JP6237031B2 - 成分分離方法、成分分析方法及び成分分離装置 - Google Patents

成分分離方法、成分分析方法及び成分分離装置 Download PDF

Info

Publication number
JP6237031B2
JP6237031B2 JP2013193574A JP2013193574A JP6237031B2 JP 6237031 B2 JP6237031 B2 JP 6237031B2 JP 2013193574 A JP2013193574 A JP 2013193574A JP 2013193574 A JP2013193574 A JP 2013193574A JP 6237031 B2 JP6237031 B2 JP 6237031B2
Authority
JP
Japan
Prior art keywords
component
affinity
beads
target component
affinity beads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013193574A
Other languages
English (en)
Other versions
JP2015058394A (ja
Inventor
牧野 洋一
洋一 牧野
匠 平瀬
匠 平瀬
新司 入江
新司 入江
小原 收
收 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2013193574A priority Critical patent/JP6237031B2/ja
Publication of JP2015058394A publication Critical patent/JP2015058394A/ja
Application granted granted Critical
Publication of JP6237031B2 publication Critical patent/JP6237031B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、目的成分を他の成分から分離する方法及びその装置、並びに、目的成分の分析方法に関する。
近年、マイクロ流路内における安定な層流を用いた連続的な粒子分離方法が開発されている。特許文献1及び特許文献2には、水力学的濾過法を用いた分離方法が開示されている。
また、非特許文献1には、水力学的濾過法を用いて希釈血液から赤血球と白血球を分離し、同時に白血球を濃縮することが開示されている。
特開2007−21465号公報 特開2007−175684号公報
電学論E 2008年 128巻10号
特許文献1,2並びに非特許文献1に記載の分離方法では、液体が好適に流れる寸法のマイクロ流路を用いていることから、マイクロ流路の内径に対して極端に小さな分子や細胞等を分離精製するのは困難である。また、外形寸法の差が小さい2成分を精度よく分離することも困難である。
本発明は、上述した事情に鑑みてなされたものであって、その目的は、寸法差による分離が困難な成分を水力学的濾過法を用いて精度よく分離精製することである。また、本発明の別の目的は、寸法差による分離が困難な成分を水力学的濾過法を用いて精度よく分離精製された目的成分を用いた成分分析方法を提供することである。
本発明の一態様は、目的成分を含み得る液性の混合物である試料に対して、前記目的成分に対して特異性を有するアフィニティービーズおよび第二アフィニティービーズを添加し、前記混合物と前記アフィニティービーズと前記第二アフィニティービーズとを含む混合液を主流路に流し、前記アフィニティービーズと前記第二アフィニティービーズとが結合した前記目的成分を、前記主流路に接続された複数の分岐流路の一部に、水力学的濾過法により選択的に導入する成分分離方法である。
本発明の他の態様は、目的成分および第二目的成分を含み得る液性の混合物である試料に対して、前記目的成分に対して特異性を有するアフィニティービーズと、前記第二目的成分に対して特異性を有する第二アフィニティービーズを添加し、前記混合物と前記アフィニティービーズと前記第二アフィニティービーズとを含む混合液を主流路に流し、水力学的濾過法により、前記アフィニティービーズと結合した前記目的成分を前記主流路に接続された複数の分岐流路の一部に選択的に導入し、かつ前記第二アフィニティービーズと結合した前記第二目的成分を、前記複数の分岐流路の一部であって前記アフィニティービーズと結合した前記目的成分とは異なる分岐流路に選択的に導入する成分分離方法である。
前記アフィニティービーズと前記第二アフィニティービーズとは互いに粒子径が異なってもよい。
前記目的成分が細胞と細胞由来成分との少なくともいずれかを含んでいてよい。
前記細胞由来成分が細胞特異的マーカーであってもよい。
本発明の別の態様は、上記態様の成分分離方法を用いた成分分析方法であって、前記目的成分に特異性を有するように選択された物質を有する前記アフィニティービーズと、前記アフィニティービーズ上の前記物質とは異なる結合特異性を前記目的成分に対して有する第二の物質と標識物質との複合体と、前記試料とを混合し、分離された前記アフィニティービーズにおける前記標識物質による標識活性を測定する成分分析方法である。
本発明のさらに別の態様は、上記態様の成分分離方法を用いた成分分析方法であって、前記目的成分に特異性を有するように選択された物質を有する前記アフィニティービーズと、標識物質を含み前記物質と前記目的成分との結合を競合阻害可能な構造を有する複合体と、前記試料とを混合し、分離された前記アフィニティービーズにおける前記標識物質による標識活性を測定する成分分析方法である。
本発明のさらに別の態様は、目的成分に対する特異性を有するアフィニティービーズおよび第二アフィニティービーズと、主流路と、前記主流路に接続された複数の分岐流路とを有し、前記前記アフィニティービーズおよび前記第二アフィニティービーズを含む混合液から前記アフィニティービーズを水力学的濾過法により分離する流路チップと、前記混合液の溶媒と組成が異なり前記流路チップに供給され前記流路チップの一部の流路において前記混合液に対して層流をなして流通可能な緩衝液と、を備えた成分分離装置である。
本発明によれば、寸法差による分離が困難な成分を水力学的濾過法を用いて精度よく分離精製することができる。
本発明の第1実施形態の成分分離装置を示す模式図である。 同実施形態の成分分離装置の作用を説明するための図である。 本発明の第2実施形態の成分分離装置を示す模式図である。 同実施形態の他の構成例の成分分離装置を示す模式図である。 同実施形態のさらに他の構成例の成分分離装置を示す模式図である。 第1実施形態の成分分離装置を用いた実施例を説明するための図である。 同実施形態の成分分離装置を用いた他の実施例を説明するための図である。 同実施形態の成分分離装置を用いたさらに他の実施例を説明するための図である。
(第1実施形態)
本発明の第1実施形態について説明する。
まず、本実施形態の成分分離方法に用いる成分分離装置1の構成について説明する。図1は、本実施形態の成分分離装置を示す模式図である。
図1に示すように、成分分離装置1は、分離する対象となる目的成分52に対して特異性を有するアフィニティービーズ2と、アフィニティービーズ2を含む混合液50が流れるマイクロ流路7が形成された流路チップ5と、流路チップ5のマイクロ流路7に注入される緩衝液23とを有する。
アフィニティービーズ2は、単一の粒子径を有する略球状部材である。アフィニティービーズ2は、アフィニティービーズ2の粒子径を規定するビーズ本体3と、ビーズ本体3の外面に固定された抗体4とを有する。
ビーズ本体3は、任意の粒子径から適宜選択された単一の粒子径を有する略球状部材である。ビーズ本体3の粒子径は、流路チップ5に形成されたマイクロ流路7の内径に対応して選択される。また、ビーズ本体3の粒子径は、目的成分52以外に試料51に含まれる粒子の径とは異なっていることが好ましい。
本実施形態では、複数のアフィニティービーズ2を用いて目的成分52の分離を行う。このため、各アフィニティービーズ2は、比重が揃っていることが好ましい。すなわち、ビーズ本体3は、単一材料からなる樹脂部材や、複数の樹脂が均一に混練された樹脂部材あるいは単一材料からなる金属・無機部材や、複数の金属部材が均一に混練された金属・無機部材等から形成される。
また、ビーズ本体3は、中実であってもよいし、中空であってもよいし、多孔質であってもよい。たとえばビーズ本体3が多孔質であると、抗体4を固定可能な表面積が広くとれる。
ビーズ本体3の材質として、高分子ポリマーが選択されてよい。具体的には、ビーズ本体3は、ポリスチレンやラテックス等からなる。ビーズ本体3の外面には、カルボキシル基が露出していることが好ましい。本実施形態では、ビーズ本体3の外面のカルボキシル基がスクシンイミドで活性化され、抗体4との結合性が高められている。
抗体4は、目的成分52に対して特異性を有する抗体であれば、構成は特に限定されない。また、目的成分52に対する特異性を高める目的で、ビーズ本体3の外面に固定される抗体4はモノクローナル抗体であってよい。また、目的成分52に対する結合可能性を高める目的で、ビーズ本体3の外面に固定される抗体4は、ポリクローナル抗体であってよい。なお、ビーズ本体3の外面に固定される抗体4はIgG、IgA、IgM、IgD、及びIgEのいずれでも構わないが、量産性を考慮するとIgG抗体若しくはIgM抗体が好ましい。
また、目的成分52以外に対する非特異的結合を防ぐ目的で、ビーズ本体3の外面に固定される抗体4はFabフラグメントであってもよい。
流路チップ5は、たとえば、非特許文献1に開示されたマイクロチャネルを好適に適用できる。
本実施形態における流路チップ5は、ポリジメチルシロキサン(PDMS)等の樹脂製基板に所定形状をなすマイクロ流路7がパターン形成された本体部6aと、マイクロ流路7に蓋をするように本体部6aに固定されたガラス板等による蓋部6bとを有する。
マイクロ流路7は、目的成分52を含みうる液性の混合物である試料51とアフィニティービーズ2とを含んだ混合液50が注入される第一インレット8と、第一インレット8に連通し直線状に延びる主流路9と、緩衝液23を主流路9に注入するために主流路9に連通して設けられた第二インレット10と、主流路9の最下流において主流路9に連通された第一アウトレット11と、主流路9から分岐して直線状に延びる複数の分岐流路12と、分岐流路12の最下流において各分岐流路12に連通された第二アウトレット18とを有する。
主流路9の断面形状は、略矩形形状であってよい。本実施形態では、主流路9の断面形状は、幅50マイクロメートル、長さ7mmに設定されている。
第二インレット10は、主流路9のうち第一インレットの下流であって分岐流路12の上流にある領域において主流路9に接続されている。
第一アウトレット11は、第二アウトレット18において分離されなかった残り成分を貯留するための貯留部である。本実施形態では、第一アウトレット11には、主に、アフィニティービーズ2よりも粒子径が大きな成分と、緩衝液23とが貯留される。
複数の分岐流路12は、長さ、幅、深さ、径などのスケールのうちいずれか1つ以上が適切に調節された流路を1つ以上有する流路構造を有する。複数の分岐流路12は、主流路9の上流側に接続された第一分岐流路13と、主流路9と第一分岐流路13との接続部よりも下流において主流路9に接続された第二分岐流路14とを有する。複数の分岐流路12は、主流路9の流通方向に直交する断面において、第二インレット10と主流路9との接続部に対向する位置で主流路9に対して接続されている。
第一分岐流路13は、ある一定の大きさ以上のアフィニティービーズ2が第一分岐流路13に導入されないように、長さ、幅、深さ、径などのスケールのうちいずれか1つ以上が適切に調節された流路を1つ以上有する流路構造を有する。第一分岐流路13は、試料51とアフィニティービーズ2との混合液50から、アフィニティービーズ2よりも粒子径が小さい成分を除去するための流路である。
第一分岐流路13の寸法は、上流側において相対的に細く、下流側において相対的に太い。具体的には、第一分岐流路13における上流側の細い部分は幅15μm、下流側の太い部分は幅25μmとされている。また、第一分岐流路13全体の長さは14mmとされている。また、本実施形態では、100本の第一分岐流路13が主流路9に接続されている。
第二分岐流路14は、アフィニティービーズ2が主流路9から引き込まれ得る断面形状及び寸法を有する流路である。第二分岐流路14は、長さ、幅、深さ、径などのスケールのうちいずれか1つ以上が適切に調節された流路を1つ以上有する流路構造を有する。
第二分岐流路14は、第二分岐流路14と主流路9との分岐点においてある一定の大きさ以上の粒子が第二分岐流路14に導入されないようにすることができ、ある一定の大きさ以下の粒子も第二分岐流路14より下流へと導入されないようにすることができる。すなわち、本実施形態では、主流路9を通じて導入された全てのある一定の大きさ以下の粒子を含む流体、もしくはある一定の大きさ以上の粒子を全く含まない流体が、第二分岐流路14から回収され得る。
第二分岐流路14は、流通方向に沿う長さが互いに異なる一号分岐流路15、二号分岐流路16、及び三号分岐流路17を有する。本実施形態では、一号分岐流路15が最も長く、二号分岐流路16が続いて長く、三号分岐流路17が最も短い。一号分岐流路15、二号分岐流路16、及び三号分岐流路17の流路幅は、アフィニティービーズ2の粒径に対応して設定されている。一例を挙げると、一号分岐流路15は、一号分岐流路15における上流側において相対的に細く、下流側において相対的に太い。具体的には、一号分岐流路15における上流側の細い部分は幅25μm、下流の太い部分は幅35μmとされている。また、一号分岐流路15全体の長さは17mmとされており、本実施形態では10本の一号分岐流路15が主流路9に接続されている。
また、二号分岐流路16は、二号分岐流路16における上流側において相対的に細く、下流側において相対的に太い。具体的には、二号分岐流路16における上流側の細い部分は幅25μm、下流の太い部分は幅35μmとされている。また、二号分岐流路16全体の長さは7mmとされており、本実施形態では10本の二号分岐流路16が主流路9に接続されている。
また、三号分岐流路17は、三号分岐流路17における上流側において相対的に細く、下流側において相対的に太い。具体的には、三号分岐流路17における上流側の細い部分は幅25μm、下流の太い部分は幅35μmとされている。また、三号分岐流路17全体の長さは3mmとされており、本実施形態では10本の三号分岐流路17が主流路9に接続されている。
第二アウトレット18は、アフィニティービーズ2の粒子径に満たない径の粒子成分とアフィニティービーズ2とを分取するための貯留部である。第二アウトレット18は、第一分岐流路13の下流に接続された一号アウトレット19と、一号分岐流路15の下流に接続された二号アウトレット20と、二号分岐流路16の下流に接続された三号アウトレット21と、三号分岐流路17の下流に接続された四号アウトレット22とを有する。
本実施形態では、一号アウトレット19にはアフィニティービーズ2の粒子径に満たない径の粒子成分が貯留され、二号アウトレット20と、三号アウトレット21と、四号アウトレット22とは、アフィニティービーズ2の粒子径に応じてアフィニティービーズ2が貯留される。
緩衝液23は、アフィニティービーズ2に対して特異的に結合する物質を含まず、且つ試料51を変性させない組成を有する液体である。特に、本実施形態の緩衝液23は、目的成分52におけるエピトープの構造と、抗体4における抗原認識部位との両方に対して、特異性の低下につながる影響を与えない組成であることが好ましい。さらに、緩衝液23は、アフィニティービーズ2と試料51との混合液50とともに主流路9を流れるときに好適に2層の層流を形成するように、組成が選択されてよい。
上記の成分分離装置1の作用について、本実施形態の成分分離方法とともに説明する。図2は、本実施形態の成分分離装置1の作用を説明するための図である。
図2に示すように、本実施形態の成分分離装置1は、所定の粒子径を有するアフィニティービーズ2に対する目的成分52の特異的結合と、水力学的濾過法による粒子径に応じたアフィニティービーズ2の分離との組み合わせによって、アフィニティービーズ2に対して特異性を有する目的成分52を、目的成分52を含み得る液性の混合物(試料51)から分離する。
具体的には、まず、第二インレット10に緩衝液23を注入し、第二インレット10に緩衝液23が注入されている状態で、もしくは同時に、第一インレット8に、試料51とアフィニティービーズ2とを混合してなる混合液50を注入する。すると、主流路9には、試料51とアフィニティービーズ2との混合液50と緩衝液23とが層となる2層の層流構造が生じる。試料51とアフィニティービーズ2との混合液50は主流路9の流通方向に直交する断面において分岐流路12に近い側を流れるので、混合液50の一部は分岐流路12に入り込む。このとき、分岐流路12の断面の形状及び寸法に応じて、混合液50は、粒子径ごとに分画される。
本実施形態では、第一分岐流路13には、アフィニティービーズ2の粒子径よりも小さい粒子径を有する成分が流れ込む。さらに、第二分岐流路14には、アフィニティービーズ2を含む成分が流れ込む。
アフィニティービーズ2には、試料51中の目的成分52に対して特異性を有する抗体4が固定されているので、第二分岐流路14において分離されたアフィニティービーズ2には、目的成分52が結合している。
目的成分52が結合しているアフィニティービーズ2を回収して、必要に応じて公知の方法により洗浄し、公知の方法によってアフィニティービーズ2から目的成分52を溶出することにより、目的成分52を高純度に得ることができる。なお、目的成分52が結合しているアフィニティービーズ2が、回収後の処理に必要な程度に緩衝液23によって洗浄されていれば、アフィニティービーズ2の回収後に別途洗浄をしなくてもよい場合もある。
本実施形態の成分分離装置1では、目的成分52自体がその大きさによる分離が困難な大きさの成分であっても、目的成分52に特異的に結合するアフィニティービーズ2をその大きさによって試料51から分離することで、目的成分52を試料51中から分離することができる。
また、目的成分52と他の成分との大きさに顕著な差がない場合でも、アフィニティービーズ2が結合した目的成分52は、当該他の成分よりも顕著に大きな差を有する複合体となるので、目的成分52が高純度に分離される。
(第2実施形態)
次に、本発明の第2実施形態について説明する。図3は、本実施形態の成分分離装置を示す模式図である。図4は、本実施形態の他の構成例の成分分離装置を示す模式図である。図5は、本実施形態のさらに他の構成例の成分分離装置を示す模式図である。
本実施形態では、成分分離装置における流路チップの構成が上記第1実施形態と異なっている。すなわち、本実施形態では、アフィニティービーズ2の分離手法が上記第1実施形態と異なっている。
(構成例1)
図3に示すように、本構成例の成分分離装置における流路チップ5Aは、渦巻き状に形成されたマイクロ流路を有している。本構成例の成分分析装置では、目的成分を含み得る試料をマイクロ流路において渦巻きの中心側の端から流すことにより流路内にディーン渦を発生させることにより、マイクロ流路における渦巻きの中心側と外側とに粒子径に応じて各粒子を分離する。
このような構成であっても上記実施形態の成分分離装置1と同様に目的成分を他の成分から分離することができる。
(構成例2)
図4に示すように、本構成例の成分分離装置における流路チップ5Bは、2つのインレットが集合されて第1実施形態と同様に層流を形成する主流路に対し粒子懸濁液(第一のインレット)よりもシース液量(第二のインレット)を相対的に多く流すことにより、ピンチ部分で流路壁に整列した粒子が流路壁から粒子中心位置の差を生じ、この差がピンチ部下流で増幅され、粒子の流れと垂直な方向に粒子径に応じた分離が可能であるため、主流路の下流側の端に連通され複数方向へ分岐された分岐流路で各粒子を回収する。
本構成例では、2つのインレットの一方に試料及びアフィニティービーズを注入し、2つのインレットの他方に緩衝液を注入する。
このような構成であっても上記実施形態の成分分離装置1と同様に目的成分を他の成分から分離することができる。
(構成例3)
図5に示すように、本構成例の成分分離装置における流路チップ5Cは、移動弾性表面波を発生させる電極部と、電極部の近傍に配された主流路と、主流路の一端に設けられた第一インレット及び第二インレットと、主流路の他端に設けられた分岐流路とを有する。
本変形例では、流路内を流れる細胞その他の粒子に対して移動弾性表面波が到達すると、粒子径に応じて主流路内で各粒子が移動されて、粒子径に応じて分岐流路にて分取できる。
このような構成であっても上記実施形態の成分分離装置1と同様に目的成分を他の成分から分離することができる。
次に、以下に示す各実施例に基づいて、上記第1実施形態の成分分離装置1及び成分分離方法についてより詳細に説明する。図6は、第1実施形態の成分分離装置を用いた実施例を説明するための図である。図7は、同実施形態の成分分離装置を用いた他の実施例を説明するための図である。図8は、同実施形態の成分分離装置を用いたさらに他の実施例を説明するための図である。
ヒト前立腺抗原(PSA)に対するモノクローナル抗体1H12(ハイテスト)を粒径2.8μmのビーズ(ダイナビーズ、インビトロジェン)に固定化し、1H12とは異なるPSAのエピトープを認識するモノクローナル抗体5A6(ハイテスト)を10μmのビーズ(コアビーズ)に固定化した。
0、4、10ng/mLのPSA(図6に符号24で示す)と、1H12標識ビーズ(図6に符号25で示す)と、5A6標識ビーズ(図6に符号26で示す)を含むPBSを、室温にてインキュベートし第一インレット8に30μL/mLで注入し、緩衝液23となるPBSTを第二インレット10に30μL/mLで注入した。
すると、粒径2.8μmの抗体標識ビーズ25が一号アウトレット19へ、粒径10μmの抗体標識ビーズ26が二号アウトレット20へ、PSAを介して両ビーズ25,26の抗体が結合した複合体ビーズ(図6に符号27で示す)が三号アウトレット21及び四号アウトレット22へそれぞれ分離された。三号アウトレット21及び四号アウトレット22において検出される複合体ビーズはPSAの濃度に応じて増加した。
本実施例では、複合体ビーズ27は、粒径2.8μmの抗体標識ビーズ25と粒径10μmの抗体標識ビーズ26とのどちらよりも大きいので、複合体ビーズ27、粒径2.8μmの抗体標識ビーズ25、及び粒径10μmの抗体標識ビーズ26が混合された混合液から複合体ビーズを分離できる。
ヒトEpCAMに対する抗体を固定化したビーズ(粒径3μm、MagnosphereTMMC2900、コスモバイオ)、及び目的成分52である大腸癌細胞(HT−29)を希釈した血液に加え、室温にてインキュベートした。
図7に示すように、第一インレット8に抗体標識ビーズ(図7に符号28で示す)を含む希釈血液を30μL/mLで注入し、第二インレット10に緩衝液であるPBSTを30μL/mLで注入した。
すると、赤血球(図7にRBCと示す)及び抗体標識ビーズ28が一号アウトレット19へ、白血球(図7にWBCと示す)が二号アウトレット20及び三号アウトレット21へ、大腸癌細胞が結合した抗体標識ビーズ28が四号アウトレット22へそれぞれ分離された。
なお、本実施例の方法を患者由来の試料51に適用した場合、ヒトEpCAMはヒト上皮細胞もしくはヒト上皮系腫瘍細胞に発現し、特にヒト上皮系腫瘍細胞に高発現であるので、ヒト上皮系腫瘍細胞をEpCAM標識ビーズを用いて精度よく分離できる。
ヒトCD63に対する抗体を固定化したビーズ(粒径2.8μm、ダイナビーズ)、ヒトIgGに対する抗体(ミリポア、AP112)、及びヒト血清アルブミンに対する抗体(アブカム、ab2406)を固定化したビーズ(粒径10μm、コアビーズ)を希釈した血清に加え、室温にてインキュベートした。
図8に示すように、抗CD63抗体標識ビーズ(図8に符号29で示す)及びhIgG抗体標識ビーズ(図8に符号30で示す)、及び抗ヒト血清アルブミン抗体標識ビーズ(図8に符号31で示す)を含む希釈血清を第一インレット8に30μL/mLで注入し、緩衝液であるPBSを第二インレット10に30μL/mLで注入した。
すると、抗CD63抗体標識ビーズ29が一号アウトレット19へ、エクソソーム32がCD63を介して結合した抗CD63抗体標識ビーズ29が二号アウトレット20へ、ヒトIgG33、αマクログロブリン34が結合したhIgG抗体標識ビーズ30,31が三号アウトレット21及び四号アウトレット22へそれぞれ分離された。
上記実施形態及び各実施例に示した方法及び装置によれば、アフィニティービーズ2の大きさという単純な物理的特性と抗体4などの特性の高い親和分子を組み合わせることにより、目的成分52となる分子をその分子の大きさではなくアフィニティービーズ2の粒子径を用いて分離することができる。
例えば、サンドイッチイムノアッセイ可能な捕捉抗体を結合させたビーズをアフィニティービーズとして採用し、このアフィニティービーズと、酵素等により標識した標識抗体とを共に試料に混合し、上記の装置を用いて、未反応の標識抗体と、抗原抗体反応による生じたビーズ複合体とを水力学的濾過により分離計測すれば、ビーズ複合体あたりの標識活性を検出することにより、抗原抗体反応性を定量することも可能である。
同様に、特定のエピトープに特異性を有する抗体が結合されたビーズと、酵素等により標識された抗原と、試料とを混合して、上記の装置を用いて、ビーズ複合体を水力学的濾過により他の成分から分離することもできる。この場合、試料中の目的成分とビーズ上の抗体との結合を、標識された抗原が競合的に阻害するので、水力学的濾過により分離計測したビーズ複合体あたりの標識活性を競合的に検出して試料中の抗原量を定量することも可能である。
さらにまた、異なった大きさのビーズに、サンドイッチイムノアッセイ可能な捕捉抗体と検出抗体をそれぞれ標識しておき、抗原とのサンドイッチ反応に伴うビーズ複合体は未反応抗体標識ビーズよりも粒径が大きくなることから、未反応抗体標識ビーズと抗原抗体反応によるビーズ複合体を水力学的濾過により分離計測すれば、抗原抗体反応性を複合体ビーズ粒子数として検出、定量することも可能である。その際、ビーズ粒径の種類を複数用意すれば、同時に複数の抗原を分析することも可能である。
たとえば、サンドイッチ反応における各ビーズの径が5マイクロメートであるとすると、結合が起こっていない各ビーズの径は5マイクロメートルであり、サンドイッチ反応により複合体化すると10マイクロメートル程度以上になる。これにより、非特許文献1において開示された赤血球と白血球との径の差と略同様の差が、未結合ビーズとビーズ複合体との間に生じる。これにより、非特許文献1に開示されたマイクロチャネルの構成を用いて目的成分の分離を好適に行うことができる。
また、別な応用例としては、任意の抗体を標識したビーズと生体サンプルを反応させ、その抗体に特異的に結合する表面抗原を有する例えば循環型癌細胞などを抗体の種類とそれに対応したビーズの粒子径に基づいて分離、調製することも可能である。
さらには、細胞から分泌される小胞で、その機能が注目されているエクソソームなど細胞由来成分の分離に応用することができる。エクソソームは従来、煩雑な超遠心分離や密度勾配超遠心分離法で分取されているが、均一でなく、調製の再現性、品質に問題がある。抗CD63抗体標識磁性ビーズを用いるアフィニティー分離法も市販されているが、調製には時間がかかる。抗CD63抗体等のエクソソームに結合する抗体を標識したビーズと水力学的濾過を用いることによりエクソソームを簡便に分離することができる。また、抗IgG、ヒト血清アルブミン抗体を標識したビーズによるアバンダント蛋白質を除去することにより、従来法よりもより簡便に均質なエクソソームを分取することができる。これによりエクソソーム機能解析や新規バイオマーカーの発見が加速される。
以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
たとえば、目的成分が抗体である場合には、ビーズ本体には、目的分子となる抗体に特異的に結合可能な抗原が結合されてよい。また、ビーズ本体に結合される物質と目的成分との関係は、受容体に対するリガンドなど相互作用に関わる分子、或いはアプタマーのような蛋白質以外の分子であってもよい。
目的成分に特異性を有する物質の例としては、上記実施形態で説明した抗体の他に、ペプチド、アプタマー、オレイル鎖を含む化合物、並びに脂質特異的に結合可能な物質、あるいは低分子化合物等を挙げることができる。
本発明は研究用試薬、診断薬用前処理試薬に用いるタンパクの分離、精製に利用することが可能である。
1 成分分離装置
2 アフィニティービーズ
3 ビーズ本体
4 抗体
5 流路チップ
6a 本体部(PDMS)
6b 蓋部(ガラス板)
7 マイクロ流路
8 第一インレット
9 主流路
10 第二インレット
11 第一アウトレット
12 分岐流路
13 第一分岐流路
14 第二分岐流路
15 一号分岐流路
16 二号分岐流路
17 三号分岐流路
18 第二アウトレット
19 一号アウトレット
20 二号アウトレット
21 三号アウトレット
22 四号アウトレット
23 緩衝液
24 PSA
25 1H12標識ビーズ
26 5A6標識ビーズ
27 複合体ビーズ
28 抗EpCAM抗体標識ビーズ
29 抗CD63抗体標識ビーズ
30 抗hIgG抗体標識ビーズ
31 抗ヒト血清アルブミン抗体標識ビーズ
32 エクソソーム
33 ヒトIgG抗体
34 αマクログロブロン
50 混合液
51 試料
52 目的成分

Claims (8)

  1. 目的成分を含み得る液性の混合物である試料に対して、前記目的成分に対して特異性を有するアフィニティービーズおよび第二アフィニティービーズを添加し、
    前記混合物と前記アフィニティービーズと前記第二アフィニティービーズとを含む混合液を主流路に流し、
    前記アフィニティービーズと前記第二アフィニティービーズとが結合した前記目的成分を、前記主流路に接続された複数の分岐流路の一部に、水力学的濾過法により選択的に導入する成分分離方法。
  2. 目的成分および第二目的成分を含み得る液性の混合物である試料に対して、前記目的成分に対して特異性を有するアフィニティービーズと、前記第二目的成分に対して特異性を有する第二アフィニティービーズを添加し、
    前記混合物と前記アフィニティービーズと前記第二アフィニティービーズとを含む混合液を主流路に流し、
    水力学的濾過法により、前記アフィニティービーズと結合した前記目的成分を前記主流路に接続された複数の分岐流路の一部に選択的に導入し、かつ前記第二アフィニティービーズと結合した前記第二目的成分を、前記複数の分岐流路の一部であって前記アフィニティービーズと結合した前記目的成分とは異なる分岐流路に選択的に導入する成分分離方法。
  3. 前記アフィニティービーズと前記第二アフィニティービーズとは互いに粒子径が異なる、請求項1または2に記載の成分分離方法。
  4. 前記目的成分は、細胞または細胞由来成分である、請求項1から3のいずれか一項に記載の成分分離方法。
  5. 前記細胞由来成分が細胞特異的マーカーである、請求項4に記載の成分分離方法。
  6. 請求項1から5のいずれか一項に記載の成分分離方法を用いた成分分析方法であって、
    前記目的成分に特異性を有するように選択された物質を有する前記アフィニティービーズと、前記アフィニティービーズ上の前記物質とは異なる結合特異性を前記目的成分に対して有する第二の物質と標識物質との複合体と、前記試料とを混合し、分離された前記アフィニティービーズにおける前記標識物質による標識活性を測定する成分分析方法。
  7. 請求項1から5のいずれか一項に記載の成分分離方法を用いた成分分析方法であって、
    前記目的成分に特異性を有するように選択された物質を有する前記アフィニティービーズと、標識物質を含み前記物質と前記目的成分との結合を競合阻害可能な構造を有する複合体と、前記試料とを混合し、分離された前記アフィニティービーズにおける前記標識物質による標識活性を測定する成分分析方法。
  8. 目的成分に対する特異性を有するアフィニティービーズおよび第二アフィニティービーズと、
    主流路と、前記主流路に接続された複数の分岐流路とを有し、前記前記アフィニティービーズおよび前記第二アフィニティービーズを含む混合液から前記アフィニティービーズを水力学的濾過法により分離する流路チップと、
    前記混合液の溶媒と組成が異なり前記流路チップに供給され前記主流路において前記混合液に対して層流をなして流通可能な緩衝液と、
    を備えた成分分離装置。
JP2013193574A 2013-09-18 2013-09-18 成分分離方法、成分分析方法及び成分分離装置 Expired - Fee Related JP6237031B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013193574A JP6237031B2 (ja) 2013-09-18 2013-09-18 成分分離方法、成分分析方法及び成分分離装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013193574A JP6237031B2 (ja) 2013-09-18 2013-09-18 成分分離方法、成分分析方法及び成分分離装置

Publications (2)

Publication Number Publication Date
JP2015058394A JP2015058394A (ja) 2015-03-30
JP6237031B2 true JP6237031B2 (ja) 2017-11-29

Family

ID=52816359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013193574A Expired - Fee Related JP6237031B2 (ja) 2013-09-18 2013-09-18 成分分離方法、成分分析方法及び成分分離装置

Country Status (1)

Country Link
JP (1) JP6237031B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012027366A2 (en) 2010-08-23 2012-03-01 President And Fellows Of Harvard College Acoustic waves in microfluidics
WO2017003380A1 (en) * 2015-07-02 2017-01-05 Nanyang Technological University Leukocyte and microparticles fractionation using microfluidics
JP6657379B2 (ja) * 2015-08-27 2020-03-04 プレジデント アンド フェローズ オブ ハーバード カレッジ 弾性波による分離
JP6739739B2 (ja) * 2016-03-08 2020-08-12 東京都公立大学法人 粒子分別方法及びそれを実施するための粒子分別装置
EP3581917A4 (en) 2017-02-10 2020-10-14 Tosoh Corporation PARTICLE DETECTION DEVICE AND PARTICLE DETECTION METHOD
JP7103591B2 (ja) * 2017-12-26 2022-07-20 東ソー株式会社 粒子検出装置及び粒子検出方法
JP6937851B2 (ja) * 2018-01-30 2021-09-22 京セラ株式会社 計測装置
JP2019158766A (ja) * 2018-03-15 2019-09-19 東芝テック株式会社 濾材及び試料調製装置
JP7342448B2 (ja) * 2018-07-25 2023-09-12 東ソー株式会社 粒子検出方法
CN112601613B (zh) * 2018-08-28 2022-07-05 京瓷株式会社 粒子分离设备以及粒子分离装置
KR102263754B1 (ko) * 2018-12-03 2021-06-11 서강대학교산학협력단 비 뉴턴 유체와 미세 유체 채널을 이용한 바이오 샘플 분류방법 및 이를 이용한 미세 유체 칩
US20220146400A1 (en) * 2019-02-27 2022-05-12 Kyocera Corporation Particle separating and measuring device and particle separating and measuring apparatus
WO2020175381A1 (ja) * 2019-02-27 2020-09-03 京セラ株式会社 粒子分離計測デバイスおよび粒子分離計測装置
WO2020181300A1 (en) * 2019-03-06 2020-09-10 Pham Ngoc Luc Hydrodynamic filter equipment
JP2020175378A (ja) * 2019-04-16 2020-10-29 東ソー株式会社 分散溶媒置換装置
US11701658B2 (en) 2019-08-09 2023-07-18 President And Fellows Of Harvard College Systems and methods for microfluidic particle selection, encapsulation, and injection using surface acoustic waves
JP7435766B2 (ja) * 2020-06-02 2024-02-21 日本電信電話株式会社 粒子選別装置、方法、プログラム、粒子選別データのデータ構造および学習済みモデル生成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294964A (ja) * 1986-06-16 1987-12-22 Toshiba Corp 免疫分析方法
CA2127605A1 (en) * 1993-12-23 1995-06-24 Peter J. Degen Affinity separation method
US6315900B1 (en) * 1998-06-03 2001-11-13 Accurate Polymers Static separation method using non-porous cellulose beads
JP2011013208A (ja) * 2009-06-05 2011-01-20 Advance Co Ltd 生物学的操作システム及び工業的操作システム
WO2011029794A1 (en) * 2009-09-08 2011-03-17 Danmarks Tekniske Universitet Multiplexed analyte concentration measurement

Also Published As

Publication number Publication date
JP2015058394A (ja) 2015-03-30

Similar Documents

Publication Publication Date Title
JP6237031B2 (ja) 成分分離方法、成分分析方法及び成分分離装置
CN103575882B (zh) 全血的标记免疫分析方法和即时检测系统
Jiang et al. Microfluidic whole-blood immunoassays
Sarkar et al. Multiplexed affinity-based separation of proteins and cells using inertial microfluidics
Teste et al. Microchip integrating magnetic nanoparticles for allergy diagnosis
WO2009068583A2 (en) Separation and detection device with means for optimization of the capillary drag force
US20170307488A1 (en) System and method for multiplexed affinity purification of proteins and cells
US20130224848A1 (en) Device and Method for Detection and Quantification of Immunological Proteins, Pathogenic and Microbial Agents and Cells
EP2346607A2 (en) Microfluidic integrated device for sample processing
EP2141497A1 (en) Method for the analysis of circulating antibodies
CN107206376A (zh) 包括通过模塑形成之流控系统的包含孵育通道的流控系统
EP2558204B1 (en) Assay apparatus incorporating a microfluidic channel and assay method
US9383355B2 (en) Methods and related devices for continuous sensing utilizing magnetic beads
CN205517820U (zh) 一种用于微流控芯片的分散流道
Li et al. A power-free deposited microbead plug-based microfluidic chip for whole-blood immunoassay
WO2010042242A1 (en) Methods and related devices for continuous sensing utilizing magnetic beads
JP2007003410A (ja) ヘモグロビンA1cの測定方法及びヘモグロビンA1c測定用キット
Zhang et al. Direct detection of cancer biomarkers in blood using a “place n play” modular polydimethylsiloxane pump
US20130078615A1 (en) Device and Method for Detection and Quantification of Immunological Proteins, Pathogenic and Microbial Agents and Cells
CA2671142C (en) Method for the analysis of circulating antibodies
Schlotheuber et al. Antibodies, repertoires and microdevices in antibody discovery and characterization
US20070231829A1 (en) IG-Assay
EP1999469B1 (en) Ig-assay
Kurmashev et al. Vertically sheathing laminar flow-based immunoassay using simultaneous diffusion-driven immune reactions
US20100009465A1 (en) Method for the analysis of circulating antibodies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6237031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees