JPWO2020170680A1 - 汚れ検出システム、LiDARユニット、車両用センシングシステム及び車両 - Google Patents

汚れ検出システム、LiDARユニット、車両用センシングシステム及び車両 Download PDF

Info

Publication number
JPWO2020170680A1
JPWO2020170680A1 JP2021501715A JP2021501715A JPWO2020170680A1 JP WO2020170680 A1 JPWO2020170680 A1 JP WO2020170680A1 JP 2021501715 A JP2021501715 A JP 2021501715A JP 2021501715 A JP2021501715 A JP 2021501715A JP WO2020170680 A1 JPWO2020170680 A1 JP WO2020170680A1
Authority
JP
Japan
Prior art keywords
vehicle
outer cover
point cloud
unit
dirt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021501715A
Other languages
English (en)
Inventor
幸央 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Publication of JPWO2020170680A1 publication Critical patent/JPWO2020170680A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/56Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
    • B60S1/60Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens for signalling devices, e.g. reflectors
    • B60S1/603Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens for signalling devices, e.g. reflectors the operation of at least a part of the cleaning means being controlled by electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/56Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/0017Devices integrating an element dedicated to another function
    • B60Q1/0023Devices integrating an element dedicated to another function the element being a sensor, e.g. distance sensor, camera
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S2007/4975Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S2007/4975Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen
    • G01S2007/4977Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen including means to prevent or remove the obstruction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93277Sensor installation details in the lights

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

汚れ検出システム(6a)は、車両用灯具のアウターカバーに付着した汚れを検出するように構成される。車両用灯具には、車両の周辺環境を検出するカメラ(43a)、LiDARユニット(44a)、ミリ波レーダ(45a)がそれぞれ搭載される。汚れ検出システム(6a)は、アウターカバーを示す熱画像データを取得するように構成された熱画像カメラ(62a)と、アウターカバーに付着した汚れを除去するように構成された灯具クリーナー(63a)と、熱画像データに基づいて前記アウターカバーに汚れが付着しているかどうかを判定し、前記アウターカバーに汚れが付着しているとの判定に応じて灯具クリーナー(63a)を駆動させる、ように構成された、灯具クリーナー制御部(64a)と、を備える。

Description

本開示は、汚れ検出システム、LiDARユニット、車両用センシングシステム及び車両に関する。特に、本開示は、車両に設けられた車両用灯具のアウターカバーの汚れを検出するための汚れ検出システム及び車両用センシングシステムに関する。
現在、自動車の自動運転技術の研究が各国で盛んに行われており、自動運転モードで車両(以下、「車両」は自動車のことを指す。)が公道を走行することができるための法整備が各国で検討されている。ここで、自動運転モードでは、車両システムが車両の走行を自動的に制御する。具体的には、自動運転モードでは、車両システムは、カメラ、レーダ(例えば、レーザレーダやミリ波レーダ)等のセンサから得られる車両の周辺環境を示す情報(周辺環境情報)に基づいてステアリング制御(車両の進行方向の制御)、ブレーキ制御及びアクセル制御(車両の制動、加減速の制御)のうちの少なくとも1つを自動的に行う。一方、以下に述べる手動運転モードでは、従来型の車両の多くがそうであるように、運転者が車両の走行を制御する。具体的には、手動運転モードでは、運転者の操作(ステアリング操作、ブレーキ操作、アクセル操作)に従って車両の走行が制御され、車両システムはステアリング制御、ブレーキ制御及びアクセル制御を自動的に行わない。尚、車両の運転モードとは、一部の車両のみに存在する概念ではなく、自動運転機能を有さない従来型の車両も含めた全ての車両において存在する概念であって、例えば、車両制御方法等に応じて分類される。
このように、将来において、公道上では自動運転モードで走行中の車両(以下、適宜、「自動運転車」という。)と手動運転モードで走行中の車両(以下、適宜、「手動運転車」という。)が混在することが予想される。
自動運転技術の一例として、特許文献1には、先行車に後続車が自動追従走行した自動追従走行システムが開示されている。当該自動追従走行システムでは、先行車と後続車の各々が照明システムを備えており、先行車と後続車との間に他車が割り込むことを防止するための文字情報が先行車の照明システムに表示されると共に、自動追従走行である旨を示す文字情報が後続車の照明システムに表示される。
日本国特開平9−277887号公報
ところで、自動運転技術の発展において、車両の周辺環境の検出精度を飛躍的に増大させる必要がある。この点において、車両に複数の異なる種類のセンサ(例えば、カメラ、LiDARユニット、ミリ波レーダ等)を搭載することが現在検討されている。例えば、車両の4隅の各々に複数のセンサを配置することが検討されている。具体的には、車両の4隅に配置された4つの車両用灯具の各々にLiDARユニット、カメラ及びミリ波レーダを搭載することが検討されている。
車両用灯具内に配置されたLiDARユニットは、透明なアウターカバーを通じて車両の周辺環境を示す点群データを取得する。同様に、車両用灯具内に配置されたカメラは、透明なアウターカバーを通じて車両の周辺環境を示す画像データを取得する。このため、車両用灯具のアウターカバーに汚れが付着している場合、アウターカバーに付着された汚れ(泥や埃等)により、LiDARユニットの点群データ及び/又はカメラの画像データに基づいて正確に車両の周辺環境を特定できない虞がある。このように、LiDARユニットやカメラ等のセンサが車両用灯具内に配置される場合には、センサの検出精度に悪影響を与えるアウターカバーに付着した汚れを検出するための手法について検討する必要がある。
本開示は、車両用灯具内に配置されたセンサの検出精度の低下を抑制することが可能なシステムを提供することを目的とする。
本開示の一態様に係る汚れ検出システムは、車両用灯具のアウターカバーに付着した汚れを検出するように構成されている。車両用灯具には、車両の周辺環境を検出するセンサが搭載されている。
汚れ検出システムは、
前記アウターカバーを示す熱画像データを取得するように構成された熱画像カメラと、
前記アウターカバーに付着した汚れを除去するように構成された灯具クリーナーと、
前記熱画像データに基づいて前記アウターカバーに汚れが付着しているかどうかを判定し、
前記アウターカバーに汚れが付着しているとの判定に応じて前記灯具クリーナーを駆動させる、ように構成された、灯具クリーナー制御部と、を備える。
上記構成によれば、熱画像データに基づいてアウターカバーに汚れが付着しているかどうかが判定された上で、アウターカバーに汚れが付着しているとの判定に応じて灯具クリーナーが駆動する。このように、熱画像カメラから取得された熱画像データに基づいて、アウターカバーに付着した汚れを検出することができる。この点において、泥等の汚れは、照明ユニットから出射された光やLiDARユニットから出射された光を吸収するため、汚れの温度はアウターカバーの温度よりも高くなる。このため、熱画像データに基づいてアウターカバーに付着した汚れを検出することが可能となる。
したがって、アウターカバーに付着した汚れを確実に検出することができるため、車両用灯具のアウターカバーとハウジングにより形成された空間内に配置されたセンサ(特に、LiDARユニットやカメラ等)の検出精度の低下を抑制することができる。
また、前記熱画像カメラは、前記車両用灯具のハウジングと前記アウターカバーとによって形成された空間内に配置されてもよい。
上記構成によれば、熱画像カメラが車両用灯具のハウジングとアウターカバーとによって形成された空間内に配置されているため、アウターカバーを示す熱画像データに基づいてアウターカバーに汚れが付着しているかどうかを確実に判定することができる。
また、前記車両から所定範囲内に歩行者が存在しない場合に、前記灯具クリーナー制御部は、前記熱画像データに基づいて、前記アウターカバーに汚れが付着しているかどうかを判定するように構成されてもよい。
上記構成によれば、車両から所定範囲内に歩行者が存在しない場合に、上記判定処理が実行されるため、熱画像データに歩行者が示される状況を確実に防ぐことができる。このように、熱を放射する歩行者がアウターカバーに付着した汚れとして判定される状況(つまり、汚れの誤検出)を確実に防ぐことができる。
また、前記灯具クリーナー制御部は、
前記熱画像データに基づいて、閾値温度以上の高温領域を特定し、
前記特定された高温領域が所定の面積以上であるかどうかを判定し、
前記高温領域が所定の面積以上である場合に前記アウターカバーに汚れが付着していると判定する、ように構成されてもよい。
上記構成によれば、アウターカバーを示す熱画像データに基づいてアウターカバーに汚れが付着しているかどうかを確実に判定することができる。
また、前記灯具クリーナー制御部は、前記車両の外部の外気温度に応じて前記閾値温度を決定する、ように構成されてもよい。
上記構成によれば、外気温度に応じて閾値温度が決定されるため、外気温度に応じた最適な汚れ判定処理を実行することが可能となる。即ち、外気温度に応じてアウターカバーに付着した汚れが検出されないといった状況を確実に防止することが可能となる。
上記汚れ検出システムを備えた車両が提供されてもよい。
上記によれば、車両用灯具内に配置されたセンサの検出精度の低下を抑制することが可能な車両を提供することができる。
本開示の一態様に係るLiDARユニットは、
第1のピーク波長を有する第1レーザ光を出射するように構成された第1発光部と、
前記第1レーザ光の反射光を受光すると共に、前記第1レーザ光の反射光を光電変換するように構成された第1受光部と、
前記第1のピーク波長とは異なる第2のピーク波長を有する第2レーザ光を出射するように構成された第2発光部と、
前記第2レーザ光の反射光を受光すると共に、前記第2レーザ光の反射光を光電変換するように構成された第2受光部と、
前記第1レーザ光の出射時間と前記第1レーザ光の反射光の受光時間とに基づいて、第1点群データを生成するように構成された第1生成部と、
前記第2レーザ光の出射時間と前記第2レーザ光の反射光の受光時間とに基づいて、第2点群データを生成するように構成された第2生成部と、を備える。
前記第1受光部の検知波長範囲と前記第2受光部の検知波長範囲は互いに重複しない。
上記構成によれば、LiDARユニットは、第1レーザ光に関連付けられた第1点群データと第2レーザ光に関連付けられた第2点群データを生成することができる。このように、2つの異なる点群データを取得することが可能なLiDARユニットを提供することができる。例えば、2つの点群データのうち一方の点群データ(例えば、第1点群データ)を用いてLiDARユニットが搭載される車両の周辺環境を特定することができる。さらに、2つの点群データのうち他方の点群データ(例えば、第2点群データ)を用いて車両の周辺環境以外の情報(例えば、アウターカバーに付着した汚れに関する情報)を特定することができる。
また、前記第2レーザ光の出射強度は、前記第1レーザ光の出射強度よりも小さくてもよい。
上記構成によれば、第2レーザ光の出射強度が第1レーザ光の出射強度よりも小さいため、第1点群データが示す周辺環境と第2点群データが示す周辺環境を互いに相違させることが可能となる。例えば、第1点群データを用いて車両の外部の周辺環境情報を取得しつつ、第2点群データを用いてアウターカバーに付着した汚れに関する情報を取得することができる。
本開示の一態様に係る車両用センシングシステムは、車両に設けられた車両用灯具のアウターカバーに付着した汚れを検出するように構成される。
車両用センシングシステムは、
前記車両用灯具のハウジングと前記アウターカバーとによって形成された空間内に配置されると共に、前記車両の外部の周辺環境を示す第1点群データ及び第2点群データを取得するように構成された前記LiDARユニットと、
前記アウターカバーに付着した汚れを除去するように構成された灯具クリーナーと、
前記第2点群データに基づいて、前記アウターカバーに汚れが付着しているかどうかを判定し、
前記アウターカバーに汚れが付着しているとの判定に応じて前記灯具クリーナーを駆動させる、ように構成された灯具クリーナー制御部と、を備える。
上記構成によれば、第2点群データに基づいてアウターカバーに汚れが付着しているかどうかが判定された上で、アウターカバーに汚れが付着しているとの判定に応じて灯具クリーナーが駆動する。このように、LiDARユニットから取得された2つの点群データのうちの一方の第2点群データに基づいて、アウターカバーに付着した汚れを検出することができる。この点において、雨、雪、泥等の汚れがアウターカバーに付着している場合、第2点群データには、アウターカバーに付着した汚れを示す点群が出現するため、当該点群に基づいてアウターカバーに付着した汚れを検出することが可能となる。したがって、アウターカバーに付着した汚れを確実に検出することができるため、車両用灯具内に配置されたLiDARユニット等のセンサの検出精度の低下を抑制することができる。
また、前記第2点群データは、前記LiDARユニットから所定距離以内の周辺環境を示してもよい。前記アウターカバーに汚れが付着している場合に、前記灯具クリーナー制御部は、前記第2点群データによって示される点群を前記アウターカバーに付着した汚れとして決定してもよい。
上記構成によれば、第2点群データに示される点群がアウターカバーに付着した汚れとして決定される。このように、第2点群データには、車両の外部に存在する対象物を示す点群が出現しないため、第2点群データに出現した点群の有無に基づいて、アウターカバーに汚れが付着しているかどうかを判定することができる。
また、前記第2点群データは、前記車両の外部の周辺環境を示してもよい。前記アウターカバーに汚れが付着している場合に、前記灯具クリーナー制御部は、前記第2点群データによって示される前記LiDARユニットから所定の距離以内に存在する点群を前記アウターカバーに付着した汚れとして決定してもよい。
上記構成によれば、第2点群データに示されるLiDARユニットから所定の距離以内に存在する点群がアウターカバーに付着した汚れとして決定される。このように、第2点群データが車両の外部の周辺環境を示す場合であっても、所定の距離以内に示される点群の有無に基づいて、アウターカバーに汚れが付着しているかどうかを判定することができる。
また、車両用センシングシステムを備えた車両が提供される。
上記によれば、車両用灯具内に配置されたセンサの検出精度の低下を抑制することが可能な車両を提供することができる
本開示によれば、車両用灯具内に配置されたセンサの検出精度の低下を抑制することが可能なシステムを提供することができる。
本発明の第1実施形態に係る車両システムを備える車両の模式図を示す。 第1実施形態に係る車両システムを示すブロック図である。 (a)は、左前センシングシステムを示すブロック図である。(b)は、左前汚れ検出システムを示すブロック図である。 アウターカバーに付着した汚れを検出する方法を説明するためのフローチャートである。 第2実施形態に係る車両システムを備える車両の模式図を示す。 第2実施形態に係る車両システムを示すブロック図である。 左前センシングシステムを示すブロック図である。 第2実施形態に係るLiDARユニットの構成を示すブロック図である。 第2実施形態に係るLIDARユニットの模式図である。 第2実施形態に係るアウターカバーに付着した汚れを検出する方法を説明するためのフローチャートである。 LiDARユニットから出射された第1レーザ光と第2レーザ光を示す図である。
(第1実施形態)
以下、本開示の第1実施形態(以下、単に「本実施形態」という。)について図面を参照しながら説明する。尚、本実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
また、本実施形態の説明では、説明の便宜上、「左右方向」、「前後方向」、「上下方向」について適宜言及する場合がある。これらの方向は、図1に示す車両1について設定された相対的な方向である。ここで、「前後方向」は、「前方向」及び「後方向」を含む方向である。「左右方向」は、「左方向」及び「右方向」を含む方向である。「上下方向」は、「上方向」及び「下方向」を含む方向である。尚、図1では上下方向は示されていないが、上下方向は、前後方向及び左右方向に垂直な方向である。
最初に、図1及び図2を参照して本実施形態に係る車両1及び車両システム2について説明する。図1は、車両システム2を備える車両1の上面図を示す模式図である。図2は、車両システム2を示すブロック図である。
図1に示すように、車両1は、自動運転モードで走行可能な車両(自動車)であって、車両システム2と、左前灯具7aと、右前灯具7bと、左後灯具7cと、右後灯具7dとを備える。
図1及び図2に示すように、車両システム2は、車両制御部3と、左前センシングシステム4a(以下、単に「センシングシステム4a」という。)と、右前センシングシステム4b(以下、単に「センシングシステム4b」という。)と、左後センシングシステム4c(以下、単に「センシングシステム4c」という。)と、右後センシングシステム4d(以下、単に「センシングシステム4d」という。)を少なくとも備える。
また、車両システム2は、左前汚れ検出システム6a(以下、単に「汚れ検出システム6a」という。)と、右前汚れ検出システム6b(以下、単に「汚れ検出システム6b」という。)と、左後汚れ検出システム6c(以下、単に「汚れ検出システム6c」という。)と、右後汚れ検出システム6d(以下、単に「汚れ検出システム6d」という。)と、をさらに備える。
さらに、車両システム2は、センサ5と、HMI(Human Machine Interface)8と、GPS(Global Positioning System)9と、無線通信部10と、記憶装置11とを備える。また、車両システム2は、ステアリングアクチュエータ12と、ステアリング装置13と、ブレーキアクチュエータ14と、ブレーキ装置15と、アクセルアクチュエータ16と、アクセル装置17とを備える。
車両制御部3は、車両1の走行を制御するように構成されている。車両制御部3は、例えば、少なくとも一つの電子制御ユニット(ECU:Electronic Control Unit)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含むコンピュータシステム(例えば、SoC(System on a Chip)等)と、トランジスタ等のアクティブ素子及びパッシブ素子から構成される電子回路を含む。プロセッサは、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)及びTPU(Tensor Processing Unit)のうちの少なくとも一つを含む。CPUは、複数のCPUコアによって構成されてもよい。GPUは、複数のGPUコアによって構成されてもよい。メモリは、ROM(Read Only Memory)と、RAM(Random Access Memory)を含む。ROMには、車両制御プログラムが記憶されてもよい。例えば、車両制御プログラムは、自動運転用の人工知能(AI)プログラムを含んでもよい。AIプログラムは、多層のニューラルネットワークを用いた教師有り又は教師なし機械学習(特に、ディープラーニング)によって構築されたプログラム(学習済みモデル)である。RAMには、車両制御プログラム、車両制御データ及び/又は車両の周辺環境を示す周辺環境情報が一時的に記憶されてもよい。プロセッサは、ROMに記憶された各種車両制御プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されてもよい。また、コンピュータシステムは、ASIC(Application Specific Integrated Circuit)やFPGA(Field−Programmable Gate Array)等の非ノイマン型コンピュータによって構成されてもよい。さらに、コンピュータシステムは、ノイマン型コンピュータと非ノイマン型コンピュータの組み合わせによって構成されてもよい。
センシングシステム4a〜4dの各々は、車両1の周辺環境を検出するように構成されている。本実施形態の説明では、センシングシステム4a〜4dの各々は、同一の構成要素を備えるものとする。このため、以下では、センシングシステム4aについて図3(a)を参照して説明する。図3(a)は、センシングシステム4aを示すブロック図である。
図3(a)に示すように、センシングシステム4aは、制御部40aと、照明ユニット42aと、カメラ43aと、LiDAR(Light Detection and Ranging)ユニット44a(レーザーレーダの一例)と、ミリ波レーダ45aとを備える。制御部40aと、照明ユニット42aと、カメラ43aと、LiDARユニット44aと、ミリ波レーダ45aは、図1に示す左前灯具7aのハウジング24aと透光性のアウターカバー22aによって形成される空間Sa内に配置される。一方、制御部40aは、空間Sa以外の車両1の所定の場所に配置されてもよい。例えば、制御部40aは、車両制御部3と一体的に構成されてもよい。
制御部40aは、照明ユニット42aと、カメラ43aと、LiDARユニット44aと、ミリ波レーダ45aの動作をそれぞれ制御するように構成されている。この点において、制御部40aは、照明ユニット制御部420a、カメラ制御部430a、LiDARユニット制御部440a、ミリ波レーダ制御部450aとして機能する。制御部40aは、少なくとも一つの電子制御ユニット(ECU)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含むコンピュータシステム(例えば、SoC等)と、トランジスタ等のアクティブ素子及びパッシブ素子から構成される電子回路を含む。プロセッサは、CPU、MPU、GPU及びTPUのうちの少なくとも一つを含む。メモリは、ROMと、RAMを含む。また、コンピュータシステムは、ASICやFPGA等の非ノイマン型コンピュータによって構成されてもよい。
照明ユニット42aは、車両1の外部(前方)に向けて光を出射することによって、配光パターンを形成するように構成されている。照明ユニット42aは、光を出射する光源と、光学系とを有する。光源は、例えば、マトリックス状(例えば、N行×M列、N>1、M>1)に配列された複数の発光素子によって構成されてもよい。発光素子は、例えば、LED(Light Emitting Diode)、LD(LaSer Diode)又は有機EL素子である。光学系は、光源から出射された光を照明ユニット42aの前方に向けて反射するように構成されたリフレクタと、光源から直接出射された光又はリフレクタによって反射された光を屈折するように構成されたレンズとのうちの少なくとも一方を含んでもよい。
照明ユニット制御部420aは、照明ユニット42aが所定の配光パターンを車両1の前方領域に向けて出射するように照明ユニット42aを制御するように構成されている。例えば、照明ユニット制御部420aは、車両1の運転モードに応じて照明ユニット42aから出射される配光パターンを変更してもよい。
カメラ43aは、車両1の周辺環境を検出するように構成されている。特に、カメラ43aは、車両1の周辺環境を示す画像データを取得した上で、当該画像データをカメラ制御部430aに送信するように構成されている。カメラ制御部430aは、送信された画像データに基づいて、周辺環境情報を特定してもよい。ここで、周辺環境情報は、車両1の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報は、車両1の外部に存在する対象物の属性に関する情報と、車両1に対する対象物の距離と方向及び/又は位置に関する情報とを含んでもよい。カメラ43aは、例えば、CCD(Charge−Coupled Device)やCMOS(相補型MOS:Metal Oxide Semiconductor)等の撮像素子を含む。カメラ43aは、単眼カメラとしても構成されてもよいし、ステレオカメラとして構成されてもよい。カメラ43aがステレオカメラの場合、制御部40aは、視差を利用することで、ステレオカメラによって取得された2以上の画像データに基づいて、車両1と車両1の外部に存在する対象物(例えば、歩行者等)との間の距離を特定することができる。
LiDARユニット44aは、車両1の周辺環境を検出するように構成されている。特に、LiDARユニット44aは、車両1の周辺環境を示す点群データを取得した上で、当該点群データをLiDARユニット制御部440aに送信するように構成されている。LiDARユニット制御部440aは、送信された点群データに基づいて、周辺環境情報を特定してもよい。
より具体的には、LiDARユニット44aは、レーザ光の各出射角度(水平角度θ、垂直角度φ)におけるレーザ光(光パルス)の飛行時間(TOF:Time of Flight)ΔT1に関する情報を取得する。LiDARユニット44aは、各出射角度における飛行時間ΔT1に関する情報に基づいて、各出射角度におけるLiDARユニット44aと車両1の外部に存在する物体との間の距離Dに関する情報を取得することができる。
また、LiDARユニット44aは、例えば、レーザ光を出射するように構成された発光部と、レーザ光を水平方向及び垂直方向に走査させるように構成された光偏向器と、レンズ等の光学系と、物体によって反射されたレーザ光を受光するように構成された受光部とを備える。発光部から出射されるレーザ光のピーク波長は特に限定されない。例えば、レーザ光は、ピーク波長が900nm付近である非可視光(赤外線)であってもよい。発光部は、例えば、レーザダイオードである。光偏向器は、例えば、MEMS(MicroElectro Mechanical Systems)ミラー又はポリゴンミラーである。受光部は、例えば、フォトダイオードである。尚、LiDARユニット44aは、光偏向器によってレーザ光を走査せずに、点群データを取得してもよい。例えば、LiDARユニット44aは、フェイズドアレイ方式又はフラッシュ方式で点群データを取得してもよい。また、LiDARユニット44aは、発光部と受光部を機械的に回転駆動させることで点群データを取得してもよい。
ミリ波レーダ45aは、車両1の周辺環境を示すレーダデータを検出するように構成されている。特に、ミリ波レーダ45aは、レーダデータを取得した上で、当該レーダデータをミリ波レーダ制御部450aに送信するように構成されている。ミリ波レーダ制御部450aは、レーダデータに基づいて、周辺環境情報を取得するように構成されている。周辺環境情報は、車両1の外部に存在する対象物に関する情報を含んでもよい。周辺環境情報は、例えば、車両1に対する対象物の位置と方向に関する情報と、車両1に対する対象物の相対速度に関する情報を含んでもよい。
例えば、ミリ波レーダ45aは、パルス変調方式、FM‐CW(Frequency Moduleted‐Continuous Wave)方式又は2周波CW方式で、ミリ波レーダ45aと車両1の外部に存在する物体との間の距離及び方向を取得することができる。パルス変調方式を用いる場合、ミリ波レーダ45aは、ミリ波の飛行時間ΔT2に関する情報を取得した上で、飛行時間ΔT2に関する情報に基づいて、ミリ波レーダ45aと車両1の外部に存在する物体との間の距離Dに関する情報を取得することができる。また、ミリ波レーダ45aは、一方の受信アンテナで受信したミリ波(受信波)の位相と一方の受信アンテナに隣接する他方の受信アンテナで受信したミリ波(受信波)の位相との間の位相差に基づいて、車両1に対する物体の方向に関する情報を取得することができる。また、ミリ波レーダ45aは、送信アンテナから放射された送信波の周波数f0と受信アンテナで受信された受信波の周波数f1に基づいて、ミリ波レーダ45aに対する物体の相対速度Vに関する情報を取得することができる。
また、センシングシステム4b〜4dの各々も同様にして、制御部と、照明ユニットと、カメラと、LiDARユニットと、ミリ波レーダとを備える。特に、センシングシステム4bのこれらの装置は、図1に示す右前灯具7bのハウジング24bと透光性のアウターカバー22bによって形成される空間Sb内に配置される。センシングシステム4cのこれらの装置は、左後灯具7cのハウジング24cと透光性のアウターカバー22cによって形成される空間Sc内に配置される。センシングシステム4dのこれらの装置は、右後灯具7dのハウジング24dと透光性のアウターカバー22dによって形成される空間Sd内に配置される。
次に、汚れ検出システム6a〜6dについて説明する。汚れ検出システム6a〜6dの各々は、アウターカバーに付着した汚れ(例えば、泥や埃等)を検出すると共に、当該検出された汚れを除去するように構成されている。この点において、汚れ検出システム6aは、アウターカバー22aに付着した汚れを検出すると共に、当該汚れを除去するように構成されている。同様に、汚れ検出システム6bは、アウターカバー22bに付着した汚れを検出すると共に、当該汚れを除去するように構成されている。汚れ検出システム6cは、アウターカバー22cに付着した汚れを検出すると共に、当該汚れを除去するように構成されている。汚れ検出システム6dは、アウターカバー22dに付着した汚れを検出すると共に、当該汚れを除去するように構成されている。
汚れ検出システム6a〜6dの各々は、同一の構成要素を備えるものとする。このため、以下では、汚れ検出システム6aについて図3(b)を参照して説明する。図3(b)は、汚れ検出システム6aを示すブロック図である。
図3(b)に示すように、汚れ検出システム6aは、熱画像カメラ62aと、灯具クリーナー63aと、灯具クリーナー制御部64aとを備える。熱画像カメラ62aは、例えば、サーモビューアであって、熱画像データを取得するように構成されている。熱画像カメラ62aによって撮像される熱画像データによって、熱画像カメラ62aの周辺に存在する熱を発生する物体(特に、赤外線を放射する物体)を可視化することが可能となる。熱画像カメラ62aは、赤外線(特に、遠赤外線)に対して受光感度を有する撮像素子を備える。
熱画像カメラ62aは、空間Sa(図1参照)内に配置されており、アウターカバー22aを示す熱画像データを取得するように構成されている。特に、熱画像カメラ62aは、空間Saに配置されたLiDARユニット44aの付近に配置されていてもよい。また、熱画像カメラ62aは、LiDARユニット44aから出射されるレーザ光が通過するアウターカバー22aの領域を撮像するように構成されてもよい。本実施形態では、熱画像カメラ62aは、アウターカバー22aに付着した汚れを検出するように構成されていると共に、車両1の周辺に存在する歩行者等の熱を放射する物体を検出するように構成されてもよい。このように、車両制御部3は、熱画像カメラ62aから送信された熱画像データに基づいて、車両1の周辺に存在する対象物の属性を人として決定してもよい。
灯具クリーナー63aは、アウターカバー22aに付着した汚れを除去するように構成されており、アウターカバー22aの付近に配置されている。灯具クリーナー63aは、洗浄液又は空気をアウターカバー22aに向けて噴射することでアウターカバー22aに付着した汚れを除去するように構成されてもよい。
灯具クリーナー制御部64aは、熱画像カメラ62a及び灯具クリーナー63aを制御するように構成されている。灯具クリーナー制御部64aは、熱画像カメラ62aから熱画像データを受信すると共に、当該受信した熱画像データに基づいてアウターカバー22aに汚れが付着しているかどうかを判定するように構成されている。さらに、灯具クリーナー制御部64aは、アウターカバー22aに汚れが付着しているとの判定に応じて灯具クリーナー63aを駆動させるように構成されている。
灯具クリーナー制御部64aは、少なくとも一つの電子制御ユニット(ECU)によって構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含むコンピュータシステム(例えば、SoC等)と、トランジスタ等のアクティブ素子及びパッシブ素子から構成される電子回路を含む。プロセッサは、CPU、MPU、GPU及びTPUのうちの少なくとも一つを含む。メモリは、ROMと、RAMを含む。また、コンピュータシステムは、ASICやFPGA等の非ノイマン型コンピュータによって構成されてもよい。
図2に戻ると、センサ5は、加速度センサ、速度センサ及びジャイロセンサ等を有してもよい。センサ5は、車両1の走行状態を検出して、車両1の走行状態を示す走行状態情報を車両制御部3に出力するように構成されている。また、センサ5は、車両1の外部の外気温度を検出する外気温度センサを有してもよい。
HMI8は、運転者からの入力操作を受付ける入力部と、走行情報等を運転者に向けて出力する出力部とから構成される。入力部は、ステアリングホイール、アクセルペダル、ブレーキペダル、車両1の運転モードを切替える運転モード切替スイッチ等を含む。出力部は、各種走行情報を表示するディスプレイ(例えば、Head Up Display(HUD)等)である。GPS9は、車両1の現在位置情報を取得し、当該取得された現在位置情報を車両制御部3に出力するように構成されている。
無線通信部10は、車両1の周囲にいる他車に関する情報を他車から受信すると共に、車両1に関する情報を他車に送信するように構成されている(車車間通信)。また、無線通信部10は、信号機や標識灯等のインフラ設備からインフラ情報を受信すると共に、車両1の走行情報をインフラ設備に送信するように構成されている(路車間通信)。また、無線通信部10は、歩行者が携帯する携帯型電子機器(スマートフォン、タブレット、ウェアラブルデバイス等)から歩行者に関する情報を受信すると共に、車両1の自車走行情報を携帯型電子機器に送信するように構成されている(歩車間通信)。車両1は、他車両、インフラ設備若しくは携帯型電子機器とアドホックモードにより直接通信してもよいし、インターネット等の通信ネットワークを介して通信してもよい。
記憶装置11は、ハードディスクドライブ(HDD)やSSD(Solid State Drive)等の外部記憶装置である。記憶装置11には、2次元又は3次元の地図情報及び/又は車両制御プログラムが記憶されてもよい。例えば、3次元の地図情報は、3Dマッピングデータ(点群データ)によって構成されてもよい。記憶装置11は、車両制御部3からの要求に応じて、地図情報や車両制御プログラムを車両制御部3に出力するように構成されている。地図情報や車両制御プログラムは、無線通信部10と通信ネットワークを介して更新されてもよい。
車両1が自動運転モードで走行する場合、車両制御部3は、走行状態情報、周辺環境情報、現在位置情報、地図情報等に基づいて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号のうち少なくとも一つを自動的に生成する。ステアリングアクチュエータ12は、ステアリング制御信号を車両制御部3から受信して、受信したステアリング制御信号に基づいてステアリング装置13を制御するように構成されている。ブレーキアクチュエータ14は、ブレーキ制御信号を車両制御部3から受信して、受信したブレーキ制御信号に基づいてブレーキ装置15を制御するように構成されている。アクセルアクチュエータ16は、アクセル制御信号を車両制御部3から受信して、受信したアクセル制御信号に基づいてアクセル装置17を制御するように構成されている。このように、車両制御部3は、走行状態情報、周辺環境情報、現在位置情報、地図情報等に基づいて、車両1の走行を自動的に制御する。つまり、自動運転モードでは、車両1の走行は車両システム2により自動制御される。
一方、車両1が手動運転モードで走行する場合、車両制御部3は、アクセルペダル、ブレーキペダル及びステアリングホイールに対する運転者の手動操作に従って、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号を生成する。このように、手動運転モードでは、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号が運転者の手動操作によって生成されるので、車両1の走行は運転者により制御される。
次に、車両1の運転モードについて説明する。運転モードは、自動運転モードと手動運転モードとからなる。自動運転モードは、完全自動運転モードと、高度運転支援モードと、運転支援モードとからなる。完全自動運転モードでは、車両システム2がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両1を運転できる状態にはない。高度運転支援モードでは、車両システム2がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両1を運転できる状態にはあるものの車両1を運転しない。運転支援モードでは、車両システム2がステアリング制御、ブレーキ制御及びアクセル制御のうち一部の走行制御を自動的に行うと共に、車両システム2の運転支援の下で運転者が車両1を運転する。一方、手動運転モードでは、車両システム2が走行制御を自動的に行わないと共に、車両システム2の運転支援なしに運転者が車両1を運転する。
(汚れ検出方法の説明)
次に、左前灯具7aのアウターカバー22aに付着した汚れを検出する方法について図4を参照して以下に説明する。図4は、アウターカバー22aに付着した汚れを検出する方法(以下、「汚れ検出方法」という。)を説明するためのフローチャートである。尚、本実施形態では、汚れ検出システム6aによって実行される汚れ検出処理についてのみ説明するが、汚れ検出システム6b〜6dによって実行される汚れ検出処理も汚れ検出システム6aによって実行される汚れ検出処理と同様である点に留意されたい。
図4に示すように、ステップS1において、車両制御部3は、センシングシステム4a〜4dによって送信された周辺環境情報に基づいて、車両1の外部に対象物(特に、歩行者)が存在するかどうかを判定する。ステップS1の判定結果がYESである場合、ステップS1の判定結果がNOとなるまで本判定処理は繰り返し実行される。一方、ステップS1の判定結果がNOである場合、本処理はステップS2に進む。
次に、ステップS2において、灯具クリーナー制御部64aは、熱画像カメラ62aを起動する。尚、熱画像カメラ62aが既に起動している場合には、ステップS2,S3の処理はスキップされる。次に、ステップS3において、灯具クリーナー制御部64aは、熱画像カメラ62aからアウターカバー22aを示す熱画像データを取得する。特に、熱画像データは、LiDARユニット44aから出射されるレーザ光が通過するアウターカバー22aの領域を示してもよい。
次に、ステップS4において、灯具クリーナー制御部64aは、外気温度センサから取得された車両1の外部の外気温度に関する情報を車両制御部3から取得する。その後、灯具クリーナー制御部64aは、外気温度に応じた閾値温度を決定する。例えば、外気温度が低い場合には、閾値温度は低い温度に設定されてもよい。反対に、外気温度が高い場合には、閾値温度は高い温度に設定されてもよい。
次に、灯具クリーナー制御部64aは、熱画像データに基づいて、閾値温度以上の高温領域が存在するかどうかを判定する(ステップS5)。ここで、熱画像データ(サーモグラフィ)は、撮像された周辺環境の温度分布を示す。このため、灯具クリーナー制御部64aは、熱画像データから、撮像されたアウターカバー22aに閾値温度以上の高温領域が存在するかどうかを検出することができる。ステップS5の判定結果がYESである場合、本処理はステップS6に進む。一方、ステップS5の判定結果がNOである場合、ステップS7において、灯具クリーナー制御部64aは、アウターカバー22aに汚れが付着していないと判定した上で、本処理を終了する。
次に、ステップS6では、灯具クリーナー制御部64aは、熱画像データに存在する高温領域が所定の面積以上かどうかを判定する。ステップS6の判定結果がYESである場合、灯具クリーナー制御部64aは、アウターカバー22aに汚れが付着していると判定する(ステップS8)。一方、ステップS6の判定結果がNOである場合、灯具クリーナー制御部64aは、アウターカバー22aに汚れが付着していないと判定した上で、本処理を終了する。尚、ステップS6では、高温領域が所定の数以上の画素の集合体で構成されているかどうかが判定されてもよい。
その後、ステップS9において、灯具クリーナー制御部64aは、アウターカバー22aに付着した汚れを除去するために、灯具クリーナー63aを駆動させる。具体的には、灯具クリーナー制御部64aは、灯具クリーナー63aから洗浄液又は空気がアウターカバー22aに向けて噴射されるように灯具クリーナー63aを駆動させる。
ステップS9の処理が実行された後に、本処理はステップS5に戻る。このように、アウターカバー22aに汚れが付着していないと判定されるまでステップS5からS9までの処理は繰り返し実行される。尚、ステップS9の処理が実行された後に本処理が終了してもよい。
このように、本実施形態によれば、熱画像データに基づいてアウターカバー22aに汚れが付着しているかどうかが判定された上で、アウターカバー22aに汚れが付着しているとの判定に応じてアウターカバー22aが駆動する。このように、熱画像カメラ62aから取得された熱画像データに基づいて、アウターカバー22aに付着した汚れを検出することができる。この点において、泥等の汚れは、照明ユニット42aから出射された光やLiDARユニット44aから出射されたレーザ光を吸収するため、汚れの表面温度は、アウターカバー22aの表面温度よりも高くなる。このため、アウターカバー22aに汚れが付着している場合には、熱画像データから高温領域を検出することができる。このように、熱画像データに基づいてアウターカバー22aに付着した汚れを検出することが可能となる。
したがって、アウターカバー22aに付着した汚れを確実に検出することができるため、アウターカバー22aとハウジング24aにより形成された空間Saに配置されたLiDARユニット44aやカメラ43aの検出精度の低下を抑制することができる。
また、本実施形態では、ステップS1の判定処理が実行されるため、熱画像データに歩行者等が示される状況を確実に防ぐことができる。このように、熱を放射する歩行者等がアウターカバー22aに付着した汚れとして判定される状況(つまり、汚れの誤検出)を確実に防ぐことができる。
また、本実施形態では、ステップS4の処理において、車両1の外部の外気温度に応じて閾値温度が決定されるため、外気温度に応じてアウターカバー22aに付着した汚れが検出されないといった状況を確実に防止することができる。
(第2実施形態)
以下、本開示の第2実施形態(以下、単に「本実施形態」という。)について図面を参照しながら説明する。尚、本実施形態の説明において、第1実施形態において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
また、本実施形態の説明では、説明の便宜上、「左右方向」、「前後方向」、「上下方向」について適宜言及する場合がある。これらの方向は、図5に示す車両1Aについて設定された相対的な方向である。ここで、「前後方向」は、「前方向」及び「後方向」を含む方向である。「左右方向」は、「左方向」及び「右方向」を含む方向である。「上下方向」は、「上方向」及び「下方向」を含む方向である。尚、図5では上下方向は示されていないが、上下方向は、前後方向及び左右方向に垂直な方向である。
最初に、図5及び図6を参照して本実施形態に係る車両1A及び車両システム2Aについて説明する。図5は、車両システム2Aを備える車両1Aの上面図を示す模式図である。図6は、車両システム2Aを示すブロック図である。
図5に示すように、車両1Aは、自動運転モードで走行可能な車両(自動車)であって、車両システム2Aと、左前灯具7aと、右前灯具7bと、左後灯具7cと、右後灯具7dとを備える。
図5及び図6に示すように、車両システム2Aは、車両制御部3と、左前センシングシステム104a(以下、単に「センシングシステム104a」という。)と、右前センシングシステム104b(以下、単に「センシングシステム104b」という。)と、左後センシングシステム104c(以下、単に「センシングシステム104c」という。)と、右後センシングシステム104d(以下、単に「センシングシステム104d」という。)を少なくとも備える。
さらに、車両システム2Aは、センサ5と、HMI8と、GPS9と、無線通信部10と、記憶装置11とを備える。また、車両システム2Aは、ステアリングアクチュエータ12と、ステアリング装置13と、ブレーキアクチュエータ14と、ブレーキ装置15と、アクセルアクチュエータ16と、アクセル装置17とを備える。
車両制御部3は、車両1Aの走行を制御するように構成されている。車両制御部3は、例えば、少なくとも一つの電子制御ユニット(ECU)により構成されている。
センシングシステム104a〜104dの各々は、車両1Aの周辺環境を検出するように構成されている。本実施形態の説明では、センシングシステム104a〜104dの各々は、同一の構成要素を備えるものとする。このため、以下では、センシングシステム104aについて図7を参照して説明する。図7は、センシングシステム104aを示すブロック図である。
図7に示すように、センシングシステム104aは、制御部140aと、照明ユニット142aと、カメラ143aと、LiDARユニット44a(レーザーレーダの一例)と、ミリ波レーダ145aと、灯具クリーナー146aとを備える。制御部140aと、照明ユニット142aと、カメラ143aと、LiDARユニット144aと、ミリ波レーダ145aは、図5に示す左前灯具7aのハウジング24aと透光性のアウターカバー22aによって形成される空間Sa内に配置される。一方、灯具クリーナー146aは、空間Saの外側であって、左前灯具7aの付近に配置されている。また、制御部140aは、空間Sa以外の車両1Aの所定の場所に配置されてもよい。例えば、制御部140aは、車両制御部3と一体的に構成されてもよい。
制御部140aは、照明ユニット142aと、カメラ143aと、LiDARユニット144aと、ミリ波レーダ145aと、灯具クリーナー146aの動作をそれぞれ制御するように構成されている。この点において、制御部140aは、照明ユニット制御部520a、カメラ制御部530a、LiDARユニット制御部540a、ミリ波レーダ制御部550a、灯具クリーナー制御部560aとして機能する。
制御部140aは、少なくとも一つの電子制御ユニット(ECU)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含むコンピュータシステム(例えば、SoC等)と、トランジスタ等のアクティブ素子及びパッシブ素子から構成される電子回路を含む。プロセッサは、CPU、MPU、GPU及びTPUのうちの少なくとも一つを含む。メモリは、ROMと、RAMを含む。また、コンピュータシステムは、ASICやFPGA等の非ノイマン型コンピュータによって構成されてもよい。
照明ユニット142aは、車両1Aの外部(前方)に向けて光を出射することによって、配光パターンを形成するように構成されている。照明ユニット142aは、光を出射する光源と、光学系とを有する。光源は、例えば、マトリックス状(例えば、N行×M列、N>1、M>1)に配列された複数の発光素子によって構成されてもよい。発光素子は、例えば、LED、LD又は有機EL素子である。光学系は、光源から出射された光を照明ユニット142aの前方に向けて反射するように構成されたリフレクタと、光源から直接出射された光又はリフレクタによって反射された光を屈折するように構成されたレンズとのうちの少なくとも一方を含んでもよい。
照明ユニット制御部520aは、照明ユニット142aが所定の配光パターンを車両1Aの前方領域に向けて出射するように照明ユニット142aを制御するように構成されている。例えば、照明ユニット制御部520aは、車両1Aの運転モードに応じて照明ユニット142aから出射される配光パターンを変更してもよい。
カメラ143aは、車両1Aの周辺環境を検出するように構成されている。特に、カメラ143aは、車両1Aの周辺環境を示す画像データを取得した上で、当該画像データをカメラ制御部530aに送信するように構成されている。カメラ制御部530aは、送信された画像データに基づいて、周辺環境情報を特定してもよい。ここで、周辺環境情報は、車両1Aの外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報は、車両1Aの外部に存在する対象物の属性に関する情報と、車両1Aに対する対象物の距離と方向及び/又は位置に関する情報とを含んでもよい。カメラ143aは、例えば、CCDやCMOS(例えば、相補型MOS)等の撮像素子を含む。カメラ143aは、単眼カメラとしても構成されてもよいし、ステレオカメラとして構成されてもよい。カメラ143aがステレオカメラの場合、制御部140aは、視差を利用することで、ステレオカメラによって取得された2以上の画像データに基づいて、車両1Aと車両1Aの外部に存在する対象物(例えば、歩行者等)との間の距離を特定することができる。
LiDARユニット144aは、車両1Aの周辺環境を検出するように構成されている。特に、LiDARユニット144aは、車両1Aの周辺環境を示す点群データを取得した上で、当該点群データをLiDARユニット制御部540aに送信するように構成されている。LiDARユニット制御部540aは、送信された点群データに基づいて、周辺環境情報を特定してもよい。
この点において、本実施形態に係るLiDARユニット144aの構成について図8を参照して以下に説明する。図8に示すように、LiDARユニット144aは、複数の第1発光部75aと、複数の第1受光部76aと、複数の第2発光部77aと、複数の第2受光部78aと、モータ79aと、制御部70aとを備えている。
複数の第1発光部75aの各々は、第1ピーク波長を有する第1レーザ光を出射するように構成された発光素子と、レンズ等の光学部材とを備える。第1ピーク波長は、例えば、905nmである。発光素子は、例えば、ピーク波長が905nmである赤外線レーザ光を出射するレーザダイオードである。
複数の第1受光部76aの各々は、車両1Aの外部の対象物によって反射された第1レーザ光の反射光を受光すると共に、第1レーザ光の反射光を光電変換するように構成された受光素子と、レンズ等の光学部材とを備える。受光素子は、例えば、300nm〜1100nmの波長帯の光に対して受光感度を有するSiフォトダイオードである。このように、第1受光部76aの検知波長範囲は、300nm〜1100nmとなる。
複数の第2発光部77aの各々は、第2ピーク波長を有する第2レーザ光を出射するように構成された発光素子と、レンズ等の光学部材とを備える。第2ピーク波長は、例えば、1550nmである。発光素子は、例えば、ピーク波長が1550nmの赤外線レーザ光を出射するレーザダイオードである。
複数の第2受光部78aの各々は、アウターカバー22aに形成された汚れ(例えば、雨、雪、泥、埃等)によって反射された第2レーザ光の反射光を受光すると共に、第2レーザ光の反射光を光電変換するように構成された受光素子と、レンズ等の光学部材と、波長フィルタとを備える。受光素子は、例えば、800nm〜1700nmの波長帯の光に対して受光感度を有するInGaAsフォトダイオードである。波長フィルタは、少なくとも800nm〜1200nmの波長帯の光を遮断するように構成されている。このように、第2受光部78aの検知波長範囲は、1200nm〜1700nmとなる。したがって、本実施形態では、第1受光部76aの検知波長範囲(300nmから1100nm)と第2受光部78aの検知波長範囲(1200nmから1700nm)は互いに重複しない。
このように、第1受光部76aは、第1レーザ光を検知できる一方で、第2レーザ光を検知できない。また、第2受光部78aは、第2レーザ光を検知できる一方で、第1レーザ光を検知できない。したがって、第1受光部76a又は第2受光部78aが第1レーザ光と第2レーザ光の両方を検知してしまう状況を防ぐことができる。
図9に示すように、LiDARユニット144aは、ハウジング340aと、ハウジング340a内に収容されたLiDARユニット本体部343aとを備える。複数の第1発光部75a、第1受光部76a、第2発光部77a、第2受光部78aは、LiDARユニット本体部343aに収容されている。例えば、これらの発光部と受光部は、回転軸Axに沿って一直線に配列されてもよい。本図では、図示の都合上、3つの第1,2発光部と第1,2受光部が図示されているが、受光部と発光部の数は特に限定されるものではない。例えば、LiDARユニット144aは、8つの第1,2発光部と8つの第1,2受光部を備えてもよい。
また、第1発光部75aの各々は、同一のタイミングで第1レーザ光(光パルス)を出射するように構成されてもよい。さらに、第1発光部75aの各々は、垂直方向においてそれぞれ異なる垂直角度φで第1レーザ光を出射するように構成されてもよい。この場合、一方の第1発光部75aから出射される第1レーザ光の垂直角度φと当該一方の第1発光部75aに隣接する他方の第1発光部75aから出射される第1レーザ光の垂直角度φとの間の角度ピッチΔφは所定の角度に設定されてもよい。
さらに、第1発光部75aは、水平方向において異なる複数の水平角度θで第1レーザ光を出射するように構成されている。例えば、水泡方向における角度範囲が100°であると共に、水平方向における角度ピッチΔθは0.2°であってもよい。この場合、第1発光部75aの各々は、水平方向において0.2°の角度ピッチで第1レーザ光を出射するように構成されている。
同様に、第2発光部77aの各々は、同一のタイミングで第2レーザ光(光パルス)を出射するように構成されてもよい。さらに、第2発光部77aの各々は、垂直方向においてそれぞれ異なる垂直角度φで第2レーザ光を出射するように構成されてもよい。この場合、一方の第2発光部77aから出射される第2レーザ光の垂直角度φと当該一方の第2発光部77aに隣接する他方の第2発光部77aから出射される第2レーザ光の垂直角度φとの間の角度ピッチΔφは所定の角度に設定されてもよい。
第2発光部77aは、水平方向において異なる複数の水平角度θで第2レーザ光を出射するように構成されている。例えば、水平方向における角度範囲が100°であると共に、水平方向における角度ピッチΔθは0.2°であってもよい。この場合、第2発光部77aの各々は、水平方向において0.2°の角度ピッチで第2レーザ光を出射するように構成されている。
モータ79aは、回転軸Axを中心としてLiDARユニット本体部343aを回転駆動させるように構成されている。LiDARユニット本体部343aの回転駆動によって、第1発光部75aの各々と第2発光部77aの各々は、水平方向において異なる複数の水平角度θでレーザ光を出射することができる。例えば、水平方向における角度範囲が100°であると共に、水平方向における角度ピッチΔθが0.2°であってもよい。この場合、第1発光部75aの各々は、水平方向において0.2°の角度ピッチで第1レーザ光を出射することが可能となる。さらに、第2発光部77aの各々は、水平方向において0.2°の角度ピッチで第2レーザ光を出射することが可能となる。
制御部70aは、モータ制御部71aと、発光制御部72aと、第1生成部73aと、第2生成部74aとを備える。制御部70aは、少なくとも一つの電子制御ユニット(ECU)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含むコンピュータシステム(例えば、SoC等)と、トランジスタ等のアクティブ素子及びパッシブ素子から構成される電子回路を含む。プロセッサは、CPU、MPU、GPU及びTPUのうちの少なくとも一つを含む。メモリは、ROMと、RAMを含む。また、コンピュータシステムは、ASICやFPGA等の非ノイマン型コンピュータによって構成されてもよい。
モータ制御部71aは、モータ79aの駆動を制御するように構成されている。発光制御部72aは、複数の第1発光部75aと第2発光部77aの各々の発光を制御するように構成されている。
第1生成部73aは、第1受光部76aから出力された第1レーザ光の反射光に対応する信号を受信すると共に、当該受信した信号に基づいて第1レーザ光の反射光の受光時間を特定するように構成されている。また、第1生成部73aは、発光制御部72aから出力された信号に基づいて第1レーザ光の出射時間を特定するように構成されている。
また、第1生成部73aは、第1レーザ光の各出射角度(水平角度θ、垂直角度φ)における第1レーザ光の出射時間と物体によって反射された第1レーザ光の反射光の受光時間との間の時間差である飛行時間(TOF:Time of Flight)ΔT1に関する情報を取得するように構成されている。さらに、第1生成部73aは、各出射角度における飛行時間ΔT1に関する情報に基づいて、各出射角度におけるLiDARユニット144aと物体との間の距離Dを示す第1点群データを生成するように構成されている。また、第1生成部73aは、当該生成された第1点群データをLiDARユニット制御部540aに送信するように構成されている。
第2生成部74aは、第2受光部78aから出力された第2レーザ光の反射光に対応する信号を受信すると共に、当該受信した信号に基づいて第2レーザ光の反射光の受光時間を特定するように構成されている。また、第2生成部74aは、発光制御部72aから出力された信号に基づいて第2レーザ光の出射時間を特定するように構成されている。
また、第2生成部74aは、第2レーザ光の各出射角度(水平角度θ、垂直角度φ)における第2レーザ光の出射時間と物体によって反射された第2レーザ光の反射光の受光時間との間の時間差である飛行時間(TOF)ΔT2に関する情報を取得するように構成されている。さらに、第2生成部74aは、各出射角度における飛行時間ΔT2に関する情報に基づいて、各出射角度におけるLiDARユニット144aと物体との間の距離Dを示す第2点群データを生成するように構成されている。また、第2生成部74aは、当該生成された第2点群データをLiDARユニット制御部540aに送信するように構成されている。
本実施形態によれば、LiDARユニット144aは、第1レーザ光に関連付けられた第1点群データと第2レーザ光に関連付けられた第2点群データを生成することができる。このように、2つの異なる点群データを取得することが可能なLiDARユニット144aを提供することができる。この点において、2つの点群データのうち第1点群データを用いて車両1Aの周辺環境情報を取得することができる。一方、2つの点群データのうち第2点群データを用いて車両1Aの周辺環境情報以外の情報(例えば、後述するアウターカバー22aに付着した汚れに関する情報等)を取得することができる。
尚、本実施形態では、LiDARユニット144aは、発光部と受光部とを機械的に回転駆動させることで第1,2点群データを取得しているが、LiDARユニット144aの構成はこれには限定されない。例えば、LiDARユニット144aは、第1レーザ光及び第2レーザ光を水平方向及び垂直方向に走査させるように構成された光偏向器を備えてもよい。光偏向器は、例えば、MEMS(Micro Electro MechanicalSystems)ミラー又はポリゴンミラーである。さらに、LiDARユニット144aは、フェイズドアレイ方式又はフラッシュ方式で第1,2点群データを取得してもよい。
次に、図7に戻って、ミリ波レーダ145aと灯具クリーナー146aについて以下に説明する。ミリ波レーダ145aは、車両1Aの周辺環境を示すレーダデータを検出するように構成されている。特に、ミリ波レーダ145aは、レーダデータを取得した上で、当該レーダデータをミリ波レーダ制御部550aに送信するように構成されている。ミリ波レーダ制御部550aは、レーダデータに基づいて、周辺環境情報を取得するように構成されている。周辺環境情報は、車両1Aの外部に存在する対象物に関する情報を含んでもよい。周辺環境情報は、例えば、車両1Aに対する対象物の位置と方向に関する情報と、車両1Aに対する対象物の相対速度に関する情報を含んでもよい。
例えば、ミリ波レーダ145aは、パルス変調方式、FM‐CW(Frequency Moduleted‐Continuous Wave)方式又は2周波CW方式で、ミリ波レーダ145aと車両1Aの外部に存在する物体との間の距離及び方向を取得することができる。パルス変調方式を用いる場合、ミリ波レーダ145aは、ミリ波の飛行時間ΔT2に関する情報を取得した上で、飛行時間ΔT2に関する情報に基づいて、ミリ波レーダ145aと車両1Aの外部に存在する物体との間の距離Dに関する情報を取得することができる。また、ミリ波レーダ145aは、一方の受信アンテナで受信したミリ波(受信波)の位相と一方の受信アンテナに隣接する他方の受信アンテナで受信したミリ波(受信波)の位相との間の位相差に基づいて、車両1Aに対する物体の方向に関する情報を取得することができる。また、ミリ波レーダ145aは、送信アンテナから放射された送信波の周波数f0と受信アンテナで受信された受信波の周波数f1に基づいて、ミリ波レーダ145aに対する物体の相対速度Vに関する情報を取得することができる。
灯具クリーナー146aは、アウターカバー22aに付着した汚れを除去するように構成されており、アウターカバー22aの付近に配置されている(図11参照)。灯具クリーナー146aは、洗浄液又は空気をアウターカバー22aに向けて噴射することでアウターカバー22aに付着した汚れを除去するように構成されてもよい。
灯具クリーナー制御部560aは、灯具クリーナー146aを制御するように構成されている。灯具クリーナー制御部560aは、LiDARユニット制御部540aから送信された第2点群データに基づいて、アウターカバー22aに汚れ(例えば、雨、雪、泥、埃等)が付着しているかどうかを判定するように構成されている。さらに、灯具クリーナー制御部560aは、アウターカバー22aに汚れが付着しているとの判定に応じて灯具クリーナー146aを駆動させるように構成されている。
また、センシングシステム104b〜104dの各々も同様にして、制御部と、照明ユニットと、カメラと、LiDARユニットと、ミリ波レーダと、灯具クリーナーを備える。特に、センシングシステム104bのこれらの装置は、図5に示す右前灯具7bのハウジング24bと透光性のアウターカバー22bによって形成される空間Sb内に配置される。センシングシステム104cのこれらの装置は、左後灯具7cのハウジング24cと透光性のアウターカバー22cによって形成される空間Sc内に配置される。センシングシステム104dのこれらの装置は、右後灯具7dのハウジング24dと透光性のアウターカバー22dによって形成される空間Sd内に配置される。
(本実施形態に係る汚れ検出方法)
次に、左前灯具7aのアウターカバー22aに付着した汚れを検出する方法について主に図10を参照して以下に説明する。図10は、本実施形態に係るアウターカバー22aに付着した汚れを検出する方法(以下、「汚れ検出方法」という。)を説明するためのフローチャートである。尚、本実施形態では、センシングシステム6aによって実行される汚れ検出処理についてのみ説明するが、センシングシステム6b〜6dによって実行される汚れ検出処理もセンシングシステム6aによって実行される汚れ検出処理と同様である点に留意されたい。
図10に示すように、ステップS11において、LiDARユニット制御部540aは、灯具クリーナー制御部560aからの指示に応じて、LiDARユニット144aの複数の第2発光部77aから第2レーザ光L2が外部に向けて出射されるようにLiDARユニット144aを制御する。ここで、LiDARユニット144aは、各出射角度(水平角度θ、垂直角度φ)において第2レーザ光L2を出射する。さらに、第2発光部77aから出射される第2レーザ光L2の出射強度I2は、第1発光部75aから出射される第1レーザ光L1の出射強度I1よりも小さい。この点において、図11に示すように、第1レーザ光L1の出射強度I1は、車両1Aの外部に存在する対象物によって反射された第1レーザ光L1の反射光が第1受光部76aによって検知できる程度の大きさに設定されている。この点において、第1レーザ光L1の最大到達距離は、数十mから数百mの範囲内である。一方、第2レーザ光L2の出射強度I2は、第2レーザ光L2の最大到達距離がアウターカバー22aの近傍となるように設定されている。つまり、第2レーザ光L2の出射強度I2では、車両1Aの外部に存在する対象物によって反射された第2レーザ光L2の反射光が第2受光部78aによって検知できない一方で、アウターカバー22aによって反射された第2レーザ光L2の反射光が第2受光部78aによって検知可能となる。
次に、ステップS12において、LiDARユニット144aの複数の第2受光部78aの各々は、アウターカバー22aによって反射された第2レーザ光L2の反射光を受光する。
次に、ステップS13において、第2生成部74aは、第2レーザ光L2の各出射角度における第2レーザ光L2の出射時間とアウターカバー22aによって反射された第2レーザ光L2の反射光の受光時間との間の時間差である飛行時間ΔT2に関する情報を取得する。その後、第2生成部74aは、各出射角度における飛行時間ΔT2に関する情報に基づいて、各出射角度におけるLiDARユニット144aとアウターカバー22aとの間の距離Dを示す第2点群データを生成する。その後、生成された第2点群データは、LiDARユニット制御部540aを介して灯具クリーナー制御部560aに送信される。
次に、ステップS14において、灯具クリーナー制御部560aは、第2点群データに所定の条件を満たす点群が存在するかどうかを判定する。この点において、所定の条件とは、アウターカバー22aに付着した汚れに関連する条件である。ここで、アウターカバー22aに泥等の汚れが付着している場合には、当該汚れによって反射された第2レーザ光L2の反射光が第2受光部78aによって検知される。このため、第2点群データには、アウターカバー22aに付着した汚れが点群として示される。一方、アウターカバー22aは、透光性のカバーであるため、アウターカバー22aに汚れが存在しない場合には、第2点群データには所定数の点から構成される点群は存在しない。
このように、アウターカバー22aに汚れが付着している場合には、当該汚れに起因した点群が第2点群データに示される。例えば、第2点群データに所定数の点から構成される点群が存在する場合に、第2点群データに汚れに関連した点群が存在すると判定される。
ステップS14の判定結果がYESである場合に、灯具クリーナー制御部560aは、アウターカバー22aに汚れが付着していると判定する(ステップS16)。一方、ステップS14の判定結果がNOである場合に、灯具クリーナー制御部560aは、アウターカバー22aに汚れが付着していないと判定する(ステップS15)。
その後、ステップS17において、灯具クリーナー制御部560aは、アウターカバー22aに付着した汚れを除去するために、灯具クリーナー146aを駆動させる。具体的には、灯具クリーナー制御部560aは、灯具クリーナー146aから洗浄液又は空気がアウターカバー22aに向けて噴射されるように灯具クリーナー146aを駆動させる。
灯具クリーナー146aがアウターカバー22aに対して汚れ除去処理を実行した後に(ステップS17の処理が実行された後に)、本処理はステップS11に戻る。このように、アウターカバー22aに汚れが付着していないと判定されるまでステップS11からS17までの処理は繰り返し実行される。尚、ステップS17の処理が実行された後に本処理が終了してもよい。
このように、本実施形態によれば、第2点群データに基づいてアウターカバー22aに汚れが付着しているかどうかが判定された上で、アウターカバー22aに汚れが付着しているとの判定に応じて灯具クリーナー146aが駆動する。このように、LiDARユニット144aから取得された2つの点群データのうちの一方の第2点群データに基づいて、アウターカバー22aに付着した汚れを検出することができる。この点において、雨、雪、埃、泥等の汚れがアウターカバーに付着している場合には、第2点群データにはアウターカバー22aに付着した汚れを示す点群が出現するため、当該点群に基づいてアウターカバー22aに付着した汚れを検出することが可能となる。したがって、アウターカバー22aに付着した汚れを高い精度で検出することができるため、左前灯具7a内に配置されたLiDARユニット144a等のセンサの検出精度の低下を抑制することができる。
また、本実施形態によれば、第2レーザ光L2の出射強度I2が小さいため、第2点群データは、LiDARユニット144aから所定の距離以内の周辺環境を示している。具体的には、第2点群データは、LiDARユニット144aから所定の距離以内に存在するアウターカバー22aを示している。このように、第2点群データには、車両1Aの外部に存在する対象物を示す点群が出現しないため、第2点群データに出現した点群の有無に基づいて、アウターカバー22aに汚れが付着しているかどうかを判定することができる。
尚、本実施形態では、第2レーザ光の出射強度I2は、第2レーザ光L2の最大到達距離がアウターカバー22aの近傍となるように設定されているが、本実施形態はこれには限定されない。例えば、第2レーザ光の出射強度I2は、第1レーザ光の出射強度I1以上であってもよい。この場合、第1点群データと同様に第2点群データによって車両1Aの外部の対象物が特定される。一方で、ステップS14の処理において、灯具クリーナー制御部560aは、第2点群データにおいて、LiDARユニット144aから所定の距離以内に所定の条件を満たす点群が存在するかどうかを判定してもよい。ここで、LiDARユニット144aから所定の距離以内にアウターカバー22aが配置されているものとする。灯具クリーナー制御部560aは、LiDARユニット144aから所定の距離以内に所定の条件を満たす点群が存在すると判定した場合に、アウターカバー22aに汚れが付着していると判定してもよい。一方、灯具クリーナー制御部560aは、LiDARユニット144aから所定の距離以内に所定の条件を満たす点群が存在しないと判定した場合に、アウターカバー22aに汚れが付着していないと判定してもよい。このように、第2点群データが車両1Aの外部の周辺環境を示す場合であっても、アウターカバー22aに汚れが付着しているかどうかを判定することができる。
以上、本発明の実施形態について説明をしたが、本発明の技術的範囲が本実施形態の説明によって限定的に解釈されるべきではないのは言うまでもない。本実施形態は単なる一例であって、請求の範囲に記載された発明の範囲内において、様々な実施形態の変更が可能であることが当業者によって理解されるところである。本発明の技術的範囲は請求の範囲に記載された発明の範囲及びその均等の範囲に基づいて定められるべきである。
本出願は、2019年2月18日に出願された日本国特許出願(特願2019−026549号)に開示された内容及び2019年2月18日に出願された日本国特許出願(特願2019−026550号)に開示された内容を適宜援用する。

Claims (12)

  1. 車両の周辺環境を検出するセンサが搭載された車両用灯具のアウターカバーに付着した汚れを検出するための汚れ検出システムであって、
    前記アウターカバーを示す熱画像データを取得するように構成された熱画像カメラと、
    前記アウターカバーに付着した汚れを除去するように構成された灯具クリーナーと、
    前記熱画像データに基づいて前記アウターカバーに汚れが付着しているかどうかを判定し、
    前記アウターカバーに汚れが付着しているとの判定に応じて前記灯具クリーナーを駆動させる、ように構成された、灯具クリーナー制御部と、を備えた、汚れ検出システム。
  2. 前記熱画像カメラは、前記車両用灯具のハウジングと前記アウターカバーとによって形成された空間内に配置されている、請求項1に記載の汚れ検出システム。
  3. 前記車両から所定範囲内に歩行者が存在しない場合に、前記灯具クリーナー制御部は、前記熱画像データに基づいて、前記アウターカバーに汚れが付着しているかどうかを判定するように構成されている、請求項1又は2に記載の汚れ検出システム。
  4. 前記灯具クリーナー制御部は、
    前記熱画像データに基づいて、閾値温度以上の高温領域を特定し、
    前記特定された高温領域が所定の面積以上であるかどうかを判定し、
    前記高温領域が所定の面積以上である場合に前記アウターカバーに汚れが付着していると判定する、ように構成されている、請求項1から3のうちいずれか一項に記載の汚れ検出システム。
  5. 前記灯具クリーナー制御部は、前記車両の外部の外気温度に応じて前記閾値温度を決定する、ように構成されている、請求項4に記載の汚れ検出システム。
  6. 請求項1から5のうちいずれか一項に記載の汚れ検出システムを備えた車両。
  7. 第1のピーク波長を有する第1レーザ光を出射するように構成された第1発光部と、
    前記第1レーザ光の反射光を受光すると共に、前記第1レーザ光の反射光を光電変換するように構成された第1受光部と、
    前記第1のピーク波長とは異なる第2のピーク波長を有する第2レーザ光を出射するように構成された第2発光部と、
    前記第2レーザ光の反射光を受光すると共に、前記第2レーザ光の反射光を光電変換するように構成された第2受光部と、
    前記第1レーザ光の出射時間と前記第1レーザ光の反射光の受光時間とに基づいて、第1点群データを生成するように構成された第1生成部と、
    前記第2レーザ光の出射時間と前記第2レーザ光の反射光の受光時間とに基づいて、第2点群データを生成するように構成された第2生成部と、を備え、
    前記第1受光部の検知波長範囲と前記第2受光部の検知波長範囲は互いに重複しない、LiDARユニット。
  8. 前記第2レーザ光の出射強度は、前記第1レーザ光の出射強度よりも小さい、請求項7に記載のLiDARユニット。
  9. 車両に設けられた車両用灯具のアウターカバーに付着した汚れを検出するように構成された車両用センシングシステムであって、
    前記車両用灯具のハウジングと前記アウターカバーとによって形成された空間内に配置されると共に、前記車両の外部の周辺環境を示す第1点群データ及び第2点群データを取得するように構成された請求項7又は8に記載の前記LiDARユニットと、
    前記アウターカバーに付着した汚れを除去するように構成された灯具クリーナーと、
    前記第2点群データに基づいて、前記アウターカバーに汚れが付着しているかどうかを判定し、
    前記アウターカバーに汚れが付着しているとの判定に応じて前記灯具クリーナーを駆動させる、ように構成された灯具クリーナー制御部と、を備えた車両用センシングシステム。
  10. 前記第2点群データは、前記LiDARユニットから所定距離以内の周辺環境を示し、
    前記アウターカバーに汚れが付着している場合に、前記灯具クリーナー制御部は、前記第2点群データによって示される点群を前記アウターカバーに付着した汚れとして決定する、請求項9に記載の車両用センシングシステム。
  11. 前記第2点群データは、前記車両の外部の周辺環境を示し、
    前記アウターカバーに汚れが付着している場合に、前記灯具クリーナー制御部は、前記第2点群データによって示される前記LiDARユニットから所定の距離以内に存在する点群を前記アウターカバーに付着した汚れとして決定する、請求項9に記載の車両用センシングシステム。
  12. 前記請求項9から11のうちいずれか一項に記載の車両用センシングシステムを備えた車両。
JP2021501715A 2019-02-18 2020-01-20 汚れ検出システム、LiDARユニット、車両用センシングシステム及び車両 Pending JPWO2020170680A1 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2019026549 2019-02-18
JP2019026549 2019-02-18
JP2019026550 2019-02-18
JP2019026550 2019-02-18
PCT/JP2020/001745 WO2020170680A1 (ja) 2019-02-18 2020-01-20 汚れ検出システム、LiDARユニット、車両用センシングシステム及び車両

Publications (1)

Publication Number Publication Date
JPWO2020170680A1 true JPWO2020170680A1 (ja) 2021-12-16

Family

ID=72143490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021501715A Pending JPWO2020170680A1 (ja) 2019-02-18 2020-01-20 汚れ検出システム、LiDARユニット、車両用センシングシステム及び車両

Country Status (5)

Country Link
US (1) US20220073035A1 (ja)
EP (1) EP3929041B1 (ja)
JP (1) JPWO2020170680A1 (ja)
CN (1) CN113423620A (ja)
WO (1) WO2020170680A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017121376B4 (de) * 2017-09-14 2021-01-14 Motherson Innovations Company Limited Verfahren zum Betreiben eines Kraftfahrzeugs mit zumindest einer Außenkamera sowie Kraftfahrzeug mit zumindest einer Außenkamera
JP7452374B2 (ja) * 2020-10-20 2024-03-19 株式会社Soken 物体検知装置および物体検知プログラム
WO2022138088A1 (ja) * 2020-12-25 2022-06-30 株式会社小糸製作所 センサシステム
US11820338B2 (en) 2021-02-10 2023-11-21 Toyota Motor Engineering & Manufacturing North America, Inc. Autonomous vehicle cleaning and feedback system using adjustable ground truth
US11878663B2 (en) 2021-02-10 2024-01-23 Toyota Motor Engineering & Manufacturing North America, Inc. Autonomous vehicle cleaning system using foldable seats and adjustable lighting conditions
US20230152429A1 (en) 2021-11-15 2023-05-18 Waymo Llc Auto-Exposure Occlusion Camera

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09277887A (ja) 1996-04-16 1997-10-28 Honda Motor Co Ltd 自動追従走行システム
US6189808B1 (en) * 1999-04-15 2001-02-20 Mccord Winn Textron Inc. Automatically controlled washer system for headlamps
JP2001211449A (ja) * 2000-01-27 2001-08-03 Honda Motor Co Ltd 車両用画像認識装置
JP2007055562A (ja) * 2005-08-26 2007-03-08 Fujitsu Ten Ltd 車両の窓ガラスの異物除去装置
DE102005055087A1 (de) * 2005-11-18 2007-05-24 Robert Bosch Gmbh Scheinwerfermodul mit integriertem Licht-Regensensor
US9625582B2 (en) * 2015-03-25 2017-04-18 Google Inc. Vehicle with multiple light detection and ranging devices (LIDARs)
JP6447305B2 (ja) * 2015-03-30 2019-01-09 トヨタ自動車株式会社 車両用周辺情報検出構造
US10761195B2 (en) * 2016-04-22 2020-09-01 OPSYS Tech Ltd. Multi-wavelength LIDAR system
JP2018129259A (ja) * 2017-02-10 2018-08-16 株式会社小糸製作所 ランプ装置
JP7064987B2 (ja) 2017-07-31 2022-05-11 日本特殊陶業株式会社 セラミックス接合体
JP6961547B2 (ja) 2017-08-02 2021-11-05 Hoya株式会社 光学ガラスおよび光学素子

Also Published As

Publication number Publication date
WO2020170680A1 (ja) 2020-08-27
CN113423620A (zh) 2021-09-21
EP3929041A4 (en) 2022-07-20
US20220073035A1 (en) 2022-03-10
EP3929041A1 (en) 2021-12-29
EP3929041B1 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
WO2020170680A1 (ja) 汚れ検出システム、LiDARユニット、車両用センシングシステム及び車両
US20230105832A1 (en) Sensing system and vehicle
EP3663134B1 (en) Vehicular lighting system and vehicle
JP7331083B2 (ja) 車両用センシングシステム及び車両
US10933803B2 (en) Autonomous vehicle visual based communication
US11252338B2 (en) Infrared camera system and vehicle
US20220014650A1 (en) Infrared camera system, infrared camera module, and vehicle
WO2020189685A1 (ja) 車両用センシングシステム、車両システム、車両用灯具及び車両
US11858410B2 (en) Vehicular lamp and vehicle
WO2020170678A1 (ja) 車両用センシングシステム及び車両
CN211468305U (zh) 红外线相机系统以及车辆
CN211468303U (zh) 红外线相机系统以及车辆
CN211468308U (zh) 红外线相机系统以及车辆
WO2022004467A1 (ja) 車両用レーダシステム及び車両
JP2019159772A (ja) 車両システム
WO2022044853A1 (ja) センシングシステム及び車両
US20230184902A1 (en) Vehicular light source system, vehicular sensing system, and vehicle
CN117813530A (zh) 基于传感器控制LiDAR分辨率配置