JPWO2020116574A1 - 電解液及び電気化学デバイス - Google Patents

電解液及び電気化学デバイス Download PDF

Info

Publication number
JPWO2020116574A1
JPWO2020116574A1 JP2020560016A JP2020560016A JPWO2020116574A1 JP WO2020116574 A1 JPWO2020116574 A1 JP WO2020116574A1 JP 2020560016 A JP2020560016 A JP 2020560016A JP 2020560016 A JP2020560016 A JP 2020560016A JP WO2020116574 A1 JPWO2020116574 A1 JP WO2020116574A1
Authority
JP
Japan
Prior art keywords
ppm
mass
electrolytic solution
less
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020560016A
Other languages
English (en)
Other versions
JP7380589B2 (ja
Inventor
薫平 山田
馨 今野
中村 真也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2020116574A1 publication Critical patent/JPWO2020116574A1/ja
Application granted granted Critical
Publication of JP7380589B2 publication Critical patent/JP7380589B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明は、一側面において、19F−NMRによる測定において、−180ppm以上−150ppm以下、及び−150ppmを超え−130ppm以下の少なくとも1つのケミカルシフトの範囲内にピークを示す、電解液を提供する。

Description

本発明は、電解液及び電気化学デバイスに関する。
近年、携帯型電子機器、電気自動車等の普及により、リチウムイオン二次電池に代表される非水電解液二次電池、キャパシタ等の高性能な電気化学デバイスが必要とされている。電気化学デバイスの性能を向上させる手段としては、例えば、電解液に所定の添加剤を添加する方法が検討されている。特許文献1には、サイクル特性及び内部抵抗特性を改善するために、特定のシロキサン化合物を含有させた非水電解液電池用電解液が開示されている。
特開2015−005329号公報
本発明は、電気化学デバイスの性能を向上させることができる電解液を提供することを目的とする。
本発明は、第1の態様として、19F−NMRによる測定において、−180ppm以上−150ppm以下、及び−150ppmを超え−130ppm以下の少なくとも1つのケミカルシフトの範囲内にピークを示す、電解液を提供する。
この電解液によれば、一側面において、電気化学デバイスの性能として、電気化学デバイスのサイクル特性を向上させることができる。
第1の態様において、電解液は、19F−NMRによる測定において、−130ppmを超え−110ppm以下のケミカルシフトの範囲内にピークを更に示してもよい。
本発明は、第2の態様として、正極と、負極と、上記の電解液と、を備える電気化学デバイスを提供する。
第2の態様において、負極は、好ましくは炭素材料を含有する。炭素材料は、好ましくは黒鉛を含有する。負極は、好ましくは、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料を更に含有する。
第2の態様において、電気化学デバイスは、非水電解液二次電池又はキャパシタであってよい。
本発明によれば、電気化学デバイスの性能を向上させることができる電解液を提供することができる。
一実施形態に係る電気化学デバイスとしての非水電解液二次電池を示す斜視図である。 図1に示した二次電池の電極群を示す分解斜視図である。 19F−NMR測定により得られたスペクトルであり、(a)は実施例1の電解液についてのスペクトルであり、(b)は実施例2の電解液についてのスペクトルである。 比較例2の電解液について19F−NMR測定により得られたスペクトルである。 19F−NMR測定により得られたスペクトルであり、(a)は実施例3の電解液についてのスペクトルであり、(b)は実施例4の電解液についてのスペクトルである。 19F−NMR測定により得られたスペクトルであり、(a)は実施例5の電解液についてのスペクトルであり、(b)は実施例6の電解液についてのスペクトルであり、(c)は実施例7の電解液についてのスペクトルである。 サイクル特性の評価結果を示すグラフである。
以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。
図1は、一実施形態に係る電気化学デバイスを示す斜視図である。本実施形態において、電気化学デバイスは非水電解液二次電池である。図1に示すように、非水電解液二次電池1は、正極、負極及びセパレータから構成される電極群2と、電極群2を収容する袋状の電池外装体3とを備えている。正極及び負極には、それぞれ正極集電タブ4及び負極集電タブ5が設けられている。正極集電タブ4及び負極集電タブ5は、それぞれ正極及び負極が非水電解液二次電池1の外部と電気的に接続可能なように、電池外装体3の内部から外部へ突き出している。電池外装体3内には、電解液(図示せず)が充填されている。非水電解液二次電池1は、上述したようないわゆる「ラミネート型」以外の形状の電池(コイン型、円筒型、積層型等)であってもよい。
電池外装体3は、例えばラミネートフィルムで形成された容器であってよい。ラミネートフィルムは、例えば、ポリエチレンテレフタレート(PET)フィルム等の樹脂フィルムと、アルミニウム、銅、ステンレス鋼等の金属箔と、ポリプロピレン等のシーラント層とがこの順で積層された積層フィルムであってよい。
図2は、図1に示した非水電解液二次電池1における電極群2の一実施形態を示す分解斜視図である。図2に示すように、電極群2は、正極6と、セパレータ7と、負極8とをこの順に備えている。正極6及び負極8は、正極合剤層10側及び負極合剤層12側の面がそれぞれセパレータ7と対向するように配置されている。
正極6は、正極集電体9と、正極集電体9上に設けられた正極合剤層10とを備えている。正極集電体9には、正極集電タブ4が設けられている。
正極集電体9は、例えば、アルミニウム、チタン、ステンレス、ニッケル、焼成炭素、導電性高分子、導電性ガラス等で形成されている。正極集電体9は、接着性、導電性及び耐酸化性向上の目的で、アルミニウム、銅等の表面にカーボン、ニッケル、チタン、銀等で処理が施されたものであってもよい。正極集電体9の厚さは、電極強度及びエネルギー密度の点から、例えば1〜50μmである。
正極合剤層10は、一実施形態において、正極活物質と、導電剤と、結着剤とを含有する。正極合剤層10の厚さは、例えば20〜200μmである。
正極活物質は、例えばリチウム酸化物であってよい。リチウム酸化物としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1−y、LiCo1−y、LiNi1−y、LiMn及びLiMn2−y(各式中、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す(ただし、Mは、各式中の他の元素と異なる元素である)。x=0〜1.2、y=0〜0.9、z=2.0〜2.3である。)が挙げられる。LiNi1−yで表されるリチウム酸化物は、LiNi1−(y1+y2)Coy1Mny2(ただし、x及びzは上述したものと同様であり、y1=0〜0.9、y2=0〜0.9であり、且つ、y1+y2=0〜0.9である。)であってよく、例えばLiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.22、LiNi0.8Co0.1Mn0.1であってよい。LiNi1−yで表されるリチウム酸化物は、LiNi1−(y3+y4)Coy3Aly4(ただし、x及びzは上述したものと同様であり、y3=0〜0.9、y4=0〜0.9であり、且つ、y3+y4=0〜0.9である。)であってよく、例えばLiNi0.8Co0.15Al0.05であってもよい。
正極活物質は、例えばリチウムのリン酸塩であってもよい。リチウムのリン酸塩としては、例えば、リン酸マンガンリチウム(LiMnPO)、リン酸鉄リチウム(LiFePO)、リン酸コバルトリチウム(LiCoPO)及びリン酸バナジウムリチウム(Li(PO)が挙げられる。
正極活物質の含有量は、正極合剤層全量を基準として、80質量%以上、又は85質量%以上であってよく、99質量%以下であってよい。
導電剤は、アセチレンブラック、ケッチェンブラック等のカーボンブラック、黒鉛、グラフェン、カーボンナノチューブなどの炭素材料であってよい。導電剤の含有量は、正極合剤層全量を基準として、例えば、0.01質量%以上、0.1質量%以上、又は1質量%以上であってよく、50質量%以下、30質量%以下、又は15質量%以下であってよい。
結着剤は、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂;SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム等のゴム;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー;シンジオタクチック−1、2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂;ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体、ポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素含有樹脂;ニトリル基含有モノマーをモノマー単位として有する樹脂;アルカリ金属イオン(例えばリチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。
結着剤の含有量は、正極合剤層全量を基準として、例えば、0.1質量%以上、1質量%以上、又は1.5質量%以上であってよく、30質量%以下、20質量%以下、又は10質量%以下であってよい。
セパレータ7は、正極6及び負極8間を電子的には絶縁する一方でイオンを透過させ、かつ、正極6側における酸化性及び負極8側における還元性に対する耐性を備えるものであれば、特に制限されない。このようなセパレータ7の材料(材質)としては、樹脂、無機物等が挙げられる。
樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が挙げられる。セパレータ7は、電解液に対して安定で、保液性に優れる観点から、好ましくは、ポリエチレン、ポリプロピレン等のポリオレフィンで形成された多孔質シート又は不織布である。
無機物としては、アルミナ、二酸化珪素等の酸化物、窒化アルミニウム、窒化珪素等の窒化物、硫酸バリウム、硫酸カルシウム等の硫酸塩が挙げられる。セパレータ7は、例えば、不織布、織布、微多孔性フィルム等の薄膜状基材に、繊維状又は粒子状の無機物を付着させたセパレータであってよい。
負極8は、負極集電体11と、負極集電体11上に設けられた負極合剤層12とを備えている。負極集電体11には、負極集電タブ5が設けられている。
負極集電体11は、銅、ステンレス、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス、アルミニウム−カドミウム合金等で形成されている。負極集電体11は、接着性、導電性、耐還元性向上の目的で、銅、アルミニウム等の表面にカーボン、ニッケル、チタン、銀等で処理が施されたものであってもよい。負極集電体11の厚さは、電極強度及びエネルギー密度の点から、例えば1〜50μmである。
負極合剤層12は、例えば、負極活物質と、結着剤とを含有する。
負極活物質は、リチウムイオンを吸蔵及び放出可能な物質であれば特に制限されない。負極活物質としては、例えば、炭素材料、金属複合酸化物、錫、ゲルマニウム、ケイ素等の第四族元素の酸化物又は窒化物、リチウムの単体、リチウムアルミニウム合金等のリチウム合金、Sn、Si等のリチウムと合金を形成可能な金属などが挙げられる。負極活物質は、安全性の観点からは、好ましくは炭素材料及び金属複合酸化物からなる群より選択される少なくとも1種である。負極活物質は、これらの1種単独又は2種以上の混合物であってよい。負極活物質の形状は、例えば、粒子状であってよい。
炭素材料としては、非晶質炭素材料、天然黒鉛、天然黒鉛に非晶質炭素材料の被膜を形成した複合炭素材料、人造黒鉛(エポキシ樹脂、フェノール樹脂等の樹脂原料、又は、石油、石炭等から得られるピッチ系原料を焼成して得られるもの)などが挙げられる。金属複合酸化物は、高電流密度充放電特性の観点からは、好ましくはチタン及びリチウムのいずれか一方又は両方を含有し、より好ましくはリチウムを含有する。
負極活物質には、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料が更に含まれていてもよい。ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料は、ケイ素又はスズの単体、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む化合物であってよい。当該化合物は、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む合金であってよく、例えば、ケイ素及びスズの他に、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン及びクロムからなる群より選ばれる少なくとも1種を含む合金である。ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む化合物は、酸化物、窒化物、又は炭化物であってもよく、具体的には、例えば、SiO、SiO、LiSiO等のケイ素酸化物、Si、SiO等のケイ素窒化物、SiC等のケイ素炭化物、SnO、SnO、LiSnO等のスズ酸化物などであってよい。
負極合剤層12は、電気化学デバイスの性能を更に向上させる観点から、負極活物質として、好ましくは炭素材料を含み、より好ましくは黒鉛を含み、更に好ましくは、炭素材料と、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料との混合物を含み、特に好ましくは、黒鉛とケイ素酸化物との混合物を含む。当該混合物におけるケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料(ケイ素酸化物)の含有量は、当該混合物全量を基準として、1質量%以上、又は3質量%以上であってよく、30質量%以下であってよい。
負極活物質の含有量は、負極合剤層全量を基準として、80質量%以上、又は85質量%以上であってよく、99質量%以下であってよい。
結着剤及びその含有量は、上述した正極合剤層における結着剤及びその含有量と同様であってよい。
負極合剤層12は、粘度を調節するために増粘剤を更に含有してもよい。増粘剤は、特に制限されないが、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン、これらの塩等であってよい。増粘剤は、これらの1種単独又は2種以上の混合物であってよい。
負極合剤層12が増粘剤を含む場合、その含有量は特に制限されない。増粘剤の含有量は、負極合剤層の塗布性の観点からは、負極合剤層全量を基準として、0.1質量%以上であってよく、好ましくは0.2質量%以上であり、より好ましくは0.5質量%以上である。増粘剤の含有量は、電池容量の低下又は負極活物質間の抵抗の上昇を抑制する観点からは、負極合剤層全量を基準として、5質量%以下であってよく、好ましくは3質量%以下であり、より好ましくは2質量%以下である。
電解液は、電気化学デバイスの性能を向上させるために、19F−NMR(フッ素19核磁気共鳴)測定において、−180ppm以上−150ppm以下、及び−150ppmを超え−130ppm以下の少なくとも1つのケミカルシフトの範囲内にピークを示す。
電解液は、−180ppm以上−150ppm以下、及び−150ppmを超え−130ppm以下のケミカルシフトのいずれかの範囲内にピークを示してよい。電解液は、−180ppm以上−150ppm以下、及び−150ppmを超え−130ppm以下のケミカルシフトの範囲のうち2つの範囲内にピークをそれぞれ示してもよい。
本明細書において、電解液の19F−NMR測定は、下記の条件により行われる。
測定装置:Bruker Japan製Avance neo
測定方法:シングルパルス法
観測核:19
スペクトル幅:90kHz
パルス幅:15μs(90°パルス)
パルス繰り返し時間:1s
基準物質:CCF(外部基準:−63.9ppm)
温度:23℃
試料回転数:20Hz
一実施形態において、電解液は、−180ppm以上−150ppm以下のケミカルシフトの範囲内にピーク(ピークA)を示す。ピークAが存在するケミカルシフトの範囲は、−175ppm以上−155ppm以下、−170ppm以上−158ppm以下、−168ppm以上−160ppm以下、−165ppm以上−160ppm以下、又は−163ppm以上−161ppm以下であってもよい。ピークAは、−180ppm以上−150ppm以下のケミカルシフトの範囲内に存在する複数のピークからなるピーク群であってもよい。
他の一実施形態において、電解液は、−150ppmを超え−130ppm以下のケミカルシフトの範囲内にピーク(ピークB)を示す。ピークBが存在するケミカルシフトの範囲は、−145ppm以上−130ppm以下、−143ppm以上−133ppm以下、−140ppm以上−130ppm以下、−140ppm以上−133ppm以下、−140ppm以上−135ppm以下、又は−138ppm以上−133ppm以下であってもよい。ピークBは、−150ppmを超え−130ppm以下のケミカルシフトの範囲内に存在する複数のピークからなるピーク群であってもよい。
一実施形態において、上述した各ピーク(ピークA及びB)は、電解液に含まれる下記式(1)で表される化合物に由来する。すなわち、一実施形態において、電解液は下記式(1)で表される化合物を含有する。
Figure 2020116574
式中、R〜Rは、それぞれ独立に、アルキル基又はフッ素原子を示し、Rはアルキレン基を示し、Rは、硫黄原子又は窒素原子を含む有機基を示し、R〜Rの少なくとも1つはフッ素原子である。
〜Rがアルキル基である場合、アルキル基の炭素数は、1以上であってよく、3以下であってよい。R〜Rは、メチル基、エチル基、又はプロピル基であってよく、直鎖状でも分岐状でもよい。
〜Rの少なくとも1つはフッ素原子である。R〜Rのいずれか1つがフッ素原子である場合、すなわち、電解液が下記式(2)で表される化合物を含有する場合、電解液は、19F−NMR測定において上述したピークAを示す。
Figure 2020116574
式中、R及びRは、それぞれ独立にアルキル基を示し、Rはアルキレン基を示し、Rは、硫黄原子又は窒素原子を含む有機基を示す。
〜Rの2つがフッ素原子である場合、又はR〜Rの全てがフッ素原子である場合、すなわち、電解液が下記式(3)又は(4)で表される化合物を含有する場合、電解液は、19F−NMR測定において上述したピークBを示す。
Figure 2020116574
式中、Rはアルキル基を示し、Rはアルキレン基を示し、Rは、硫黄原子又は窒素原子を含む有機基を示す。
Figure 2020116574
式中、Rはアルキレン基を示し、Rは、硫黄原子又は窒素原子を含む有機基を示す。
上記式(1)〜(4)中のRで表されるアルキレン基の炭素数は、1以上又は2以上であってよく、5以下又は4以下であってよい。Rで表されるアルキレン基は、メチレン基、エチレン基、プロピレン基、ブチレン基、又はペンチレン基であってよく、直鎖状でも分岐状でもよい。
上記式(1)〜(4)中のRは、一実施形態において、硫黄原子を含む有機基であってよい。
が硫黄原子を含む有機基である場合、Rは、一実施形態において、下記式(5)で表される基であってよい。
Figure 2020116574
式中、Rはアルキル基を示す。アルキル基は、上述したR〜Rで表されるアルキル基と同様であってよい。*は結合手を示す(以下同様)。
が硫黄原子を含む有機基である場合、Rは、他の一実施形態において、下記式(6)で表される基であってもよい。
Figure 2020116574
式中、Rはアルキル基を示す。アルキル基は、上述したR〜Rで表されるアルキル基と同様であってよい。
が硫黄原子を含む有機基である場合、Rは、他の一実施形態において、下記式(7)で表される基であってもよい。
Figure 2020116574
式中、Rはアルキル基を示す。アルキル基は、上述したR〜Rで表されるアルキル基と同様であってよい。
は、他の一実施形態において、窒素原子を含む有機基であってもよい。
が窒素原子を含む有機基である場合、Rは、一実施形態において、下記式(8)で表される基であってよい。
Figure 2020116574
式中、R及びR10は、それぞれ独立に、水素原子又はアルキル基を示す。アルキル基は、上述したR〜Rで表されるアルキル基と同様であってよい。
一実施形態において、式(1)で表される化合物1分子中のケイ素原子の数は、1個である。すなわち、一実施形態において、Rで表される有機基は、ケイ素原子を含まない。
式(1)で表される化合物の含有量は、電気化学デバイスの性能を更に向上させる観点から、電解液全量を基準として、好ましくは、0.001質量%以上、0.005質量%以上、0.01質量%以上、0.05質量%以上、0.1質量%以上、0.3質量%以上、又は0.5質量%以上であり、また、好ましくは、10質量%以下、7質量%以下、5質量%以下、3質量%以下、2質量%以下、1.5質量%以下、又は1質量%以下である。
電解液は、19F−NMRによる測定において、上述したピークA、及びピークBの他に、−130ppmを超え−110ppm以下のケミカルシフトの範囲内にピーク(ピークC)を更に示してもよい。
ピークCが存在するケミカルシフトの範囲は、−128ppm以上−115ppm以下、−126ppm以上−120ppm以下、−125ppm以上−122ppm以下、又は−123ppm以上−120ppm以下であってもよい。ピークCは、−130ppmを超え−110ppm以下のケミカルシフトの範囲内に存在する複数のピークからなるピーク群であってもよい。
一実施形態において、ピークCは、電解液に含まれ得るフッ素含有環状カーボネートに由来する。すなわち、一実施形態において、電解液はフッ素含有環状カーボネートを含有してよい。
フッ素含有環状カーボネートは、フッ素原子を分子中に含有する環状炭酸エステルである。一実施形態において、フッ素含有環状カーボネートは、フルオロ基を含有する環状炭酸エステルである。フッ素含有環状カーボネートとしては、フルオロ基を含有する環状炭酸エステルであれば特に制限はないが、例えば、4−フルオロ−1,3−ジオキソラン−2−オン(フルオロエチレンカーボネート;FEC)、1,2−ジフルオロエチレンカーボネート、1,1−ジフルオロエチレンカーボネート、1,1,2−トリフルオロエチレンカーボネート、1,1,2,2−テトラフルオロエチレンカーボネート等であってよい。フッ素含有環状カーボネートは、負極上での副反応を抑制する観点から、好ましくは、4−フルオロ−1,3−ジオキソラン−2−オン(フルオロエチレンカーボネート;FEC)である。
フッ素含有環状カーボネートの含有量は、電気化学デバイスの性能を更に向上させる観点から、電解液全量を基準として、好ましくは、0.001質量%以上、0.005質量%以上、0.01質量%以上、0.05質量%以上、又は0.1質量%以上であり、5質量%以下、3質量%以下、2質量%以下、又は1質量%以下である。
電解液が、式(1)で表される化合物、及びフッ素含有環状カーボネートの両方を含有する場合、式(1)で表される化合物の含有量及びフッ素含有環状カーボネートの含有量の合計は、電気化学デバイスの性能を更に向上させる観点から、電解液全量を基準として、好ましくは、0.001質量%以上、0.005質量%以上、0.01質量%以上、0.1質量%以上、又は0.5質量%以上であり、好ましくは、10質量%以下、7質量%以下、5質量%以下、3質量%以下、2質量%以下、1.5質量%以下、又は1質量%以下である。
電解液は、式(1)で表される化合物、及びフッ素含有環状カーボネートの他に、電解質塩と、非水溶媒と、添加剤とを更に含有してよい。
電解質塩は、例えばリチウム塩であってよい。リチウム塩は、例えば、LiPF、LiBF、LiClO、LiB(C、LiCHSO、CFSOOLi、LiN(SOF)(Li[FSI]、リチウムビスフルオロスルホニルイミド)、LiN(SOCF(Li[TFSI]、リチウムビストリフルオロメタンスルホニルイミド)、及びLiN(SOCFCFからなる群より選ばれる少なくとも1種であってよい。リチウム塩は、後述する非水溶媒に対する溶解性、及び電気化学デバイスの性能に更に優れる観点から、好ましくはLiPFを含む。
電解質塩の濃度は、充放電特性に優れる観点から、非水溶媒全量を基準として、好ましくは0.5mol/L以上、より好ましくは0.7mol/L以上、更に好ましくは0.8mol/L以上であり、また、好ましくは1.5mol/L以下、より好ましくは1.3mol/L以下、更に好ましくは1.2mol/L以下である。
非水溶媒は、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチルラクトン、アセトニトリル、1,2−ジメトキシエタン、ジメトキシメタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、酢酸メチル等であってよい。非水溶媒は、これらの1種単独又は2種以上の混合物であってよく、好ましくは2種以上の混合物である。
添加剤は、上述した式(1)で表される化合物、及びフッ素含有環状カーボネート以外の化合物であり、例えば、炭素−炭素二重結合を有する環状カーボネート、ニトリル化合物、環状スルホン酸エステル化合物等であってよい。添加剤の含有量は、電解液全量を基準として、例えば0.001質量%以上5質量%以下であってよい。
炭素−炭素二重結合を有する環状カーボネートは、炭素−炭素二重結合を有する環状炭酸エステルである。一実施形態では、環状カーボネートにおいて、環を構成する二つの炭素が二重結合を形成していてよい。環状カーボネートは、ビニレンカーボネート、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート(4,5−ジメチルビニレンカーボネート)、エチルビニレンカーボネート(4,5−ジエチルビニレンカーボネート)、ジエチルビニレンカーボネート等であってよく、電気化学デバイスの性能を更に向上させることができる観点から、好ましくは、ビニレンカーボネートである。
ニトリル化合物は、シアノ基(ニトリル基)を少なくとも1つ有する化合物である。ニトリル化合物は、例えば、シアノ基を1つ、2つ又は3つ有していてよい。シアノ基を1つ有するニトリル化合物は、例えば、ブチロニトリル、バレロニトリル、n−ヘプタンニトリル等であってよい。シアノ基を2つ有するニトリル化合物は、例えば、スクシノニトリル、グルタルニトリル、アジポニトリル、ピメロニトリル、スベロニトリル等であってよい。シアノ基を3つ有するニトリル化合物は、例えば、1,2,3−プロパントリカルボニトリル、1,3,5−ペンタントリカルボニトリル等であってよい。ニトリル化合物としては、正極又は負極上にて安定な被膜が形成され、電解液の分解に起因する電池の膨張を抑制できる観点から、シアノ基を2つ以上有し、シアノ基における炭素原子を除く炭素原子の数が2以上の化合物が好ましい。ニトリル化合物は、より好ましくは、シアノ基を2つ又は3つ有し、シアノ基における炭素原子を除く炭素原子の数が2以上の化合物である。ニトリル化合物は、更に好ましくは、スクシノニトリル、グルタルニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、1,2,3−プロパントリカルボニトリル、又は1,3,5−ペンタントリカルボニトリルであり、電気化学デバイスの性能を更に向上させることができる観点から、特に好ましくは、スクシノニトリルである。
環状スルホン酸エステル化合物は、−OSO−基を1つ又は2つ含む環を有する化合物である。環状スルホン酸エステル化合物は、例えば、1,3−プロパンスルトン、1−プロペン−1,3−スルトン、1,3−プロパンスルトン、1,4−ブタンスルトン、2,4−ブタンスルトン、1,3−プロペンスルトン、1,4−ブテンスルトン、1−メチル−1,3−プロパンスルトン、3−メチル−1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン等のモノスルホン酸エステル、メチレンメタンジスルホン酸エステル、エチレンメタンジスルホン酸エステル等のジスルホン酸エステルなどであってよく、電気化学デバイスの性能を更に向上させることができる観点から、好ましくは、1,3−プロパンスルトン又は1−プロペン−1,3−スルトンである。
続いて、非水電解液二次電池1の製造方法を説明する。非水電解液二次電池1の製造方法は、正極6を得る第1の工程と、負極8を得る第2の工程と、電極群2を電池外装体3に収容する第3の工程と、電解液を電池外装体3に注液する第4の工程と、を備える。第1〜第4の工程の順序は任意である。
第1の工程では、正極合剤層10に用いる材料を混練機、分散機等を用いて分散媒に分散させてスラリー状の正極合剤を得た後、この正極合剤をドクターブレード法、ディッピング法、スプレー法等により正極集電体9上に塗布し、その後分散媒を揮発させることにより正極6を得る。分散媒を揮発させた後、必要に応じて、ロールプレスによる圧縮成型工程が設けられてもよい。正極合剤層10は、上述した正極合剤の塗布から分散媒の揮発までの工程を複数回行うことにより、多層構造の正極合剤層として形成されてもよい。分散媒は、水、1−メチル−2−ピロリドン(以下、NMPともいう。)等であってよい。
第2の工程は、上述した第1の工程と同様であってよく、負極集電体11に負極合剤層12を形成する方法は、上述した第1の工程と同様の方法であってよい。
第3の工程では、作製した正極6及び負極8の間にセパレータ7を挟み、電極群2を形成する。次いで、この電極群2を電池外装体3に収容する。
第4の工程では、電解液を電池外装体3に注入する。電解液は、例えば、電解質塩をはじめに溶媒に溶解させてから、その他の材料を溶解させることにより調製することができる。
他の実施形態として、電気化学デバイスはキャパシタであってもよい。キャパシタは、上述した非水電解液二次電池1と同様に、正極、負極及びセパレータから構成される電極群と、電極群を収容する袋状の電池外装体とを備えていてよい。キャパシタにおける各構成要素の詳細は、非水電解液二次電池1と同様であってよい。
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
[電解液の調製]
1mol/LのLiPFを含むエチレンカーボネート、ジメチルカーボネート及びジエチルカーボネートの混合溶液に、混合溶液全量に対してビニレンカーボネート(VC)を1質量%と、下記式(9)で表される化合物Aを1質量%(電解液全量基準)添加して、電解液を調製した。
Figure 2020116574
19F−NMR測定]
調製した電解液について、上述した測定条件に従って19F−NMR測定を行った。その結果、−100ppm以上−70ppm以下のケミカルシフトの範囲内にPF 及びその反応物由来のピークを、また、−180ppm以上−150ppm以下のケミカルシフトの範囲内に化合物A由来のピークを示すスペクトルが得られた。化合物A由来のピークを示すスペクトルを図3(a)に示す。
19F−NMR:−73.68ppm,−75.56ppm,−82.74ppm,−85.34ppm,−86.80ppm,−89.65ppm,−162.07ppm
(実施例2)
[電解液の調製]
実施例1において、化合物Aに代えて下記式(10)で表される化合物Bを1質量%(電解液全量基準)添加した以外は、実施例1と同様にして電解液を調製した。
Figure 2020116574
19F−NMR測定]
調製した電解液について19F−NMR測定を行った。その結果、−100ppm以上−70ppm以下のケミカルシフトの範囲内にPF 及びその反応物由来のピークを、また、−180ppm以上−150ppm以下のケミカルシフトの範囲内に化合物B由来のピークを示すスペクトルが得られた。化合物B由来のピークを示すスペクトルを図3(b)に示す。
19F−NMR:−73.26ppm,−75.14ppm,−82.65ppm,−85.26ppm,−86.79ppm,−89.64ppm,−162.02ppm
(比較例1)
[電解液の調製]
実施例1において、化合物Aを使用しなかった以外は、実施例1と同様にして電解液を調製した。
19F−NMR測定]
調製した電解液について19F−NMR測定を行った。その結果、−100ppm以上−70ppm以下のケミカルシフトの範囲内にPF 及びその反応物由来のピークを示すスペクトルが得られた。
19F−NMR:−75.03ppm,−75.28ppm,−76.91ppm,−77.16ppm,−88.07ppm,−90.92ppm
(比較例2)
[電解液の調製]
実施例1において、化合物Aを使用せず、4−フルオロ−1,3−ジオキソラン−2−オン(フルオロエチレンカーボネート;FEC)を1質量%(電解液全量基準)添加した以外は、実施例1と同様にして電解液を調製した。
19F−NMR測定]
調製した電解液について19F−NMR測定を行った。その結果、−100ppm以上−70ppm以下のケミカルシフトの範囲内にPF 及びその反応物由来のピークを、また、−130ppmを超え−110ppm以下のケミカルシフトの範囲内にFEC由来のピークを示すスペクトルが得られた。FEC由来のピークを示すスペクトルを図4に示す。
19F−NMR:−73.69ppm,−75.57ppm,−82.62ppm,−85.22ppm,−86.82ppm,−89.67ppm,−121.30ppm
(実施例3)
[電解液の調製]
実施例1において、化合物Aに代えて下記式(11)で表される化合物Cを1質量%(電解液全量基準)添加した以外は、実施例1と同様にして電解液を調製した。
Figure 2020116574
19F−NMR測定]
調製した電解液について19F−NMR測定を行った。その結果、−100ppm以上−70ppm以下のケミカルシフトの範囲内にPF 及びその反応物由来のピークを、また、−150ppmを超え−110ppm以下のケミカルシフトの範囲内に化合物C由来のピークを示すスペクトルが得られた。化合物C由来のピークを示すスペクトルを図5(a)に示す。
19F−NMR:−73.66ppm,−75.54ppm,−82.65ppm,−85.25ppm,−86.81ppm,−89.66ppm,−135.13ppm
(実施例4)
[電解液の調製]
実施例1において、化合物Aに代えて下記式(12)で表される化合物Dを1質量%(電解液全量基準)添加した以外は、実施例1と同様にして電解液を調製した。
Figure 2020116574
19F−NMR測定]
調製した電解液について19F−NMR測定を行った。その結果、−100ppm以上−70ppm以下のケミカルシフトの範囲内にPF 及びその反応物由来のピークを、また、−150ppmを超え−110ppm以下のケミカルシフトの範囲内に化合物D由来のピークを示すスペクトルが得られた。化合物D由来のピークを示すスペクトルを図5(b)に示す。
19F−NMR:−73.62ppm,−75.49ppm,−82.76ppm,−85.37ppm,−86.78ppm,−89.63ppm,−136.60ppm
(実施例5)
[電解液の調製]
実施例1において、化合物Aの含有量を0.5質量%に変更し、FECを0.5質量%(いずれも電解液全量基準)添加した以外は、実施例1と同様にして電解液を調製した。
19F−NMR測定]
調製した電解液について19F−NMR測定を行った。その結果、−100ppm以上−70ppm以下のケミカルシフトの範囲内にPF 及びその反応物由来のピークを、−180ppm以上−150ppm以下のケミカルシフトの範囲内に化合物A由来のピークを、また、−130ppmを超え−110ppm以下のケミカルシフトの範囲内にFEC由来のピークを示すスペクトルが得られた。化合物A由来のピーク、及びFEC由来のピークを示すスペクトルを図6(a)に示す。
19F−NMR:−73.69ppm,−75.58ppm,−82.73ppm,−85.25ppm,−86.85ppm,−89.70ppm,−121.45ppm,−162.10ppm
(実施例6)
[電解液の調製]
実施例3において、化合物Cの含有量を0.5質量%に変更し、FECを0.5質量%(いずれも電解液全量基準)添加した以外は、実施例3と同様にして電解液を調製した。
19F−NMR測定]
調製した電解液について19F−NMR測定を行った。その結果、−100ppm以上−70ppm以下のケミカルシフトの範囲内にPF 及びその反応物由来のピークを、−150ppmを超え−130ppm以下のケミカルシフトの範囲内に化合物C由来のピークを、また、−130ppmを超え−110ppm以下のケミカルシフトの範囲内にFEC由来のピークを示すスペクトルが得られた。化合物C由来のピーク、及びFEC由来のピークを示すスペクトルを図6(b)に示す。
19F−NMR:−73.67ppm,−75.55ppm,−82.68ppm,−85.25ppm,−86.80ppm,−89.65ppm,−121.23ppm,−135.14ppm
(実施例7)
[電解液の調製]
実施例4において、化合物Dの含有量を0.5質量%に変更し、FECを0.5質量%(いずれも電解液全量基準)添加した以外は、実施例4と同様にして電解液を調製した。
19F−NMR測定]
調製した電解液について19F−NMR測定を行った。その結果、−100ppm以上−70ppm以下のケミカルシフトの範囲内にPF 及びその反応物由来のピークを、−150ppmを超え−130ppm以下のケミカルシフトの範囲内に化合物D由来のピークを、また、−130ppmを超え−110ppm以下のケミカルシフトの範囲内にFEC由来のピークを示すスペクトルが得られた。化合物D由来のピーク、及びFEC由来のピークを示すスペクトルを図7(c)に示す。
19F−NMR:−73.68ppm,−75.57ppm,−82.57ppm,−85.17ppm,−86.83ppm,−89.68ppm,−121.35ppm,−136.69ppm
[正極の作製]
正極活物質としてのコバルト酸リチウム(95質量%)に、導電剤としての繊維状の黒鉛(1質量%)及びアセチレンブラック(AB)(1質量%)と、結着剤(3質量%)とを順次添加し、混合した。得られた混合物に対し、分散媒としてのNMPを添加し、混練することによりスラリー状の正極合剤を調製した。この正極合剤を正極集電体としての厚さ20μmのアルミニウム箔に均等且つ均質に所定量塗布した。その後、分散媒を揮発させてから、プレスすることにより密度3.6g/cmまで圧密化して、正極を得た。
[負極の作製]
負極活物質としての黒鉛及びケイ素酸化物に、結着剤と、増粘剤としてのカルボキシメチルセルロースとを添加した。これらの質量比については、黒鉛:ケイ素酸化物:結着剤:増粘剤=92:5:1.5:1.5とした。得られた混合物に対し、分散媒としての水を添加し、混練することによりスラリー状の負極合剤を調製した。この負極合剤を負極集電体としての厚さ10μmの圧延銅箔に均等かつ均質に所定量塗布した。その後、分散媒を揮発させてから、プレスすることにより密度1.6g/cmまで圧密化して、負極を得た。
[リチウムイオン二次電池の作製]
13.5cmの四角形に切断した正極を、セパレータであるポリエチレン製多孔質シート(商品名:ハイポア(登録商標)、旭化成株式会社製、厚さ30μm)で挟み、さらに14.3cmの四角形に切断した負極を重ね合わせて電極群を作製した。この電極群を、アルミニウム製のラミネートフィルム(商品名:アルミラミネートフィルム、大日本印刷株式会社製)で形成された容器(電池外装体)に収容した。次いで、容器の中に調製した実施例1、実施例2、比較例1、又は比較例2の電解液をそれぞれ1mL添加し、容器を熱溶着させ、評価用のリチウムイオン二次電池を作製した。
[初回充放電]
作製したリチウムイオン電池について、以下に示す方法で初回充放電を実施した。まず、25℃の環境下において0.1Cの電流値で定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行った。充電終止条件は、電流値0.01Cとした。その後、0.1Cの電流値で終止電圧2.5Vの定電流放電を行った。この充放電サイクルを3回繰り返した(電流値の単位として用いた「C」とは、「電流値(A)/電池容量(Ah)」を意味する。)。
[サイクル特性の評価]
初回充放電後、充放電を繰り返すサイクル試験によって、実施例1〜2及び比較例1〜2の電解液を用いた各二次電池のサイクル特性を評価した。充電パターンとしては、45℃の環境下で、二次電池を0.5Cの電流値で定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行った。充電終止条件は、電流値0.05Cとした。放電については、1Cで定電流放電を2.5Vまで行い、放電容量を求めた。この一連の充放電を200サイクル繰り返し、充放電の度に放電容量を測定した。比較例1における1サイクル目の充放電後の放電容量を1として、各サイクルでの放電容量の相対値(放電容量比率)を求めた。サイクル数と放電容量の相対値との関係を、図7に示す。
図7に示すように、19F−NMRによる測定において、−180ppm以上−150ppm以下のケミカルシフトの範囲内にピークを示す電解液を適用した実施例1〜2のリチウムイオン二次電池は、当該範囲にピークを示さない電解液を適用した比較例1〜2のリチウムイオン二次電池に比べて、200サイクル目における放電容量比率が大きかった。したがって、実施例1〜2のリチウムイオン二次電池は、優れた性能(サイクル特性)を示している。
1…非水電解液二次電池(電気化学デバイス)、6…正極、7…セパレータ、8…負極。

Claims (7)

  1. 19F−NMRによる測定において、−180ppm以上−150ppm以下、及び−150ppmを超え−130ppm以下の少なくとも1つのケミカルシフトの範囲内にピークを示す、電解液。
  2. 19F−NMRによる測定において、−130ppmを超え−110ppm以下のケミカルシフトの範囲内にピークを更に示す、請求項1に記載の電解液。
  3. 正極と、負極と、請求項1又は2に記載の電解液と、を備える電気化学デバイス。
  4. 前記負極は炭素材料を含有する、請求項3に記載の電気化学デバイス。
  5. 前記炭素材料は黒鉛を含有する、請求項4に記載の電気化学デバイス。
  6. 前記負極は、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料を更に含有する、請求項4又は5に記載の電気化学デバイス。
  7. 前記電気化学デバイスは、非水電解液二次電池又はキャパシタである、請求項4〜6のいずれか一項に記載の電気化学デバイス。
JP2020560016A 2018-12-05 2019-12-05 電解液及び電気化学デバイス Active JP7380589B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018228477 2018-12-05
JP2018228477 2018-12-05
PCT/JP2019/047661 WO2020116574A1 (ja) 2018-12-05 2019-12-05 電解液及び電気化学デバイス

Publications (2)

Publication Number Publication Date
JPWO2020116574A1 true JPWO2020116574A1 (ja) 2021-10-21
JP7380589B2 JP7380589B2 (ja) 2023-11-15

Family

ID=70974729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020560016A Active JP7380589B2 (ja) 2018-12-05 2019-12-05 電解液及び電気化学デバイス

Country Status (5)

Country Link
JP (1) JP7380589B2 (ja)
KR (1) KR20210094065A (ja)
CN (1) CN113396493A (ja)
TW (1) TWI830832B (ja)
WO (1) WO2020116574A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210096214A (ko) 2018-12-05 2021-08-04 쇼와덴코머티리얼즈가부시끼가이샤 전해액 및 전기 화학 디바이스

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171981A (ja) * 2002-11-21 2004-06-17 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
JP2015092470A (ja) * 2013-10-04 2015-05-14 旭化成株式会社 電解液及びリチウムイオン二次電池
JP2015141824A (ja) * 2014-01-29 2015-08-03 旭化成株式会社 非水電解液二次電池
JP2016186910A (ja) * 2015-03-27 2016-10-27 旭化成株式会社 電解液及びリチウムイオン二次電池
WO2018033357A1 (en) * 2016-08-19 2018-02-22 Solvay Sa Nonaqueous electrolyte compositions comprising silyl oxalates

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288112A (ja) * 2007-05-18 2008-11-27 Sony Corp 非水電解質二次電池
JP6255722B2 (ja) 2012-06-13 2018-01-10 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
EP3054521B1 (en) * 2013-10-04 2021-06-16 Asahi Kasei Kabushiki Kaisha Electrolyte and lithium-ion secondary battery
JP2015213014A (ja) * 2014-05-02 2015-11-26 ソニー株式会社 電池、電池パック、バッテリモジュール、電子機器、電動車両、蓄電装置および電力システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171981A (ja) * 2002-11-21 2004-06-17 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
JP2015092470A (ja) * 2013-10-04 2015-05-14 旭化成株式会社 電解液及びリチウムイオン二次電池
JP2015141824A (ja) * 2014-01-29 2015-08-03 旭化成株式会社 非水電解液二次電池
JP2016186910A (ja) * 2015-03-27 2016-10-27 旭化成株式会社 電解液及びリチウムイオン二次電池
WO2018033357A1 (en) * 2016-08-19 2018-02-22 Solvay Sa Nonaqueous electrolyte compositions comprising silyl oxalates

Also Published As

Publication number Publication date
KR20210094065A (ko) 2021-07-28
TW202032848A (zh) 2020-09-01
WO2020116574A1 (ja) 2020-06-11
TWI830832B (zh) 2024-02-01
CN113396493A (zh) 2021-09-14
JP7380589B2 (ja) 2023-11-15

Similar Documents

Publication Publication Date Title
JP7380589B2 (ja) 電解液及び電気化学デバイス
WO2020116583A1 (ja) 電解液及び電気化学デバイス
JP7074132B2 (ja) 電解液及び電気化学デバイス
WO2018221676A1 (ja) 電解液及び電気化学デバイス
JP7415946B2 (ja) 電解液及び電気化学デバイス
WO2023190363A1 (ja) 電気化学デバイス及び電気化学デバイス用電解液
WO2022070312A1 (ja) 電解液及び電気化学デバイス
WO2023190335A1 (ja) 電気化学デバイス及び電気化学デバイス用電解液
JP2024021236A (ja) 電解液、電気化学デバイス及び電解液用添加剤
KR102576486B1 (ko) 전해액 및 전기화학 디바이스
JPWO2020027004A1 (ja) 電解液及び電気化学デバイス
JPWO2020027003A1 (ja) 電解液及び電気化学デバイス
JP7040594B2 (ja) 電気化学デバイス
WO2020116578A1 (ja) 電解液及び電気化学デバイス
WO2018220795A1 (ja) 電解液及び電気化学デバイス
WO2018220799A1 (ja) 電解液及び電気化学デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R151 Written notification of patent or utility model registration

Ref document number: 7380589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151