中のA−A線と同じ位置である。
第1流路16の平面部26は、少なくとも接続流路25に接続している一部が、接続流路25の幅よりも大きい幅を有していることが好ましい。その結果、平面部26と接続流路25との接続部において、第1流体の滞留を低減することができる。
平面部26は、接続流路25に接続している第1平面部27と、第1平面部27に接続しているとともに第1平面部27の幅よりも幅が大きい第2平面部28とをさらに有しているとよい。そして、第1平面部27と第2平面部28との間は、接続流路25と第1流路16との接続部から、第1流体の流れの下流側に向かうにつれて流路の幅が大きくなる幅増大部16aで接続されていることが好ましい。すなわち、第2流路デバイス3は、第1流入口23と、第2領域22に位置して第1流路16の計測部として使用される第2平面部28との間に、第1流体の流れの下流側に向かうにつれて流路の幅が大きくなる幅増大部16aを有することが好ましい。これにより、幅増大部16aにおいて第1流体に幅方向に広がる流れが生じ、それによって第1流体に含まれる特定の粒子が分散するので、計測に際して特定の粒子の偏りを抑制することができる。その結果、第1流路デバイス2で分離して回収した、例えば第1粒子P1を第2平面部28内で拡散しやすくすることができる。
第1平面部27の幅は、例えば0.5〜3mmであればよく、第2平面部28の幅は、例えば1〜5mmであればよい。第2平面部28の幅は、例えば第1平面部27の2〜10倍であればよい。そして、本開示では、第1平面部27および第2平面部28の接続部における幅増大部16aは、徐々に幅広になっている。すなわち、幅増大部16aの形状は、幅方向に見て逆テーパー状と言える。このときの逆テーパー状の広がり角度は、平面部26(第1平面部27および第2平面部28)の幅の中心線に対して片側で20〜40°の末広がりになっているようにすればよい。また、逆テーパー部分の長さは3〜5mm程度とすればよい。
なお、幅増大部16aは、直線状に徐々に幅広になっている形状の他にも、曲線状に変化している形状、あるいは段階的に幅広になっている形状であってもよい。幅増大部16aにおける流路の幅を、例えば、1mm→2.5mm→5mmと階段状に幅広として、第1平面部27と第2平面部28とを流路の幅が2倍以上に急拡大するような幅増大部16aで接続するようにすれば、そこを流れる第1流体に渦が起こるようになり、第1流体に含まれる特定の粒子の撹拌混合が促進されるという効果が期待できる。
また、第2平面部28は、第1平面部27よりも高さが大きい(高い)ことが好ましい。そして、図10に図2と同様の断面図で示すように、第2流路デバイス3は、第1流入口23と、第2領域22に位置して第1流路16の計測部として使用される第2平面部28との間に、第1流体の流れの下流側に向かうにつれて流路の高さが大きくなる高さ増大部16bを有することが好ましい。これにより、高さ増大部16bにおいて第1流体に高さ方向に広がる流れが生じ、それによって第1流体に含まれる特定の粒子が分散するので、計測に際して特定の粒子の偏りを抑制することができる。また、流路の高さが比較的短い長さの間で増大することによって、流体の流れの中に渦状の動きが発生して、特定の粒子の撹拌が促進される。その結果、分離した特定の粒子である例えば第1粒子P1を拡散しやすくすることができる。
第1平面部27の高さは、例えば0.2〜1mmであればよい。第2平面部28の高さは、例えば1〜5mmであればよい。そして、本開示では、第1平面部27および第2平面部28の接続部における高さ増大部16bは、徐々に高さが高くなるようになっている。すなわち、高さ増大部16bの形状は、高さ方向に見て逆テーパー状と言える。このとき、例えば第1平面部27の高さは0.5mmとし、第2平面部28の高さは1mmとして、逆テーパーの角度は45°程度で広がっているようにすればよい。
これら幅増大部16aと高さ増大部16bとを組み合わせて設定する場合には、流路の上流側に先に高さ増大部16bを設け、その直後に幅増大部16aを設けるのがよい。また、両者はできるだけ近付けて配置するのがよい。これは、流路の寸法が高さ方向よりも幅方向が広いため、先に幅が狭い状態で高さ方向に広げて上下に攪拌した後で、幅方向に広げて左右に撹拌する方が、より均一に攪拌できるからである。これに対し、先に幅方向に広げると、高さ方向の攪拌の影響・効果が小さくなる傾向がある。
第2流路デバイス3は、第1流路16の他に、第1流路16に接続した第3流路29をさらに有していてもよい。この第3流路29は、第1流路16の平面部26に接続されているのがよい。第3流路29は、例えばガスなどを流すことによって、平面部26に滞留した流体を押し流す機能を有する。その結果、第1流路16内での流体の滞留を低減することができる。
本開示の第2流路デバイス3では、図8および図9に示すように、第3流路29は、第1流路16の接続流路25と平面部26との接続部に接続されている。
第3流路29の一端は、第1流路16に接続している。また、第3流路29の他端は、一対の第2上下面17に位置した第3開口30である。すなわち、第3流路29は、一対の第2上下面17の一方(本開示では第2上面19)に位置した第3開口30を有している。第3開口30は、第1流路16の第2平面部28から流体を押し流すための、例えばガスなどの押出用流体を流入させるための開口である。
第3流路29のうち第1流路16に接続している少なくとも一部は、図8に示すように、第1流路16の平面部26(第2平面部28)の延長方向に沿って延びていてもよい。
第3流路29のうち第1流路16に接続している少なくとも一部は、第1流路16のうち第3流路29に接続している少なくとも一部と同一形状であることが好ましい。その結果、第1流路16と第3流路29との間に段差が生じることがなくなり、接続部の段差に流体が滞留するのを低減することができる。
第3流路29は、図8に示すように、それぞれが所定の一方向に延びているとともに、その一方向に交わる方向に並んでいる複数の直線部31を有していることが好ましい。第3流路29が複数の直線部31を有していることによって、第1流路16から流体が逆流して第3開口30から流体が漏れるのを低減することができる。
第1開口9のうちの分離前流入口12は、第1開口9のうちの分離後流出口13と同じ面(本開示では第1下面11)に配されていてもよい。この場合には、検体が下方(Z軸方向の負側)から第1流路デバイス2に流入することになる。その結果、第2粒子P2の比重が第1粒子P1の比重よりも大きい場合に、第2粒子P2を沈ませることができ、分離しやすくすることができる。
第2流路デバイス3は、図8に示すように、第1流路16および第3流路29とは異なる第4流路32をさらに有していてもよい。また、第4流路32は、一対の第2上下面17の少なくとも一方に位置した複数の第4開口33を有していてもよい。第4流路32は、特定の粒子を分離する前の検体が流れる流路として機能させることができる。その結果、第1流路デバイス2に検体を流入させる前に、第2流路デバイス3の第4流路32に検体を流入させることによって、流入する検体に混入した異物などを予め低減することができる。
複数の第4開口33は、第4流入口34および第4流出口35を有している。第4流入口34は、検体を第4流路32に流入させるための開口である。第4流出口35は、検体を第4流路32から流出させるための開口である。第4流入口34は外部から検体を流入できるように開口しており、第4流出口35は第1流路デバイス2の分離前流入口12に接続される。
第4流入口34および第4流出口35は、第2上面19に位置していてもよい。その場合には、検体を流入させるための外部接続などの操作を上側から行なうことができる。なお、本開示では、第4流入口34は第1流出口24と同じ面に位置している。また、本開示では、第4流出口35も第1流出口24と同じ面に位置している。また、第4流入口34は第3開口30と同じ面に位置している。
第2流路デバイス3は、図8に示すように、第1流路16、第3流路29および第4流路32とは異なる、第2流路36をさらに有していてもよい。第1流路16は、第1流路デバイス2で分離して回収した特定の粒子を含む第1流体を流す流路であるのに対して、第2流路36は、特定の粒子を含まない第2流体を流す流路であり、例えば第1流体の計測時における比較用あるいは校正用の第2流体を流す流路となる。第2流体には、第1流体と同じもので特定の粒子を含まない流体を用いてもよく、異なる流体を用いてもよい。その結果、特定の粒子の計測毎に、第1流路16と第2流路36とを順に計測することによって、両者の光強度の差から特定の粒子の数を推測することができ、光センサの劣化の影響を低減することができる。
第2流路36は、一対の第2上下面17に位置した複数の第5開口37を有している。第5開口37は、第2流入口38および第2流出口39を有している。第2流入口38は、第2流体を第2流路36に流入させるための開口である。第2流出口39は、第2流体を第2流路36から流出させるための開口である。また、第2流路36は、計測部として、第1流路16の第2平面部28と同様の形状の部分を有している。
複数の第5開口37のうちの第2流入口38は、第3開口30と同じ面に位置している。その結果、第2流体の流入および流出の操作を上側から同じ面で作業することができる。なお、第2流出口39は、第2下面20に配されているとよい。
第2流路デバイス3は、第1流路16、第3流路29、第4流路32および第2流路36とは異なる、第6流路40をさらに有していてもよい。第6流路40は、一対の第2上下面17の少なくとも一方に位置した複数の第6開口41を有している。複数の第6開口41は、第6流入口42および第6流出口43を有している。第6流入口42は、押付流れのための流体が第6流路40に流入するための開口である。第6流出口43は、押付流れのための流体が第6流路40から流出するための開口である。第6流入口42は流体を流入させることができるように位置しており、第6流出口43は第1流路デバイス2の押付流入口15に接続されている。
なお、第3流路29、第4流路32、第2流路36および第6流路40は、第1流路16と同様にして形成することができる。
(粒子分離装置)
次に、本開示の粒子分離計測装置における粒子分離装置について説明する。本開示の粒子分離装置は、粒子分離デバイスである第1流路デバイス2と、分離前流入口12に検体を流入させるための第1ポンプおよび押付流入口15に流体を流入させるための第2ポンプとを有する。粒子分離デバイスは上述の第1流路デバイス2であり、第1流路デバイス2の分離前流入口12に第1ポンプが例えば第1チューブで接続されている。そして、第1ポンプから送られた検体は、第1チューブを通って第1流路デバイス2の分離前流入口12へ流入する。また、第1流路デバイス2の押付流入口15に第2ポンプが例えば第2チューブで接続されている。そして、第2ポンプから送られた流体は、第2チューブを通って第1流路デバイス2の押付流入口15へ流入する。それにより、上述のように、主流路5と複数の分岐流路6とによって検体中から特定の粒子、例えば第1粒子P1を分離して回収することができる。
第1ポンプおよび第2ポンプには、それぞれ流体を送出できるものであれば、既知の種々のポンプを使用することができる。第1ポンプには、粒子を含んだ少量の流体、例えば血液を一定の流速で第1流路デバイス2の分離前流入口12へ流入させる機能を有していることが望ましい。また、第2ポンプには、押付流れを発生させるための流体、例えばリン酸緩衝生理食塩水(PBS:Phosphate Buffered Saline)を適切な流量および流速、圧力で第1流路デバイス2の押付流入口15へ流入させる機能を有していることが望ましい。これら第1ポンプおよび第2ポンプには、例えばシリンジポンプを好適に使用することができる。また、電気浸透流ポンプ、蠕動ポンプ、ガスポンプ等の他のポンプを用いることもできる。
第1チューブおよび第2チューブは、使用する流体に応じて既知の種々の材質からなるチューブを用いて構成することができる。検体が血液であり、流体がPBSである場合であれば、例えばシリコーンチューブを好適に用いることができる。なお、これらチューブは必須の部材ではなく、例えば、第1流路デバイス2と第1ポンプおよび第2ポンプとを直接接続するような場合、あるいはアダプタを介して接続するような場合には、これらチューブを有していなくても構わない。
(粒子分離計測装置)
次に、本開示の粒子分離計測デバイスを有する、本開示の粒子分離計測装置について説明する。
図11および図12に、粒子分離計測装置47を模式的に示す。図11は、粒子分離計測装置47を図2および図10と同じ視点で見たときの断面図である。なお、図2および図10と同様の符号のいくつかについては記載を省略している。図12は、粒子分離計測装置47の全体構成の例をブロック図で模式的に示している。
粒子分離計測装置47は、粒子分離計測デバイス1と、光学センサ48とを有している。光学センサ48は、発光素子49と受光素子50とを有している。それにより、粒子分離計測デバイス1の第1流路デバイス2によって、検体から必要な特定の粒子(例えば、第1粒子P1)を分離することができる。そして、粒子分離計測デバイス1の第2流路デバイス3の第1流路16(第2平面部28)まで流れてきた特定の粒子に対して、光学センサ48の発光素子49から光を照射し、第1流路16(第2平面部28)を通過した光を光学センサ48の受光素子50で受光することによって、粒子を計測することができる。具体的には、第1流路16中を通過する光は、第1流体中の粒子(第1粒子P1)によって散乱、反射または吸収され、光の強度が減衰する。その光を受光し、粒子の数が既知である検体と光の減衰量との関係を示した検量線を予め準備しておいて、粒子分離計測装置47で計測した光の減衰量を検量線に照らし合わせることによって、検体中の粒子を計測することができる。
本開示の粒子分離計測装置47は、上述の本開示の粒子分離計測デバイス1と、この粒子分離計測デバイス1の第1流路16および第2流路36のそれぞれの計測部に光を照射するとともに、第1流路16および第2流路36の計測部を通過したそれぞれの光を受光する光学センサ48と、この光学センサ48によって得られる第1流路16の計測部を通過した光の強度および第2流路36の計測部を通過した光の強度を比較することによって、特定の粒子を計測する制御部とを備える。
なお、発光素子49は、例えばLED(Light emitting Diode)であればよい。受光素子50は、例えばPD(Photo Diode)であればよい。受光素子50は、例えば、上面に一導電型の領域および他導電型の領域を有して受光素子50のPDが形成された半導体基板を有しており、この半導体基板上に積層された複数の半導体層からなる発光素子49のLEDを有している。
また、本開示の粒子分離計測装置47の粒子分離計測デバイス1は、第2流路デバイス3の第2上面19の第2領域22にミラー部材51を配置している。そして、光学センサ48の発光素子49および受光素子50は、第2流路デバイス3の第2下面20側に位置している。したがって、光学センサ48の受光素子50は、発光素子49から照射され、第1流路16(第2平面部28)を通過し、ミラー部材51で反射した光を受光することができる。ミラー部材51は、例えばアルミニウムまたは金などの材料で形成されていればよい。ミラー部材51は、例えば、蒸着法またはスパッタリング法などによって形成することができ、金属箔などを配置することによっても形成することができる。
粒子分離計測装置47は、粒子分離計測デバイス1に接続された、検体を供給する第1供給部52と、押付流れのための流体を供給する第2供給部53と、押出用流体を供給する第3供給部54と、校正用流体としての第2流体を供給する第4供給部55とをさらに有している。第1供給部52は、第4流入口34に接続されている。第2供給部53は、第6流入口42に接続されている。第3供給部54は、第3開口30に接続されている。第4供給部55は、第2流入口38に接続されている。粒子分離計測装置47は、制御部(図示せず)を有しており、第1供給部52、第2供給部53、第3供給部54、第4供給部55および光学センサ48は制御部によって制御されている。
このような本開示の粒子分離計測装置47によれば、本開示の粒子分離計測デバイス1を有していることから、検体中から特定の粒子を分離して良好に安定して計測することができる。
なお、本開示は上述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更、改良などが可能である。
上述した実施形態では、第2流路36の一端に第2流出口39を有している例を説明したが、図13および図14に示すように、第2流路36の一端は、第1流路16に接続されていてもよい。この場合には、第1流路16に第2流路36内の第2流体を注入することができ、第1流路16内の第1流体に含まれる白血球などの特定の粒子の濃度を希釈することができるという効果を奏する。なお、図13および図14は、図8および図9と同様の視点から見た同様の図であり、詳細な説明は省略する。
上述した実施形態では、第2流路デバイス3が第2流路36および第6流路40を有している例を説明したが、第2流路36を第6流路40として機能させてもよい。すなわち、第2流路36および第6流路40が1つの流路とされて、分離用流路4(押付流入口15)に接続されていてもよい。
1 粒子分離計測デバイス
2 第1流路デバイス(粒子分離デバイス)
2a 基体
3 第2流路デバイス(粒子計測デバイス)
4 分離用流路
5 主流路
6 分岐流路
12 分離前流入口
13 分離後流出口
16 第1流路
16a 幅増大部
16b 高さ増大部
21 第1領域
22 第2領域
23 第1流入口
25 接続流路
36 第2流路
38 第2流入口
44 シート部材
45 貫通孔
47 粒子分離計測装置
48 光学センサ

Claims (7)

  1. 分離対象である特定の粒子を含む流体を流入させる分離前流入口、該分離前流入口に接続された主流路、該主流路にそれぞれ接続された複数の分岐流路、および分離された前記特定の粒子を含む第1流体が流出する分離後流出口を有する板状の第1流路デバイスと、
    該第1流路デバイスが載置される第1領域および前記特定の粒子の計測領域となる第2領域を有し、前記第1流体が流入する第1流入口、前記特定の粒子を含まない第2流体が流入する第2流入口、ならびにそれぞれ前記第2領域に配置された、前記第1流入口に接続されて前記第1流体が通過する第1流路および前記第2流入口に接続されて前記第2流体が通過する第2流路を有する板状の第2流路デバイスとを備え、
    下面に前記分離後流出口が配置された前記第1流路デバイスが、前記第1領域の上面に前記第1流入口が配置された前記第2流路デバイスに載置されて、前記分離後流出口と前記第1流入口とが対向して接続されており、
    前記第2流路デバイスにおける前記第1流入口の開口から前記第1流路に到る接続流路は、上下方向に配されており、前記第1流入口の開口から前記第1流路側に向かって小さくなっている、粒子分離計測デバイス。
  2. 前記前記分離後流出口の開口の大きさよりも、前記第1流入口の開口の大きさが大きい、請求項1に記載の粒子分離計測デバイス。
  3. 前記第1流入口の開口の形状および前記接続流路の断面の形状は、円形状である、請求項1に記載の粒子分離計測デバイス。
  4. 前記第1流路デバイスが、シート部材を介して前記第2流路デバイスに載置されており、前記分離後流出口と前記第1流入口とが、前記シート部材の貫通孔を介して接続されている、請求項1に記載の粒子分離計測デバイス。
  5. 前記貫通孔の大きさは、前記分離後流出口側から前記第1流入口側に向かうにつれて小さくなっている、請求項4に記載の粒子分離計測デバイス。
  6. 前記第2流路デバイスは、前記接続流路と前記第1流路との接続部から、前記第1流体の流れの下流側に向かうにつれて流路の幅が大きくなる幅増大部を有する、請求項1に記載の粒子分離計測デバイス。
  7. 請求項1〜6のいずれかに記載の粒子分離計測デバイスと、
    該粒子分離計測デバイスの前記第1流路および前記第2流路のそれぞれに光を照射するとともに、前記第1流路および前記第2流路を通過したそれぞれの光を受光する光学センサと、
    該光学センサによって得られる前記第1流路を通過した光の強度および前記第2流路を通過した光の強度を比較することによって、前記特定の粒子を計測する制御部とを備える、粒子分離計測装置。
JP2020530399A 2019-02-27 2020-02-21 粒子分離計測デバイスおよび粒子分離計測装置 Active JP6761152B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019033518 2019-02-27
JP2019033518 2019-02-27
PCT/JP2020/007134 WO2020175381A1 (ja) 2019-02-27 2020-02-21 粒子分離計測デバイスおよび粒子分離計測装置

Publications (2)

Publication Number Publication Date
JP6761152B1 JP6761152B1 (ja) 2020-09-23
JPWO2020175381A1 true JPWO2020175381A1 (ja) 2021-03-11

Family

ID=72239539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020530399A Active JP6761152B1 (ja) 2019-02-27 2020-02-21 粒子分離計測デバイスおよび粒子分離計測装置

Country Status (5)

Country Link
US (1) US12000770B2 (ja)
EP (1) EP3932562A4 (ja)
JP (1) JP6761152B1 (ja)
CN (1) CN113498362B (ja)
WO (1) WO2020175381A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153331A1 (ja) * 2022-02-08 2023-08-17 京セラ株式会社 流路デバイスの準備方法

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301595A (ja) * 1994-05-09 1995-11-14 Toa Medical Electronics Co Ltd 粒子測定装置およびその粒子測定方法
FR2726775B1 (fr) * 1994-11-16 1997-07-18 Snecma Dispositif de separation et de filtration de particules dans un debit de fluide
JP2003057252A (ja) * 2001-08-17 2003-02-26 Horiba Ltd マルチスタックマイクロ分析計
WO2003052389A1 (en) * 2001-12-18 2003-06-26 University Of Wyoming Apparatus and methods for high throughput analysis of particles in a translucent flowing liquid
EP1335198B1 (de) * 2002-02-01 2004-03-03 Leister Process Technologies Mikrofluidisches Bauelement und Verfahren für die Sortierung von Partikeln in einem Fluid
US6794671B2 (en) * 2002-07-17 2004-09-21 Particle Sizing Systems, Inc. Sensors and methods for high-sensitivity optical particle counting and sizing
JP2004058214A (ja) * 2002-07-29 2004-02-26 Kawamura Inst Of Chem Res 流路接続方法、流路接続用部材、マイクロ流体デバイス及びマイクロ流体デバイスの接続構造
US7118676B2 (en) * 2003-09-04 2006-10-10 Arryx, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
JP4112410B2 (ja) * 2003-03-26 2008-07-02 株式会社小松製作所 異物捕獲フィルタ
EP2306174B1 (en) * 2003-03-28 2016-05-11 Inguran, LLC Flow cytometry nozzle for orienting particles and corresponding method
JP4488704B2 (ja) * 2003-08-14 2010-06-23 株式会社神戸製鋼所 マイクロ流体装置及びマイクロ流体デバイスの集積方法
EP1663460B1 (en) * 2003-09-04 2015-07-08 Premium Genetics (UK) Limited Multiple laminar flow-based particle and cellular separation with laser steering
US20070242269A1 (en) * 2004-03-06 2007-10-18 Michael Trainer Methods and apparatus for determining characteristics of particles
US20080095705A1 (en) 2004-11-09 2008-04-24 Virtanen Jorma A Methods and Devices for Facile Fabrication of Nanoparticles and Their Applications
US7355696B2 (en) * 2005-02-01 2008-04-08 Arryx, Inc Method and apparatus for sorting cells
EP1904653A4 (en) 2005-07-18 2010-04-14 Us Genomics Inc MICROFLUIDIC PROCESSES AND DEVICES FOR PREPARING AND ANALYZING SAMPLES
US20090201504A1 (en) * 2005-08-09 2009-08-13 Maxwell Sensors, Inc. Hydrodynamic focusing for analyzing rectangular microbeads
EP3031918B1 (en) * 2006-05-11 2018-03-14 Raindance Technologies Inc. Microfluidic devices
WO2008108237A1 (ja) * 2007-03-02 2008-09-12 Seishin Enterprise Co., Ltd. フローセル及びそれを備えた粒子形状分析装置
AU2008276027B2 (en) * 2007-07-16 2014-09-04 California Institute Of Technology Arrays, substrates, devices, methods and systems for detecting target molecules
JP2009162650A (ja) * 2008-01-08 2009-07-23 Sony Corp 光学的測定装置
JP2011013208A (ja) 2009-06-05 2011-01-20 Advance Co Ltd 生物学的操作システム及び工業的操作システム
ITTO20100068U1 (it) 2010-04-20 2011-10-21 Eltek Spa Dispositivi microfluidici e/o attrezzature per dispositivi microfluidici
JP5641213B2 (ja) 2010-10-01 2014-12-17 国立大学法人 千葉大学 連続的2次元粒子分離装置および粒子分離方法
US20120225475A1 (en) * 2010-11-16 2012-09-06 1087 Systems, Inc. Cytometry system with quantum cascade laser source, acoustic detector, and micro-fluidic cell handling system configured for inspection of individual cells
WO2012135663A2 (en) * 2011-03-31 2012-10-04 University Of South Florida Two-stage microfluidic device for acoustic particle manipulation and methods of separation
EP2739587B1 (en) * 2011-08-01 2020-05-27 Denovo Sciences Cell capture system
JP5991236B2 (ja) * 2013-03-13 2016-09-14 ソニー株式会社 分取装置
JP2014174139A (ja) * 2013-03-13 2014-09-22 Sony Corp 流路デバイス、粒子分取装置、粒子流出方法、及び粒子分取方法
NZ743491A (en) * 2013-03-14 2020-03-27 Cytonome St Llc Hydrodynamic focusing apparatus and methods
CN105264127B (zh) * 2013-03-15 2019-04-09 Gpb科学有限责任公司 颗粒的片上微流体处理
BR112015020098B1 (pt) * 2013-03-15 2020-10-27 Iris International, Inc. composição de agente de contraste de partículas para colorir uma amostra de fluido sanguíneo e método para tratar partículas de uma amostra de fluido sanguíneo
JP6237031B2 (ja) * 2013-09-18 2017-11-29 凸版印刷株式会社 成分分離方法、成分分析方法及び成分分離装置
WO2016031486A1 (ja) 2014-08-28 2016-03-03 シスメックス株式会社 粒子撮像装置および粒子撮像方法
WO2017104812A1 (ja) * 2015-12-17 2017-06-22 マイクロ化学技研株式会社 粒子浮遊液からの媒体の分離方法及び装置
JP6127280B1 (ja) * 2016-03-29 2017-05-17 パナソニックIpマネジメント株式会社 粒子検出センサ
WO2018216269A1 (ja) 2017-05-24 2018-11-29 ソニー株式会社 微小粒子の吸引条件の最適化方法及び微小粒子分取装置
US11421198B2 (en) * 2017-10-03 2022-08-23 Nok Corporation Cell capture apparatus
EP3501651B1 (en) 2017-12-22 2024-03-06 IMEC vzw Microfluidic routing
EP3748332A4 (en) 2018-01-30 2021-10-27 Kyocera Corporation INSPECTION FLOW DUCT DEVICE AND INSPECTION DEVICE
EP3845309A4 (en) 2018-08-28 2022-05-11 Kyocera Corporation PARTICLE SEPARATION DEVICE AND PARTICLE SEPARATION APPARATUS
CN112771364B (zh) 2018-09-27 2024-04-26 京瓷株式会社 粒子分离设备以及粒子分离测量装置
EP3933378A4 (en) * 2019-02-27 2022-11-30 Kyocera Corporation PARTICLE SEPARATION AND MEASURING DEVICE AND PARTICLE SEPARATION AND MEASURING DEVICE
US20220155208A1 (en) * 2019-03-20 2022-05-19 Kyocera Corporation Particle measuring device, particle separating and measuring device, and particle separating and measuring apparatus

Also Published As

Publication number Publication date
CN113498362A (zh) 2021-10-12
WO2020175381A1 (ja) 2020-09-03
EP3932562A4 (en) 2022-12-07
US20220146399A1 (en) 2022-05-12
CN113498362B (zh) 2023-01-20
JP6761152B1 (ja) 2020-09-23
US12000770B2 (en) 2024-06-04
EP3932562A1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP6976361B2 (ja) 検査用流路デバイスおよび検査装置
JP6999825B2 (ja) 粒子分離デバイスおよび粒子分離装置
JP4995197B2 (ja) 3d流体力学的集束を有する成形カートリッジ
JP5796251B2 (ja) 中央チャンネル構造による血漿分離装置
JP6761153B1 (ja) 粒子計測デバイスならびに粒子分離計測デバイスおよび粒子分離計測装置
JP7098044B2 (ja) 粒子分離計測デバイスおよび粒子分離計測装置
JP6984037B2 (ja) 粒子分離計測デバイスおよび粒子分離計測装置
JP6761152B1 (ja) 粒子分離計測デバイスおよび粒子分離計測装置
WO2020189572A1 (ja) 粒子計測デバイスならびに粒子分離計測デバイスおよび粒子分離計測装置
JP7213932B2 (ja) 流路デバイスおよび計測装置
JP6956695B2 (ja) 液体供給デバイス
TW504491B (en) Chip-type device for counting/classifying and analyzing the micro-fluid particle and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200602

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200602

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200903

R150 Certificate of patent or registration of utility model

Ref document number: 6761152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150