JPWO2020105658A1 - 拡散接合型熱交換器 - Google Patents

拡散接合型熱交換器 Download PDF

Info

Publication number
JPWO2020105658A1
JPWO2020105658A1 JP2020557577A JP2020557577A JPWO2020105658A1 JP WO2020105658 A1 JPWO2020105658 A1 JP WO2020105658A1 JP 2020557577 A JP2020557577 A JP 2020557577A JP 2020557577 A JP2020557577 A JP 2020557577A JP WO2020105658 A1 JPWO2020105658 A1 JP WO2020105658A1
Authority
JP
Japan
Prior art keywords
flow path
heat transfer
layer
partition wall
transfer plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020557577A
Other languages
English (en)
Other versions
JP7110390B2 (ja
Inventor
高橋 優
優 高橋
藤田 泰広
泰広 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Publication of JPWO2020105658A1 publication Critical patent/JPWO2020105658A1/ja
Application granted granted Critical
Publication of JP7110390B2 publication Critical patent/JP7110390B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • B23K20/2336Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer both layers being aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • F28F2275/061Fastening; Joining by welding by diffusion bonding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

この発明の1つの目的は、伝熱板の積層数を多くした場合にも、大きな温度差を有する流体間の熱交換に伴い発生する熱応力を低減することが可能な拡散接合型熱交換器を提供することである。この拡散接合型熱交換器(100)は、複数の伝熱板(HP)が積層されて拡散接合されたコア(1)を備える。コアは、複数の流路層(30)をそれぞれ含んで構成された複数の流路ブロック(40)と、複数の流路ブロックの間を区画する隔壁層(50)と、を含む。積層方向における隔壁層の厚み(t3)が、積層方向に並ぶ流路間の間隔(t2)よりも大きい。

Description

この発明は、拡散接合型熱交換器に関し、特に、複数の伝熱板が積層され拡散接合された構成の拡散接合型熱交換器に関する。
従来の熱交換器として、プレート式熱交換器が知られている。このような熱交換器は、例えば、特表2016−535233号公報に開示されている。
上記特表2016−535233号公報には、分断薄板と、サイドバーと、フィンとをろう付けして構成された複数の熱交換路を含む熱交換器ブロックを複数備え、熱交換器ブロックがそれぞれ、対向するカバープレートにおいてはんだを介して接続されたプレート式熱交換器が開示されている。上記特表2016−535233号公報には、熱交換器ブロックの対向するカバープレート同士を、はんだがクラッドされた金属薄板を介して全面的に接続することが開示されている。
上記特表2016−535233号公報のような熱交換器において、高温側の流体と低温側の流体との間の温度差が大きい場合、熱交換器の構成部材に大きな熱応力が発生する。はんだ接合は機械的強度がそれほど高くないため、大きな熱応力が生じた場合、疲労破壊が発生する可能性がある。なお、熱応力とは、物体が温度変化による熱変形(膨張や収縮)を外部的な拘束によって妨げられたときに、物体内部に生じる応力のことである。
特表2016−535233号公報
そこで、特に流体間の温度差が大きい(熱応力が大きくなる)用途にも利用可能な熱交換器として、伝熱板同士が拡散接合された拡散接合型熱交換器が知られている。拡散接合型熱交換器は、金属製の伝熱板同士が拡散接合によって一体化されるため剛性が高く、たとえば液体水素や液化天然ガスなどの極低温の流体と、高温流体として水や不凍液(ブライン)との熱交換などに用いられることがある。
しかしながら、一般に高い剛性を有する拡散接合型熱交換器であっても、伝熱面積を確保するために伝熱板の積層数を多くした場合などでは、金属部分の熱変形(熱膨張または熱収縮)が大きくなる事に起因して大きな熱応力が生じ、疲労破壊の原因となる。このため、拡散接合型熱交換器において、伝熱面積を確保するために伝熱板の積層数を多くした場合でも、大きな温度差を有する流体間の熱交換に伴い発生する熱応力を低減することが望まれている。
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、伝熱板の積層数を多くした場合にも、大きな温度差を有する流体間の熱交換に伴い発生する熱応力を低減することが可能な拡散接合型熱交換器を提供することである。
上記目的を達成するために、この発明による拡散接合型熱交換器は、複数の伝熱板が積層されて拡散接合されたコアを備え、コアは、流路が形成された複数の流路層をそれぞれ含んで構成された複数の流路ブロックと、複数の流路ブロックの間を区画するように配置された隔壁層と、を含み、積層方向における隔壁層の厚みが、積層方向に並ぶ流路間の間隔よりも大きい。なお、本明細書において、「流路層」および「隔壁層」は、それぞれコアの一部であって、積層され拡散接合された複数の伝熱板のうち少なくとも1つによって構成され、伝熱板の形状を反映して積層方向と直交する方向に延びる平板状の層として構成された領域である。「流路層」は、積層方向における流路の高さ寸法と一致する厚みを有する層である。
この発明による拡散接合型熱交換器では、上記のように、複数の流路層をそれぞれ含んで構成された複数の流路ブロックの間を区画するように隔壁層を配置し、積層方向における隔壁層の厚みを、積層方向に並ぶ流路間の間隔よりも大きくする。これにより、伝熱面積を確保するために伝熱板の積層数を多くして流路層の総数を多くした場合であっても、それらの流路層を、隔壁層によって、より積層数の少ない複数の流路ブロックに区分することができる。そして、隔壁層が積層方向に並ぶ流路間の間隔よりも大きい厚みを有するので、隔壁層では、単純に流路層を積層しただけの場合よりも高い剛性を確保することができる。そのため、隔壁層では、流体の温度差に起因する熱変形(熱膨張または熱収縮)を流路層よりも小さくできる。この結果、コア全体で見ると、流路ブロックの間の隔壁層が流路ブロックの変形を抑制する支持構造として機能し、積層方向に並んだ複数の流路ブロックの各々が熱変形を生じても、熱変形の影響が隣の流路ブロックに及ぶことを抑制することができる。熱変形の大きさは変形する部分の長さに比例するため、隔壁層によって流路層の総数よりも少ない積層数に区画された個々の流路ブロックでは熱変形量を低減でき、その分だけ熱応力を低減することができる。以上の結果、伝熱板の積層数を多くした場合にも、大きな温度差を有する流体間の熱交換に伴い発生する熱応力を低減することができる。
上記発明による拡散接合型熱交換器において、好ましくは、流路と直交する断面において、隔壁層における中実部の割合は、流路層における中実部の割合よりも大きい。なお、本明細書において「中実」とは、構成材料によって中身が詰まっていることを意味する。このように構成すれば、流路ブロックを構成する個々の流路層よりも隔壁層の剛性を容易に高くすることができるので、流路ブロック間の熱変形を効果的に抑制することができる。
上記発明による拡散接合型熱交換器において、好ましくは、隔壁層は、流路と直交する断面のうち流路層に沿った方向において、流路層における流路が形成された範囲の一端から他端までに亘って連続した中実部を含む。このように構成すれば、隔壁層の中実部によって、流路ブロックの間の隔壁層の領域において、流路が形成された範囲の一端から他端までを支持する支持構造を形成することができる。たとえば流路ブロック内の流路に極低温の流体が流通して流路ブロックが収縮変形する場合に、隔壁層では、中実部によって流路層に沿った方向の収縮変形に対抗して支持することができる。これにより、流路ブロックの熱変形量を低減して熱応力を効果的に低減することができる。
上記発明による拡散接合型熱交換器において、好ましくは、流路層は、拡散接合により流路を構成する溝部が形成された伝熱板からなる第1伝熱板により構成され、隔壁層は、溝部が未形成の伝熱板からなる第2伝熱板により構成されている。このように構成すれば、流路層と隔壁層とを、共通仕様の伝熱板(板部材)から形成することができる。つまり、コアを形成する際、複数用意した伝熱板に対して溝部の形成加工をして第1伝熱板とし、残りの伝熱板に溝部を形成しないでそのまま第2伝熱板として用いることができる。このため、第1伝熱板と第2伝熱板とをそれぞれ別々の仕様の伝熱板(板部材)から形成する場合と比べて、コアを構成する部品種別の数を低減することができるので、コアに隔壁層を設ける場合でも容易に熱交換器を製造することができる。
この場合、好ましくは、隔壁層は、積層された複数の第2伝熱板により構成されている。このように構成すれば、第1伝熱板と第2伝熱板とをそれぞれ共通仕様の伝熱板(板部材)から形成する場合でも、第2伝熱板の積層することによって隔壁層の厚みを確保することができる。また、第2伝熱板の積層数によって隔壁層の厚みを容易に調節することができる。
上記発明による拡散接合型熱交換器において、好ましくは、流路層は、拡散接合により流路を構成する溝部が形成された第1伝熱板、および、溝部が形成され第1伝熱板よりも大きい厚みを有する第3伝熱板により構成され、隔壁層は、第3伝熱板のうち溝部以外の部分により構成されている。このように構成すれば、第3伝熱板によって、流路ブロックを構成する流路層のうち積層方向の最外部に配置される流路層と、その最外部の流路層に隣接する隔壁層とをまとめて構成することができる。つまり、たとえばN層の流路層を含む流路ブロックを構成する場合に、(N−1)枚の第1伝熱板と、1枚の第3伝熱板を積層することで、N層の流路ブロックと隔壁層とを構成できる。
上記発明による拡散接合型熱交換器において、好ましくは、積層方向における隔壁層の厚みが、流路ブロックを構成する流路層のピッチよりも大きい。ここで、「流路層のピッチ」とは、流路ブロック内における流路層の形成間隔であり、積層方向に隣接する流路層の同一部位間の距離である。このように構成すれば、流路層のピッチよりも大きい厚みを有する隔壁層を設けることができるので、隔壁層の剛性を確保することができる。これにより、流路ブロックの熱変形(熱膨張または熱収縮)および熱変形に起因する熱応力を効果的に抑制できる。
上記発明による拡散接合型熱交換器において、好ましくは、流路ブロックを構成する各流路層と、隔壁層とが、同一材料により構成され、接合材を介さずに拡散接合されている。このように構成すれば、同一材料により構成された流路層と隔壁層との間で線膨張係数が一致するので、接合部分における熱変形量の差に起因する応力の発生を低減できる。また、拡散接合では、接合面の材料同士が原子レベルで一体化するので、流路層と隔壁層とがはんだなどの接合材を介して接合する場合と比べて、より強固に接合することができる。その結果、熱変形に起因して接合部分に疲労破壊などが生じることを抑制できる。また、はんだなどの接合材によって流路ブロックを構成する各層を接合した場合、コアの側面にヘッダ部を溶接する際の熱の影響によって各層間のはんだ接合部に欠陥が発生し、流路ブロック間で流体の漏れが発生しやすくなる。これに対して、上記構成によれば、流路ブロックを構成する各層が、より強固に接合されるので、ヘッダ部の溶接時に熱の影響があったとしても欠陥が発生しにくく、流路ブロック間での流体の漏れを抑制することができる。
本発明によれば、上記のように、伝熱板の積層数を多くした場合にも、大きな温度差を有する流体間の熱交換に伴い発生する熱応力を低減することが可能な拡散接合型熱交換器を提供することができる。
第1実施形態による熱交換器を示した模式的な斜視図である。 図3〜図5の500−500線に沿ったコアの断面図である。 第1流路を構成する第1伝熱板の構成例を示した平面図である。 第2流路を構成する第1伝熱板の構成例を示した平面図である。 第2伝熱板の構成例を示した平面図である。 7層の流路ブロックを3ブロック設けたコアの具体的構成例を示した断面図である。 第1実施形態におけるコアの構造を模式化した断面図である。 比較例のコアの構造を模式化した断面図である。 流路層の積層数と平均応力との関係を説明するためのグラフである。 第1実施形態の熱交換器の製造方法を説明するためのフロー図である。 第2実施形態による熱交換器のコアの模式的な断面図である。 変形例によるコアの断面図である。
以下、本発明の実施形態を図面に基づいて説明する。
(第1実施形態)
図1〜図6を参照して、第1実施形態による熱交換器100の構成について説明する。第1実施形態による熱交換器100は、金属製の伝熱板を積層し、拡散接合によって一体化することにより構成した拡散接合型のプレート式熱交換器である。熱交換器100は、特許請求の範囲の「拡散接合型熱交換器」の一例である。
図1に示すように、熱交換器100は、複数の伝熱板HPが積層されて拡散接合されたコア1を備える。また、熱交換器100は、第1入口2aおよび第1出口2b(図3参照)と、第2入口3a(図4参照)および第2出口3bとを備えている。コア1は、積層された伝熱板HPによってそれぞれ構成された複数の流路FPを含む。複数の流路FPは、少なくとも、高温流体HFを流通させる複数の第1流路11と、低温流体LFを流通させる複数の第2流路12(図4参照)とを含む。コア1は、第1流路11を流れる高温流体HFと第2流路12を流れる低温流体LFとの間で熱交換を行う熱交換部である。
第1入口2aおよび第1出口2bは、第1流路11に対して高温流体HFを導入するための入口および導出するための出口であり、入口側と出口側との対(ペア)で設けられている。第2入口3aおよび第2出口3bは、第2流路12に対して低温流体LFを導入するための入口および導出するための出口であり、入口側と出口側との対(ペア)で設けられている。
第1実施形態による熱交換器100は、高温流体HFと低温流体LFとの熱交換により低温流体LFの冷熱を高温流体HF側に回収する熱交換器として構成されている。なお、高温流体HFと低温流体LFとは、熱交換を行う際の相対的に高温側の流体と相対的に低温側の流体とであり、特定の温度にある流体を指すものではない。つまり、低温流体LFは、高温流体HFよりも低温の流体であり、高温流体HFは、低温流体LFよりも高温の流体である。第1実施形態では、低温流体LFは、極低温の液体であり、たとえば液化水素である。高温流体HFは、たとえば、不凍液(ブライン)などの液体である。
特に限定されないが、図1に示したコア1を構成する伝熱板HPは、四角形(長方形)の平板形状を有する。各伝熱板HPは、厚み方向に積層されている。これにより、コア1は、直方体形状を有する。以下、便宜的に、コア1における伝熱板HPの積層方向をZ方向とし、積層方向と直交する方向(伝熱板の表面に沿う方向)において、直交する2方向をそれぞれX方向およびY方向とする。なお、X方向およびY方向を、それぞれ積層方向と直交する面内におけるコア1の(伝熱板HPの)長辺に沿う方向および短辺に沿う方向とする。
伝熱板HPは、それぞれ、一対の第1側端面81と、第1側端面81と隣接する一対の第2側端面82とを有する。第1側端面81は、短辺側の側端面であり、第2側端面82は、長辺側の側端面である。伝熱板HPは、第2側端面82の長さ(コア1の長さ)L0、第1側端面81の長さ(コア1の幅)W0を有する。伝熱板HPは、いずれも略等しい厚みtを有する。複数の伝熱板HPは、厚みtの異なる複数種類の伝熱板を含んでもよい。伝熱板HPは、たとえばステンレス鋼材からなる。伝熱板HPは、拡散接合可能であれば、アルミ系金属、銅系金属などのステンレス鋼材以外の金属材料により形成されてもよい。
積層方向(Z方向)におけるコア1の両端には、それぞれサイドプレート4が設けられている。伝熱板HPとサイドプレート4とは、平面視で同一の矩形形状に形成された平板状の板部材である。すなわち、コア1は、複数の伝熱板HPの積層体を一対のサイドプレート4により挟み込み、拡散接合により一体化することにより、全体として矩形箱状(直方体形状)に形成されている。図1では便宜的に、一対のサイドプレート4の間に、8層(8枚)の伝熱板HPが積層された例を示している。積層枚数はこれに限られず、伝熱板HPは、任意の枚数を積層してよい。
第1実施形態では、コア1を構成する伝熱板HPは、図2に示すように、流路FPを構成する溝部23を有する第1伝熱板21、および溝部23を有しない第2伝熱板22を含む。つまり、同一形状の伝熱板HPに対して、流路FPを構成する溝部23を形成したものが第1伝熱板21であり、流路FPを構成する溝部23を形成していないものが第2伝熱板22である。なお、コア1では、各伝熱板HPが拡散接合によって一体化しているため、実際には図1に示したような個々の伝熱板HPの接合面の境界線は形成されない。図2では、便宜的に、個々の伝熱板HPの境界線を破線により図示している。
図2に示すように、第1実施形態では、コア1は、流路FPが形成された複数の流路層30をそれぞれ含んで構成された複数の流路ブロック40と、複数の流路ブロック40の間を区画するように配置された隔壁層50と、を含む。
流路層30は、流路FPと直交する断面において、流路FPの上面から底面までの範囲(つまり、積層方向における流路FPの高さ)に亘って形成された領域である。流路層30は、拡散接合により流路FPを構成する溝部23が形成された伝熱板HPからなる第1伝熱板21により構成されている。
流路層30は、Z方向において流路FPの高さと等しい厚みt1を有する。流路層30は、積層方向と直交する平面(XY平面)に沿って、コア1の全体に亘って設けられている。1つの流路層30は、1つの第1伝熱板21に形成された溝部23の数と一致する流路FPを含む。Z方向に隣接する流路層30の間には、間隔t2の壁部24が設けられている。壁部24は、第1伝熱板21のうち、溝部23が形成されていない中実部分である。
流路層30には、高温流体HFを流通させる第1流路11が形成された流路層30aと、低温流体LFを流通させる第2流路12が形成された流路層30bとがある。
流路ブロック40は、積層方向に並ぶ複数の流路層30により構成されている。流路ブロック40は、少なくとも1つの流路層30aと、少なくとも1つの流路層30bとを含む。これにより、流路ブロック40に含まれる流路層30同士の間で、高温流体HFと低温流体LFとの熱交換が行われる。
1つの流路ブロック40内に含まれる流路層30(30a、30b)は、積層方向に所定のピッチPCで配列されている。ピッチPCは、積層方向に隣接する流路層30の同一部分の間の距離であり、たとえば流路FP(流路層30)の上面から、積層方向に隣接する別の流路FP(流路層30)の上面までの距離である。
流路ブロック40は、コア1においてZ方向に並ぶように複数設けられる。複数の流路ブロック40の間が、隔壁層50によって区画される。すなわち、流路ブロック40は、隔壁層50によって区画された複数の流路層30のまとまりである。
第1実施形態の隔壁層50は、溝部23が未形成の伝熱板HPからなる第2伝熱板22により構成されている。隔壁層50は、隣り合う流路ブロック40に含まれる流路層30のうち最外部に位置する流路層30同士の間の領域である。隔壁層50は、積層方向と直交する平面(XY平面)に沿って、コア1の全体に亘って設けられている。また、隔壁層50は、最外部の流路層30を構成する第1伝熱板21のうちの、溝部23が形成されていない中実部(すなわち、壁部24)を含みうる。
以下、流路ブロック40および隔壁層50について具体的に説明する。
(流路層)
上記の通り、流路層30は、第1伝熱板21により構成されている。第1伝熱板21は、一方表面(上面)に溝部23が形成されており、他方表面(下面)は平坦面となっている。それぞれの溝部23は、たとえばエッチングにより所定形状に形成されている。第1伝熱板21の一方表面(上面)において、溝部23以外は平坦面となっており、拡散接合による接合面となっている。
流路層30に含まれる流路FPは、第1伝熱板21の溝部23(溝部23の内表面)と、その第1伝熱板21の一方表面(上面)に積層された別の第1伝熱板21の他方表面(下面)とによって構成された中空部である。
流路層30aの第1流路11(図3参照)と、流路層30bの第2流路12(図4参照)とは、Z方向から見た平面視における形状が異なる。そのため、第1伝熱板21は、第1流路11が形成された流路層30aを構成する第1伝熱板21aと、第2流路12が形成された流路層30bを構成する第1伝熱板21bとを含む。第1伝熱板21aと第1伝熱板21bとは、溝部23の形状が異なる。
(第1流路)
図3に示すように、第1伝熱板21aは、第1流路11を構成する溝部23と、第1流路11を区画する壁部24とを含む。図3では便宜的に壁部24にハッチングを付している。
第1流路11(溝部23)は、第1入口2aおよび第1出口2bがそれぞれ配置される一対の第1側端面81にそれぞれ開口するように形成されている。第1流路11は、第1伝熱板21aの一対の第1側端面81にそれぞれ開口した流路入口11aと流路出口11bとの間で直線状に延びる流路である。つまり、第1流路11は、第2側端面82(コア1の長辺)に沿って直線状に延びている。
コア1の各第1側端面81側には、一対のヘッダ部5が接合されている。一対のヘッダ部5は、それぞれ積層された第1伝熱板21aの流路入口11aまたは流路出口11bを覆うように設けられている。一方のヘッダ部5には第1入口2aが設けられ、他方のヘッダ部5には第1出口2bが設けられている。これにより、第1入口2aから流入する高温流体HFがヘッダ部5を介してそれぞれの第1伝熱板21aの流路入口11aに流入し、第1流路11をX1方向に通過して、流路出口11bから流出し、ヘッダ部5を介して第1出口2bから排出される。なお、図3において、第2入口3aおよび第2出口3bの図示を省略している。
第1流路11(溝部23)は、流路幅方向に複数並んで設けられでいる。図3の例では、便宜的に、8本の第1流路11が流路幅方向に等間隔で並んでいる例を示す。第1流路11(溝部23)の本数、流路幅、流路FPのピッチは特に限定されない。
(第2流路)
図4に示すように、第1伝熱板21bは、第2流路12を構成する溝部23と、第2流路12を区画する壁部24とを含む。
第2流路12(溝部23)は、第2入口3aおよび第2出口3bがそれぞれ配置される一対の第2側端面82にそれぞれ開口した流路入口12aと流路出口12bとの間を接続する折れ曲がった流路である。第2流路12の流路入口12aは、一方の第2側端面82において、第1流路11の流路入口11aが配置された一方側(X2方向側)の端部に設けられている。第2流路12の流路出口12bは、他方の第2側端面82において、第1流路11の流路出口11bが配置された他方側(X1方向側)の端部に設けられている。
第2流路12は、第1伝熱板21bの一方の第2側端面82に開口した流路入口12aからY方向に延びた後屈曲して、第2側端面82に沿うX方向に延びるとともに、X1方向端部まで延びた後屈曲して、他方の第2側端面82に開口した流路出口12bまでY方向に延びている。
コア1の各第2側端面82側には、一対のヘッダ部5が接合されている。一対のヘッダ部5は、それぞれ積層された第1伝熱板21bの流路入口12aまたは流路出口12bを覆うように設けられている。一方のヘッダ部5には第2入口3aが設けられ、他方のヘッダ部5には第2出口3bが設けられている。これにより、第2入口3aから流入する低温流体LFがヘッダ部5を介してそれぞれの第1伝熱板21bの流路入口12aに流入し、第2流路12を通過して、流路出口12bから流出し、ヘッダ部5を介して第2出口3bから排出される。なお、図4において、第1入口2aおよび第1出口2bの図示を省略している。
第2流路12(溝部23)は、流路幅方向に複数並んで設けられている。図4の例では、便宜的に、8本の第2流路12が流路幅方向に等間隔で並んでいる例を示す。第2流路12(溝部23)の本数、流路幅、流路FPのピッチは特に限定されない。第1流路11と第2流路12とは、たとえば同数設けられる。第1流路11と第2流路12とは、たとえば流路幅が等しく、同じピッチで設けられる。
(第1流路と第2流路との位置関係)
図2に示したように、流路ブロック40内で、第1流路11を含む流路層30aと、第2流路12を含む流路層30bとは、積層方向(Z方向)に交互に配置されている。流路層30aの個々の第1流路11と、流路層30bの個々の第2流路12とは、積層方向(Z方向)に並ぶように配置されている。つまり、各第1伝熱板21aおよび21bにおける溝部23の形成位置が、少なくとも図3および図4に示した領域A1において、略一致している。第1流路11を流れる高温流体HFと、第2流路12を流れる低温流体LFとが、流路間の(最小)間隔t2の壁部24を介して熱交換を行う。
(隔壁層)
隔壁層50には、流路が形成されていない。つまり、隔壁層50を構成する第2伝熱板22には、流路を形成するための溝部23が形成されていない。図2の例では、第2伝熱板22は、一方表面(上面)および他方表面(下面)の両方が、平坦面となっている。図5では、第2伝熱板22の平面形状を示しており、溝部が形成されていない中実部51にハッチングを付している。第2伝熱板22は、一方表面(上面)および他方表面(下面)の全面で、拡散接合による接合が可能である。なお、隔壁層50は、流路以外の中空領域を含んでいてもよい。隔壁層50は、たとえば、位置合わせの目印、治具との係合用などのために形成される溝、凹部、貫通孔を有していてもよい。
図2に示すように、隔壁層50は、コア1内において流路ブロック40間を区画するように設けられる。つまり、コア1内の流路ブロック40は、隔壁層50を挟んで積層方向の一方側(上側)と他方側(下側)とにそれぞれ設けられる。隔壁層50は、積層方向において、一方の流路ブロック40の最外部(最下部)に位置する流路層30から、他方の流路ブロック40の最外部(最上部)に位置する流路層30までの範囲に亘って形成された層である。
第1実施形態では、積層方向における隔壁層50の厚みt3が、積層方向に並ぶ流路FP間の間隔t2よりも大きい。積層方向に並ぶ流路FP間の間隔t2は、図2に示すように、流路FPの最底面(溝部23の内周面)と、その流路FPに対してZ方向に隣り合う他の流路FPの上面(第1伝熱板21の一方表面)との間隔である。つまり、流路ブロック40内では、Z方向に並ぶ第1流路11と第2流路12との間が、間隔t2に等しい厚みの壁部24によって仕切られている。隔壁層50は、第1流路11と第2流路12との間を仕切る間隔t2分の壁部24よりも大きい厚みt3で、流路ブロック40同士を区画している。
具体的には、隔壁層50は、1枚または積層された複数枚の第2伝熱板22によって構成され得る。そのため、隔壁層50は、Z方向において第2伝熱板22の積層数に応じた厚みt3を有する。図2に示す例では、隔壁層50は、積層された複数の第2伝熱板22により構成されている。図2の例では、隔壁層50が2枚の第2伝熱板22によって構成されている。より正確には、隔壁層50の厚みt3は、2枚の第2伝熱板22の厚みtと、流路ブロック40の最外部の流路層30を構成する第1伝熱板21の下面から流路FPまでの間隔t2と、の合計{(2×t)+t2}に相当する。このため、第1実施形態では、積層方向における隔壁層50の厚みt3が、流路ブロック40を構成する流路層30のピッチPCよりも大きい。
また、隔壁層50は、主として中実部51によって構成されている。具体的には、流路FPと直交する断面において、隔壁層50における中実部51の割合は、流路層30における中実部(壁部24)の割合よりも大きい。ここで、割合は、流路FPと直交する断面における面積の割合である。つまり、簡単に言えば、中実部の割合は、{伝熱板HPの中実部の断面積/(伝熱板HPの中実部の断面積+中空部の合計断面積)}で表される。流路層30では、中空部である流路FPを含む分だけ、隔壁層50よりも中空部の合計断面積が大きくなるため、中実部(壁部24)の割合が隔壁層50よりも小さい。
また、隔壁層50は、流路FPと直交する断面のうち流路層30に沿った方向において、流路層30における流路FPが形成された範囲REの一端から他端までに亘って連続した中実部51を含む。図2〜図4の例では、各流路層30に8本の流路FPが形成されているので、流路FPが形成された範囲REは、8本の流路FPのうち、一端側の流路FPと他端側の流路FPとの最外部間の距離に相当する。隔壁層50は、一端側の流路FPと他端側の流路FPとの最外部間の範囲REに亘って、連続する中実部51を含んでいる。図2、図5および図6の構成例では、隔壁層50(第2伝熱板22)には溝などの中空部が形成されていないため、中実部51は、流路FPが形成された範囲REを含んだ、コア1の一端から他端までの全範囲に亘って連続している。
なお、第1実施形態では、流路ブロック40の最外部には、流路層30aおよび流路層30bのうち同じ流路層30が配置される。つまり、隔壁層50に対して上面側に配置される流路ブロック40の下端の流路層30と、隔壁層50に対して下面側に配置される流路ブロック40の上端の流路層30とが、第1流路11または第2流路12のうち、同じ流路が形成された流路層30により構成されている。
図2の例では、流路ブロック40の最外部には、第1流路11および第2流路12のうち熱交換による温度変化が小さい方の流路を含む流路層30が配置されている。一例として、高温流体HF(不凍液)の入口温度は、使用環境の温度と略等しく、たとえば約20℃である。低温流体LF(液化水素)の入口温度は、たとえば約−253℃である。熱交換により、高温流体HF(不凍液)の出口温度は、約−40℃であり、低温流体LF(液化水素)の出口温度は、−40℃近傍となる。そのため、温度変化は、高温流体HFを流通させる第1流路11の方が小さく、第1実施形態では、流路ブロック40の最外部には、第1流路11を含む流路層30aが設けられる。つまり、流路ブロック40では、流路層30a(最外層)、流路層30b、流路層30a、・・・、流路層30b、流路層30a(最外層)、という順に流路層30が並んでいる。このため、隔壁層50に対して一方表面(上面)側と他方表面(下面)側とには、それぞれ第1流路11を含む流路層30aが配置されている。
なお、各流路層30を構成する第1伝熱板21aおよび21bと、隔壁層50を構成する第2伝熱板22とは、同一材料によって構成されている。そして、これらの第1伝熱板21aおよび21bと、第2伝熱板22とは、直接接触した状態で拡散接合によって一体化されている。このため、流路ブロック40を構成する各流路層30と、隔壁層50とは、同一材料により構成され、接合材を介さずに拡散接合されている。
隔壁層50の数は、区画する流路ブロック40の数に応じて決まる。図2では、1つの隔壁層50が、各流路層30を2つの流路ブロック40に区画している。
(コアの具体的構成例)
図1〜図5では、コア1の基本的な構成を説明するため、6層の流路層30を隔壁層50により3層×2ブロックで積層して構成したコア1を示したが、コア1における伝熱面積(流路FPの表面積)を十分に確保するため、流路層30の総数が多くなる場合がある。具体的な構成例として、たとえば図6では、合計21層の流路層30を備えたコア1の例を示している。図6のコア1では、第1流路11の流路層30(つまり、第1伝熱板21a)が12層設けられ、第2流路12の流路層30(つまり、第1伝熱板21b)が9層設けられている。
図6のコア1では、合計21層の流路層30を、7層ずつ、3つの流路ブロック40に区画する例を示している。そのため、図6のコア1では、3つの流路ブロック40の間をそれぞれ区画するように、2つの隔壁層50が設けられている。流路ブロック40は、積層方向の高さH1を有する。それぞれの隔壁層50は、2枚の第2伝熱板22により構成されている。
コア1の寸法の一例として、コア1の長辺の長さL0(図1参照)が約500mm、短辺の幅W0(図1参照)が約200mmである。伝熱板HP(第1伝熱板21および第2伝熱板22)は、厚みt=2mmを有し、流路層30は、厚み(流路FP、溝部23の高さ寸法)t1=1mmを有する。そのため、積層方向に並ぶ流路FP間の間隔t2=1mmであり、流路層30のピッチPC=2mmである。隔壁層50の厚みt3は、2枚の第2伝熱板22の厚み(2×t)+最外部の第1伝熱板21の流路層30以外の部分の厚み(t2)となるため、厚みt3=5mmを有する。図6のコア1では、コア1のZ方向の高さが約80mm〜100mm程度となる。コア1は、たとえば、7層×15ブロック程度とされうる。その場合、流路層30の総数は105層となり、コア1のZ方向の高さが約300mmとなる。
(熱交換器の作用)
次に、第1実施形態の熱交換器100の作用を説明する。図6に示したコア1の構造は、図7に示すように模式化することができる。図7は、流路FPと直交する断面におけるコア1の構造を模式化したものである。すなわち、コア1は、複数の流路ブロック40と、流路ブロック40の間を区画する隔壁層50とを、積層方向に並べた構造を有する。流路ブロック40は、流路FPを含んだ複数の流路層30により構成されているため、流路FPの集合からなる中空領域A2の周囲が、中実の壁部24に囲まれた構造と考える。隔壁層50は、全体が中実部51として考えてよい。
第1実施形態のように高温流体HFと低温流体LFとの熱交換により低温流体LFの冷熱を高温流体HF側に回収する熱交換器100では、最初に高温流体HFである不凍液(ブライン)がコア1内に供給され、その後、低温流体LFである極低温の液化水素が供給される。このため、コア1は、中実部も含む全体が高温流体HFの温度付近にある状態で、低温流体LFによって急激に冷やされることになる。
そのため、低温流体LFが流入すると、各流路ブロック40では、温度低下に伴って急激に収縮変形する。つまり、各流路ブロック40では、流路FPを取り囲む中実部(壁部24)が中央の中空領域A2に向けて収縮しようとする引張応力が生じる。一方、コア1のうち、隔壁層50の部分は、中空構造の流路ブロック40と比べて高い剛性を有し、変形量が流路ブロック40と比べて相対的に小さい。そのため、隔壁層50の上下でそれぞれの流路ブロック40に収縮変形が生じる場合でも、隔壁層50がY方向の両端間を支える支持構造として機能し、引張応力に抗して流路ブロック40の収縮変形を抑制する。
さらに、第1実施形態では、各流路ブロック40の最外層がいずれも、高温流体HFが流れる第1流路11を含んだ流路層30aにより構成されているため、隔壁層50は、一方の流路ブロック40の第1流路11と、他方の流路ブロック40の第1流路11と、に挟まれる。このため、流路ブロック40に低温流体LFが流入しても、隔壁層50の一方側と他方側とでは、同じ高温流体HFが流れることにより大きな温度差が発生せず、隔壁層50において収縮変形が効果的に抑制される。
これらの結果、第1実施形態の熱交換器100では、それぞれの低温流体LFの流入によってコア1が収縮変形する場合でも、隔壁層50はコア1内で収縮変形が生じる領域を分断させるように作用し、それぞれの流路ブロック40の部分で別々に収縮変形が発生すると見なせる。流路ブロック40における熱変形量の大きさは、流路ブロック40が含む流路層30の数(Z方向の高さ)に比例する。隔壁層50が、流路層30の総数(21層)より少ない積層数(7層)の流路ブロック40に区画するため、個々の流路ブロック40の熱変形量が抑制される。
ここで、たとえば図8に示す比較例として、図6および図7と同様に合計21層の流路層30が形成されたコア501であって、隔壁層50を設けない構成を考える。この場合、コア501には、図7の3つの流路ブロック40を合計した大きな中空領域A3が形成される。この場合に、低温流体LFの流入によって収縮変形が発生すると、21層分の高さH501に比例した大きな収縮変形が生じる。
一方、図7に示した第1実施形態のコア1では、個々の流路ブロック40において、それぞれ7層分の高さH1に比例した収縮変形が生じるのみであり、流路間に発生する熱応力が抑制される。
図9は、流路層30の総数(積層数)に応じて発生する平均応力の変化を構造解析によって算出したグラフである。グラフの縦軸は、平均応力の大きさを表し、グラフの横軸は、流路層の積層数を表す。平均応力は、1つの流路層30において隣接する流路FP同士の間の壁部24における応力の平均値である。
図9から分かるように、流路層の積層数が大きくなるほど、平均応力は大きくなる。平均応力は、積層数が増大するに従って増加量が減少し、飽和する傾向にある。図9では、積層数が7層、13層、19層、25層、50層について平均応力を算出しているが、図8に示した21層のコア501(比較例)の平均応力は、19層と25層との間の値になる(破線部参照)。一方、図6および図7に示した第1実施形態のコア1では、合計21層の流路層30が隔壁層50によって7層×3ブロックに区画された結果、平均応力は7層のみのコアと同等の値まで低減することがわかる。
このように、第1実施形態のコア1では、隔壁層50によって区画された各流路ブロック40が独立して熱変形を生じると見なせる場合、流路ブロック40に含まれる流路層30の積層数によって、流路ブロック40内部の壁部24における応力の大きさが決まる。そのため、流路ブロック40に含まれる流路層30の積層数は、たとえば設計仕様において設定される許容値VAを下回る平均応力となる範囲内で最大の値に決定され、隔壁層50の数は、決定された流路層30の積層数と、コア1に設ける流路層30の総数とによって決定される。
(熱交換器の製造方法)
次に、図10を参照して、第1実施形態の熱交換器100の製造方法を説明する。
ステップS1において、溝部23を有する第1伝熱板21が形成される。溝部23が形成されていない所定寸法の伝熱板HPが複数用意され、伝熱板HPに対して、たとえばエッチングなどにより流路形状に合わせて溝部23が形成される。これにより、図3および図4に示した第1伝熱板21aおよび第1伝熱板21bが、それぞれ所定枚数形成される。図6の例の場合、12枚の第1伝熱板21aと、9枚の第1伝熱板21bとが形成される。
また、一部の伝熱板HPは、溝部23が形成されることなく、そのまま第2伝熱板22とされる。図6の例では、1層の隔壁層50が2枚の第2伝熱板22により構成されるため、合計4枚の第2伝熱板22が用意される。この他、コア1の最外部に設けられるサイドプレート4が一対準備される。サイドプレート4についても同じ伝熱板HPを所定枚数積層することによって構成されうる。
ステップS2において、それぞれの第1伝熱板21と第2伝熱板22とが積層される。たとえば図6に示した順に、積層方向下側から、サイドプレート4、流路ブロック40を構成する第1伝熱板21aおよび21b、隔壁層50を構成する第2伝熱板22、流路ブロック40を構成する第1伝熱板21aおよび21b、隔壁層50を構成する第2伝熱板22、流路ブロック40を構成する第1伝熱板21aおよび21b、サイドプレート4というように各部材が積層される。
ステップS3において、ステップS2で形成された各部材の積層体に対して拡散接合が行われる。拡散接合は、真空または不活性ガス中などの雰囲気中で、積層体を加熱するとともに、積層体を積層方向に加圧(圧縮)することにより行われる。これにより、各部材の接合面に生じる原子の拡散によって、各部材が一体化して接合される。この結果、複数の流路ブロック40が隔壁層50によって区画されたコア1が形成される。
第1実施形態では、隔壁層50が第2伝熱板22によりコア1の一部として構成され、拡散接合により他の流路層30とまとめて同一工程で一体化される。そのため、たとえば1つの流路ブロック40を含むコアを3つ形成して、コアとコアとの間に隔壁層50に相当する部材を接合する場合と比べて、工数が低減される。また、拡散接合により、隔壁層50と各流路ブロック40とが強固に接合(一体化)される。
図10では省略するが、コア1が形成されると、図1に示したヘッダ部5がコア1の端面にそれぞれ接合され、コア1の端面から露出する第1流路11および第2流路12の開口がそれぞれ覆われる。ヘッダ部5は、たとえば溶接によりコア1に接合される。これにより、各流路ブロック40に含まれる第1流路11が、それぞれ一対のヘッダ部5を介して第1入口2aおよび第1出口2bと接続する。各流路ブロック40に含まれる第2流路12が、それぞれ一対のヘッダ部5を介して第2入口3aおよび第2出口3bと接続する。
以上により、第1実施形態の熱交換器100が製造される。
(第1実施形態の効果)
第1実施形態では、以下のような効果を得ることができる。
第1実施形態では、上記のように、複数の流路層30をそれぞれ含んで構成された複数の流路ブロック40の間を区画するように隔壁層50を配置するので、伝熱面積を確保するために伝熱板HPの積層数を多くして流路層30の総数を多くした場合であっても、それらの流路層30を、隔壁層50によって、より積層数の少ない複数の流路ブロック40に区分することができる。そして、隔壁層50が積層方向に並ぶ流路FP間の間隔t2よりも大きい厚みt3を有するので、隔壁層50では、単純に流路層30を積層しただけの場合よりも高い剛性を確保することができる。そのため、隔壁層50では、流体の温度差に起因する熱変形(熱膨張または熱収縮)を流路層30よりも小さくできる。この結果、コア1全体で見ると、流路ブロック40の間の隔壁層50が流路ブロック40の変形を抑制する支持構造として機能し、積層方向に並んだ複数の流路ブロック40の各々が熱変形を生じても、熱変形の影響が隣の流路ブロック40に及ぶことを抑制することができる。熱変形の大きさは変形する部分の長さに比例するため、隔壁層50によって流路層30の総数よりも少ない積層数に区画された個々の流路ブロック40では熱変形量を低減でき、その分だけ熱応力を低減することができる。以上の結果、伝熱板HPの積層数を多くした場合にも、大きな温度差を有する流体間の熱交換に伴い発生する熱応力を低減することができる。
また、流路FPと直交する断面において、隔壁層50における中実部51の割合が、流路層30における中実部(壁部24)の割合よりも大きいので、流路ブロック40を構成する個々の流路層30よりも隔壁層50の剛性を容易に高くすることができる。その結果、流路ブロック40間の熱変形を効果的に抑制することができる。
また、隔壁層50が、流路FPと直交する断面のうち流路層30に沿った方向において、流路層30における流路FPが形成された範囲の一端から他端までの範囲に亘って連続した中実部51を含むので、隔壁層50の中実部51によって、流路ブロック40の間の隔壁層50の領域において、流路FPが形成された範囲の一端から他端までを支持する支持構造を形成することができる。たとえば流路ブロック40内の流路FPに極低温の流体が流通して流路ブロック40が収縮変形する場合に、隔壁層50では、中実部51によって流路層30に沿った方向の収縮変形に対抗して支持することができる。これにより、流路ブロック40の熱変形量を低減して熱応力を効果的に低減することができる。
また、流路層30が、拡散接合により流路FPを構成する溝部23が形成された伝熱板HPからなる第1伝熱板21により構成され、隔壁層50が、溝部23が未形成の伝熱板HPからなる第2伝熱板22により構成されるので、流路層30と隔壁層50とを、共通仕様の伝熱板HP(板部材)から形成することができる。このため、第1伝熱板21と第2伝熱板22とをそれぞれ別々の仕様の伝熱板HP(板部材)から形成する場合と比べて、コア1を構成する部品種別の数を低減することができるので、コア1に隔壁層50を設ける場合でも容易に熱交換器100を製造することができる。
また、隔壁層50が、積層された複数の第2伝熱板22により構成されているので、第1伝熱板21と第2伝熱板22とをそれぞれ共通仕様の伝熱板HP(板部材)から形成する場合でも、第2伝熱板22の積層することによって隔壁層50の厚みt3を確保することができる。また、第2伝熱板22の積層数によって隔壁層50の厚みt3を容易に調節することができる。
また、積層方向における隔壁層50の厚みt3が、流路ブロック40を構成する流路層30のピッチPCよりも大きいので、隔壁層50の剛性を確保することができ、流路ブロック40の熱変形(熱膨張または熱収縮)および熱変形に起因する熱応力を効果的に抑制できる。
また、流路ブロック40を構成する各流路層30と、隔壁層50とが、同一材料により構成され、接合材を介さずに拡散接合されているので、同一材料により構成された流路層30と隔壁層50との間で線膨張係数が一致し、接合部分における熱変形量の差に起因する応力の発生を低減できる。また、拡散接合では、接合面の材料同士が原子レベルで一体化するので、流路層30と隔壁層50とがはんだなどの接合材を介して接合する場合と比べて、より強固に接合することができる。その結果、熱変形に起因して接合部分に疲労破壊などが生じることを抑制できる。また、仮にはんだなどの接合材によって流路ブロック40を構成する各層(流路層30、隔壁層50)を接合した場合、コア1の側面にヘッダ部5を溶接する際の熱の影響によって各層間のはんだ接合部に欠陥が発生し、流路ブロック40間で流体(高温流体HF、低温流体LF)の漏れが発生しやすくなる。これに対して、本実施形態の上記構成によれば、流路ブロック40を構成する各層が、より強固に接合されるので、ヘッダ部5の溶接時に熱の影響があったとしても欠陥が発生しにくく、流路ブロック40間での流体の漏れを抑制することができる。
(第2実施形態)
次に、図11を参照して、第2実施形態について説明する。この第2実施形態では、溝部23が未形成の伝熱板HPからなる第2伝熱板22により隔壁層50を構成した上記第1実施形態と異なり、溝部23が形成された第3伝熱板25により隔壁層50を構成した例について説明する。なお、第2実施形態において、上記第1実施形態と同様の構成については、同一の符号を用いるとともに説明を省略する。
図11に示すように、第2実施形態の熱交換器200のコア101では、流路層30は、拡散接合により流路FPを構成する溝部23が形成された第1伝熱板21、および、溝部23が形成され第1伝熱板21よりも大きい厚みを有する第3伝熱板25により構成され、隔壁層50は、第3伝熱板25のうち溝部23以外の部分により構成されている。なお、図11では、便宜的に、コア101を構成する各伝熱板HPの境界面を実線で示している。
流路層30を構成する第1伝熱板21の構成は、上記第1実施形態と同様である。第1伝熱板21は、第1流路11が形成された流路層30aを構成する第1伝熱板21aと、第2流路12が形成された流路層30bを構成する第1伝熱板21bとを含む。第2実施形態では、第1伝熱板21の厚みをt4(t4=t1+t2)とする。
隔壁層50を構成する第3伝熱板25は、上記第1実施形態の第2伝熱板22とは異なり、隔壁層50を構成するとともに、流路ブロック40に含まれる最外部(最下部)の流路層30を構成する。
第3伝熱板25は、一方表面(上面)に溝部23が形成されており、他方表面(下面)は平坦面となっている。第3伝熱板25は、第1流路11または第2流路12を構成する溝部23と、流路を区画する壁部24とを含む。
流路ブロック40の最外部に第1流路11を含む流路層30aが配置される場合、第3伝熱板25には第1流路11を構成する溝部23が形成される。流路ブロック40の最外部に第2流路12を含む流路層30bが配置される場合、第3伝熱板25には第2流路12を構成する溝部23が形成される。
第3伝熱板25の厚みt5は、第1伝熱板21の厚みt4よりも大きい。第3伝熱板25の厚みt5は、流路層30の厚みt1と、隔壁層50の厚みt3との合計に相当する。隔壁層50は、積層方向に並ぶ流路FP間の間隔t2よりも大きい厚みt3を有する。隔壁層50の厚みt3は、流路ブロック40を構成する流路層30のピッチPCよりも大きい。第3伝熱板25のうち、厚みt3の部分は中実部51により構成されている。
第2実施形態では、第1伝熱板21を形成するための厚みt4の伝熱板HPと、第3伝熱板25を形成するための厚みt5の伝熱板HPとが、別々に用意される。それぞれの伝熱板HPに対して、エッチングなどにより流路形状に合わせた溝部23が形成される。そして、図11に示したように所定の順序で、それぞれの第1伝熱板21と第3伝熱板25とが積層され、形成された積層体に対して拡散接合が行われる。これにより、第1伝熱板21と第3伝熱板25とが一体化して、複数の流路ブロック40が隔壁層50によって区画されたコア101が形成される。
第2実施形態のその他の構成は、上記第1実施形態と同様である。
(第2実施形態の効果)
第2実施形態でも、上記第1実施形態と同様に、複数の流路層30をそれぞれ含んで構成された複数の流路ブロック40の間を区画するように隔壁層50を配置し、隔壁層50が積層方向に並ぶ流路FP間の間隔t2よりも大きい厚みt3を有するので、伝熱板HPの積層数を多くした場合にも、大きな温度差を有する流体間の熱交換に伴い発生する熱応力を低減することができる。
また、第2実施形態では、流路層30を第1伝熱板21および第3伝熱板25により構成し、隔壁層50を、第3伝熱板25のうち溝部23以外の部分により構成したので、第3伝熱板25によって、流路ブロック40を構成する流路層30のうち積層方向の最外部に配置される流路層30と、その流路層30に隣接する隔壁層50とをまとめて構成することができる。
第2実施形態のその他の効果は、上記第1実施形態と同様である。
(変形例)
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
たとえば、上記第1および第2実施形態では、高温流体HFが入口温度で環境温度(約20℃)と略等しく、低温流体LFが入口温度で約−253℃の極低温である例を示したが、本発明はこれに限られない。たとえば、高温流体HFが極高温で、低温流体LFが環境温度付近であってもよいし、高温流体HFが極高温で、低温流体LFが極低温であってもよい。本発明は、流体間の温度差に起因する熱応力を低減することが可能であるので、流体間の温度差が大きい場合に特に有効である。
また、上記第1および第2実施形態では、第1流路11を含む流路層30aと、第2流路12を含む流路層30bとを、交互に積層した例を示したが、本発明はこれに限られない。本発明では、流路層30aと流路層30bとを必ずしも交互に積層しなくともよい。たとえば、Z方向に沿って、流路層30a、流路層30b、流路層30a、流路層30a、流路層30b・・・、となるように、1層の流路層30bに対して2層(複数層)の流路層30aを積層させてもよい。逆に、2層(複数層)の流路層30bに対して1層の流路層30aを積層させてもよい。
また、上記第1および第2実施形態では、高温流体HFを流通させる流路層30aと、低温流体LFを流通させる流路層30bとを、コア1に設けた例を示したが、本発明はこれに限られない。本発明では、3種類以上の流体を流通させるように、3種類以上の流路層30を設けてもよい。
また、図3および図4において、流路FP(第1流路11、第2流路12)の平面形状の例を示したが、本発明はこれに限られない。本発明では、流路FP(第1流路11、第2流路12)の平面形状は図示した形状に限定されず、任意である。
一例として、流路FP(第1流路11、第2流路12)が、図3および図4のように伝熱板HPの概ね全範囲に設けられている場合に限らず、流路FP(第1流路11、第2流路12)が、伝熱板HPの一部のみ(たとえば片側半分のみ)の範囲に設けられていてもよい。
また、上記第1および第2実施形態では、厚みt3を有する隔壁層50の全体が中実部51により構成される例を示したが、本発明はこれに限られない。図12に示す変形例のように、隔壁層50が、中空部を含んでいてもよい。図12に示すコア201では、隔壁層50が第2伝熱板122により構成されている。そして、第2伝熱板122の一方表面に、溝部123が形成されている。各伝熱板が拡散接合された結果、隔壁層50に、溝部123によって構成された中空部が形成されている。溝部123は、たとえば、位置合わせ用の溝などである。図12においても、隔壁層50は、流路FPが形成された範囲REの一端から他端までに亘って連続した中実部51を含みうる。
また、上記第1および第2実施形態では、隔壁層50が、流路FPが形成された範囲REの一端から他端までに亘って連続した中実部51を含む例を示したが、本発明はこれに限られない。本発明では、中実部51が、範囲REの一端から他端に亘って連続していなくてもよい。
また、上記第1および第2実施形態では、流路FPと直交する断面において、隔壁層50における中実部51の割合が、流路層30における中実部(壁部24)の割合よりも大きい例を示したが、本発明はこれに限られない。本発明では、隔壁層50と流路層30とで、中実部の割合が等しくてもよい。
また、上記第1および第2実施形態では、流路層30を第1伝熱板21により構成し、隔壁層50を第2伝熱板22(および最外部の第1伝熱板21の一部)により構成した例を示したが、本発明はこれに限られない。本発明では、隔壁層50を、第2伝熱板22に代えて、第1伝熱板21により構成してもよい。この場合、コア1の流路ブロック40および隔壁層50の両方を、全て第1伝熱板21によって構成し得る。この場合に隔壁層50において溝部23によって形成される中空部は、入口および出口を塞いで、高温流体HFや低温流体LFが流入しないようにすればよい。
また、上記第1実施形態では、積層された複数(2枚)の第2伝熱板22によって隔壁層50を構成した例を示したが、本発明はこれに限られない。本発明では、1枚または3枚以上の第2伝熱板22によって隔壁層50を構成してもよい。
また、上記第1および第2実施形態では、隔壁層50の厚みt3が流路ブロック40を構成する流路層30のピッチPCよりも大きい例を示したが、本発明はこれに限られない。隔壁層50の厚みt3は、流路層30のピッチPC以下でもよい。
また、上記第1および第2実施形態では、流路ブロック40内に含まれる流路層30(30a、30b)が、積層方向に所定のピッチPCで配列されている例を示したが、本発明はこれに限られない。各流路層30のピッチPCは、一定でなくてもよい。たとえば、第1伝熱板21aと第1伝熱板21bとで、厚みtが異なっていてもよく、その場合、流路層30のピッチPCは一定にならない。同様に、流路間の(最小)間隔t2の大きさも、一定でなくてもよい。すなわち、厚みが異なる複数種類の伝熱板HPを用いる場合や、溝部23の深さt1が異なる複数種類の伝熱板HPを用いる場合などでは、間隔t2の大きさは一定にならない。
また、上記第1実施形態では、第1流路11に対する第1入口2aおよび第1出口2bと、第2流路12に対する第2入口3aおよび第2出口3bとを、それぞれ入口側と出口側との対(ペア)で設けた例を示したが、本発明はこれに限られない。各流路に対する流体の入口および出口は、一対一のペアで設けなくてもよい。たとえば、入口(2aまたは3a)が1つで、出口(2bまたは3b)が複数でもよいし、入口(2aまたは3a)が複数で、出口(2bまたは3b)が1つでもよい。入口(2aまたは3a)および出口(2bまたは3b)がどちらも複数であってよいし、その場合、入口の個数と出口の個数とは同じでも異なっていてもよい。なお、入口または出口が形成されるヘッダ部5についても同様であり、入口側のヘッダ部5と、出口側のヘッダ部5とが、異なる数で設けられていてもよい。入口側および出口側のヘッダ部5の数は、それぞれ1つでも複数でもよい。
また、上記第1実施形態では、各流路層30と隔壁層50とが、同一材料により構成された例を示したが、各流路層30と隔壁層50とは、拡散接合可能であれば、異種材料によって構成されていてもよい。上述の通り、伝熱板HPは、ステンレス鋼材のほか、アルミ系金属、銅系金属などのステンレス鋼材以外の金属材料により形成されてもよい。また、ステンレス鋼材でも、たとえば第1伝熱板21がSUS316で、第2伝熱板22がSUS304で構成されるなど、含有成分(組成)が異なる複数種類のステンレス鋼材が用いられてもよい。各流路層30を構成する第1伝熱板21aと第1伝熱板21bとについても同様で、互いに異なる種類の材料、または同一材料に分類されるが含有成分(組成)が異なる材料によって構成されていてもよい。
1、101、201 コア
11 第1流路(流路)
12 第2流路(流路)
21(21a、21b) 第1伝熱板
22、122 第2伝熱板
23、123 溝部
25 第3伝熱板
30(30a、30b) 流路層
40 流路ブロック
50 隔壁層
51 中実部
100、200 熱交換器
FP 流路
HF 高温流体
HP 伝熱板
LF 低温流体
RE 流路が形成された範囲
t2 流路間の間隔
t3 隔壁層の厚み
上記目的を達成するために、この発明による拡散接合型熱交換器は、複数の伝熱板が積層されて拡散接合されたコアを備え、コアは、流路が形成された複数の流路層をそれぞれ含んで構成された複数の流路ブロックと、複数の流路ブロックの間を区画するように配置された隔壁層と、を含み、積層方向における隔壁層の厚みが、流路ブロックを構成する流路層のピッチよりも大きい。なお、本明細書において、「流路層」および「隔壁層」は、それぞれコアの一部であって、積層され拡散接合された複数の伝熱板のうち少なくとも1つによって構成され、伝熱板の形状を反映して積層方向と直交する方向に延びる平板状の層として構成された領域である。「流路層」は、積層方向における流路の高さ寸法と一致する厚みを有する層である。ここで、「流路層のピッチ」とは、流路ブロック内における流路層の形成間隔であり、積層方向に隣接する流路層の同一部位間の距離である。
この発明による拡散接合型熱交換器では、上記のように、複数の流路層をそれぞれ含んで構成された複数の流路ブロックの間を区画するように隔壁層を配置し、積層方向における隔壁層の厚みを、積層方向に並ぶ流路間の間隔よりも大きくする。これにより、伝熱面積を確保するために伝熱板の積層数を多くして流路層の総数を多くした場合であっても、それらの流路層を、隔壁層によって、より積層数の少ない複数の流路ブロックに区分することができる。そして、隔壁層が積層方向に並ぶ流路間の間隔よりも大きい厚みを有するので、隔壁層では、単純に流路層を積層しただけの場合よりも高い剛性を確保することができる。そのため、隔壁層では、流体の温度差に起因する熱変形(熱膨張または熱収縮)を流路層よりも小さくできる。この結果、コア全体で見ると、流路ブロックの間の隔壁層が流路ブロックの変形を抑制する支持構造として機能し、積層方向に並んだ複数の流路ブロックの各々が熱変形を生じても、熱変形の影響が隣の流路ブロックに及ぶことを抑制することができる。熱変形の大きさは変形する部分の長さに比例するため、隔壁層によって流路層の総数よりも少ない積層数に区画された個々の流路ブロックでは熱変形量を低減でき、その分だけ熱応力を低減することができる。以上の結果、伝熱板の積層数を多くした場合にも、大きな温度差を有する流体間の熱交換に伴い発生する熱応力を低減することができる。また、流路層のピッチよりも大きい厚みを有する隔壁層を設けることができるので、隔壁層の剛性を確保することができる。これにより、流路ブロックの熱変形(熱膨張または熱収縮)および熱変形に起因する熱応力を効果的に抑制できる。

Claims (8)

  1. 複数の伝熱板が積層されて拡散接合されたコアを備え、
    前記コアは、流路が形成された複数の流路層をそれぞれ含んで構成された複数の流路ブロックと、複数の前記流路ブロックの間を区画するように配置された隔壁層と、を含み、
    積層方向における前記隔壁層の厚みが、積層方向に並ぶ前記流路間の間隔よりも大きい、拡散接合型熱交換器。
  2. 前記流路と直交する断面において、前記隔壁層における中実部の割合は、前記流路層における中実部の割合よりも大きい、請求項1に記載の拡散接合型熱交換器。
  3. 前記隔壁層は、前記流路と直交する断面のうち前記流路層に沿った方向において、前記流路層における前記流路が形成された範囲の一端から他端までに亘って連続した中実部を含む、請求項1に記載の拡散接合型熱交換器。
  4. 前記流路層は、拡散接合により前記流路を構成する溝部が形成された前記伝熱板からなる第1伝熱板により構成され、
    前記隔壁層は、前記溝部が未形成の前記伝熱板からなる第2伝熱板により構成されている、請求項1に記載の拡散接合型熱交換器。
  5. 前記隔壁層は、積層された複数の前記第2伝熱板により構成されている、請求項4に記載の拡散接合型熱交換器。
  6. 前記流路層は、拡散接合により前記流路を構成する溝部が形成された第1伝熱板、および、前記溝部が形成され前記第1伝熱板よりも大きい厚みを有する第3伝熱板により構成され、
    前記隔壁層は、前記第3伝熱板のうち前記溝部以外の部分により構成されている、請求項1に記載の拡散接合型熱交換器。
  7. 積層方向における前記隔壁層の厚みが、前記流路ブロックを構成する前記流路層のピッチよりも大きい、請求項1に記載の拡散接合型熱交換器。
  8. 前記流路ブロックを構成する各前記流路層と、前記隔壁層とが、同一材料により構成され、接合材を介さずに拡散接合されている、請求項1に記載の拡散接合型熱交換器。
JP2020557577A 2018-11-22 2019-11-20 拡散接合型熱交換器 Active JP7110390B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018219165 2018-11-22
JP2018219165 2018-11-22
PCT/JP2019/045353 WO2020105658A1 (ja) 2018-11-22 2019-11-20 拡散接合型熱交換器

Publications (2)

Publication Number Publication Date
JPWO2020105658A1 true JPWO2020105658A1 (ja) 2021-09-30
JP7110390B2 JP7110390B2 (ja) 2022-08-01

Family

ID=70773135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020557577A Active JP7110390B2 (ja) 2018-11-22 2019-11-20 拡散接合型熱交換器

Country Status (5)

Country Link
US (1) US20220011053A1 (ja)
EP (1) EP3885691A4 (ja)
JP (1) JP7110390B2 (ja)
KR (1) KR102587020B1 (ja)
WO (1) WO2020105658A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102600264B1 (ko) * 2021-12-09 2023-11-13 한국항공우주연구원 열교환 시스템 및 이를 이용하는 열교환 방법
EP4339534A1 (de) 2022-09-14 2024-03-20 Ecop Technologies GmbH Rotor
CN115615233B (zh) * 2022-11-08 2023-04-07 中国核动力研究设计院 流体承载组件及热量交换装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039255A (ja) * 2006-08-03 2008-02-21 Toshiba Corp 熱交換器及びその製造方法
WO2017115723A1 (ja) * 2015-12-28 2017-07-06 株式会社神戸製鋼所 中間媒体式気化器
JP2017146092A (ja) * 2012-11-22 2017-08-24 アルファ・ラヴァル・コアヘクス・リミテッド 3次元チャネルガス熱交換器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2741950B2 (ja) * 1990-10-26 1998-04-22 松下冷機株式会社 積層式熱交換器
JP2005180806A (ja) * 2003-12-19 2005-07-07 Nissan Motor Co Ltd 熱交換器およびその製造方法
JP6215539B2 (ja) * 2013-02-06 2017-10-18 株式会社神戸製鋼所 熱交換器
JP6296775B2 (ja) * 2013-12-13 2018-03-20 株式会社前川製作所 マイクロチャンネル熱交換器
JP6839975B2 (ja) * 2015-12-28 2021-03-10 株式会社神戸製鋼所 中間媒体式気化器
JP6757150B2 (ja) * 2016-03-17 2020-09-16 株式会社神戸製鋼所 積層型流体加温器及び積層型流体加温器による流体の加温方法
JP6938960B2 (ja) * 2017-02-28 2021-09-22 株式会社富士通ゼネラル マイクロ流路熱交換器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039255A (ja) * 2006-08-03 2008-02-21 Toshiba Corp 熱交換器及びその製造方法
JP2017146092A (ja) * 2012-11-22 2017-08-24 アルファ・ラヴァル・コアヘクス・リミテッド 3次元チャネルガス熱交換器
WO2017115723A1 (ja) * 2015-12-28 2017-07-06 株式会社神戸製鋼所 中間媒体式気化器

Also Published As

Publication number Publication date
JP7110390B2 (ja) 2022-08-01
EP3885691A1 (en) 2021-09-29
KR102587020B1 (ko) 2023-10-10
KR20210091783A (ko) 2021-07-22
EP3885691A4 (en) 2021-12-22
US20220011053A1 (en) 2022-01-13
WO2020105658A1 (ja) 2020-05-28

Similar Documents

Publication Publication Date Title
JP7110390B2 (ja) 拡散接合型熱交換器
JP6590917B2 (ja) プレート積層型熱交換器
KR101655889B1 (ko) 열교환 반응기 및 이의 제조방법
US20220282931A1 (en) Heat exchanger device
JP2013205009A (ja) プレート型熱交換器
JP6321067B2 (ja) 拡散接合型熱交換器
JP2022186860A (ja) 熱輸送デバイスおよびその製造方法
JP2012193882A (ja) 熱交換器及びその製造方法
JP4681528B2 (ja) 熱交換器のヘッダ構造
JP6938960B2 (ja) マイクロ流路熱交換器
JP2005291546A (ja) 熱交換器
JP2874517B2 (ja) 積層式熱交換器
JP6162836B2 (ja) 熱交換器
JP2009192140A (ja) プレート式熱交換器
JP2005180806A (ja) 熱交換器およびその製造方法
JP2006317026A (ja) 積層型熱交換器及びその製造方法
US10330391B2 (en) Heat exchanger assembly
JP7206609B2 (ja) 金属積層体及び金属積層体の製造方法
JP6007041B2 (ja) プレート式熱交換器
JPH06257983A (ja) 積層型熱交換器
US20130048261A1 (en) Heat exhanger
JP2023079296A (ja) 積層体の製造方法、熱交換器の製造方法、積層体、及び熱交換器
CN114888423B (zh) 一种基于扩散焊接的板翅式换热器制作方法
JP2015200445A (ja) 熱交換器および熱交換器の製造方法
JP7356870B2 (ja) 積層型熱交換器のフランジ構造

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220720

R150 Certificate of patent or registration of utility model

Ref document number: 7110390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150