WO2022004467A1 - 車両用レーダシステム及び車両 - Google Patents

車両用レーダシステム及び車両 Download PDF

Info

Publication number
WO2022004467A1
WO2022004467A1 PCT/JP2021/023431 JP2021023431W WO2022004467A1 WO 2022004467 A1 WO2022004467 A1 WO 2022004467A1 JP 2021023431 W JP2021023431 W JP 2021023431W WO 2022004467 A1 WO2022004467 A1 WO 2022004467A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
vehicle
view
field
control unit
Prior art date
Application number
PCT/JP2021/023431
Other languages
English (en)
French (fr)
Inventor
洸成 菊池
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2022533880A priority Critical patent/JPWO2022004467A1/ja
Publication of WO2022004467A1 publication Critical patent/WO2022004467A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • This disclosure relates to vehicle radar systems and vehicles.
  • the vehicle system automatically controls the running of the vehicle. Specifically, in the automatic driving mode, the vehicle system controls steering based on information indicating the surrounding environment of the vehicle (surrounding environment information) obtained from sensors such as a camera and a radar (for example, a laser radar or a millimeter wave radar). At least one of (control of the traveling direction of the vehicle), brake control and accelerator control (control of vehicle braking and acceleration / deceleration) is automatically performed.
  • the driver controls the running of the vehicle, as is the case with many conventional vehicles.
  • the running of the vehicle is controlled according to the driver's operation (steering operation, brake operation, accelerator operation), and the vehicle system does not automatically perform steering control, brake control, and accelerator control.
  • the vehicle driving mode is not a concept that exists only in some vehicles, but a concept that exists in all vehicles including conventional vehicles that do not have an automatic driving function. For example, vehicle control. It is classified according to the method and the like.
  • automated driving vehicles vehicles traveling in the automatic driving mode on public roads
  • manual driving vehicles vehicles traveling in the manual driving mode
  • Patent Document 1 discloses an automatic following driving system in which a following vehicle automatically follows the preceding vehicle.
  • each of the preceding vehicle and the following vehicle is equipped with a lighting system, and text information for preventing another vehicle from interrupting between the preceding vehicle and the following vehicle is added to the lighting system of the preceding vehicle.
  • text information indicating that the vehicle is automatically following is displayed on the lighting system of the following vehicle.
  • the millimeter-wave radar is mounted on each of the four corners of the vehicle (particularly, each of the vehicle lamps arranged at the four corners of the vehicle). Is currently under consideration.
  • radio waves emitted from a millimeter-wave radar are reflected on the wall surface constituting the closed space, so that multipath is generated in the closed space. Will end up.
  • the radio wave emitted from the millimeter-wave radar mounted on one vehicle is reflected on the wall surface, and as a result, the radio wave is incident on the receiving antenna of the millimeter-wave radar mounted on another vehicle.
  • the radio wave is incident on another millimeter-wave radar mounted on the vehicle.
  • the radio wave from the transmitting antenna of the predetermined millimeter-wave radar mounted on the vehicle is repeatedly reflected on the wall surface, and as a result, is incident on the receiving antenna of the predetermined millimeter-wave radar.
  • the generation of multipath may adversely affect the radar data output from the millimeter wave radar.
  • an object (ghost) that does not actually exist is detected from the radar data. From the above viewpoint, there is room for study on a vehicle radar system capable of suppressing a decrease in the reliability of radar data in a closed space.
  • the vehicle radar system mounted on the vehicle is A radar configured to acquire radar data indicating the surrounding environment of the vehicle by emitting radio waves toward the outside of the vehicle, and
  • the radar control unit is configured to change the field of view of the radar from the first field of view to the second field of view narrower than the first field of view when the vehicle enters the closed space.
  • the radar field of view is narrowed when the vehicle enters the closed space. Therefore, when the radio wave is emitted from the radar toward the wall surface forming the closed space, the area of the wall surface on which the radio wave is reflected (hereinafter referred to as the radio wave reflection area) is reduced. In this way, as the radio wave reflection area on the wall surface decreases, it becomes possible to reduce the adverse effect on the radar data caused by the multipath generated in the closed space. Therefore, it is possible to provide a radar system for vehicles capable of suppressing a decrease in reliability of radar data in a closed space.
  • a schematic diagram of a vehicle provided with a vehicle system according to an embodiment of the present invention (hereinafter referred to as the present embodiment) is shown. It is a block diagram which shows the vehicle system which concerns on this embodiment. It is a block diagram which shows the left front sensing system. It is a block diagram which shows the structure of a radar. It is a flowchart for demonstrating the process of changing the field of view of each radar by hardware when a vehicle enters a tunnel. It is a figure which shows the vehicle before entering the tunnel. It is a figure which shows the field of view of each radar before a vehicle enters a tunnel. It is a figure which shows the field of view of each radar while a vehicle is traveling in a tunnel.
  • the vertical direction is a direction including the “forward direction” and the “rear direction”.
  • the "left-right direction” is a direction including “left direction” and “right direction”.
  • the “vertical direction” is a direction including "upward” and “downward”.
  • the vertical direction is not shown in FIG. 1, the vertical direction is a direction orthogonal to the front-rear direction and the left-right direction.
  • FIG. 1 is a schematic view showing a top view of a vehicle 1 including a vehicle system 2.
  • FIG. 2 is a block diagram showing the vehicle system 2.
  • the vehicle 1 is a vehicle (automobile) capable of traveling in an automatic driving mode, and includes a vehicle system 2, a left front lamp 7a, a right front lamp 7b, a left rear lamp 7c, and a right rear lamp. It is equipped with 7d.
  • the vehicle system 2 includes a vehicle control unit 3, a left front sensing system 4a (hereinafter, simply referred to as “sensing system 4a”), and a right front sensing system 4b (hereinafter, simply “sensing system”). 4b “), a left rear sensing system 4c (hereinafter, simply referred to as” sensing system 4c "), and a right rear sensing system 4d (hereinafter, simply referred to as” sensing system 4d ”) are provided at least.
  • a left front sensing system 4a hereinafter, simply referred to as “sensing system 4a”
  • a right front sensing system 4b hereinafter, simply “sensing system”.
  • 4b ") a left rear sensing system 4c (hereinafter, simply referred to as” sensing system 4c ")
  • a right rear sensing system 4d hereinafter, simply referred to as” sensing system 4d "
  • the vehicle system 2 includes a sensor 5, an HMI (Human Machine Interface) 8, a GPS (Global Positioning System) 9, a wireless communication unit 10, and a storage device 11. Further, the vehicle system 2 includes a steering actuator 12, a steering device 13, a brake actuator 14, a brake device 15, an accelerator actuator 16, and an accelerator device 17.
  • HMI Human Machine Interface
  • GPS Global Positioning System
  • the vehicle system 2 includes a steering actuator 12, a steering device 13, a brake actuator 14, a brake device 15, an accelerator actuator 16, and an accelerator device 17.
  • the vehicle control unit 3 is configured to control the running of the vehicle 1.
  • the vehicle control unit 3 is composed of, for example, at least one electronic control unit (ECU: Electronic Control Unit).
  • the electronic control unit includes a computer system including one or more processors and one or more memories (for example, SoC (System on a Chip) or the like), and an electronic circuit composed of active elements such as transistors and passive elements.
  • the processor includes, for example, at least one of a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a GPU (Graphics Processing Unit), and a TPU (Tensor Processing Unit).
  • the CPU may be composed of a plurality of CPU cores.
  • the GPU may be composed of a plurality of GPU cores.
  • the memory includes a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the vehicle control program may be stored in the ROM.
  • the vehicle control program may include an artificial intelligence (AI) program for autonomous driving.
  • AI is a program (trained model) constructed by supervised or unsupervised machine learning (particularly deep learning) using a multi-layer neural network.
  • the RAM may temporarily store a vehicle control program, vehicle control data, and / or peripheral environment information indicating the surrounding environment of the vehicle.
  • the processor may be configured to develop a program designated from various vehicle control programs stored in the ROM on the RAM and execute various processes in cooperation with the RAM.
  • the computer system may be configured by a non-Von Neumann computer such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array).
  • FIG. 3 is a block diagram showing a sensing system 4a.
  • the sensing system 4a includes a control unit 40a, a lighting unit 42a, a camera 43a, a LiDAR (Light Detection and Ringing) unit 44a, and a radar 45a.
  • the control unit 40a, the lighting unit 42a, the camera 43a, the LiDAR unit 44a, and the radar 45a are arranged in the space Sa formed by the housing 24a of the left front lamp 7a and the translucent outer cover 22a shown in FIG. Will be done.
  • the control unit 40a may be arranged at a predetermined position of the vehicle 1 other than the space Sa.
  • the control unit 40a may be integrally configured with the vehicle control unit 3.
  • the control unit 40a is configured to control the operations of the lighting unit 42a, the camera 43a, the LiDAR unit 44a, and the radar 45a, respectively.
  • the control unit 40a functions as a lighting unit control unit 420a, a camera control unit 430a, a LiDAR unit control unit 440a, and a radar control unit 450a.
  • the control unit 40a is composed of at least one electronic control unit (ECU).
  • the electronic control unit includes a computer system (for example, SoC) including one or more processors and one or more memories, and an electronic circuit composed of active elements such as transistors and passive elements.
  • the processor includes at least one of CPU, MPU, GPU and TPU.
  • the memory includes a ROM and a RAM.
  • the computer system may be configured by a non-Von Neumann computer such as an ASIC or FPGA.
  • the lighting unit 42a is configured to form a light distribution pattern by emitting light toward the front of the vehicle 1.
  • the lighting unit 42a has a light source that emits light and an optical system.
  • the light source may be composed of, for example, a plurality of light emitting elements arranged in a matrix.
  • the light emitting element is, for example, an LED (Light Emitting Diode), an LD (LaSer Diode), or an organic EL element.
  • the optical system is configured to reflect a reflector configured to reflect the light emitted from the light source toward the front of the lighting unit 42a, and light emitted directly from the light source or reflected by the reflector. It may include at least one of the lenses.
  • the lighting unit control unit 420a is configured to control the lighting unit 42a so that the lighting unit 42a emits a predetermined light distribution pattern toward the front region of the vehicle 1.
  • the lighting unit control unit 420a may change the light distribution pattern emitted from the lighting unit 42a according to the driving mode of the vehicle 1.
  • the camera 43a is configured to detect the surrounding environment of the vehicle 1.
  • the camera 43a is configured to acquire image data indicating the surrounding environment of the vehicle 1 and then transmit the image data to the camera control unit 430a.
  • the camera control unit 430a may specify the surrounding environment information based on the transmitted image data.
  • the surrounding environment information may include information about an object existing outside the vehicle 1.
  • the surrounding environment information may include information on the attributes of the object existing outside the vehicle 1 and information on the distance and direction of the object with respect to the vehicle 1.
  • the camera 43a includes, for example, an image pickup device such as a CCD (Charge-Coupled Device) or a CMOS (Complementary MOS: Metal Oxide Semiconductor).
  • the LiDAR unit 44a is configured to detect the surrounding environment of the vehicle 1.
  • the LiDAR unit 44a is configured to acquire point cloud data indicating the surrounding environment of the vehicle 1 and then transmit the point cloud data to the LiDAR unit control unit 440a.
  • the LiDAR unit control unit 440a may specify the surrounding environment information based on the transmitted point cloud data.
  • the LiDAR unit 44a acquires information on the flight time (TOF: Time of Flat) ⁇ T1 of the laser beam (optical pulse) at each emission angle (horizontal angle ⁇ , vertical angle ⁇ ) of the laser beam.
  • the LiDAR unit 44a can acquire information on the distance D between the LiDAR unit 44a and an object existing outside the vehicle 1 at each emission angle, based on the information on the flight time ⁇ T1 at each emission angle.
  • the radar 45a is configured to detect radar data indicating the surrounding environment of the vehicle 1.
  • the radar 45a is, for example, a millimeter wave radar or a microwave radar.
  • the radar 45a is configured to acquire radar data and then transmit the radar data to the radar control unit 450a.
  • the radar control unit 450a is configured to acquire surrounding environment information based on radar data.
  • the surrounding environment information may include information related to an object existing outside the vehicle 1.
  • the surrounding environment information may include, for example, information on the position and direction of the object with respect to the vehicle 1 and information on the relative speed of the object with respect to the vehicle 1.
  • the radar 45a can acquire the distance and direction between the radar 45a and an object existing outside the vehicle 1 by a pulse modulation method, an FMCW (Frequency Modulated Continuous Wave) method, or a dual frequency CW method.
  • a pulse modulation method When the pulse modulation method is used, the radar 45a acquires information on the flight time ⁇ T2 of the millimeter wave, and then the distance between the radar 45a and an object existing outside the vehicle 1 based on the information on the flight time ⁇ T2. Information about D can be obtained.
  • the radar 45a has an interval between the phase of the millimeter wave (received wave) received by one receiving antenna element and the phase of the millimeter wave (received wave) received by the other receiving antenna element adjacent to one receiving antenna element.
  • the radar 45a can acquire information on the relative velocity V of the object with respect to the radar 45a based on the frequency f0 of the transmitted wave radiated from the transmitting antenna and the frequency f1 of the received wave received by the receiving antenna. can.
  • the configuration of the radar 45a will be described later.
  • each of the sensing systems 4b to 4d is similarly provided with a control unit, a lighting unit, a camera, a LiDAR unit, and a radar.
  • these devices of the sensing system 4b are arranged in the space Sb formed by the housing 24b of the right front lamp 7b shown in FIG. 1 and the translucent outer cover 22b.
  • These devices of the sensing system 4c are arranged in the space Sc formed by the housing 24c of the left rear lamp 7c and the translucent outer cover 22c.
  • These devices of the sensing system 4d are arranged in the space Sd formed by the housing 24d of the right rear lamp 7d and the translucent outer cover 22d.
  • the senor 5 may include an acceleration sensor, a speed sensor, a gyro sensor, and the like.
  • the sensor 5 is configured to detect the traveling state of the vehicle 1 and output the traveling state information indicating the traveling state of the vehicle 1 to the vehicle control unit 3. Further, the sensor 5 may have an outside air temperature sensor that detects the outside air temperature outside the vehicle 1.
  • the HMI 8 is composed of an input unit that receives an input operation from the driver and an output unit that outputs driving information and the like to the driver.
  • the input unit includes a steering wheel, an accelerator pedal, a brake pedal, an operation mode changeover switch for switching the operation mode of the vehicle 1, and the like.
  • the output unit is a display (for example, Head Up Display (HUD) or the like) that displays various driving information.
  • the GPS 9 is configured to acquire the current position information of the vehicle 1 and output the acquired current position information to the vehicle control unit 3.
  • the wireless communication unit 10 is configured to receive information about other vehicles around the vehicle 1 from the other vehicle and transmit information about the vehicle 1 to the other vehicle (vehicle-to-vehicle communication). Further, the wireless communication unit 10 is configured to receive infrastructure information from infrastructure equipment such as traffic lights and indicator lights and to transmit traveling information of the vehicle 1 to the infrastructure equipment (road-to-vehicle communication). Further, the wireless communication unit 10 receives information about the pedestrian from the portable electronic device (smartphone, tablet, wearable device, etc.) carried by the pedestrian, and transmits the own vehicle traveling information of the vehicle 1 to the portable electronic device. It is configured to do (pedestrian-to-vehicle communication). The vehicle 1 may directly communicate with another vehicle, infrastructure equipment, or a portable electronic device in an ad hoc mode, or may communicate with a communication network such as the Internet.
  • a communication network such as the Internet.
  • the storage device 11 is an external storage device such as a hard disk drive (HDD) or SSD (Solid State Drive).
  • the storage device 11 may store two-dimensional or three-dimensional map information and / or a vehicle control program.
  • the three-dimensional map information may be composed of 3D mapping data (point cloud data).
  • the storage device 11 is configured to output map information and a vehicle control program to the vehicle control unit 3 in response to a request from the vehicle control unit 3.
  • the map information and the vehicle control program may be updated via the wireless communication unit 10 and the communication network.
  • the vehicle control unit 3 When the vehicle 1 travels in the automatic driving mode, the vehicle control unit 3 has at least one of the steering control signal, the accelerator control signal, and the brake control signal based on the traveling state information, the surrounding environment information, the current position information, the map information, and the like. Generate one automatically.
  • the steering actuator 12 is configured to receive a steering control signal from the vehicle control unit 3 and control the steering device 13 based on the received steering control signal.
  • the brake actuator 14 is configured to receive a brake control signal from the vehicle control unit 3 and control the brake device 15 based on the received brake control signal.
  • the accelerator actuator 16 is configured to receive an accelerator control signal from the vehicle control unit 3 and control the accelerator device 17 based on the received accelerator control signal.
  • the vehicle control unit 3 automatically controls the travel of the vehicle 1 based on the travel state information, the surrounding environment information, the current position information, the map information, and the like. That is, in the automatic driving mode, the traveling of the vehicle 1 is automatically controlled by the vehicle system 2.
  • the vehicle control unit 3 when the vehicle 1 travels in the manual operation mode, the vehicle control unit 3 generates a steering control signal, an accelerator control signal, and a brake control signal according to the manual operation of the driver with respect to the accelerator pedal, the brake pedal, and the steering wheel.
  • the steering control signal, the accelerator control signal, and the brake control signal are generated by the manual operation of the driver, so that the driving of the vehicle 1 is controlled by the driver.
  • FIG. 4 is a block diagram showing the configuration of the radar 45a.
  • the radar 45a includes a wide-angle transmitting antenna 54, a narrow-angle transmitting antenna 55, a common receiving antenna 56, a transmitting side RF (radio frequency) circuit 51, and a receiving side RF circuit 52.
  • a signal processing circuit 53 is provided.
  • the wide-angle transmitting antenna 54 and the narrow-angle transmitting antenna 55 are configured to radiate millimeter waves, which are radio waves having a wavelength of, for example, 1 mm to 10 mm.
  • the common receiving antenna 56 is a receiving antenna commonly used for the wide-angle transmitting antenna 54 and the narrow-angle transmitting antenna 55.
  • the common receiving antenna 56 is configured to receive the reflected radio wave radiated from the transmitting antenna and reflected by the object P.
  • the wide-angle transmitting antenna 54 may be composed of, for example, a plurality of patch antenna elements (metal patterns) arranged in 4 rows ⁇ 1 column. In this case, since the four patch antenna elements are arranged in the row direction (vertical direction), the directivity of the wide-angle transmitting antenna 54 in the vertical direction is high.
  • the narrowing angle transmitting antenna 55 may be composed of, for example, a plurality of patch antenna elements arranged in 4 rows ⁇ 3 columns. In this case, since the four patch antenna elements are arranged in the row direction, the directivity of the narrowing angle transmitting antenna 55 in the vertical direction is high. Further, since the three patch antenna elements are arranged in the row direction, the directivity of the narrowing angle transmitting antenna 55 in the horizontal direction is increased. In particular, the horizontal field of view of the radar 45a when the narrow-angle transmitting antenna 55 is used as the transmitting antenna is narrower than the horizontal field of view of the radar 45a when the wide-angle transmitting antenna 54 is used as the transmitting antenna.
  • the wide-angle transmitting antenna 54 and the narrow-angle transmitting antenna 55 are configured to receive high-frequency signals from the transmitting side RF circuit 51 and then radiate radio waves toward the air.
  • the radar 45a switches between the narrow-angle transmitting antenna 55 and the wide-angle transmitting antenna 54 according to the control signal from the radar control unit 450a.
  • the common receiving antenna 56 may be composed of, for example, a plurality of patch antenna elements arranged in 4 rows ⁇ 4 columns.
  • the common receiving antenna 56 is configured to receive the reflected radio wave reflected by the object and then supply a weak high frequency signal corresponding to the reflected radio wave to the receiving side RF circuit 52.
  • the patch antenna element of the wide-angle transmitting antenna 54, the patch antenna element of the narrow-angle transmitting antenna 55, and the patch antenna element of the common receiving antenna 56 may be formed on the surface of one insulating substrate.
  • a common ground electrode may be formed on the back surface of the insulating substrate.
  • the transmitting side RF circuit 51, the receiving side RF circuit 52, and the signal processing circuit 53 are configured as a monolithic microwave integrated circuit (MMIC).
  • the transmitting side RF circuit 51 is electrically connected to the wide-angle transmitting antenna 54 and the narrow-angle transmitting antenna 55, and is configured to supply a high-frequency signal to these antennas.
  • the transmission side RF circuit 51 includes a high frequency generation circuit that generates a high frequency signal and an amplifier.
  • the high frequency generating circuit When the radar 45a is a radar adopting the FMCW method, the high frequency generating circuit generates a chirp signal (FMCW signal) whose frequency changes linearly with the passage of time.
  • the receiving side RF circuit 52 is electrically connected to the common receiving antenna 56, and is configured to receive a weak high frequency signal from the common receiving antenna 56.
  • the receiving side RF circuit 52 includes an amplifier, a mixer, a bandpass filter, an AD converter, and a filter circuit.
  • the amplifier is configured to amplify a weak high frequency signal output from the common receiving antenna 56.
  • the mixer generates an intermediate frequency (IF) signal by mixing the high frequency signal (RX signal) output from the amplifier and the high frequency signal (TX signal) from the high frequency generation circuit.
  • the AD converter is configured to convert an IF signal that has passed through a bandpass filter from an analog signal to a digital signal. The digital signal is transmitted to the signal processing circuit 53 via the filter circuit.
  • the signal processing circuit 53 is configured to control the transmitting side RF circuit 51 and the receiving side RF circuit 52 in response to the control signal from the radar control unit 450a. Further, the signal processing circuit 53 generates radar data by signal processing (for example, fast Fourier transform processing) the digital signal output from the receiving side RF circuit 52, and then radar-controls the generated radar data. It is configured to transmit to unit 450a.
  • the signal processing circuit 53 includes, for example, a DSP (Digital Signal Processor) and a microcomputer composed of a processor and a memory.
  • the sensing system 4a includes a vehicle radar system 100a composed of a radar 45a and a radar control unit 450a.
  • each of the sensing systems 4b to 4d is provided with a vehicle radar system composed of a radar and a radar control unit.
  • the radar 45b is a radar provided in the sensing system 4b.
  • the radar 45c is a radar provided in the sensing system 4c.
  • the radar 45d is a radar provided in the sensing system 4d.
  • the vehicle radar system of the sensing system 4b includes a radar 45b and a radar control unit 450b that controls the operation of the radar 45b.
  • the vehicle radar system of the sensing system 4c includes a radar 45c and a radar control unit 450c that controls the operation of the radar 45c.
  • the vehicle radar system of the sensing system 4d includes a radar 45d and a radar control unit 450d that controls the operation of the radar 45d.
  • FIG. 5 is a flowchart for explaining a process of changing the field of view of each radar 45a to 45d in terms of hardware when the vehicle 1 enters the tunnel 60 (an example of a closed space).
  • FIG. 6 is a diagram showing the vehicle 1 before entering the tunnel 60.
  • FIG. 7 is a diagram showing the fields of view Sa to Sd of the radars 45a to 45d before the vehicle 1 enters the tunnel 60.
  • FIG. 8 is a diagram showing the fields of view Ta to Td of the radars 45a to 45d while the vehicle 1 is traveling in the tunnel 60.
  • step S1 the vehicle control unit 3 (see FIG. 2) determines whether or not the vehicle 1 enters the tunnel 60 (an example of a closed space). For example, the vehicle control unit 3 may determine whether or not the vehicle 1 enters the tunnel 60 based on the map information stored in the storage device 11 and the current position information of the vehicle 1 acquired from the GPS 9. good. Further, as shown in FIG. 6, the vehicle 1 receives information on the existence of the tunnel 60 or high-precision map information from the transportation infrastructure facility 50 installed near the entrance of the tunnel 60, and then the vehicle 1 tunnels. It may be determined whether or not to enter 60. If the determination result in step S1 is YES, this process proceeds to step S2. On the other hand, if the determination result in step S1 is NO, the determination process in step S1 is executed again.
  • step S2 the radar control units 450a to 450d switch the transmitting antennas of the radars 45a to 45d from the wide-angle transmitting antenna 54 to the narrow-angle transmitting antenna 55.
  • the vehicle control unit 3 instructs to change the transmitting antenna of each radar 45a to 45d from the wide-angle transmitting antenna to the narrow-angle transmitting antenna after determining that the vehicle 1 enters the tunnel 60.
  • the instruction signal to be used is transmitted to the radar control units 450a to 450d.
  • the radar control units 450a to 450d each radar 45a to 45d switch the transmission antenna from the wide-angle transmission antenna 54 to the narrow-angle transmission antenna 55 in response to the reception of the instruction signal received from the vehicle control unit 3. Controls the operation of.
  • the wide-angle transmitting antenna 54 is used as the transmitting antenna of each radar 45a to 45d. Therefore, the field of view of the radar 45a arranged in the sensing system 4a is set to the field of view Sa (an example of the first field of view).
  • the field of view of the radar 45b arranged in the sensing system 4b is set to the field of view Sb (an example of the first field of view).
  • the field of view of the radar 45c arranged in the sensing system 4c is set to the field of view Sc (an example of the first field of view).
  • the field of view of the radar 45d arranged in the sensing system 4d is set to the field of view Sd (an example of the first field of view).
  • the radar 45a is mounted on the vehicle 1 in a state where the emission direction Ka of the radar 45a (particularly, the emission surface of the radar 45a) faces obliquely with respect to the front-rear direction of the vehicle 1.
  • the radar 45b is mounted on the vehicle 1 in a state where the emission direction Kb of the radar 45b (particularly, the emission surface of the radar 45b) faces obliquely with respect to the front-rear direction of the vehicle 1.
  • the radar 45c is mounted on the vehicle 1 in a state where the emission direction Kc of the radar 45c (particularly, the emission surface of the radar 45c) faces obliquely with respect to the front-rear direction of the vehicle 1.
  • the radar 45d is mounted on the vehicle 1 in a state where the emission direction Kd of the radar 45d (particularly, the emission surface of the radar 45d) faces obliquely with respect to the front-rear direction of the vehicle 1.
  • the "radar emission direction” is the emission direction of the center of the radio wave emitted from the radar transmitting antenna.
  • the narrowing angle transmitting antenna 55 is used as the transmitting antenna of each radar 45a to 45d. Therefore, the field of view of the radar 45a arranged in the sensing system 4a is set to the field of view Ta (an example of the second field of view).
  • the horizontal field of view Ta is narrower than the horizontal field of view Sa.
  • the field of view of the radar 45b arranged in the sensing system 4b is set to the field of view Tb (an example of the second field of view).
  • the horizontal field of view Tb is narrower than the horizontal field of view Sb.
  • the field of view of the radar 45c arranged in the sensing system 4c is set to the field of view Tc (an example of the second field of view).
  • the horizontal field of view Tc is narrower than the horizontal field of view Sc.
  • the field of view of the radar 45d arranged in the sensing system 4d is set to the field of view Td (an example of the second field of view).
  • the horizontal field of view Td is narrower than the horizontal field of view Sd.
  • step S2 since the transmitting antenna is changed from the wide-angle transmitting antenna 54 to the narrow-angle transmitting antenna 55, the field of view of each radar 45a to 45d is changed from the field of view Sa to Sd to the field of view Ta to Td. .. As a result, the horizontal field of view of each radar 45a to 45d is narrowed.
  • each control unit 450a to 450d controls each radar 45a to 45d so as to reduce the intensity of the radio wave emitted from the narrowing angle transmitting antenna 55. That is, each control unit 450a to 450d controls each radar 45a to 45d so that the intensity of the radio wave emitted from the narrow-angle transmitting antenna 55 is smaller than the intensity of the radio wave emitted from the wide-angle transmitting antenna 54. do. In this case, the intensity of the radio wave emitted from the narrowing angle transmitting antenna 55 can be reduced by reducing the voltage value of the high frequency signal input from the transmitting side RF circuit 51 to the narrowing angle transmitting antenna 55.
  • step S3 the vehicle control unit 3 determines whether or not the vehicle 1 has exited the tunnel 60.
  • the vehicle control unit 3 is based on the map information stored in the storage device 11, the high-precision map information acquired from the traffic infrastructure equipment 50, and the current position information of the vehicle 1 acquired from the GPS 9. It may be determined whether the vehicle 1 has exited the tunnel 60. If the determination result in step S3 is YES, this process proceeds to step S4. On the other hand, if the determination result in step S3 is NO, the determination process in step S3 is executed again.
  • step S4 the radar control units 450a to 450d switch the transmitting antennas of the radars 45a to 45d from the narrow-angle transmitting antenna 55 to the wide-angle transmitting antenna 54.
  • the vehicle control unit 3 instructs to change the transmitting antenna of each radar 45a to 45d from the narrow-angle transmitting antenna to the wide-angle transmitting antenna after determining that the vehicle 1 has exited the tunnel 60.
  • the instruction signal to be used is transmitted to the radar control units 450a to 450d.
  • the radar control units 450a to 450d each radar 45a to 45d switch the transmitting antenna from the narrow-angle transmitting antenna 55 to the wide-angle transmitting antenna 54 in response to the reception of the instruction signal received from the vehicle control unit 3.
  • step S4 since the transmitting antenna is changed from the narrow-angle transmitting antenna 55 to the wide-angle transmitting antenna 54, the field of view of each radar 45a to 45d is changed from the field of view Ta to Td to the field of view Sa to Sd. .. As a result, the horizontal field of view of each radar 45a to 45d is widened.
  • the radio waves emitted from the radars 45a to 45d are reflected on the wall surface 160 (see FIG. 8) of the tunnel 60, so that a multipath is generated in the tunnel 60. ..
  • the emission surfaces of the radars 45a to 45d arranged at the four corners of the vehicle 1 are oriented obliquely with respect to the front-rear direction of the vehicle 1, the radio waves emitted from the radars 45a to 45d are transmitted by the wall surface 160. It will be reflected.
  • the radio wave emitted from one of the radars 45a to 45d is reflected on the wall surface 160 of the tunnel 60, and as a result, is incident on another radar among the radars 45a to 45d. Further, it is assumed that the radio waves emitted from the radar 45a are multiple-reflected on the wall surface 160 and as a result, the radio waves are incident on the radar 45a.
  • the multipath generated in the tunnel 60 may adversely affect the radar data of the radars 45a to 45d. In particular, as a result of noise generated in the radar data, there is a risk that an object that does not actually exist will be detected from the radar data as a ghost.
  • the radio wave reflection area As described above, as the radio wave reflection area of the wall surface 160 decreases, it becomes possible to reduce the adverse effect on the radar data due to the multipath generated in the tunnel 60. As a result, it is possible to provide a vehicle radar system capable of suppressing a decrease in the reliability of radar data in the tunnel 60.
  • the transmitting antennas of the radars 45a to 45d are switched from the wide-angle transmitting antenna 54 to the narrowing angle transmitting antenna 55, the intensity of the radio wave emitted from the narrowing angle transmitting antenna 55 is reduced.
  • the radio wave reflection area of the wall surface 160 and the intensity of the radio wave reflected on the wall surface 160 can be reduced, the adverse effect on the radar data due to multipath can be reduced as the radio wave reflection area and the radio wave intensity decrease. Is possible.
  • the field of view of the radars 45a to 45d is switched from the field of view Sa to Sd to the field of view Ta to Td.
  • the fields of view of the radars 45a to 45d are switched from the fields of view Ta to Td to the fields of view Sa to Sd.
  • the radar 145a is a radar provided in the sensing system 4a.
  • the radar 145b is a radar provided in the sensing system 4b.
  • the radar 145c is a radar provided in the sensing system 4c.
  • the radar 145d is a radar provided in the sensing system 4d.
  • the vehicle radar system of the sensing system 4a includes a radar 145a and a radar control unit 450a that controls the operation of the radar 145a.
  • the vehicle radar system of the sensing system 4b includes a radar 145b and a radar control unit 450b that controls the operation of the radar 145b.
  • the vehicle radar system of the sensing system 4c includes a radar 145c and a radar control unit 450c that controls the operation of the radar 145c.
  • the vehicle radar system of the sensing system 4d includes a radar 145d and a radar control unit 450d that controls the operation of the radar 45d.
  • FIG. 9 is a block diagram showing the configuration of the radar 145a according to the modified example.
  • the radar 145a is configured to detect radar data indicating the surrounding environment of the vehicle 1.
  • the radar 145a is, for example, a millimeter wave radar or a microwave radar.
  • the radar 145a is configured to acquire radar data and then transmit the radar data to the radar control unit 450a.
  • the radar control unit 450a is configured to acquire information related to the object based on the radar data.
  • the radar 145a shown in FIG. 9 is different from the radar 45a shown in FIG. 4 in that it does not have a transmission antenna for narrowing angles.
  • the radar 145a includes a transmitting antenna 154, a receiving antenna 156, a transmitting side RF circuit 151, a receiving side RF circuit 152, and a signal processing circuit 153.
  • the transmitting antenna 154 is configured to radiate millimeter waves, which are radio waves having a wavelength of, for example, 1 mm to 10 mm.
  • the receiving antenna 156 is configured to receive the reflected radio wave radiated from the transmitting antenna and reflected by the object.
  • the transmitting antenna 154 may be composed of, for example, a plurality of patch antenna elements (metal patterns) arranged in 4 rows ⁇ 1 column.
  • the receiving antenna 156 may be composed of, for example, a plurality of patch antenna elements arranged in 4 rows ⁇ 4 columns.
  • the receiving antenna 156 is configured to receive the reflected radio wave reflected by the object and then supply a weak high frequency signal corresponding to the reflected radio wave to the receiving side RF circuit 152.
  • each radar 145b to 145d has the same configuration as the radar 145a.
  • FIG. 10 is a flowchart for explaining a process of changing the field of view of each radar 145a to 145d by software when the vehicle 1 enters the tunnel 60.
  • FIG. 11 is a diagram showing regions Ra to Rd in which information related to an object is adopted and regions Va to Vd in which information related to an object is not adopted in the fields of view Fa to Fd of each radar 145a to 145d. ..
  • the information related to the object is information indicating the distance, direction and / or relative velocity of the object.
  • step 10 the vehicle control unit 3 determines whether or not the vehicle 1 enters the tunnel 60 (see FIG. 6). If the determination result in step S10 is YES, this process proceeds to step S11. On the other hand, if the determination result in step S10 is NO, the determination process in step S10 is executed again.
  • the radar control units 450a to 450d input information related to the object existing in the regions Ra to Rd (an example of the first region) in the visual fields Fa to Fd of the radars 145a to 145d. While it is adopted, the information related to the object existing in the region within the regions Va to Vd is not adopted.
  • the region Va corresponds to a region of the visual field Fa other than the region Ra.
  • the region Vb corresponds to a region of the visual field Fb other than the region Rb.
  • the region Vc corresponds to a region of the visual field Fc other than the region Rc.
  • the region Vd corresponds to a region of the visual field Fd other than the region Rd.
  • the vehicle control unit 3 issues an instruction signal instructing that the fields of view Fa to Fd of the radars 145a to 145d are narrowed by software. It is transmitted to the control units 450a to 450d.
  • the radar control unit 450a adopts the information related to the object existing in the region Ra based on the instruction signal received from the vehicle control unit 3, while relating to the object existing in the region Va. Do not adopt information. That is, since the radar control unit 450a adopts only the information related to the object existing in the region Ra as the radar data, the field of view Fa of the radar 145a can be narrowed by software.
  • the radar control unit 450b adopts information related to the object existing in the region Rb based on the instruction signal received from the vehicle control unit 3, while relating to the object existing in the region Vb. Do not adopt the information to be done.
  • the radar control unit 450c adopts the information related to the object existing in the region Rc based on the instruction signal received from the vehicle control unit 3, while the radar control unit 450c obtains the information related to the object existing in the region Vc.
  • the radar control unit 450d adopts the information related to the object existing in the area Rd based on the instruction signal received from the vehicle control unit 3, while the radar control unit 450d obtains the information related to the object existing in the area Vd. Do not adopt. In this way, each radar control unit 450a to 450d can narrow the field of view of the radars 145a to 145d by software.
  • step S12 the vehicle control unit 3 determines whether or not the vehicle 1 has exited the tunnel. If the determination result in step S12 is YES, this process proceeds to step S13. On the other hand, if the determination result in step S3 is NO, the determination process in step S12 is executed again.
  • each radar control unit 450a to 450d adopts information related to all objects existing in the fields of view Fa to Fd of each radar 145a to 145d. Specifically, after determining that the vehicle 1 has exited the tunnel 60, the vehicle control unit 3 issues an instruction signal instructing that the fields of view Fa to Fd of the radars 145a to 145d are widened by software. It is transmitted to the control units 450a to 450d. After that, each radar control unit 450a to 450d adopts information on all objects existing in the fields of view Fa to Fd of the radars 145a to 145d as radar data based on the instruction signal received from the vehicle control unit 3. In this way, each radar control unit 450a to 450d can return the field of view of the radars 145a to 145d to the original state.
  • the field of view of each radar 145a to 145d mounted on the vehicle 1 can be narrowed by software. Therefore, since the field of view of each radar 145a to 145d can be narrowed through information processing on the radar data, it is possible to reduce the adverse effect on the radar data due to the multipath generated in the tunnel 60. As a result, it is possible to provide a vehicle radar system capable of suppressing a decrease in the reliability of radar data in the tunnel 60. In particular, in this configuration, the field of view of each radar 145a to 145d can be narrowed without hardware processing such as switching the transmitting antenna from the wide-angle transmitting antenna to the narrow-angle transmitting antenna.
  • the tunnel 60 is exemplified as an example of the closed space in which multipath occurs, but the closed space is not limited to the tunnel 60.
  • the closed space may be a multi-storey car park.
  • the field of view of each radar arranged at the four corners of the vehicle 1 may be narrowed in terms of hardware or software. Even in this case, it can be suitably suppressed that the radar data of each radar is adversely affected by the multipath generated in the multi-story parking lot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

車両(1)に搭載される車両用レーダシステムは、車両(1)の外部に向けて電波を出射することで車両(1)の周辺環境を示すレーダデータを取得するように構成されたレーダ(45a~45d)と、車両1がトンネル(60)に進入するときに、各レーダ(45a~45d)の視野を第1視野から前記第1視野よりも狭い第2視野に変更するように構成されたレーダ制御部と、を備える。

Description

車両用レーダシステム及び車両
 本開示は、車両用レーダシステム及び車両に関する。
 現在、自動車の自動運転技術の研究が各国で盛んに行われており、自動運転モードで車両(以下、「車両」は自動車のことを指す。)が公道を走行することができるための法整備が各国で検討されている。ここで、自動運転モードでは、車両システムが車両の走行を自動的に制御する。具体的には、自動運転モードでは、車両システムは、カメラ、レーダ(例えば、レーザレーダやミリ波レーダ)等のセンサから得られる車両の周辺環境を示す情報(周辺環境情報)に基づいてステアリング制御(車両の進行方向の制御)、ブレーキ制御及びアクセル制御(車両の制動、加減速の制御)のうちの少なくとも1つを自動的に行う。一方、以下に述べる手動運転モードでは、従来型の車両の多くがそうであるように、運転者が車両の走行を制御する。具体的には、手動運転モードでは、運転者の操作(ステアリング操作、ブレーキ操作、アクセル操作)に従って車両の走行が制御され、車両システムはステアリング制御、ブレーキ制御及びアクセル制御を自動的に行わない。尚、車両の運転モードとは、一部の車両のみに存在する概念ではなく、自動運転機能を有さない従来型の車両も含めた全ての車両において存在する概念であって、例えば、車両制御方法等に応じて分類される。
 このように、将来において、公道上では自動運転モードで走行中の車両(以下、適宜、「自動運転車」という。)と手動運転モードで走行中の車両(以下、適宜、「手動運転車」という。)が混在することが予想される。
 自動運転技術の一例として、特許文献1には、先行車に後続車が自動追従走行した自動追従走行システムが開示されている。当該自動追従走行システムでは、先行車と後続車の各々が照明システムを備えており、先行車と後続車との間に他車が割り込むことを防止するための文字情報が先行車の照明システムに表示されると共に、自動追従走行である旨を示す文字情報が後続車の照明システムに表示される。
日本国特開平9-277887号公報
 ところで、自動運転技術の発展において、車両の周辺環境の検出精度を飛躍的に向上させる必要がある。車両の周辺環境を検出するためにカメラ、ミリ波レーダ及びLiDARユニットを車両に搭載することで車両の周辺環境の検出精度を飛躍的に向上させることが可能となる。この点において、車両に搭載される複数種類のセンサのうちミリ波レーダに関しては、車両の四隅の各々に(特に、車両の四隅に配置された車両用灯具の各々に)、ミリ波レーダを搭載することが現在検討されている。
 一方で、車両がトンネルや立体駐車場等の閉鎖空間に存在する場合には、ミリ波レーダから出射された電波が閉鎖空間を構成する壁面に反射することで、マルチパスが閉鎖空間内で生じてしまう。例えば、一方の車両に搭載されたミリ波レーダから出射された電波が壁面に反射された結果、別の車両に搭載されたミリ波レーダの受信アンテナに入射する状況が想定される。また、車両に搭載された一方のミリ波レーダからの電波が、壁面に反射された結果、当該車両に搭載された別のミリ波レーダに入射する状況も想定される。さらに、車両に搭載された所定のミリ波レーダの送信アンテナからの電波が、壁面に多重反射された結果、当該所定のミリ波レーダの受信アンテナに入射する状況も想定される。このように、車両が閉鎖空間内に存在する場合には、マルチパスの発生によりミリ波レーダから出力されるレーダデータに悪影響を及ぼす虞がある。例えば、レーダデータにノイズが生じる結果、実際には存在しない対象物(ゴースト)がレーダデータから検出されてしまう。上記観点より、閉鎖空間内におけるレーダデータの信頼性の低下を抑制可能な車両用レーダシステムについて検討の余地がある。
 本開示は、閉鎖空間内におけるレーダデータの信頼性の低下を抑制可能な車両用レーダシステム及び車両を提供することを目的とする。
 本開示の一態様に係る車両に搭載される車両用レーダシステムは、
 前記車両の外部に向けて電波を出射することで前記車両の周辺環境を示すレーダデータを取得するように構成されたレーダと、
 前記車両が閉鎖空間に進入するときに、前記レーダの視野を第1視野から前記第1視野よりも狭い第2視野に変更するように構成されたレーダ制御部と、を備える。
 上記構成によれば、車両が閉鎖空間に進入するときにレーダの視野が狭くなる。このため、電波がレーダから閉鎖空間を構成する壁面に向けて出射される場合に、電波が反射する壁面の面積(以下、電波反射面積という。)が減少する。このように、壁面の電波反射面積の減少に伴い、閉鎖空間内で発生するマルチパスによって生じるレーダデータへの悪影響を低減することが可能となる。したがって、閉鎖空間内におけるレーダデータの信頼性の低下を抑制可能な車両用レーダシステムを提供することができる。
 本開示によれば、閉鎖空間内におけるレーダデータの信頼性の低下を抑制可能な車両用レーダシステム及び車両を提供することができる。
本発明の実施形態(以下、本実施形態という。)に係る車両システムを備える車両の模式図を示す。 本実施形態に係る車両システムを示すブロック図である。 左前センシングシステムを示すブロック図である。 レーダの構成を示すブロック図である。 車両がトンネル内に進入する場合に各レーダの視野をハードウェア的に変更する処理を説明するためのフローチャートである。 トンネル内に進入する前の車両を示す図である。 車両がトンネル内に進入する前における各レーダの視野を示す図である。 車両がトンネル内を走行中における各レーダの視野を示す図である。 変形例に係るレーダの構成を示すブロック図である。 車両がトンネル内に進入する場合に各レーダの視野をソフトウェア的に変更する処理を説明するためのフローチャートである。 各レーダの視野のうち対象物に関連する情報が採用される領域と対象物に関連する情報が採用されない領域とを示す図である。
 以下、本開示の実施形態(以下、単に「本実施形態」という。)について図面を参照しながら説明する。本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
 また、本実施形態の説明では、説明の便宜上、「左右方向」、「前後方向」、「上下方向」について適宜言及する場合がある。これらの方向は、図1に示す車両1について設定された相対的な方向である。ここで、「前後方向」は、「前方向」及び「後方向」を含む方向である。「左右方向」は、「左方向」及び「右方向」を含む方向である。「上下方向」は、「上方向」及び「下方向」を含む方向である。尚、図1では上下方向は示されていないが、上下方向は、前後方向及び左右方向に直交する方向である。
 最初に、図1及び図2を参照して本実施形態に係る車両1及び車両システム2について説明する。図1は、車両システム2を備える車両1の上面図を示す模式図である。図2は、車両システム2を示すブロック図である。
 図1に示すように、車両1は、自動運転モードで走行可能な車両(自動車)であって、車両システム2と、左前灯具7aと、右前灯具7bと、左後灯具7cと、右後灯具7dとを備える。
 図1及び図2に示すように、車両システム2は、車両制御部3と、左前センシングシステム4a(以下、単に「センシングシステム4a」という。)と、右前センシングシステム4b(以下、単に「センシングシステム4b」という。)と、左後センシングシステム4c(以下、単に「センシングシステム4c」という。)と、右後センシングシステム4d(以下、単に「センシングシステム4d」という。)を少なくとも備える。
 さらに、車両システム2は、センサ5と、HMI(Human Machine Interface)8と、GPS(Global Positioning System)9と、無線通信部10と、記憶装置11とを備える。また、車両システム2は、ステアリングアクチュエータ12と、ステアリング装置13と、ブレーキアクチュエータ14と、ブレーキ装置15と、アクセルアクチュエータ16と、アクセル装置17とを備える。
 車両制御部3は、車両1の走行を制御するように構成されている。車両制御部3は、例えば、少なくとも一つの電子制御ユニット(ECU:Electronic Control Unit)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含むコンピュータシステム(例えば、SoC(System on a Chip)等)と、トランジスタ等のアクティブ素子及びパッシブ素子から構成される電子回路を含む。プロセッサは、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)及びTPU(Tensor Processing Unit)のうちの少なくとも一つを含む。CPUは、複数のCPUコアによって構成されてもよい。GPUは、複数のGPUコアによって構成されてもよい。メモリは、ROM(Read Only Memory)と、RAM(Random Access Memory)を含む。ROMには、車両制御プログラムが記憶されてもよい。例えば、車両制御プログラムは、自動運転用の人工知能(AI)プログラムを含んでもよい。AIプログラムは、多層のニューラルネットワークを用いた教師有り又は教師なし機械学習(特に、ディープラーニング)によって構築されたプログラム(学習済みモデル)である。RAMには、車両制御プログラム、車両制御データ及び/又は車両の周辺環境を示す周辺環境情報が一時的に記憶されてもよい。プロセッサは、ROMに記憶された各種車両制御プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されてもよい。また、コンピュータシステムは、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)等の非ノイマン型コンピュータによって構成されてもよい。
 センシングシステム4a~4dの各々は、車両1の周辺環境を検出するように構成されている。本実施形態の説明では、センシングシステム4a~4dの各々は、同一の構成要素を備えるものとする。このため、以下では、センシングシステム4aについて図3を参照して説明する。図3は、センシングシステム4aを示すブロック図である。
 図3に示すように、センシングシステム4aは、制御部40aと、照明ユニット42aと、カメラ43aと、LiDAR(Light Detection and Ranging)ユニット44aと、レーダ45aとを備える。制御部40aと、照明ユニット42aと、カメラ43aと、LiDARユニット44aと、レーダ45aは、図1に示す左前灯具7aのハウジング24aと透光性のアウターカバー22aによって形成される空間Sa内に配置される。制御部40aは、空間Sa以外の車両1の所定の場所に配置されてもよい。例えば、制御部40aは、車両制御部3と一体的に構成されてもよい。
 制御部40aは、照明ユニット42aと、カメラ43aと、LiDARユニット44aと、レーダ45aの動作をそれぞれ制御するように構成されている。この点において、制御部40aは、照明ユニット制御部420a、カメラ制御部430a、LiDARユニット制御部440a、レーダ制御部450aとして機能する。
 制御部40aは、少なくとも一つの電子制御ユニット(ECU)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含むコンピュータシステム(例えば、SoC等)と、トランジスタ等のアクティブ素子及びパッシブ素子から構成される電子回路を含む。プロセッサは、CPU、MPU、GPU及びTPUのうちの少なくとも一つを含む。メモリは、ROMと、RAMを含む。また、コンピュータシステムは、ASICやFPGA等の非ノイマン型コンピュータによって構成されてもよい。
 照明ユニット42aは、車両1の前方に向けて光を出射することによって、配光パターンを形成するように構成されている。照明ユニット42aは、光を出射する光源と、光学系とを有する。光源は、例えば、マトリックス状に配列された複数の発光素子によって構成されてもよい。発光素子は、例えば、LED(Light Emitting Diode)、LD(LaSer Diode)又は有機EL素子である。光学系は、光源から出射された光を照明ユニット42aの前方に向けて反射するように構成されたリフレクタと、光源から直接出射された光又はリフレクタによって反射された光を屈折するように構成されたレンズとのうちの少なくとも一方を含んでもよい。
 照明ユニット制御部420aは、照明ユニット42aが所定の配光パターンを車両1の前方領域に向けて出射するように照明ユニット42aを制御するように構成されている。例えば、照明ユニット制御部420aは、車両1の運転モードに応じて照明ユニット42aから出射される配光パターンを変更してもよい。
 カメラ43aは、車両1の周辺環境を検出するように構成されている。特に、カメラ43aは、車両1の周辺環境を示す画像データを取得した上で、当該画像データをカメラ制御部430aに送信するように構成されている。カメラ制御部430aは、送信された画像データに基づいて、周辺環境情報を特定してもよい。ここで、周辺環境情報は、車両1の外部に存在する対象物に関する情報を含んでもよい。例えば、周辺環境情報は、車両1の外部に存在する対象物の属性に関する情報と、車両1に対する対象物の距離と方向に関する情報とを含んでもよい。カメラ43aは、例えば、CCD(Charge-Coupled Device)やCMOS(相補型MOS:Metal Oxide Semiconductor)等の撮像素子を含む。
 LiDARユニット44aは、車両1の周辺環境を検出するように構成されている。特に、LiDARユニット44aは、車両1の周辺環境を示す点群データを取得した上で、当該点群データをLiDARユニット制御部440aに送信するように構成されている。LiDARユニット制御部440aは、送信された点群データに基づいて、周辺環境情報を特定してもよい。
 より具体的には、LiDARユニット44aは、レーザ光の各出射角度(水平角度θ、垂直角度φ)におけるレーザ光(光パルス)の飛行時間(TOF:Time of Flight)ΔT1に関する情報を取得する。LiDARユニット44aは、各出射角度における飛行時間ΔT1に関する情報に基づいて、各出射角度におけるLiDARユニット44aと車両1の外部に存在する物体との間の距離Dに関する情報を取得することができる。
 レーダ45aは、車両1の周辺環境を示すレーダデータを検出するように構成されている。レーダ45aは、例えば、ミリ波レーダ又はマイクロ波レーダである。レーダ45aは、レーダデータを取得した上で、当該レーダデータをレーダ制御部450aに送信するように構成されている。レーダ制御部450aは、レーダデータに基づいて、周辺環境情報を取得するように構成されている。周辺環境情報は、車両1の外部に存在する対象物に関連する情報を含んでもよい。周辺環境情報は、例えば、車両1に対する対象物の位置と方向に関する情報と、車両1に対する対象物の相対速度に関する情報を含んでもよい。
 例えば、レーダ45aは、パルス変調方式、FMCW(Frequency Moduleted Continuous Wave)方式又は2周波CW方式で、レーダ45aと車両1の外部に存在する物体との間の距離及び方向を取得することができる。パルス変調方式を用いる場合、レーダ45aは、ミリ波の飛行時間ΔT2に関する情報を取得した上で、飛行時間ΔT2に関する情報に基づいて、レーダ45aと車両1の外部に存在する物体との間の距離Dに関する情報を取得することができる。また、レーダ45aは、一方の受信アンテナ素子で受信したミリ波(受信波)の位相と一方の受信アンテナに隣接する他方の受信アンテナ素子で受信したミリ波(受信波)の位相との間の位相差に基づいて、車両1に対する物体の方向に関する情報を取得することができる。また、レーダ45aは、送信アンテナから放射された送信波の周波数f0と受信アンテナで受信された受信波の周波数f1に基づいて、レーダ45aに対す対象物の相対速度Vに関する情報を取得することができる。レーダ45aの構成については後述する。
 また、センシングシステム4b~4dの各々も同様にして、制御部と、照明ユニットと、カメラと、LiDARユニットと、レーダを備える。特に、センシングシステム4bのこれらの装置は、図1に示す右前灯具7bのハウジング24bと透光性のアウターカバー22bによって形成される空間Sb内に配置される。センシングシステム4cのこれらの装置は、左後灯具7cのハウジング24cと透光性のアウターカバー22cによって形成される空間Sc内に配置される。センシングシステム4dのこれらの装置は、右後灯具7dのハウジング24dと透光性のアウターカバー22dによって形成される空間Sd内に配置される。
 図2に戻ると、センサ5は、加速度センサ、速度センサ及びジャイロセンサ等を有してもよい。センサ5は、車両1の走行状態を検出して、車両1の走行状態を示す走行状態情報を車両制御部3に出力するように構成されている。また、センサ5は、車両1の外部の外気温度を検出する外気温度センサを有してもよい。
 HMI8は、運転者からの入力操作を受付ける入力部と、走行情報等を運転者に向けて出力する出力部とから構成される。入力部は、ステアリングホイール、アクセルペダル、ブレーキペダル、車両1の運転モードを切替える運転モード切替スイッチ等を含む。出力部は、各種走行情報を表示するディスプレイ(例えば、Head Up Display(HUD)等)である。GPS9は、車両1の現在位置情報を取得し、当該取得された現在位置情報を車両制御部3に出力するように構成されている。
 無線通信部10は、車両1の周囲にいる他車に関する情報を他車から受信すると共に、車両1に関する情報を他車に送信するように構成されている(車車間通信)。また、無線通信部10は、信号機や標識灯等のインフラ設備からインフラ情報を受信すると共に、車両1の走行情報をインフラ設備に送信するように構成されている(路車間通信)。また、無線通信部10は、歩行者が携帯する携帯型電子機器(スマートフォン、タブレット、ウェアラブルデバイス等)から歩行者に関する情報を受信すると共に、車両1の自車走行情報を携帯型電子機器に送信するように構成されている(歩車間通信)。車両1は、他車両、インフラ設備若しくは携帯型電子機器とアドホックモードにより直接通信してもよいし、インターネット等の通信ネットワークを介して通信してもよい。
 記憶装置11は、ハードディスクドライブ(HDD)やSSD(Solid State Drive)等の外部記憶装置である。記憶装置11には、2次元又は3次元の地図情報及び/又は車両制御プログラムが記憶されてもよい。例えば、3次元の地図情報は、3Dマッピングデータ(点群データ)によって構成されてもよい。記憶装置11は、車両制御部3からの要求に応じて、地図情報や車両制御プログラムを車両制御部3に出力するように構成されている。地図情報や車両制御プログラムは、無線通信部10と通信ネットワークを介して更新されてもよい。
 車両1が自動運転モードで走行する場合、車両制御部3は、走行状態情報、周辺環境情報、現在位置情報、地図情報等に基づいて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号のうち少なくとも一つを自動的に生成する。ステアリングアクチュエータ12は、ステアリング制御信号を車両制御部3から受信して、受信したステアリング制御信号に基づいてステアリング装置13を制御するように構成されている。ブレーキアクチュエータ14は、ブレーキ制御信号を車両制御部3から受信して、受信したブレーキ制御信号に基づいてブレーキ装置15を制御するように構成されている。アクセルアクチュエータ16は、アクセル制御信号を車両制御部3から受信して、受信したアクセル制御信号に基づいてアクセル装置17を制御するように構成されている。このように、車両制御部3は、走行状態情報、周辺環境情報、現在位置情報、地図情報等に基づいて、車両1の走行を自動的に制御する。つまり、自動運転モードでは、車両1の走行は車両システム2により自動制御される。
 一方、車両1が手動運転モードで走行する場合、車両制御部3は、アクセルペダル、ブレーキペダル及びステアリングホイールに対する運転者の手動操作に従って、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号を生成する。このように、手動運転モードでは、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号が運転者の手動操作によって生成されるので、車両1の走行は運転者により制御される。
(レーダの構成)
 次に、図4を参照してレーダ45aの構成について詳しく説明する。本実施形態では、センシングシステム4b~4dのレーダの構成は、センシングシステム4aのレーダ45aの構成と同一であるものとする。図4は、レーダ45aの構成を示すブロック図である。
 図4に示すように、レーダ45aは、広角用送信アンテナ54と、挟角用送信アンテナ55と、共通受信アンテナ56と、送信側RF(無線周波数)回路51と、受信側RF回路52と、信号処理回路53とを備える。
 広角用送信アンテナ54と挟角用送信アンテナ55は、例えば、波長が1mmから10mmの電波であるミリ波を放射するように構成されている。共通受信アンテナ56は、広角用送信アンテナ54と挟角用送信アンテナ55に共通して使用される受信アンテナである。共通受信アンテナ56は、送信アンテナから放射されて、対象物Pによって反射された反射電波を受信するように構成されている。
 広角用送信アンテナ54は、例えば、4行×1列に配列された複数のパッチアンテナ素子(金属パターン)により構成されてもよい。この場合、行方向(垂直方向)において4つのパッチアンテナ素子が配列されているため、垂直方向における広角用送信アンテナ54の指向性が高くなる。
 挟角用送信アンテナ55は、例えば、4行×3列に配列された複数のパッチアンテナ素子により構成されてもよい。この場合、行方向において4つのパッチアンテナ素子が配列されているため、垂直方向における挟角用送信アンテナ55の指向性が高くなる。さらに、列方向において3つのパッチアンテナ素子が配列されているため、水平方向における挟角用送信アンテナ55の指向性が高くなる。特に、送信アンテナとして挟角用送信アンテナ55が使用される場合におけるレーダ45aの水平方向視野は、送信アンテナとして広角用送信アンテナ54が使用される場合のレーダ45aの水平方向視野よりも狭くなる。
 広角用送信アンテナ54と挟角用送信アンテナ55は、送信側RF回路51から高周波信号を受信した上で、空中に向けて電波を放射するように構成されている。本実施形態では、レーダ45aは、レーダ制御部450aからの制御信号に応じて、挟角用送信アンテナ55と広角用送信アンテナ54を切り替える。
 共通受信アンテナ56は、例えば、4行×4列に配列された複数のパッチアンテナ素子により構成されてもよい。共通受信アンテナ56は、対象物によって反射された反射電波を受信した上で、反射電波に対応する微弱な高周波信号を受信側RF回路52に供給するように構成されている。広角用送信アンテナ54のパッチアンテナ素子と、挟角用送信アンテナ55のパッチアンテナ素子と、共通受信アンテナ56のパッチアンテナ素子は、一つの絶縁基板の表面上に形成されてもよい。絶縁基板の裏面上には共通のグランド電極が形成されてもよい。
 送信側RF回路51と、受信側RF回路52と、信号処理回路53は、モノリシック・マイクロ波集積回路(MMIC)として構成されている。送信側RF回路51は、広角用送信アンテナ54及び挟角用送信アンテナ55に電気的に接続されており、これらのアンテナに高周波信号を供給するように構成されている。送信側RF回路51は、高周波信号を生成する高周波発生回路と、増幅器とを備える。レーダ45aがFMCW方式を採用するレーダである場合には、高周波発生回路は、時間経過に応じて周波数が直線的に変化するチャープ信号(FMCW信号)を生成する。
 受信側RF回路52は、共通受信アンテナ56に電気的に接続されており、共通受信アンテナ56から微弱な高周波信号を受信するように構成されている。受信側RF回路52は、増幅器と、ミキサと、バンドバスフィルタと、AD変換器と、フィルタ回路とを備える。増幅器は、共通受信アンテナ56から出力された微弱な高周波信号を増幅するように構成されている。ミキサは、増幅器から出力された高周波信号(RX信号)と高周波発生回路からの高周波信号(TX信号)をミキシングすることで、中間周波数(IF)信号を生成する。AD変換器は、バンドパスフィルタを通過したIF信号をアナログ信号からデジタル信号に変換するように構成されている。デジタル信号は、フィルタ回路を経由して信号処理回路53に送信される。
 信号処理回路53は、レーダ制御部450aからの制御信号に応じて送信側RF回路51及び受信側RF回路52を制御するように構成されている。さらに、信号処理回路53は、受信側RF回路52から出力されたデジタル信号を信号処理(例えば、高速フーリエ変換処理)することでレーダデータを生成した上で、当該生成されたレーダデータをレーダ制御部450aに送信するように構成されている。信号処理回路53は、例えば、DSP(Digital Signal Processor)と、プロセッサとメモリとから構成されるマイクロコンピュータとを備える。
 本実施形態では、センシングシステム4aは、レーダ45aとレーダ制御部450aとによって構成された車両用レーダシステム100aを備えている。センシングシステム4b~4dの各々も同様に、レーダとレーダ制御部とによって構成された車両用レーダシステムを備えるものとする。
(レーダの視野をハードウェア的に変更する処理)
 次に、図5から図8を参照して、センシングシステム4a~4dに設けられた各レーダ45a~45d(図7参照)の視野をハードウェア的に変更する処理について以下に説明する。
 尚、以降の説明では、レーダ45bは、センシングシステム4bに設けられたレーダである。レーダ45cは、センシングシステム4cに設けられたレーダである。レーダ45dは、センシングシステム4dに設けられたレーダである。また、センシングシステム4bの車両用レーダシステムは、レーダ45bと、レーダ45bの動作を制御するレーダ制御部450bとを備える。センシングシステム4cの車両用レーダシステムは、レーダ45cと、レーダ45cの動作を制御するレーダ制御部450cとを備える。センシングシステム4dの車両用レーダシステムは、レーダ45dと、レーダ45dの動作を制御するレーダ制御部450dとを備える。
 図5は、車両1がトンネル60(閉鎖空間の一例)内に進入する場合に各レーダ45a~45dの視野をハードウェア的に変更する処理を説明するためのフローチャートである。図6は、トンネル60内に進入する前の車両1を示す図である。図7は、車両1がトンネル60内に進入する前における各レーダ45a~45dの視野Sa~Sdを示す図である。図8は、車両1がトンネル60内を走行中における各レーダ45a~45dの視野Ta~Tdを示す図である。
 図5に示すように、ステップS1において、車両制御部3(図2参照)は、車両1がトンネル60(閉鎖空間の一例)に進入するかどうかを判定する。例えば、車両制御部3は、記憶装置11に記憶された地図情報と、GPS9より取得された車両1の現在位置情報とに基づいて、車両1がトンネル60に進入するかどうかを判定してもよい。さらには、図6に示すように、車両1は、トンネル60の入口付近に設置された交通インフラ設備50より、トンネル60の存在に関する情報又は高精度地図情報を受信した上で、車両1がトンネル60に進入するかどうかを判定してもよい。ステップS1の判定結果がYESの場合には、本処理はステップS2に進む。一方、ステップS1の判定結果がNOの場合には、ステップS1の判定処理が再び実行される。
 次に、ステップS2において、各レーダ制御部450a~450dは、各レーダ45a~45dの送信アンテナを広角用送信アンテナ54から挟角用送信アンテナ55に切り替える。具体的には、車両制御部3は、車両1がトンネル60に進入することを判定した後に、各レーダ45a~45dの送信アンテナを広角用送信アンテナから挟角用送信アンテナに変更することを指示する指示信号を、各レーダ制御部450a~450dに送信する。その後、各レーダ制御部450a~450dは、車両制御部3から受信した指示信号の受信に応じて、送信アンテナが広角用送信アンテナ54から挟角用送信アンテナ55に切り替わるように各レーダ45a~45dの動作を制御する。
 図7に示すように、車両1がトンネル60に進入する前には、各レーダ45a~45dの送信アンテナとして広角用送信アンテナ54が使用される。このため、センシングシステム4aに配置されたレーダ45aの視野は、視野Sa(第1視野の一例)に設定されている。センシングシステム4bに配置されたレーダ45bの視野は、視野Sb(第1視野の一例)に設定されている。センシングシステム4cに配置されたレーダ45cの視野は、視野Sc(第1視野の一例)に設定されている。センシングシステム4dに配置されたレーダ45dの視野は、視野Sd(第1視野の一例)に設定されている。
 また、図7に示すように、レーダ45aの出射方向Ka(特に、レーダ45aの出射面)が車両1の前後方向に対して斜めに向いた状態でレーダ45aが車両1に搭載されている。レーダ45bの出射方向Kb(特に、レーダ45bの出射面)が車両1の前後方向に対して斜めに向いた状態でレーダ45bが車両1に搭載されている。レーダ45cの出射方向Kc(特に、レーダ45cの出射面)が車両1の前後方向に対して斜めに向いた状態でレーダ45cが車両1に搭載されている。レーダ45dの出射方向Kd(特に、レーダ45dの出射面)が車両1の前後方向に対して斜めに向いた状態でレーダ45dが車両1に搭載されている。ここで、「レーダの出射方向」とは、レーダの送信アンテナから出射される電波の中心の出射方向である。
 一方、図8に示すように、車両1がトンネル60内を走行中の場合には、各レーダ45a~45dの送信アンテナとして挟角用送信アンテナ55が使用される。このため、センシングシステム4aに配置されたレーダ45aの視野は、視野Ta(第2視野の一例)に設定される。水平方向の視野Taは、水平方向の視野Saよりも狭くなる。センシングシステム4bに配置されたレーダ45bの視野は、視野Tb(第2視野の一例)に設定される。水平方向の視野Tbは、水平方向の視野Sbよりも狭くなる。センシングシステム4cに配置されたレーダ45cの視野は、視野Tc(第2視野の一例)に設定される。水平方向の視野Tcは、水平方向の視野Scよりも狭くなる。センシングシステム4dに配置されたレーダ45dの視野は、視野Td(第2視野の一例)に設定される。水平方向の視野Tdは、水平方向の視野Sdよりも狭くなる。
 このように、ステップS2において、送信アンテナが広角用送信アンテナ54から挟角用送信アンテナ55に変更されるため、各レーダ45a~45dの視野が視野Sa~Sdから視野Ta~Tdに変更される。この結果、各レーダ45a~45dの水平方向の視野が狭くなる。
 また、ステップS2において、各制御部450a~450dは、挟角用送信アンテナ55から出射される電波の強度を減少させるように各レーダ45a~45dを制御する。即ち、各制御部450a~450dは、広角用送信アンテナ54から出射される電波の強度よりも挟角用送信アンテナ55から出射される電波の強度が小さくなるように、各レーダ45a~45dを制御する。この場合、送信側RF回路51から挟角用送信アンテナ55に入力される高周波信号の電圧値を減少させることで挟角用送信アンテナ55から出射される電波の強度を減少させることができる。
 次に、ステップS3において、車両制御部3は、車両1がトンネル60から出たかどうかを判定する。この点において、車両制御部3は、記憶装置11に記憶された地図情報若しく交通インフラ設備50から取得した高精度地図情報と、GPS9より取得された車両1の現在位置情報とに基づいて、車両1がトンネル60から出たかどうかを判定してもよい。ステップS3の判定結果がYESの場合、本処理はステップS4に進む。一方、ステップS3の判定結果がNOの場合には、ステップS3の判定処理が再び実行される。
 次に、ステップS4において、各レーダ制御部450a~450dは、各レーダ45a~45dの送信アンテナを挟角用送信アンテナ55から広角用送信アンテナ54に切り替える。具体的には、車両制御部3は、車両1がトンネル60から出たことを判定した後に、各レーダ45a~45dの送信アンテナを挟角用送信アンテナから広角用送信アンテナに変更することを指示する指示信号を、各レーダ制御部450a~450dに送信する。その後、各レーダ制御部450a~450dは、車両制御部3から受信した指示信号の受信に応じて、送信アンテナが挟角用送信アンテナ55から広角用送信アンテナ54に切り替わるように各レーダ45a~45dの動作を制御する。このように、ステップS4において、送信アンテナが挟角用送信アンテナ55から広角用送信アンテナ54に変更されるため、各レーダ45a~45dの視野が視野Ta~Tdから視野Sa~Sdに変更される。この結果、各レーダ45a~45dの水平方向の視野が広くなる。
 車両1がトンネル60内を走行中の場合には、レーダ45a~45dから出射された電波がトンネル60の壁面160(図8参照)に反射することでマルチパスがトンネル60内に発生してしまう。この点において、車両1の四隅に配置された各レーダ45a~45dの出射面が車両1の前後方向に対して斜めに向いているため、各レーダ45a~45dから出射された電波は壁面160によって反射されてしまう。例えば、レーダ45a~45dのうちの一方のレーダから出射された電波がトンネル60の壁面160に反射された結果、レーダ45a~45dのうちの別のレーダに入射することが想定される。また、レーダ45aから出射された電波が壁面160に多重反射された結果、レーダ45aに入射することが想定される。このように、トンネル60内で発生したマルチパスによって、各レーダ45a~45dのレーダデータが悪影響を受ける虞がある。特に、レーダデータにノイズが生じる結果、実際には存在しない対象物がゴーストとしてレーダデータから検出されてしまう虞がある。
 一方で、本実施形態によれば、車両1が閉鎖空間であるトンネル60に進入する場合に、車両1に搭載された各レーダ45a~45dの視野が狭くなる。このため、電波が各レーダ45a~45dからトンネル60の壁面160に向けて出射される場合に、電波が反射する壁面160の面積(以下、電波反射面積という。)が減少する。このように、壁面160の電波反射面積の減少に伴い、トンネル60内で発生するマルチパスによるレーダデータへの悪影響を低減することが可能となる。この結果、トンネル60内におけるレーダデータの信頼性の低下を抑制可能な車両用レーダシステムを提供することができる。
 また、本実施形態では、各レーダ45a~45dの送信アンテナが広角用送信アンテナ54から挟角用送信アンテナ55に切り替わる場合に、挟角用送信アンテナ55から出射される電波の強度が減少する。このように、壁面160の電波反射面積及び壁面160に反射する電波の強度を減少させることができるため、電波反射面積及び電波強度の減少に伴い、マルチパスによるレーダデータへの悪影響を低減することが可能となる。
 また、本実施形態では、車両1がトンネル60内に進入するときにはレーダ45a~45dの視野が視野Sa~Sdから視野Ta~Tdに切り替わる。その一方で、車両1がトンネル60から出るときにはレーダ45a~45dの視野が視野Ta~Tdから視野Sa~Sdに切り替わる。この点において、車両1がトンネル60内に存在する場合にはレーダデータに悪影響を与えるマルチパスが生じやすい一方で、車両1がトンネル60外に存在する場合には当該マルチパスは生じにくい。このため、車両1がトンネル60から出るときは、各レーダ45a~45dの視野を元の状態に戻すことが好ましい。
(変形例:レーダの視野をソフトウェア的に変更する処理)
 次に、本実施形態の変形例に係る車両用レーダシステムについて図9~図11を参照して以下に説明する。特に、本変形例では、センシングシステム4a~4dに設けられた各レーダ145a~145dの視野をソフトウェア的に変更する処理について以下に説明する。
 尚、以降の説明では、レーダ145aは、センシングシステム4aに設けられたレーダである。レーダ145bは、センシングシステム4bに設けられたレーダである。レーダ145cは、センシングシステム4cに設けられたレーダである。レーダ145dは、センシングシステム4dに設けられたレーダである。また、センシングシステム4aの車両用レーダシステムは、レーダ145aと、レーダ145aの動作を制御するレーダ制御部450aとを備える。センシングシステム4bの車両用レーダシステムは、レーダ145bと、レーダ145bの動作を制御するレーダ制御部450bとを備える。センシングシステム4cの車両用レーダシステムは、レーダ145cと、レーダ145cの動作を制御するレーダ制御部450cとを備える。センシングシステム4dの車両用レーダシステムは、レーダ145dと、レーダ45dの動作を制御するレーダ制御部450dとを備える。
 最初に、図9を参照して変形例に係るレーダ145aの構成について以下に説明する。図9は、変形例に係るレーダ145aの構成を示すブロック図である。レーダ145aは、車両1の周辺環境を示すレーダデータを検出するように構成されている。レーダ145aは、例えば、ミリ波レーダ又はマイクロ波レーダである。レーダ145aは、レーダデータを取得した上で、当該レーダデータをレーダ制御部450aに送信するように構成されている。レーダ制御部450aは、レーダデータに基づいて、対象物に関連する情報を取得するように構成されている。図9に示すレーダ145aは、挟角用送信アンテナを備えていない点で図4に示すレーダ45aとは相違する。
 図9に示すように、レーダ145aは、送信アンテナ154と、受信アンテナ156と、送信側RF回路151と、受信側RF回路152と、信号処理回路153とを備える。送信アンテナ154は、例えば、波長が1mmから10mmの電波であるミリ波を放射するように構成されている。受信アンテナ156は、送信アンテナから放射されて、対象物によって反射された反射電波を受信するように構成されている。送信アンテナ154は、例えば、4行×1列に配列された複数のパッチアンテナ素子(金属パターン)により構成されてもよい。受信アンテナ156は、例えば、4行×4列に配列された複数のパッチアンテナ素子により構成されてもよい。受信アンテナ156は、対象物によって反射された反射電波を受信した上で、反射電波に対応する微弱な高周波信号を受信側RF回路152に供給するように構成されている。本実施形態では、各レーダ145b~145dは、レーダ145aと同様の構成を備えるものとする。
 次に、図10を参照して各レーダ145a~145dの視野をソフトウェア的に変更する処理について以下に説明する。図10は、車両1がトンネル60内に進入する場合に各レーダ145a~145dの視野をソフトウェア的に変更する処理を説明するためのフローチャートである。図11は、各レーダ145a~145dの視野Fa~Fdのうち対象物に関連する情報が採用される領域Ra~Rdと対象物に関連する情報が採用されない領域Va~Vdとを示す図である。対象物に関連する情報とは、対象物の距離、方向及び/又は相対速度を示す情報である。
 図10に示すように、ステップ10において、車両制御部3は、車両1がトンネル60(図6参照)に進入するかどうかを判定する。ステップS10の判定結果がYESの場合には、本処理はステップS11に進む。一方、ステップS10の判定結果がNOの場合には、ステップS10の判定処理が再び実行される。
 次に、ステップS11において、各レーダ制御部450a~450dは、各レーダ145a~145dの視野Fa~Fdのうち領域Ra~Rd(第1領域の一例)内に存在する対象物に関連する情報を採用する一方で、領域Va~Vd内の領域に存在する対象物に関連する情報を採用しない。ここで、領域Vaは、領域Ra以外の視野Faの領域に相当する。領域Vbは、領域Rb以外の視野Fbの領域に相当する。領域Vcは、領域Rc以外の視野Fcの領域に相当する。領域Vdは、領域Rd以外の視野Fdの領域に相当する。
 具体的には、車両制御部3は、車両1がトンネル60に進入することを判定した後に、各レーダ145a~145dの視野Fa~Fdをソフトウェア的に狭くすることを指示する指示信号を各レーダ制御部450a~450dに送信する。その後、レーダ制御部450aは、車両制御部3から受信した指示信号に基づいて、領域Ra内に存在する対象物に関連する情報を採用する一方で、領域Va内に存在する対象物に関連する情報を採用しない。つまり、レーダ制御部450aは、領域Ra内に存在する対象物に関連する情報のみをレーダデータとして採用するため、レーダ145aの視野Faをソフトウェア的に狭くすることができる。
 同様に、レーダ制御部450bは、車両制御部3から受信した指示信号に基づいて、領域Rb内に存在する対象物に関連する情報を採用する一方で、領域Vb内に存在する対象物に関連する情報を採用しない。レーダ制御部450cは、車両制御部3から受信した指示信号に基づいて、領域Rc内に存在する対象物に関連する情報を採用する一方で、領域Vc内に存在する対象物に関連する情報を採用しない。レーダ制御部450dは、車両制御部3から受信した指示信号に基づいて、領域Rd内に存在する対象物に関連する情報を採用する一方で、領域Vd内に存在する対象物に関連する情報を採用しない。このように、各レーダ制御部450a~450dは、レーダ145a~145dの視野をソフトウェア的に狭くすることができる。
 次に、ステップS12において、車両制御部3は、車両1がトンネルから出たかどうかを判定する。ステップS12の判定結果がYESの場合、本処理はステップS13に進む。一方、ステップS3の判定結果がNOの場合には、ステップS12の判定処理が再び実行される。
 次に、ステップS13において、各レーダ制御部450a~450dは、各レーダ145a~145dの視野Fa~Fdに存在する全ての対象物に関連する情報を採用する。具体的には、車両制御部3は、車両1がトンネル60から出たことを判定した後に、各レーダ145a~145dの視野Fa~Fdをソフトウェア的に広くすることを指示する指示信号を各レーダ制御部450a~450dに送信する。その後、各レーダ制御部450a~450dは、車両制御部3から受信した指示信号に基づいて、レーダ145a~145dの視野Fa~Fd内に存在する全ての対象物に関する情報をレーダデータとして採用する。このように、各レーダ制御部450a~450dは、レーダ145a~145dの視野を元の状態に戻すことができる。
 本変形例によれば、車両1がトンネル60に進入する場合において、車両1に搭載された各レーダ145a~145dの視野をソフトウェア的に狭くすることができる。このため、レーダデータに対する情報処理を通じて各レーダ145a~145dの視野を狭くすることができるため、トンネル60内で発生するマルチパスによるレーダデータへの悪影響を低減することが可能となる。この結果、トンネル60内におけるレーダデータの信頼性の低下を抑制可能な車両用レーダシステムを提供することができる。特に、本構成では、送信アンテナを広角用送信アンテナから挟角用送信アンテナに切り替える等のハードウェア的な処理を伴わずに、各レーダ145a~145dの視野を狭くすることができる。
 以上、本発明の実施形態について説明をしたが、本発明の技術的範囲が本実施形態の説明によって限定的に解釈されるべきではないのは言うまでもない。本実施形態は単なる一例であって、特許請求の範囲に記載された発明の範囲内において、様々な実施形態の変更が可能であることが当業者によって理解されるところである。本発明の技術的範囲は特許請求の範囲に記載された発明の範囲及びその均等の範囲に基づいて定められるべきである。
 本実施形態では、マルチパスが発生する閉鎖空間の一例としてトンネル60が例示されているが、閉鎖空間はトンネル60に限定されるものではない。例えば、閉鎖空間は立体駐車場であってもよい。この場合、車両1が立体駐車場に進入した場合に、車両1の四隅に配置された各レーダの視野がハードウェア的又はソフトウェア的に狭くなってもよい。この場合でも、立体駐車場で発生するマルチパスにより各レーダのレーダデータが悪影響を受けることが好適に抑制されうる。
 本出願は、2020年7月3日に出願された日本国特許出願(特願2020-115709号)に開示された内容を適宜援用する。

Claims (10)

  1.  車両に搭載される車両用レーダシステムであって、
     前記車両の外部に向けて電波を出射することで前記車両の周辺環境を示すレーダデータを取得するように構成されたレーダと、
     前記車両が閉鎖空間に進入するときに、前記レーダの視野を第1視野から前記第1視野よりも狭い第2視野に変更するように構成されたレーダ制御部と、を備えた、車両用レーダシステム。
  2.  前記レーダの出射方向が前記車両の前後方向に対して斜めに向いた状態で前記レーダが前記車両に搭載されている、請求項1に記載の車両用レーダシステム。
  3.  前記レーダは、
     前記第1視野を有する広角用アンテナと、
     前記第2視野を有する挟角用アンテナと、
    を有し、
     前記レーダ制御部は、
     前記レーダのアンテナを前記広角用アンテナから前記挟角用アンテナに切り替えることで、前記レーダの視野を前記第1視野から前記第2視野に切り替えるように構成されている、請求項1又は2に記載の車両用レーダシステム。
  4.  前記レーダ制御部は、
     前記車両が前記閉鎖空間に進入するときに、前記挟角用アンテナから出射される電波の強度を減少させるように構成されている、請求項3に記載の車両用レーダシステム。
  5.  前記レーダ制御部は、
     前記レーダの視野のうち第1領域内に存在する対象物に関連する情報を採用する一方で、前記第1領域以外の領域内に存在する対象物に関連する情報を採用しないことで、前記レーダの視野を前記第1視野から前記第2視野に切り替えるように構成されている、請求項1又は2に記載の車両用レーダシステム。
  6.  前記レーダ制御部は、
     前記車両が前記閉鎖空間から出るときに、前記レーダの視野を前記第2視野から前記第1視野に切り替えるように構成されている、請求項1から5のうちいずれか一項に記載の車両用レーダシステム。
  7.  前記レーダ制御部は、
     前記車両が前記閉鎖空間から出るときに、前記レーダのアンテナを前記広角用アンテナから前記挟角用アンテナに切り替えることで、前記レーダの視野を前記第2視野から前記第1視野に切り替えるように構成されている、請求項3又は4に記載の車両用レーダシステム。
  8.  前記レーダ制御部は、
     前記車両が前記閉鎖空間から出るときに、前記レーダの視野内に存在する全ての対象物に関連する情報を採用することで、前記レーダの視野を前記第2視野から前記第1視野に切り替えるように構成されている、請求項6に記載の車両用レーダシステム。
  9.  前記閉鎖空間は、トンネルである、請求項1から8のうちいずれか一項に記載の車両用レーダシステム。
  10.  請求項1から9のうちいずれか一項に記載の車両用レーダシステムを備えた車両。
PCT/JP2021/023431 2020-07-03 2021-06-21 車両用レーダシステム及び車両 WO2022004467A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022533880A JPWO2022004467A1 (ja) 2020-07-03 2021-06-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-115709 2020-07-03
JP2020115709 2020-07-03

Publications (1)

Publication Number Publication Date
WO2022004467A1 true WO2022004467A1 (ja) 2022-01-06

Family

ID=79316201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023431 WO2022004467A1 (ja) 2020-07-03 2021-06-21 車両用レーダシステム及び車両

Country Status (2)

Country Link
JP (1) JPWO2022004467A1 (ja)
WO (1) WO2022004467A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000075028A (ja) * 1998-08-27 2000-03-14 Toyota Motor Corp 車載dbfレーダ装置
US20030093220A1 (en) * 2001-10-15 2003-05-15 Hans Andersson System and method for controlling an object detection system of a vehicle
JP2006010584A (ja) * 2004-06-28 2006-01-12 Fujitsu Ten Ltd 車載用レーダ軸ずれ判定方法
JP2008096112A (ja) * 2006-10-05 2008-04-24 Denso Corp レーダ装置
DE102018200757A1 (de) * 2018-01-18 2019-08-01 Robert Bosch Gmbh Verfahren und Vorrichtung zum Detektieren kritischer Querbewegungen
US20190281260A1 (en) * 2018-03-08 2019-09-12 Aptiv Technologies Limited Vehicle sensor configuration based on map data
WO2019182043A1 (ja) * 2018-03-23 2019-09-26 株式会社Soken レーダ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000075028A (ja) * 1998-08-27 2000-03-14 Toyota Motor Corp 車載dbfレーダ装置
US20030093220A1 (en) * 2001-10-15 2003-05-15 Hans Andersson System and method for controlling an object detection system of a vehicle
JP2006010584A (ja) * 2004-06-28 2006-01-12 Fujitsu Ten Ltd 車載用レーダ軸ずれ判定方法
JP2008096112A (ja) * 2006-10-05 2008-04-24 Denso Corp レーダ装置
DE102018200757A1 (de) * 2018-01-18 2019-08-01 Robert Bosch Gmbh Verfahren und Vorrichtung zum Detektieren kritischer Querbewegungen
US20190281260A1 (en) * 2018-03-08 2019-09-12 Aptiv Technologies Limited Vehicle sensor configuration based on map data
WO2019182043A1 (ja) * 2018-03-23 2019-09-26 株式会社Soken レーダ装置

Also Published As

Publication number Publication date
JPWO2022004467A1 (ja) 2022-01-06

Similar Documents

Publication Publication Date Title
US9694736B2 (en) Vehicle state indication system
WO2020179447A1 (ja) 車両用灯具及び車両
US9878659B2 (en) Vehicle state indication system
US9868389B2 (en) Vehicle state indication system
US20220073035A1 (en) Dirt detection system, lidar unit, sensing system for vehicle, and vehicle
US9251709B2 (en) Lateral vehicle contact warning system
JPWO2019026437A1 (ja) 車両用照明システム及び車両
CN111090280B (zh) 使用智能目标的雷达对象分类和通信
US20220126792A1 (en) Sensing system for vehicle and vehicle
WO2019202803A1 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
JP2020093737A (ja) 赤外線カメラシステム及び車両
WO2020189685A1 (ja) 車両用センシングシステム、車両システム、車両用灯具及び車両
JP2002342887A (ja) 移動体通信装置
US20220390550A1 (en) Radar Interference Reduction Techniques for Autonomous Vehicles
WO2022004467A1 (ja) 車両用レーダシステム及び車両
US11858410B2 (en) Vehicular lamp and vehicle
US20220332311A1 (en) Apparatus for assisting driving and method thereof
WO2020170678A1 (ja) 車両用センシングシステム及び車両
CN111660915B (zh) 车辆用灯具以及车辆
WO2022014269A1 (ja) 車両用レーダシステム及び車両
CN111665472A (zh) 车辆用灯具以及车辆
WO2021235220A1 (ja) 車両用光源システム、車両用センシングシステム及び車両
US20230356716A1 (en) Apparatus and method for controlling the same
US20240208494A1 (en) Apparatus for driving assistance, vehicle, and method for driving assistance
WO2023162734A1 (ja) 測距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533880

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833953

Country of ref document: EP

Kind code of ref document: A1