WO2017170091A1 - 拡散接合型熱交換器 - Google Patents

拡散接合型熱交換器 Download PDF

Info

Publication number
WO2017170091A1
WO2017170091A1 PCT/JP2017/011612 JP2017011612W WO2017170091A1 WO 2017170091 A1 WO2017170091 A1 WO 2017170091A1 JP 2017011612 W JP2017011612 W JP 2017011612W WO 2017170091 A1 WO2017170091 A1 WO 2017170091A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid passage
heat transfer
transfer plate
fluid
passage portions
Prior art date
Application number
PCT/JP2017/011612
Other languages
English (en)
French (fr)
Inventor
藤田 泰広
達也 森川
高橋 優
Original Assignee
住友精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精密工業株式会社 filed Critical 住友精密工業株式会社
Priority to EP17774632.8A priority Critical patent/EP3438591A4/en
Priority to US16/081,312 priority patent/US20190086155A1/en
Publication of WO2017170091A1 publication Critical patent/WO2017170091A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/002Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/02Heat exchange conduits with particular branching, e.g. fractal conduit arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • F28F2275/061Fastening; Joining by welding by diffusion bonding

Definitions

  • the present invention relates to a diffusion bonding type heat exchanger, and more particularly to a diffusion bonding type heat exchanger having a configuration in which a plurality of heat transfer plates each having a groove-like fluid passage portion are laminated and diffusion bonded.
  • a diffusion bonding type heat exchanger having a configuration in which a plurality of heat transfer plates each having a groove-like fluid passage portion are laminated and diffusion bonded is known.
  • Such a diffusion bonding type heat exchanger is disclosed in, for example, Japanese Patent Application Laid-Open No. 2013-155971.
  • Japanese Patent Application Laid-Open No. 2013-155971 discloses a heat exchanger including a core in which first heat transfer plates and second heat transfer plates are alternately laminated and diffusion-bonded. There are four types of A, B, C, D in the first heat transfer plate, and a plurality of them are provided.
  • a 2nd heat exchanger plate is 1 type of E, and two or more are provided. Each of the heat transfer plates is laminated on the core in the order of EAE ..., EBE ..., ECE ..., EDE ....
  • the external shapes of the four types of first heat transfer plates and the one type of second heat transfer plates are the same.
  • 2013-155971 is configured as an intercooler (intercooler) of a multistage compression system using four compressors.
  • the fluid (hydrogen) after passing through the first-stage compressor to the fourth-stage compressor flows, and the second heat transfer plate of E A refrigerant (cooling water) flows through the hot plate.
  • the core is provided with a plurality of ports corresponding to the heat transfer plates A to E that connect the heat transfer plates to the connection passages penetrating in the thickness direction. Distribution of the fluid to each of the heat transfer plates A to E is performed via a corresponding port.
  • JP 2013-155971 in order to handle a plurality of types of fluids with a common diffusion bonding type heat exchanger, the type of component (type of heat transfer plate) and the number of components (total number of heat transfer plates) are There is a problem of increasing.
  • each heat transfer plate is made common in order to laminate and bond four types of first heat transfer plates and one type of second heat transfer plates. If the load on the first heat transfer plate is greatly different, there is a problem that the degree of freedom decreases and optimization becomes difficult.
  • the present invention has been made in order to solve the above-described problems, and one object of the present invention is to provide component types and a plurality of types of fluids even when a plurality of types of fluids are handled by a common diffusion bonding type heat exchanger. It is an object of the present invention to provide a diffusion bonding type heat exchanger that can reduce the number of parts and that can sufficiently secure the degree of freedom of the configuration of the fluid passage portion.
  • a diffusion bonding type heat exchanger comprises a core in which a first heat transfer plate and a second heat transfer plate each having a groove-like fluid passage portion are laminated and diffusion bonded.
  • the hot plate includes a plurality of first fluid passage portions connected to different pairs of first ports and isolated from each other.
  • the first heat transfer plate which includes a plurality of first fluid passage portions connected to different pairs of first ports and isolated from each other.
  • a first heat transfer plate in which a plurality of types of first fluid passage portions are formed can be provided. That is, instead of providing a heat transfer plate for each type of fluid, a common first heat transfer plate can be provided for a plurality of types of fluids.
  • a plurality of pairs of second ports are provided, and the second heat transfer plate is formed to correspond to the first fluid passage portion of the first heat transfer plate,
  • the plurality of second fluid passage portions are isolated from each other, and the plurality of second fluid passage portions are respectively connected to different pairs of second ports.
  • “corresponding” means a relationship in which most of the heat exchange is performed between the fluid flowing through one first fluid passage and the fluid flowing through the second fluid passage.
  • One first fluid passage portion may correspond to one second fluid passage portion, or one second fluid passage portion may correspond to a plurality of first fluid passage portions.
  • the heat exchange between fluids can be performed efficiently by forming a plurality of 2nd fluid passage parts so as to correspond to a plurality of 1st fluid passage parts. Further, by connecting the plurality of second fluid passage portions to different pairs of second ports, according to the amount of heat exchange between the fluids respectively flowing in the first fluid passage portion and the second fluid passage portion corresponding to each other.
  • the type and flow rate of the fluid flowing through each second fluid passage portion can be individually set for each second fluid passage portion.
  • the same number of second fluid passage portions as the first fluid passage portions are provided, and each second fluid passage portion overlaps the plurality of first fluid passage portions of the first heat transfer plate in plan view. Placed in position. If comprised in this way, a some 2nd fluid channel
  • one wide second fluid passage portion one second fluid passage portion corresponding to the plurality of first fluid passage portions
  • first fluid passage portion and the second fluid passage portion in a one-to-one correspondence, heat exchange is performed between the fluids flowing through the first fluid passage portion and the second fluid passage portion corresponding to each other.
  • the flow rate of the fluid flowing through the second fluid passage portion can be easily optimized.
  • each of the plurality of first fluid passage portions corresponds to an outlet corresponding to one end connected to the first port on the inlet side in the plane of the first heat transfer plate. It is formed in a long and narrow shape extending in the first direction toward the other end connected to the first port on the side, and is arranged side by side along a second direction orthogonal to the first direction.
  • the “elongated shape” is a shape in which one of the two directions (first direction) orthogonal to each other in the plane of the first heat transfer plate is the longitudinal direction and the other (second direction) is the short direction.
  • the flow rate can be easily improved even with a simple flow path shape by making the first fluid passage part an elongated shape from one end part to the other end part, compared with the case of a wide shape.
  • the load applied to the laminated body of the first heat transfer plate and the second heat transfer plate when diffusion bonding is performed tends to vary.
  • the ease of manufacturing is reduced. Therefore, by arranging the elongated first fluid passage portions extending in the first direction along the second direction, the vertical and horizontal dimensions of the outer shape of the entire first heat transfer plate are made closer to each other (the aspect ratio is made closer to 1). Therefore, it is possible to suppress the load variation at the time of performing diffusion bonding and improve the ease of manufacturing the core.
  • the plurality of first fluid passage portions are arranged apart from each other in the second direction on the same surface of the first heat transfer plate, and the first heat transfer plate is adjacent to the second direction.
  • a diffusion bonding surface with the second heat transfer plate is provided between the first fluid passage portions.
  • a diffusion bonding surface extending in the first direction can be formed between the plurality of first fluid passage portions arranged in the second direction on the surface of the first heat transfer plate, for example, the first heat transfer plate and Compared to the case where the second heat transfer plate is joined only at the outer peripheral portion of the surface of the heat transfer plate or the gap (partition) of the flow path constituting the first fluid passage portion, the first heat transfer plate and the second heat transfer plate are joined.
  • the diffusion bonding strength with the hot plate can be easily ensured.
  • the plurality of first fluid passage portions are respectively connected to the first port on the outlet side corresponding to the one end portion connected to the first port on the inlet side.
  • at least one first fluid passage portion of the plurality of first fluid passage portions includes a flow passage width, a flow passage length, a flow passage depth, and At least one of the number of flow paths is formed to be different from the other first fluid passage portions.
  • the heat exchange amount is not balanced.
  • the first fluid passage section the flow path width, the flow path length, the flow path depth, and the number of the flow paths
  • the amount of heat exchange can be easily finely adjusted for each first fluid passage portion.
  • the heat exchange amount can be optimized easily and accurately according to the load (heat exchange amount) for each type of the first fluid passage portion.
  • the present invention as described above, even when a plurality of types of fluids are handled by a common diffusion bonding type heat exchanger, the types of components and the number of components can be reduced, and the configuration of the fluid passage portion is provided. It is possible to provide a diffusion bonding type heat exchanger that can sufficiently secure the degree of freedom.
  • the configuration of the heat exchanger 100 according to the first embodiment will be described with reference to FIGS.
  • the heat exchanger 100 according to the first embodiment is a diffusion formed by laminating the first heat transfer plate 10 and the second heat transfer plate 20 each having a groove-shaped fluid passage portion and integrating them by diffusion bonding. This is a joining type plate heat exchanger.
  • the heat exchanger 100 is an example of the “diffusion bonding type heat exchanger” in the claims.
  • the heat exchanger 100 includes a core 1, a plurality of pairs (three pairs) of first ports 2, and a plurality of pairs (three pairs) of second ports 3.
  • the core 1 includes a plurality of first heat transfer plates 10 in which groove-shaped first fluid passage portions 11 (see FIG. 3) are formed, and groove-shaped second fluid passage portions 21 (see FIG. 2). 3), and a plurality of second heat transfer plates 20 formed thereon.
  • the core 1 is a heat exchange unit that exchanges heat between the fluid flowing through the first heat transfer plate 10 and the fluid flowing through the second heat transfer plate 20.
  • the first port 2 is an inlet / outlet for introducing and discharging a fluid to / from the first heat transfer plate 10 (first fluid passage portion 11), and is provided as a pair of an inlet side and an outlet side.
  • the second port 3 is an inlet / outlet for introducing or discharging a fluid to / from the second heat transfer plate 20 (second fluid passage portion 21), and is provided as a pair of an inlet side and an outlet side.
  • side plates 4 are respectively provided at both ends of the core 1 in the stacking direction (Z direction) of the first heat transfer plate 10 and the second heat transfer plate 20.
  • the core 1 is configured by alternately laminating and diffusion-bonding first heat transfer plates 10 and second heat transfer plates 20 each having a groove-like fluid passage portion formed therein. That is, the core 1 is formed in a rectangular box shape as a whole by sandwiching a laminate of the first heat transfer plate 10 and the second heat transfer plate 20 that are alternately stacked between the pair of side plates 4 and mutually connecting them by diffusion bonding. It is formed in (cuboid shape).
  • FIG. 2 shows an example in which three (three) first heat transfer plates 10 and four (four) second heat transfer plates 20 are alternately stacked.
  • the number of stacked layers is not limited to this, and an arbitrary number of layers may be stacked.
  • the lamination direction of the 1st heat exchanger plate 10 and the 2nd heat exchanger plate 20 shown in FIG. 2 be a Z direction.
  • the longitudinal direction of the core 1 when viewed from the Z direction is the X direction
  • the short direction of the core 1 is the Y direction.
  • the first heat transfer plate 10 and the second heat transfer plate 20 have a flat plate shape and are formed in a rectangular shape in plan view.
  • the first heat transfer plate 10 and the second heat transfer plate 20 have substantially the same planar shape, and both have a length L0 in the X direction (longitudinal direction) and a width W0 in the Y direction (short direction).
  • the first heat transfer plate 10 and the second heat transfer plate 20 have substantially the same thickness t, but the thickness t of the first heat transfer plate 10 and the second heat transfer plate 20 may be different from each other.
  • the first heat transfer plate 10 and the second heat transfer plate 20 are made of a stainless steel material.
  • the first heat transfer plate 10 and the second heat transfer plate 20 may be formed of a metal material having high thermal conductivity other than the stainless steel material.
  • the first fluid passage portion 11 and the second fluid passage portion 21 are formed on one surface 10a (upper surface) of the first heat transfer plate 10 and one surface 20a (upper surface) of the second heat transfer plate 20, respectively.
  • the other surface 10b (lower surface) of the first heat transfer plate 10 and the other surface 20b (lower surface) of the second heat transfer plate 20 are both flat surfaces.
  • the first heat transfer plate 10 is connected to different pairs of first ports 2 (first port 2 of the inlet side and outlet side pair) and is separated from each other.
  • a passage portion 11 is included. That is, the first heat transfer plate 10 is provided with a plurality of first fluid passage portions 11 that can circulate fluid independently of each other.
  • the first port 2 may be configured by other than a cylindrical tube member.
  • the first ports 2a, 2c, and 2e (2b, 2d, and 2f) may be collectively formed by forming through holes as many as the number of ports in a block-like member extending in the Y direction.
  • each of the three first fluid passage portions 11a, 11b, and 11c has an inlet 12 and an outlet 13 respectively.
  • the inlet 12 and the outlet 13 are examples of “one end” and “the other end” in the claims, respectively.
  • Both the inlet 12 and the outlet 13 are circular through holes that penetrate the first heat transfer plate 10 in the thickness direction.
  • through-holes 5 c similar to the inlet 12 and the outlet 13 are also provided at corresponding positions (positions overlapping in the Z direction) of the second heat transfer plate 20 and the upper side plate 4 ( 6 places).
  • stacked 1st heat exchanger plate 10 and the 2nd heat exchanger plate 20 (side plate 4) are connected to the thickness direction (Z direction), and the inside of the core 1 as a whole
  • the three introduction paths 5a extending in the Z direction are configured.
  • the introduction path 5a is connected to the first ports 2a, 2c and 2e on the inlet side.
  • each lead-out port 13 and the through hole 5c are connected to constitute three lead-out paths 5b extending in the Z direction within the core 1 as a whole.
  • the lead-out path 5b is connected to the first ports 2b, 2d and 2f on the outlet side.
  • path part 21 of the 2nd heat exchanger plate 20 is not connected with the through-hole 5c, and is mutually isolated.
  • the heat exchanger 100 is used as an intermediate cooler (intercooler) of a multistage compression system including a plurality of compressors.
  • the fluid after passing through the first stage compressor (fluid A) is supplied to the first fluid passage portion 11a
  • the fluid after passing through the second stage compressor (fluid B).
  • the fluid (C fluid) after passing through the third-stage compressor is supplied to the first fluid passage portion 11c.
  • the fluids A, B, and C are common, but the pressures are different.
  • the fluid may be a gas or a liquid.
  • each of the plurality of first fluid passage portions 11 corresponds from the introduction port 12 connected to the first port 2 on the inlet side in the surface of the first heat transfer plate 10 (in the one surface 10a). It is formed in an elongated shape extending in the first direction toward the outlet port 13 connected to the first port 2 on the outlet side. And the some 1st fluid channel
  • path part 11 is arrange
  • the first direction matches the X direction
  • the second direction matches the Y direction. That is, the three first fluid passage portions 11 each extend along the longitudinal direction of the core 1 (the long side of the first heat transfer plate 10). And the three 1st fluid channel
  • the plurality of first fluid passage portions 11 are arranged on the same surface (one surface 10a) of the first heat transfer plate 10 so as to be separated from each other in the second direction.
  • the 1st heat exchanger plate 10 has the diffusion joining surface 14 with the 2nd heat exchanger plate 20 between the 1st fluid passage parts 11 adjacent to the 2nd direction.
  • the first fluid passage portion 11 a and the first fluid passage portion 11 b are arranged with a gap CL ⁇ b> 1 in the Y direction.
  • the first fluid passage portion 11b and the first fluid passage portion 11c are arranged with a gap CL2 in the Y direction.
  • the interval CL1 and the interval CL2 may be the same or different.
  • the diffusion bonding surface 14 is a region having a distance CL1 between the first fluid passage portions 11 and a region having a distance CL2.
  • the diffusion bonding surface 14 extends in the X direction so as to partition the three first fluid passage portions 11.
  • the outer peripheral portion surrounding the three first fluid passage portions 11 is also a bonding surface.
  • the diffusion bonding surface 14 extends from the outer peripheral portion on one end side in the X direction to the outer peripheral portion on the other end side.
  • the second heat transfer plate 20 includes a plurality of second fluid passage portions 21 that are formed to correspond to the first fluid passage portions 11 of the first heat transfer plate 10 and are isolated from each other. Yes. That is, the second heat transfer plate 20 is provided with a plurality of second fluid passage portions 21 that can circulate fluid independently of each other. The plurality of second fluid passage portions 21 are respectively connected to different pairs of second ports 3 (second port 3 on the inlet side and outlet side pair) (see FIG. 1).
  • the second heat transfer plate 20 has three second fluid passage portions 21a, 21b and 21c corresponding to the three first fluid passage portions 11a, 11b and 11c. That is, a pair of the first fluid passage portion 11a and the second fluid passage portion 21a, a pair of the first fluid passage portion 11b and the second fluid passage portion 21b, the first fluid passage portion 11c and the second fluid passage portion 21c, And most of the heat exchange takes place between each pair.
  • Each of the second fluid passage portions 21 is disposed at a position overlapping the plurality of first fluid passage portions 11 of the first heat transfer plate 10 in plan view.
  • each pair of the first fluid passage portion 11 and the second fluid passage portion 21 is disposed so as to overlap in the stacking direction (Z direction). For this reason, for example, heat exchange can be performed more efficiently than when each pair is arranged at a position shifted in the Y direction in plan view and does not overlap in the Z direction.
  • each of the second fluid passage portions 21a, 21b, and 21c has an introduction opening 22 that opens from the side end surface on the X1 side of the second heat transfer plate 20 to the inside of the header portion 6a (see FIG. 2).
  • the second ports 3a, 3c and 3e communicate with each other.
  • the second fluid passage portions 21a, 21b, and 21c each have a lead-out opening 23 that opens from the side end surface on the X2 side of the second heat transfer plate 20 to the inside of the header portion 6b (see FIG. 2). It communicates with the two ports 3b, 3d and 3f (see FIG. 1).
  • the second ports 3a, 3c and 3e are ports on the inlet side
  • the second ports 3b, 3d and 3f are ports on the outlet side, respectively.
  • each of the header portions 6a and 6b has a semi-cylindrical shape extending in the Y direction (see FIG. 2), and both end portions in the Y direction are closed.
  • the header portion 6a covers the side end surface of the core 1 on the X1 side so as to be able to store fluid therein
  • the header portion 6b covers the side end surface of the core 1 on the X2 side so that fluid can be stored inside. Is provided.
  • partition plates 6c are provided inside the header portions 6a and 6b, respectively.
  • the inside of the header portion 6a has a space connecting the second fluid passage portion 21a and the second port 3a, a space connecting the second fluid passage portion 21b and the second port 3c, and a second fluid passage. It is partitioned into a space connecting the portion 21c and the second port 3e.
  • the partition plate 6c allows the inside of the header portion 6b to have a space that connects the second fluid passage portion 21a and the second port 3b, a space that connects the second fluid passage portion 21b and the second port 3d, The two fluid passage portions 21c and the second port 3f are partitioned into a space.
  • the second fluid passage portions 21a, 21b and 21c are respectively connected to separate pairs of second ports 3 (a pair of second ports 3a and 3b, a pair of second ports 3c and 3d, and a pair of second ports). 3e and 3f).
  • the fluid supplied to the second fluid passage portion 21 may be a gas or a liquid.
  • the same fluid may be supplied to the second fluid passage portions 21a, 21b, and 21c.
  • the second fluid passage portions 21a, 21b, and 21c are fluids (D) that serve as refrigerants for cooling the compressed fluid (A fluid, B fluid, C fluid) on the first fluid passage portion 11 side. Fluid) is supplied.
  • the D fluid is, for example, a coolant.
  • the second fluid passage portions 21a, 21b, and 21c are independent fluid passage portions individually connected to the second ports 3a, 3c, and 3e, respectively. Therefore, even when the common D fluid is circulated in each of the second fluid passage portions 21a, 21b, and 21c, the fluid characteristics such as supply pressure and flow rate from each port can be made different.
  • each of the plurality of second fluid passage portions 21 is connected to the inlet-side second port 3 in the plane of the second heat transfer plate 20.
  • path part 21 is arrange
  • path parts 21 are arrange
  • the diffusion bonding surface 24 is a region having a distance CL3 and a region having a distance CL4.
  • CL1 the interval
  • CL2 the interval
  • CL3 the interval
  • CL4 may be equal to each other.
  • the heat exchanger 100 is a counterflow type heat exchanger in which the fluid passing through the first heat transfer plate 10 and the fluid passing through the second heat transfer plate 20 flow in directions facing each other.
  • FIG. 1 Schematic of the layer structure of the core 1 is as shown in FIG.
  • the first heat transfer plate 10 through which the A fluid, the B fluid, and the C fluid to be cooled flow is laminated so as to be sandwiched between the second heat transfer plates 20 through which the D fluid serving as a refrigerant flows. .
  • path part 11 has a flow-path shape as shown in FIG. 5 as an example.
  • path parts 11 (11a, 11b, and 11c) have shown the example which has a common structure. That is, in the example shown in FIG. 5, the three first fluid passage portions 11 (11a to 11c) are formed in substantially the same shape.
  • Each of the three first fluid passage portions 11 (11a to 11c) has an outer shape having a length L1 in the X direction (longitudinal direction) and a width W1 in the Y direction (short direction).
  • Each of the plurality of first fluid passage portions 11 has a flow path 15 that connects between the inlet port 12 connected to the first port 2 on the inlet side and the outlet port 13 connected to the first port 2 on the outlet side corresponding thereto.
  • the first fluid passage portion 11 includes an inlet 12 and an outlet 13, a plurality of heat exchange passages 16, and a connection passage portion 17.
  • the flow path 15 includes a heat exchange passage 16 and a connection passage portion 17.
  • the heat exchange passage 16 is a linear flow path provided for exchanging heat with the fluid, and is provided so as to extend in the X direction and to be parallel to the Y direction.
  • the first fluid passage portion 11 has eight heat exchange passages 16.
  • the number of heat exchange passages 16 may be other than eight.
  • connection passage portion 17 is provided between the inlet 12 and the plurality of heat exchange passages 16 and between the outlet 13 and the plurality of heat exchange passages 16, respectively. Since the structure of the connection passage portion 17 is common to the introduction port 12 side and the outlet port 13 side, only the connection passage portion 17 of the introduction port 12 will be described.
  • connection passage portion 17 has one end connected to the inlet 12 and the other end connected to a plurality (eight) of heat exchange passages 16. Thereby, the connection passage portion 17 has a function of distributing the fluid from the introduction port 12 to each heat exchange passage 16.
  • the connecting passage portion 17 is branched into eight from the one inlet 12 and is connected to each of the eight heat exchange passages 16.
  • the flow path 15 (the heat exchange passage 16 and the connection passage portion 17) is formed as a concave groove on the one surface 10a of the first heat transfer plate 10 as shown in FIG.
  • the cross-sectional shape orthogonal to the direction in which the flow path 15 extends is a shape that is substantially semicircular.
  • the flow path 15 is formed by etching or machining, for example.
  • the channel 15 has a channel width W11 and a channel depth H11.
  • the channel width and the channel depth are common to the heat exchange passage 16 and the connection passage portion 17.
  • the heat exchange passage 16 has a flow path length L11 (see FIG. 5), and the partition 18 between the heat exchange passages 16 has a width W12.
  • the channel width W11 of the channel 15 is larger than the width W12 of the partition wall 18.
  • the width (space CL1, CL2) of the diffusion bonding surface 14 is larger than the width W12 of the partition wall 18 between the heat exchange passages 16.
  • path part 21 has a flow-path shape as shown in FIG. 6 as an example.
  • the first embodiment shows an example in which the three second fluid passage portions 21 (21a, 21b, and 21c) have a common configuration.
  • the three second fluid passage portions 21 (21a to 21c) are formed in substantially the same shape.
  • Each of the three second fluid passage portions 21 (21a to 21c) has an outer shape having a length L2 in the X direction (longitudinal direction) and a width W2 in the Y direction (short direction).
  • the width W2 is substantially equal to the width W1 of the first fluid passage portion 11.
  • the length L2 is larger than the length L1 of the first fluid passage portion 11 by the amount that the second fluid passage portion 21 is open at the end surface in the X direction of the second heat transfer plate 20 (core 1).
  • Each of the plurality of second fluid passage portions 21 has a flow path 25 connecting between the introduction opening 22 connected to the second port 3 on the inlet side and the outlet opening 23 connected to the corresponding second port 3 on the outlet side.
  • the second fluid passage portion 21 includes an introduction opening 22 and a discharge opening 23, a plurality of heat exchange passages 26, and a connection passage portion 27.
  • the flow path 25 includes a heat exchange passage 26 and a connection passage portion 27.
  • the configuration of the heat exchange passage 26 is the same as that of the heat exchange passage 16 of the first fluid passage portion 11 of FIG. 5, and the same number (eight) is provided in a common shape.
  • the connection passage portion 27 on the introduction opening 22 side includes a flow path portion 27 a connected to the introduction opening 22 formed on the end face of the second heat transfer plate 20.
  • the flow path portion 27a is formed in a straight line, and a pair is provided on both outer sides in the Y direction of the through hole 5c.
  • the connection passage portion 27 is branched into four channels in total by branching into four from the pair of channel portions 27a. And the edge part (other end part) of the connection channel
  • connection passage portion 27 of the second fluid passage portion 21 is divided into one side and the other side in the Y direction across the through hole 5c, and is branched into four branch paths.
  • the passage portion 27a is provided in the connection passage portion 27 on the outlet opening 23 side, and has the same configuration.
  • the flow path 25 (the heat exchange passage 26 and the connection passage portion 27) is formed as a concave groove on the one surface 20a of the second heat transfer plate 20, as shown in FIG.
  • the cross-sectional shape orthogonal to the direction in which the flow path 25 extends is a shape recessed in a substantially semicircular shape.
  • the channel 25 has a channel width W21 and a channel depth H21.
  • the channel width W21 and the channel depth H21 are substantially equal to the channel width W11 and the channel depth H11 of the channel 15.
  • the channel width W21 of the channel 25 and the channel width W11 of the channel 15 may be different from each other.
  • the channel depth H21 of the channel 25 and the channel depth H11 of the channel 15 may be different from each other.
  • the heat exchange passage 26 has a flow path length L21 (see FIG. 6).
  • the flow path length L21 is substantially equal to the flow path length L11 of the heat exchange passage 16.
  • the width (space CL3, CL4) of the diffusion bonding surface 24 between the adjacent second fluid passage portions 21 is larger than the width W22 of the partition wall 28 between the heat exchange passages 26.
  • 7 shows an example in which the positions of the flow path 15 and the flow path 25 in the Y direction (the center position of the flow path) coincide with each other. And the position of the flow path 25 in the Y direction may be shifted from each other.
  • the first fluid passage portions 11a, 11b, and 11c of the first heat transfer plate 10 contain high-temperature and high-pressure A fluid, B fluid, and C fluid that have passed through separate compressors. Supplied respectively.
  • the A fluid, the B fluid, and the C fluid flow in from the first ports 2a, 2c, and 2e (see FIG. 1) on the inlet side connected to the outlet side of the respective compressors, and the respective first fluid passage portions 11a. , 11b and 11c.
  • Each fluid is cooled while passing through the respective flow paths 15 (the heat exchange passage 16 and the connection passage portion 17) of the first fluid passage portions 11a, 11b, and 11c, and the corresponding first ports 2b, 2d on the outlet side. And 2f (see FIG. 1), respectively.
  • the fluid (D fluid) serving as a refrigerant is supplied to the second fluid passage portions 21a, 21b and 21c of the second heat transfer plate 20, respectively.
  • the D fluid flows in from the second ports 3a, 3c and 3e (see FIG. 1) on the inlet side, passes through the internal space of the header portion 6a partitioned by the partition plate 6c, and each second fluid passage portion 21a. , 21b and 21c.
  • the supply pressures to the second ports 3a, 3c and 3e are individually adjusted according to variations in the amount of heat exchange with the first fluid passage portions 11a, 11b and 11c.
  • Each D fluid is heated (takes away heat) while passing through the respective flow paths 25 (the heat exchange path 26 and the connection path section 27) of the second fluid passage portions 21a, 21b, and 21c. Outflow from the second ports 3b, 3d and 3f (see FIG. 1), respectively.
  • a plurality of first fluid passages connected to different pairs of first ports 2 (each pair of 2a and 2b, 2c and 2d, 2e and 2f) and isolated from each other
  • a first heat transfer plate 10 including the portion 11 is provided.
  • a first heat transfer plate 10 in which a plurality of types of first fluid passage portions 11 are formed can be provided. That is, instead of providing a heat transfer plate for each type of fluid, the first heat transfer plate 10 common to a plurality of types of fluids can be provided.
  • the component type (the type of the first heat transfer plate 10) and the number of components (the first heat transfer plate 10 and the second heat transfer plate 10).
  • the total number of plates 20) can be reduced.
  • three types of three types of heat transfer plates corresponding to the first fluid passage portions 11a, 11b, and 11c are respectively provided (three types total 9 pieces).
  • Sheet) and 10 heat transfer plates corresponding to the second fluid passage portion 21 (10 sheets of 1 type) a total of 19 heat transfer plates of 4 types are required.
  • two types of the first heat transfer plate 10 and the second heat transfer plate 20 and a total of seven sheets are sufficient.
  • first fluid passage portions 11 can be formed in the same first heat transfer plate 10, so that, for example, one first heat transfer plate 11 can be formed according to the load (heat exchange amount) for each fluid.
  • the degree of freedom of the configuration of the fluid passage part is sufficiently large, such as reducing the size of one fluid passage part 11 to form another first fluid passage part 11 in the empty space and reducing the plane size of the product. Can be secured. A specific example of changing the configuration of the fluid passage portion will be described later.
  • the second fluid passage portion 21 is formed to correspond to the first fluid passage portion 11 of the first heat transfer plate 10 and includes a plurality of second fluid passage portions 21 that are separated from each other.
  • a heat transfer plate 20 is provided.
  • the plurality of second fluid passage portions 21 are respectively connected to different pairs of second ports 3 (each pair of 3a and 3b, 3c and 3d, 3e and 3f).
  • path part 21 is arrange
  • the plurality of second fluid passage portions 21 can be provided in a one-to-one correspondence with the plurality of first fluid passage portions 11.
  • one wide second fluid passage portion one second fluid passage portion corresponding to three first fluid passage portions 11
  • the heat exchange amount between one first fluid passage portion 11a and the second fluid passage portion and the heat exchange amount between the other first fluid passage portion 11b and the second fluid passage portion are independently determined. It becomes difficult to adjust.
  • the first fluid passage portions 11a, 11b and 11c and the second fluid passage portions 21a, 21b and 21c in a one-to-one correspondence, as a result, the first fluid passage portions 11a, 11b corresponding to each other.
  • 11c and the fluid which flows through each pair of 2nd fluid passage parts 21a, 21b, and 21c heat exchange can be performed efficiently.
  • the flow rate of the fluid flowing through the second fluid passage portion 21 can be easily optimized.
  • each of the plurality of first fluid passage portions 11 is moved from the inlet 12 toward the corresponding outlet 13 in the one surface 10a of the first heat transfer plate 10. It forms in the elongate shape extended toward a direction, and it arrange
  • the elongated first fluid passage portions 11 extending in the X direction along the Y direction the vertical and horizontal dimensions of the outer shape of the entire first heat transfer plate 10 are made closer to each other (the aspect ratio is made closer to 1). Can do. As a result, it is possible to suppress the load variation when performing diffusion bonding and improve the ease of manufacturing the core 1.
  • the plurality of first fluid passage portions 11 are arranged apart from each other in the Y direction on the one surface 10a of the first heat transfer plate 10. And the diffusion joining surface 14 with the 2nd heat exchanger plate 20 is provided between the 1st fluid channel
  • positioned in the one surface 10a of the 1st heat exchanger plate 10 can be isolated easily as an independent fluid channel
  • a diffusion bonding surface 14 extending in the X direction can be formed between the plurality of first fluid passage portions 11 arranged in the Y direction.
  • the first heat transfer plate 10 and the second heat transfer plate 20 can be connected to the outer peripheral portion or the second heat transfer plate surface.
  • the gap part (partition 18) of the channel which constitutes 1 fluid passage part 11 ensuring the diffusion joining strength of the 1st heat exchanger plate 10 and the 2nd heat exchanger plate 20 easily.
  • a plurality of second fluid passage portions 21 of the second heat transfer plate 20 are arranged apart from each other in the Y direction, and the first heat transfer plate 10 is disposed between the second fluid passage portions 21 adjacent in the Y direction.
  • the plurality of second fluid passage portions 21 can be easily isolated as independent fluid passage portions. Further, the diffusion bonding strength between the first heat transfer plate 10 and the second heat transfer plate 20 can be easily secured by making the width (CL3, CL4) of the diffusion bonding surface 24 larger than the width W22 of the partition wall 28. Can do.
  • the first heat transfer plate 110 has a pair of first ports 2 (a pair of first ports 2a and 2b, a pair of first ports 2c). 2d, a pair of first ports 2e and 2f) (see FIG. 1) and three first fluid passage portions 111 (111a, 111b and 111c) which are isolated from each other.
  • the heat exchanger 200 is an example of the “diffusion bonding type heat exchanger” in the claims.
  • At least one first fluid passage portion 111 among the plurality (three) of first fluid passage portions 111 includes a flow passage width, a flow passage length, a flow passage depth of the flow passage 15, and At least one of the numbers of the flow paths 15 is formed so as to be different from the other first fluid passage portions 111.
  • the first fluid passage portion 111b at the center in the Y direction is configured to be larger than the first fluid passage portions 111a and 111c on both sides in the Y direction. Yes.
  • the first fluid passage portions 111a and 111c have a common configuration.
  • the first fluid passage portion 111b as a whole has a length L3b in the X direction and a width W3b in the Y direction.
  • the first fluid passage portions 111a and 111c as a whole have a length L3a in the X direction and a width W3a in the Y direction, respectively.
  • the length L3a of the first fluid passage portions 111a and 111c and the length L3b of the first fluid passage portion 111b are equal to each other.
  • the length L3a and the length L3b may be different.
  • the width W3a of the first fluid passage portions 111a and 111c is smaller than the width W3b of the first fluid passage portion 111b.
  • the width W3a may be larger than the width W3b.
  • the length L3a is equal to the length L1 of the first fluid passage portion 11 of FIG. 5, while the width W3a is the first fluid passage portion of FIG. 11 width W1 is smaller.
  • the length L3b is equal to the length L1 of the first fluid passage portion 11 in FIG.
  • the width W3b is larger than the width W1 of the first fluid passage portion 11 in FIG. Therefore, in the second embodiment, in the first heat transfer plate 110, a larger space is allocated to the first fluid passage portion 111b as the first fluid passage portions 111a and 111c are miniaturized.
  • Each flow path 115a (115c) of the first fluid passage portion 111a (111c) includes four heat exchange passages 116a (116c). Note that, unlike the first embodiment, the connection passage portion 117a (117c) is branched into four and connected in parallel to the heat exchange passages 116a (116c).
  • the heat exchange passage 116a (116c) has a flow path length L31. As shown in FIG. 9, the flow path 115a (115c) of the first fluid passage portion 111a (111c) has a flow path width W31 and a flow path depth H31.
  • the flow path 115b of the first fluid passage portion 111b includes nine heat exchange passages 116b, which are more than four of the first fluid passage portion 111a (111c).
  • the connection passage portion 117b is divided into nine branches and connected in parallel to the heat exchange passages 116b.
  • the heat exchange passage 116b has a flow path length L32.
  • the flow path 115b of the first fluid passage portion 111b has a flow path width W32 and a flow path depth H32.
  • the flow passage width W32 of the flow passage 115b of the first fluid passage portion 111b is larger than the flow passage width W31 of the flow passage 115a (115c) of the first fluid passage portion 111a (111c).
  • the channel depth H32 of the channel 115b of the first fluid passage portion 111b is equal to the channel depth H31 of the channel 115a (115c) of the first fluid passage portion 111a (111c).
  • the flow path length L32 of the heat exchange passage 116b of the first fluid passage section 111b is equal to the flow path length L31 of the flow path 115a (115c) of the first fluid passage section 111a (111c).
  • the flow path width W32 of the first fluid passage portion 111b is larger than the flow passage width W31 of the first fluid passage portions 111a and 111c, and the flow passage of the first fluid passage portion 111b.
  • the number of 115b (9) is larger than the number (4) of the flow paths 115a (115c) of the first fluid passage portions 111a and 111c.
  • the flow path width and the number of flow paths 115 are set according to the type of fluid flowing through each of the first fluid passage portions 111a to 111c and the size of the load (heat exchange amount). Therefore, the first fluid passage portion 111b is configured to have a larger amount of heat exchange than the first fluid passage portions 111a and 111c.
  • the first fluid passage portion 111b is formed to be different from the other first fluid passage portions 111a and 111c in the flow passage width and the number of flow passages.
  • the example in which the channel width and the number of channels are made different is shown, but only one of the channel width, the channel length, the channel depth, and the number of channels is different. It may be allowed. All of the channel width, channel length, channel depth, and number of channels may be different.
  • each of the first fluid passage portions 111a, 111b, and 111c has a different configuration (a configuration in which any one of the channel width, the channel length, the channel depth, and the number of channels is different). Also good.
  • the description of the second heat transfer plate 20 is omitted, but the second fluid passage portion 21 of the second heat transfer plate 20 has the same shape corresponding to each of the first fluid passage portions 111a to 111c. What is necessary is just to comprise a 2nd fluid channel
  • a plurality of first ports 2 (two pairs of 2a and 2b, 2c and 2d, 2e and 2f) which are different from each other and which are isolated from each other are connected.
  • first fluid passage portions 111a to 111c can be formed in the same first heat transfer plate 110, so that each type according to the load (heat exchange amount) for each fluid, etc. A sufficient degree of freedom in the configuration of the fluid passage portion can be ensured. That is, the shape and layout of the first fluid passage portions 111a, 111b, and 111c can be freely set in the first heat transfer plate 110.
  • the first fluid passage portion 111b among the plurality of first fluid passage portions 111a to 111c is changed into the passage width W32, the passage length L32, the flow passage length of the passage 115b. At least one of the path depth H32 and the number of the flow paths 115b is formed to be different from the other first fluid passage portions 111a (111c).
  • the configurations (the channel width, the channel length, the channel depth, and the number of the channels) of the plurality of types of first fluid passage portions 111a to 111c different The excess heat exchange amount that cannot be adjusted by changing the number of sheets can be easily finely adjusted in each of the first fluid passage portions 111a to 111c. As a result, the heat exchange amount can be optimized easily and accurately according to the load (heat exchange amount) for each type of the first fluid passage portion 111.
  • the example of the counterflow type heat exchanger 100 which the fluid which passes the 1st heat exchanger plate 10 and the fluid which passes the 2nd heat exchanger plate 20 flows in the direction which mutually opposes is shown.
  • the heat exchanger is a parallel flow type in which the fluid passing through the first heat transfer plate 10 and the fluid passing through the second heat transfer plate 20 flow in the same direction, or a cross flow type in which the fluids cross each other ( (See FIG. 10).
  • the said 1st Embodiment showed the example which comprised the core 1 by laminating
  • the first heat transfer plate and the second heat transfer plate are not necessarily stacked alternately.
  • a single second heat transfer plate may be laminated on a two-layer (multiple layers) first heat transfer plate.
  • the first heat transfer plate 10 (110) is provided with the three first fluid passage portions 11.
  • the present invention is not limited to this.
  • the first heat transfer plate 10 may be provided with two or four or more first fluid passage portions 11.
  • the present invention is not limited to this.
  • only one second fluid passage portion may be provided.
  • the common second fluid passage portion 221 is connected to the second fluid transmission portion 221 with respect to the three first fluid passage portions 11 of the first heat transfer plate 10.
  • the heat plate 220 may be provided.
  • the second fluid passage portion 221 extends in the Y direction orthogonal to the first fluid passage portion 11, and is a cross flow type heat exchanger.
  • the second fluid passage portion 221 has a width W5 in the X direction substantially equal to the length L1 of the first fluid passage portion 11, and is formed to extend from one end to the other end in the Y direction of the second heat transfer plate 220. . Thereby, the D fluid flowing through one (common) second fluid passage portion 221 and the A fluid, B fluid, and C fluid flowing through the three first fluid passage portions 11 respectively perform heat exchange.
  • the number of the second fluid passage portions may be any number. That is, the same number as the first fluid passage portion or a plurality other than one may be used. For example, a plurality of (for example, two) second fluid passage portions may be provided corresponding to one first fluid passage portion.
  • the three second fluid passage portions 21a to 21c are connected to different pairs of second ports 3 (each pair of 3a and 3b, 3c and 3d, 3e and 3f), respectively.
  • the present invention is not limited to this.
  • the three second fluid passage portions 21a to 21c may be connected to a common second port.
  • the partition plates 6c provided in the header portions 6a and 6b may be removed.
  • the internal spaces of the header portions 6a and 6b are connected, and the three second fluid passage portions 21a to 21c are connected to the common second port 3.
  • the second ports 3 may be provided in three pairs (three each), but it is sufficient that a pair is provided at least on the inlet side (for example, 3c) and the outlet side (for example, 3d).
  • Fluids A to F may be different types of fluids, or some of them may be the same type of fluid.
  • the present invention is not limited to this.
  • This invention does not exclude the structure which provides 3 or more types of heat exchanger plates, such as a 3rd heat exchanger plate.
  • forming the fluid passage portion provided in the third heat transfer plate in the first heat transfer plate 10 and the second heat transfer plate 20 is a component type (type of heat transfer plate). ) And the number of parts can be reduced.
  • the plurality of first fluid passage portions 11 are each elongated in the X direction extending from the inlet-side inlet 12 to the corresponding outlet-side outlet 13.
  • the present invention is not limited to this example.
  • the first fluid passage portion need not be formed in an elongated shape.
  • the first fluid passage portion may be formed in a square shape or a shape other than a rectangle.
  • the first fluid passage portions may not be arranged side by side in the lateral direction (Y direction) orthogonal to the longitudinal direction (X direction). For example, you may arrange
  • the first fluid passage portion 11 and the second fluid passage portion 21 are provided with the flow path 15 (25) including the heat exchange passage 16 (26) and the connection passage portion 17 (27).
  • the present invention is not limited to this.
  • path part is not specifically limited.
  • the shape and number of the flow paths may be arbitrarily set.
  • a curved heat exchange passage that is bent or curved may be provided instead of a linear heat exchange passage.
  • the number of branches of the connection passage portion may be other than the above-described four branches, eight branches, and nine branches, and may be the number of branches according to the number of heat exchange passages to be connected.
  • the flow paths 15 constituting each of the first fluid passage portions 11a to 11c may have different shapes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

この拡散接合型熱交換器(100)は、第1伝熱板(10)および第2伝熱板(20)が積層され拡散接合されたコア(1)と、複数対の第1ポート(2)と第2ポート(3)とを備える。第1伝熱板(10)は、複数の第1流体通路部(11)を含む。

Description

拡散接合型熱交換器
 この発明は、拡散接合型熱交換器に関し、特に、溝状の流体通路部が形成された複数の伝熱板が積層され拡散接合された構成の拡散接合型熱交換器に関する。
 従来、溝状の流体通路部が形成された複数の伝熱板が積層され拡散接合された構成の拡散接合型熱交換器が知られている。このような拡散接合型熱交換器は、たとえば、特開2013-155971号公報に開示されている。
 特開2013-155971号公報には、第1伝熱板と第2伝熱板とを交互に積層して拡散接合したコアを備える熱交換器が開示されている。第1伝熱板には、A、B、C、Dの4種類があり、それぞれ複数設けられている。第2伝熱板は、Eの1種類であり、複数設けられている。コアには、EAE・・・、EBE・・・、ECE・・・、EDE・・・、という順に各伝熱板が積層されている。4種類の第1伝熱板および1種類の第2伝熱板の外形形状は共通である。特開2013-155971号公報の熱交換器は、4台の圧縮機による多段圧縮システムの中間冷却器(インタークーラー)として構成されている。A、B、C、Dの4種類の第1伝熱板には、それぞれ、1段目の圧縮機~4段目の圧縮機通過後の流体(水素)が流通し、Eの第2伝熱板には、冷媒(冷却水)が流通する。コアには、各伝熱板を厚み方向に貫通した接続通路と接続する複数のポートがA~Eの各伝熱板に対応して複数設けられている。各伝熱板A~Eへの流体の分配は、それぞれ対応するポートを介して行われる。
特開2013-155971号公報
 しかしながら、特開2013-155971号公報では、A~Dの4種類の第1伝熱板と、各第1伝熱板を上下に挟む1種類(E)の第2伝熱板とをそれぞれ複数設ける必要がある。そのため、特開2013-155971号公報では、複数種類の流体を共通の拡散接合型熱交換器で取り扱うために、部品の種類(伝熱板の種類)および部品点数(伝熱板の総数)が増大するという問題点がある。
 また、特開2013-155971号公報では、4種類の第1伝熱板と1種類の第2伝熱板とを積層して拡散接合するために、各伝熱板の外形形状を共通化する必要があり、第1伝熱板の負荷が大きく異なる場合に自由度が減少し、最適化が難しくなるという問題が考えられる。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、複数種類の流体を共通の拡散接合型熱交換器で取り扱う場合にも、部品種類および部品点数を削減することが可能で、かつ、流体通路部の構成の自由度を十分に確保可能な拡散接合型熱交換器を提供することである。
 上記目的を達成するために、この発明による拡散接合型熱交換器は、それぞれ溝状の流体通路部が形成された第1伝熱板および第2伝熱板が積層され拡散接合されたコアと、第1伝熱板に流体を導入および導出するための複数対の第1ポートと、第2伝熱板に流体を導入および導出するための少なくとも一対の第2ポートとを備え、第1伝熱板は、互いに異なる対の第1ポートに接続されるとともに互いに隔離された複数の第1流体通路部を含む。
 この発明による拡散接合型熱交換器では、上記のように、互いに異なる対の第1ポートに接続されるとともに互いに隔離された複数の第1流体通路部を含む第1伝熱板を設ける。これにより、複数種類の第1伝熱板を設ける代わりに、複数種類の第1流体通路部が形成された第1伝熱板を設けることができる。つまり、流体の種類毎に伝熱板を設けるのではなく、複数種類の流体に共通の第1伝熱板を設けることができる。その結果、複数種類の流体を共通の拡散接合型熱交換器で取り扱う場合にも、部品種類および部品点数を削減することができる。また、同一の第1伝熱板に複数種類の第1流体通路部を形成することができるので、流体毎の負荷(熱交換量)などに応じて、たとえば1つの第1流体通路部を小さくして、その分の空いたスペースに他の第1流体通路部を形成したり、製品の平面サイズを小さくできるなど、流体通路部の構成の自由度を十分に確保することができる。
 上記発明による拡散接合型熱交換器において、好ましくは、第2ポートは、複数対設けられ、第2伝熱板は、第1伝熱板の第1流体通路部と対応するように形成され、互いに隔離された複数の第2流体通路部を含み、複数の第2流体通路部は、それぞれ、互いに異なる対の第2ポートに接続されている。ここで、「対応する」とは、1つの第1流体通路部を流れる流体と第2流体通路部を流れる流体との間で熱交換の大部分が行われる関係を意味する。1つの第1流体通路部と1つの第2流体通路部とが対応していてもよいし、1つの第2流体通路部が複数の第1流体通路部と対応していてもよい。このように構成すれば、複数の第2流体通路部を複数の第1流体通路部と対応するように形成することにより、流体間の熱交換を効率的に行うことができる。また、複数の第2流体通路部を互いに異なる対の第2ポートに接続することによって、互いに対応する第1流体通路部と第2流体通路部とをそれぞれ流れる流体間の熱交換量に応じて、それぞれの第2流体通路部を流れる流体の種類や流量などを、第2流体通路部毎に個別に設定することが可能となる。
 この場合、好ましくは、第2流体通路部は、第1流体通路部と同数設けられ、それぞれの第2流体通路部が、平面視で第1伝熱板の複数の第1流体通路部と重なる位置に配置されている。このように構成すれば、複数の第2流体通路部を、複数の第1流体通路部と一対一対応で設けることができる。ここで、たとえば複数の第1流体通路部と重なる位置に、幅広の1つの第2流体通路部(複数の第1流体通路部に対応する1つの第2流体通路部)を設ける場合には、一の第1流体通路部と第2流体通路部との間の熱交換量と、他の第1流体通路部と第2流体通路部との熱交換量とを、独立して調整することは難しくなる。これに対して、第1流体通路部と第2流体通路部とを一対一対応で設けることによって、互いに対応する第1流体通路部と第2流体通路部とをそれぞれ流れる流体間で、熱交換を効率的に行うことができるとともに、第2流体通路部を流れる流体の流量などの最適化を容易に行うことができる。
 上記発明による拡散接合型熱交換器において、好ましくは、複数の第1流体通路部は、それぞれ、第1伝熱板の面内において、入口側の第1ポートに接続する一端部から対応する出口側の第1ポートに接続する他端部に向かう第1方向に向けて延びる長細形状に形成され、第1方向と直交する第2方向に沿って並んで配置されている。ここで、「長細形状」とは、第1伝熱板の面内で直交する2方向の一方(第1方向)が長手方向、他方(第2方向)が短手方向となるような形状とする。このように構成すれば、第1流体通路部を一端部から他端部に向けた長細形状にすることにより、幅広形状の場合と比較して、単純な流路形状でも容易に流速を向上させて熱伝達率を高めることができる。一方、第1伝熱板全体の外形形状としては、長細形状になるほど、拡散接合を行う際に第1伝熱板と第2伝熱板との積層体に印加する荷重がばらつきやすくなりコアの製作容易性が低下する。そこで、第1方向に延びる長細形状の第1流体通路部を第2方向に沿って並べることによって、第1伝熱板全体の外形の縦横寸法を互いに近づける(アスペクト比を1に近づける)ことができるので、拡散接合を行う際の荷重ばらつきを抑制しコアの製作容易性を向上させることができるようになる。
 この場合、好ましくは、複数の第1流体通路部は、第1伝熱板の同一表面において互いに第2方向に離間して配置されており、第1伝熱板は、第2方向に隣接する第1流体通路部の間に第2伝熱板との拡散接合面を有する。このように構成すれば、第1伝熱板の同一表面に配置した複数の第1流体通路部の各々を、独立した流体通路部として容易に隔離することができる。また、第1伝熱板の表面において、第2方向に並ぶ複数の第1流体通路部の間に、第1方向に延びる拡散接合面を形成することができるので、たとえば第1伝熱板と第2伝熱板とを、伝熱板表面の外周部や第1流体通路部を構成する流路の隙間(隔壁)部分だけで接合する場合と比べて、第1伝熱板と第2伝熱板との拡散接合強度を容易に確保することができる。
 上記発明による拡散接合型熱交換器において、好ましくは、複数の第1流体通路部は、それぞれ、入口側の第1ポートに接続する一端部と対応する出口側の第1ポートに接続する他端部との間をつなぐ流路を有し、複数の第1流体通路部のうち少なくとも一の第1流体通路部は、流路の流路幅、流路長さ、流路深さ、および、流路の本数の少なくともいずれかが、他の第1流体通路部と異なるように形成されている。ここで、複数種類の流体通路部を別々の伝熱板に個別に設ける(伝熱板を複数種類設ける)場合には、それぞれの伝熱板における流体通路部の構成に自由度がほとんど無いため、積層する伝熱板の枚数を単位として負荷調節を行うしかない。そのため、積層する伝熱板の枚数の変更によっては、たとえば積層枚数が2枚の場合と3枚の場合とのいずれの場合でも熱交換量がバランスしない場合でも、本発明によれば、複数種類の第1流体通路部の構成(流路の流路幅、流路長さ、流路深さ、および、流路の本数)を異ならせることによって、伝熱板の枚数では調整しきれない余剰の熱交換量を第1流体通路部ごとに容易に微調整することができる。その結果、容易かつ精度よく、第1流体通路部の種類毎の負荷(熱交換量)に応じて熱交換量を最適化することができる。
 本発明によれば、上記のように、複数種類の流体を共通の拡散接合型熱交換器で取り扱う場合にも、部品種類および部品点数を削減することが可能で、かつ、流体通路部の構成の自由度を十分に確保可能な拡散接合型熱交換器を提供することができる。
本発明の第1実施形態による熱交換器を上面側から見た模式図である。 本発明の第1実施形態による熱交換器を側面側から見た模式図である。 第1伝熱板および第2伝熱板を示した模式的な斜視図である。 第1伝熱板および第2伝熱板の積層構造を説明するための模式図である。 第1伝熱板の第1流体通路部の構成例を示した平面図である。 第2伝熱板の第2流体通路部の構成例を示した平面図である。 第1流体通路部および第2流体通路部と直交する断面を示したコアの断面図である。 第2実施形態による熱交換器の第1伝熱板を示した模式図である。 図8における第1流体通路部と直交する断面を示した第1伝熱板の断面図である。 第1実施形態の第1変形例による第1伝熱板(A)および第2伝熱板(B)を示した模式図である。 第1実施形態の第2変形例による第1伝熱板(A)および第2伝熱板(B)を示した模式図である。
 以下、本発明の実施形態を図面に基づいて説明する。
(第1実施形態)
 図1~図7を参照して、第1実施形態による熱交換器100の構成について説明する。第1実施形態による熱交換器100は、それぞれ溝状の流体通路部が形成された第1伝熱板10および第2伝熱板20を積層し、拡散接合によって一体化することにより構成した拡散接合型のプレート式熱交換器である。熱交換器100は、特許請求の範囲の「拡散接合型熱交換器」の一例である。
 図1および図2に示すように、熱交換器100は、コア1と、複数対(3対)の第1ポート2と、複数対(3対)の第2ポート3とを備えている。コア1は、図2に示すように、溝状の第1流体通路部11(図3参照)が形成された複数の第1伝熱板10と、溝状の第2流体通路部21(図3参照)が形成された複数の第2伝熱板20とを含む。コア1は、第1伝熱板10を流れる流体と第2伝熱板20を流れる流体との間で熱交換を行う熱交換部である。第1ポート2は、第1伝熱板10(第1流体通路部11)に流体を導入および導出するための出入口であり、入口側と出口側との対(ペア)で設けられている。第2ポート3は、第2伝熱板20(第2流体通路部21)に流体を導入または導出するための出入口であり、入口側と出口側との対(ペア)で設けられている。
 図2に示すように、第1伝熱板10と第2伝熱板20との積層方向(Z方向)におけるコア1の両端には、それぞれサイドプレート4が設けられている。コア1は、それぞれ溝状の流体通路部が形成された第1伝熱板10および第2伝熱板20が交互に積層され拡散接合されて構成されている。すなわち、コア1は、交互に積層した第1伝熱板10と第2伝熱板20との積層体を一対のサイドプレート4により挟み込み、拡散接合により相互結合することにより、全体として矩形箱状(直方体形状)に形成されている。図2では簡略化のため、3層(3枚)の第1伝熱板10と、4層(4枚)の第2伝熱板20とが交互に積層された例を示しているが、積層枚数はこれに限られず、任意の枚数を積層してよい。以下では、図2に示す第1伝熱板10および第2伝熱板20の積層方向をZ方向とする。また、図1に示すようにZ方向から見てコア1の長手方向をX方向とし、コア1の短手方向をY方向とする。
 図3に示すように、第1伝熱板10および第2伝熱板20は、平板形状を有し、平面視で矩形形状に形成されている。第1伝熱板10および第2伝熱板20は、平面形状が略一致しており、共に、X方向(長手方向)の長さL0、Y方向(短手方向)の幅W0を有する。第1伝熱板10および第2伝熱板20は、互いに略等しい厚みtを有するが、第1伝熱板10および第2伝熱板20の厚みtは互いに異なっていてもよい。第1伝熱板10および第2伝熱板20は、ステンレス鋼材からなる。第1伝熱板10および第2伝熱板20は、ステンレス鋼材以外の熱伝導性の高い金属材料により形成されてもよい。第1流体通路部11および第2流体通路部21は、それぞれ、第1伝熱板10の一方面10a(上面)および第2伝熱板20の一方面20a(上面)に形成されている。第1伝熱板10の他方面10b(下面)および第2伝熱板20の他方面20b(下面)は、共に、平坦面となっている。
(第1伝熱板)
 第1実施形態では、第1伝熱板10は、互いに異なる対の第1ポート2(入口側および出口側の対の第1ポート2)に接続されるとともに互いに隔離された複数の第1流体通路部11を含んでいる。すなわち、第1伝熱板10には、互いに独立して流体を流通可能な複数の第1流体通路部11が並んで配置されている。
 図3に示した例では、第1伝熱板10は、3つの第1流体通路部11a、11bおよび11cを有する。図1に示したように、第1流体通路部11aは、一対の第1ポート2aおよび第1ポート2bと接続されている。第1流体通路部11bは、一対の第1ポート2cおよび第1ポート2dと接続されている。第1流体通路部11cは、一対の第1ポート2eおよび第1ポート2fと接続されている。第1実施形態では、X2側の第1ポート2a、2cおよび2eが、それぞれ入口側のポートであり、X1側の第1ポート2b、2dおよび2fが、それぞれ出口側のポートである。第1ポート2(2a~2f)は、いずれも、円筒状の管部材である。第1ポート2は、円筒状の管部材以外により構成されていてもよい。たとえば、Y方向に延びるブロック状部材にポートの数だけ貫通孔を形成することにより、第1ポート2a、2c、2e(2b、2d、2f)をまとめて形成してもよい。
 図3に示すように、3つの第1流体通路部11a、11bおよび11cは、それぞれ、導入口12および導出口13を有する。なお、導入口12および導出口13は、それぞれ、特許請求の範囲の「一端部」および「他端部」の一例である。導入口12および導出口13は、共に第1伝熱板10を厚み方向に貫通した円形状の貫通孔である。図2に示したように、導入口12および導出口13と同様の貫通孔5cが、第2伝熱板20および上側のサイドプレート4の対応する位置(Z方向に重なる位置)にもそれぞれ(6箇所ずつ)設けられている。このため、積層された第1伝熱板10および第2伝熱板20(サイドプレート4)のそれぞれの導入口12および貫通孔5cが厚み方向(Z方向)に接続され、全体としてコア1内でZ方向に延びる3本の導入路5aを構成している。導入路5aが入口側の第1ポート2a、2cおよび2eとそれぞれ接続されている。同様に、それぞれの導出口13と貫通孔5cとが接続され、全体としてコア1内でZ方向に延びる3本の導出路5bを構成している。導出路5bが出口側の第1ポート2b、2dおよび2fとそれぞれ接続されている。なお、後述するが、第2伝熱板20の第2流体通路部21は、貫通孔5cとは連通しておらず、互いに隔離されている。
 第1流体通路部11a、11bおよび11cには、それぞれ、第1ポート2a、2cおよび2eを介して異なる流体を供給することが可能である。第1流体通路部11a、11bおよび11cには、同じ流体が供給されてもよい。第1実施形態では、熱交換器100が複数の圧縮機を備えた多段圧縮システムの中間冷却器(インタークーラー)として用いられる例を示す。この場合、図3に示したように、1段目の圧縮機通過後の流体(A流体)が第1流体通路部11aに供給され、2段目の圧縮機通過後の流体(B流体)が第1流体通路部11bに供給され、3段目の圧縮機通過後の流体(C流体)が第1流体通路部11cに供給される。この場合、A流体、B流体、C流体の各流体は共通であるが、圧力が異なる。流体は、気体であっても液体であってもよい。
 第1実施形態では、複数の第1流体通路部11は、それぞれ、第1伝熱板10の面内(一方面10a内)において、入口側の第1ポート2に接続する導入口12から対応する出口側の第1ポート2に接続する導出口13に向かう第1方向に向けて延びる長細形状に形成されている。そして、複数の第1流体通路部11は、それぞれ、第1方向と直交する第2方向に沿って並んで配置されている。
 第1実施形態では、第1方向がX方向に一致し、第2方向がY方向に一致している。つまり、3つの第1流体通路部11が、それぞれ、コア1の長手方向(第1伝熱板10の長辺)に沿って延びている。そして、3つの第1流体通路部11が、それぞれ、コア1の短手方向(第1伝熱板10の短辺)に沿って並んで配置されている。
 また、第1実施形態では、複数の第1流体通路部11は、第1伝熱板10の同一表面(一方面10a)において互いに第2方向に離間して配置されている。そして、第1伝熱板10は、第2方向に隣接する第1流体通路部11の間に第2伝熱板20との拡散接合面14を有する。図3の例では、第1流体通路部11aと第1流体通路部11bとがY方向に間隔CL1を隔てて配置されている。第1流体通路部11bと第1流体通路部11cとがY方向に間隔CL2を隔てて配置されている。間隔CL1と間隔CL2とは、等しくてもよいし異なっていてもよい。拡散接合面14は、第1流体通路部11間の間隔CL1の領域および間隔CL2の領域である。拡散接合面14は、3つの第1流体通路部11間を仕切るようにX方向に延びている。第1伝熱板10の一方面10aのうち、3つの第1流体通路部11を取り囲む外周部分も接合面である。拡散接合面14は、X方向の一端側の外周部分から他端側の外周部分まで延びている。
(第2伝熱板)
 第1実施形態では、第2伝熱板20は、第1伝熱板10の第1流体通路部11と対応するように形成され、互いに隔離された複数の第2流体通路部21を含んでいる。すなわち、第2伝熱板20には、互いに独立して流体を流通可能な複数の第2流体通路部21が並んで配置されている。複数の第2流体通路部21は、それぞれ、互いに異なる対の第2ポート3(入口側および出口側の対の第2ポート3)(図1参照)に接続されている。
 第1実施形態では、第2流体通路部21は、第1流体通路部11と同数設けられている。したがって、図3に示した例では、第2伝熱板20は、3つの第1流体通路部11a、11bおよび11cに対応する3つの第2流体通路部21a、21bおよび21cを有する。つまり、第1流体通路部11aと第2流体通路部21aとのペア、第1流体通路部11bと第2流体通路部21bとのペア、第1流体通路部11cと第2流体通路部21cとのペアが構成されており、それぞれのペアの間で熱交換の大部分が行われる。また、それぞれの第2流体通路部21は、平面視で第1伝熱板10の複数の第1流体通路部11と重なる位置に配置されている。つまり、第1流体通路部11と第2流体通路部21との各ペアが、積層方向(Z方向)に重なるように配置されている。このため、たとえば各ペアが平面視でY方向にずれた位置に配置されZ方向には重ならない場合と比べて熱交換を効率よく行うことが可能である。
 第2流体通路部21a~21cには、コア1のX方向の両側端面をそれぞれ覆うように設けられたヘッダ部6aおよび6b(図2参照)を介して流体が供給される。そのため、図3に示す第2流体通路部21a、21bおよび21cは、それぞれ、第2伝熱板20の一端から他端まで連続するように形成されている。具体的には、第2流体通路部21a、21bおよび21cは、それぞれ、第2伝熱板20のX1側の側端面からヘッダ部6a(図2参照)の内部に開口する導入開口22を有し、第2ポート3a、3cおよび3e(図1参照)と連通している。そして、第2流体通路部21a、21bおよび21cは、それぞれ、第2伝熱板20のX2側の側端面からヘッダ部6b(図2参照)の内部に開口する導出開口23を有し、第2ポート3b、3dおよび3f(図1参照)と連通している。第1実施形態では、第2ポート3a、3cおよび3eが、それぞれ入口側のポートであり、第2ポート3b、3dおよび3fが、それぞれ出口側のポートである。
 図1に示すように、ヘッダ部6aおよび6bは、共に、Y方向に延びる半円筒状形状(図2参照)を有し、Y方向の両端部がそれぞれ塞がれている。ヘッダ部6aは、コア1のX1側の側端面を覆い内部に流体を溜められるように設けられており、ヘッダ部6bは、コア1のX2側の側端面を覆い内部に流体を溜められるように設けられている。また、ヘッダ部6aおよび6bの内部には、それぞれ、仕切板6cが設けられている。仕切板6cにより、ヘッダ部6aの内部が、第2流体通路部21aと第2ポート3aとをつなぐ空間と、第2流体通路部21bと第2ポート3cとをつなぐ空間と、第2流体通路部21cと第2ポート3eとをつなぐ空間とに仕切られている。同様に、仕切板6cにより、ヘッダ部6bの内部が、第2流体通路部21aと第2ポート3bとをつなぐ空間と、第2流体通路部21bと第2ポート3dとをつなぐ空間と、第2流体通路部21cと第2ポート3fとをつなぐ空間とに仕切られている。この結果、第2流体通路部21a、21bおよび21cが、それぞれ別々の対の第2ポート3(一対の第2ポート3aおよび3b、一対の第2ポート3cおよび3d、および、一対の第2ポート3eおよび3f)と接続されている。
 第2流体通路部21a、21bおよび21cには、それぞれ、第2ポート3a、3cおよび3eを介して異なる流体を供給することが可能である。第2流体通路部21に供給する流体は、気体であっても液体であってもよい。第2流体通路部21a、21bおよび21cには、同じ流体が供給されてもよい。第1実施形態では、第2流体通路部21a、21bおよび21cには、第1流体通路部11側の圧縮流体(A流体、B流体、C流体)を冷却するための冷媒となる流体(D流体)がそれぞれ供給される。D流体は、たとえば冷却液である。
 また、第2流体通路部21a、21bおよび21cは、それぞれ、第2ポート3a、3cおよび3eと個別に接続された独立した流体通路部となっている。そのため、第2流体通路部21a、21bおよび21cの各々に共通のD流体を流通させる場合でも、各ポートからの供給圧力や流量などの流体特性を異ならせることが可能である。
 図3に示したように、第1実施形態では、複数の第2流体通路部21は、それぞれ、第2伝熱板20の面内において、入口側の第2ポート3に接続する導入開口22から対応する出口側の第2ポート3に接続する導出開口23に向かう第1方向(X方向)に向けて延びる長細形状に形成されている。そして、複数の第2流体通路部21は、それぞれ、第1方向と直交する第2方向(Y方向)に沿って並んで配置されている。つまり、3つの第2流体通路部21が、それぞれ、コア1の長手方向(第2伝熱板20の長辺)に沿って延びている。そして、3つの第2流体通路部21が、それぞれ、コア1の短手方向(第2伝熱板20の短辺)に沿って並んで配置されている。したがって、複数の第1流体通路部11と複数の第2流体通路部21とは、上下(Z方向)に重なるとともに、互いにほぼ平行に延びるように配置されている。
 また、第1実施形態では、複数の第2流体通路部21は、第2伝熱板20の同一表面(一方面20a)において互いにY方向に離間して配置されている。図3の例では、第2流体通路部21aと第2流体通路部21bとがY方向に間隔CL3を隔てて配置されている。第2流体通路部21bと第2流体通路部21cとがY方向に間隔CL4を隔てて配置されている。間隔CL3と間隔CL4とは、等しくてもよいし異なっていてもよい。そして、第2伝熱板20は、Y方向に隣接する第2流体通路部21の間に第1伝熱板10との拡散接合面24を有する。拡散接合面24は、間隔CL3の領域および間隔CL4の領域である。第1実施形態では、第1伝熱板10と第2伝熱板20とで、それぞれの第1流体通路部11および第2流体通路部21の配置および形状が、ほぼ共通化されていてもよい。たとえば、間隔CL1、間隔CL2、間隔CL3および間隔CL4が互いに等しくてもよい。
 以上の構成により、図2に示したように、第1伝熱板10では、流体(A流体、B流体、C流体)が各第1流体通路部11をX2側からX1側に向けて流通する。第2伝熱板20では、流体(D流体)が各第2流体通路部21をX1側からX2側に向けて流通する。つまり、熱交換器100は、第1伝熱板10を通過する流体と第2伝熱板20を通過する流体とが互いに対向する方向に流れる対向流型の熱交換器である。
 コア1の層構造を模式化すると、図4に示すようになる。コア1では、冷却対象であるA流体、B流体およびC流体が流通する第1伝熱板10が、冷媒となるD流体が流通する第2伝熱板20に挟まれるように積層されている。
(第1流体通路部)
 第1流体通路部11は、一例として、図5に示すような流路形状を有する。第1実施形態では、3つの第1流体通路部11(11a、11bおよび11c)が、共通の構成を有する例を示している。すなわち、図5に示す例では、3つの第1流体通路部11(11a~11c)は、互いに略同じ形状に形成されている。3つの第1流体通路部11(11a~11c)は、共に、X方向(長手方向)の長さL1、Y方向(短手方向)の幅W1の外形形状を有する。
 複数の第1流体通路部11は、それぞれ、入口側の第1ポート2に接続する導入口12と対応する出口側の第1ポート2に接続する導出口13との間をつなぐ流路15を有する。図5の構成例では、第1流体通路部11は、導入口12および導出口13と、複数の熱交換通路16と、接続通路部17とを含む。流路15は、熱交換通路16および接続通路部17により構成されている。
 熱交換通路16は、流体に熱交換をさせるために設けられた直線状の流路であり、X方向に延びるとともに、Y方向に平行に並ぶように設けられている。図5の構成例では、第1流体通路部11が8本の熱交換通路16を有している。なお、熱交換通路16の本数は8本以外でもよい。
 接続通路部17は、導入口12と複数の熱交換通路16との間、および、導出口13と複数の熱交換通路16との間にそれぞれ設けられている。接続通路部17の構造は、導入口12側と導出口13側とで共通であるので、導入口12の接続通路部17についてのみ説明する。
 接続通路部17は、一端側が導入口12に接続され、他端側が複数(8本)の熱交換通路16にそれぞれ接続されている。これにより、接続通路部17は、導入口12からの流体を各熱交換通路16に分配する機能を有する。接続通路部17は、1つの導入口12から8分岐して、8本の熱交換通路16の各々と接続している。
 流路15(熱交換通路16および接続通路部17)は、図7に示すように、第1伝熱板10の一方面10aに凹状の溝として形成されている。図7の例では、流路15が延びる方向と直交する断面形状は、ほぼ半円状に窪んだ形状である。流路15は、たとえばエッチングや機械加工により形成される。流路15は、流路幅W11および流路深さH11を有する。流路幅および流路深さは、熱交換通路16および接続通路部17で共通である。熱交換通路16は、流路長さL11(図5参照)を有し、各熱交換通路16の間の隔壁18は、幅W12を有する。流路15の流路幅W11は、隔壁18の幅W12よりも大きい。また、拡散接合面14の幅(間隔CL1、CL2)は、各熱交換通路16の間の隔壁18の幅W12よりも大きい。
(第2流体通路部)
 第2流体通路部21は、一例として、図6に示すような流路形状を有する。第1実施形態では、3つの第2流体通路部21(21a、21bおよび21c)が、共通の構成を有する例を示している。
 図6の例では、3つの第2流体通路部21(21a~21c)は、互いに略同じ形状に形成されている。3つの第2流体通路部21(21a~21c)は、共に、X方向(長手方向)の長さL2、Y方向(短手方向)の幅W2の外形形状を有する。幅W2は、第1流体通路部11の幅W1と略等しい。長さL2は、第2流体通路部21が第2伝熱板20(コア1)のX方向の端面に開口している分だけ、第1流体通路部11の長さL1よりも大きい。
 複数の第2流体通路部21は、それぞれ、入口側の第2ポート3に接続する導入開口22と対応する出口側の第2ポート3に接続する導出開口23との間をつなぐ流路25を有する。図6の構成例では、第2流体通路部21は、導入開口22および導出開口23と、複数の熱交換通路26と、接続通路部27とを含む。流路25は、熱交換通路26および接続通路部27により構成されている。
 熱交換通路26の構成は、図5の第1流体通路部11の熱交換通路16と共通であり、共通形状で同じ本数(8本)設けられている。導入開口22側の接続通路部27は、第2伝熱板20の端面に形成された導入開口22に接続する流路部分27aを含む。流路部分27aは、直線状に形成され、貫通孔5cのY方向の両外側に一対設けられている。接続通路部27は一対の流路部分27aからそれぞれ4分岐することにより、合計で8本の流路に分岐している。そして、8本に分岐した接続通路部27の端部(他端部)が、対応する8本の熱交換通路26にそれぞれ接続している。このように、第2流体通路部21の接続通路部27は、貫通孔5cを挟んでY方向の一方側と他方側とに分割されており、それぞれ4本の分岐路に分岐している。導出開口23側の接続通路部27にも同様に流路部分27aが設けられ、同様の構成を有している。
 流路25(熱交換通路26および接続通路部27)は、図7に示すように、第2伝熱板20の一方面20aに凹状の溝として形成されている。図7の例では、流路25が延びる方向と直交する断面形状は、ほぼ半円状に窪んだ形状である。流路25は、流路幅W21および流路深さH21を有する。流路幅W21および流路深さH21は、流路15の流路幅W11および流路深さH11とほぼ等しい。流路25の流路幅W21と、流路15の流路幅W11とは、互いに異なっていてもよい。同様に、流路25の流路深さH21と、流路15の流路深さH11とは、互いに異なっていてもよい。熱交換通路26は、流路長さL21(図6参照)を有する。流路長さL21は、熱交換通路16の流路長さL11とほぼ等しい。隣接する第2流体通路部21の間の拡散接合面24の幅(間隔CL3、CL4)は、各熱交換通路26の間の隔壁28の幅W22よりも大きい。なお、図7では、流路15と流路25とのY方向の位置(流路の中心位置)が、互いに一致するように形成されている例を示しているが、流路15のY方向の位置と流路25のY方向の位置とが互いにずれていてもよい。
(熱交換器の動作)
 以上の構成により、第1実施形態では、第1伝熱板10の第1流体通路部11a、11bおよび11cには、別々の圧縮機を通過した高温高圧のA流体、B流体およびC流体がそれぞれ供給される。A流体、B流体およびC流体は、それぞれの圧縮機の出口部側と接続された入口側の第1ポート2a、2cおよび2e(図1参照)から流入し、それぞれの第1流体通路部11a、11bおよび11cの導入口12に分配される。各流体は、第1流体通路部11a、11bおよび11cのそれぞれの流路15(熱交換通路16および接続通路部17)を通過する間に冷却され、対応する出口側の第1ポート2b、2dおよび2f(図1参照)からそれぞれ流出する。
 第2伝熱板20の第2流体通路部21a、21bおよび21cには、冷媒となる流体(D流体)がそれぞれ供給される。D流体は、入口側の第2ポート3a、3cおよび3e(図1参照)からそれぞれ流入し、仕切板6cにより仕切られたヘッダ部6aの内部空間を通って、それぞれの第2流体通路部21a、21bおよび21cに流入する。第2ポート3a、3cおよび3eに対する供給圧力は、第1流体通路部11a、11bおよび11cとの間の熱交換量のばらつきに応じて、それぞれ個別調整される。それぞれのD流体は、第2流体通路部21a、21bおよび21cのそれぞれの流路25(熱交換通路26および接続通路部27)を通過する間に加温され(熱を奪い)、出口側の第2ポート3b、3dおよび3f(図1参照)からそれぞれ流出する。
 第1実施形態では、以下のような効果を得ることができる。
 第1実施形態では、上記のように、互いに異なる対の第1ポート2(2aおよび2b、2cおよび2d、2eおよび2fの各対)に接続されるとともに互いに隔離された複数の第1流体通路部11を含む第1伝熱板10を設ける。これにより、複数種類の第1伝熱板10を設ける代わりに、複数種類の第1流体通路部11が形成された第1伝熱板10を設けることができる。つまり、流体の種類毎に伝熱板を設けるのではなく、複数種類の流体に共通の第1伝熱板10を設けることができる。その結果、複数種類の流体を共通の拡散接合型熱交換器100で取り扱う場合にも、部品種類(第1伝熱板10の種類)および部品点数(第1伝熱板10および第2伝熱板20の総枚数)を削減することができる。たとえば、第1実施形態と同様の構成を個別の伝熱板により実現する場合、第1流体通路部11a、11b、11cに対応する3種の伝熱板がそれぞれ3枚ずつ(3種合計9枚)と、第2流体通路部21に対応する伝熱板が10枚(1種10枚)との、4種合計19枚の伝熱板が必要となる。これに対して、第1実施形態では、第1伝熱板10および第2伝熱板20の2種、合計7枚で済む。
 また、上記構成により、同一の第1伝熱板10に複数種類の第1流体通路部11を形成することができるので、流体毎の負荷(熱交換量)などに応じて、たとえば1つの第1流体通路部11を小さくして、その分の空いたスペースに他の第1流体通路部11を形成したり、製品の平面サイズを小さくできるなど、流体通路部の構成の自由度を十分に確保することができる。流体通路部の構成を変更する場合の具体例については、後述する。
 また、第1実施形態では、上記のように、第1伝熱板10の第1流体通路部11と対応するように形成され、互いに隔離された複数の第2流体通路部21を含む第2伝熱板20を設ける。これにより、複数の第2流体通路部21を複数の第1流体通路部11と対応するように形成することにより、流体間の熱交換を効率的に行うことができる。また、複数の第2流体通路部21を、それぞれ、互いに異なる対の第2ポート3(3aおよび3b、3cおよび3d、3eおよび3fの各対)に接続する。これにより、互いに対応する第1流体通路部11と第2流体通路部21とをそれぞれ流れる流体間の熱交換量に応じて、それぞれの第2流体通路部21を流れる流体の種類や流量などを、第2流体通路部21毎に個別に設定することが可能となる。
 また、第1実施形態では、上記のように、第2流体通路部21を、第1流体通路部11と同数設ける。そして、それぞれの第2流体通路部21を、平面視で第1伝熱板10の複数の第1流体通路部11と重なる位置に配置する。これにより、複数の第2流体通路部21を、複数の第1流体通路部11と一対一対応で設けることができる。ここで、たとえば第1流体通路部11a~11cと重なる位置に、幅広の1つの第2流体通路部(3つの第1流体通路部11に対応する1つの第2流体通路部)を設ける場合には、一の第1流体通路部11aと第2流体通路部との間の熱交換量と、他の第1流体通路部11bと第2流体通路部との熱交換量とを、独立して調整することは難しくなる。これに対して、第1流体通路部11a、11bおよび11cと第2流体通路部21a、21bおよび21cとを一対一対応で設けることによって、その結果、互いに対応する第1流体通路部11a、11bおよび11cと、第2流体通路部21a、21bおよび21cとのそれぞれのペアを流れる流体間で、熱交換を効率的に行うことができる。また、第2流体通路部21を流れる流体の流量などの最適化を容易に行うことができる。
 また、第1実施形態では、上記のように、複数の第1流体通路部11を、それぞれ、第1伝熱板10の一方面10a内において、導入口12から対応する導出口13に向かうX方向に向けて延びる長細形状に形成し、X方向と直交するY方向に沿って並んで配置する。これにより、幅広形状の場合と比較して、単純な流路形状でも容易に流速を向上させて熱伝達率を高めることができる。また、X方向に延びる長細形状の第1流体通路部11をY方向に沿って並べることによって、第1伝熱板10全体の外形の縦横寸法を互いに近づける(アスペクト比を1に近づける)ことができる。その結果、拡散接合を行う際の荷重ばらつきを抑制しコア1の製作容易性を向上させることができる。
 また、第1実施形態では、上記のように、複数の第1流体通路部11を、第1伝熱板10の一方面10aにおいて互いにY方向に離間して配置する。そして、第1伝熱板10のうち、Y方向に隣接する第1流体通路部11の間に、第2伝熱板20との拡散接合面14を設ける。これにより、第1伝熱板10の一方面10aに配置した複数の第1流体通路部11の各々を、独立した流体通路部として容易に隔離することができる。また、Y方向に並ぶ複数の第1流体通路部11の間にX方向に延びる拡散接合面14を形成することができる。拡散接合面14の幅(CL1、CL2)を隔壁18の幅W12よりも大きくすることによって、たとえば第1伝熱板10と第2伝熱板20とを、伝熱板表面の外周部や第1流体通路部11を構成する流路の隙間部分(隔壁18)だけで接合する場合と比べて、第1伝熱板10と第2伝熱板20との拡散接合強度を容易に確保することができる。同様に、第2伝熱板20の複数の第2流体通路部21を互いにY方向に離間して配置し、Y方向に隣接する第2流体通路部21の間に、第1伝熱板10との拡散接合面24を設けることにより、複数の第2流体通路部21の各々を、独立した流体通路部として容易に隔離することができる。また、拡散接合面24の幅(CL3、CL4)を隔壁28の幅W22よりも大きくすることによって、第1伝熱板10と第2伝熱板20との拡散接合強度を容易に確保することができる。
(第2実施形態)
 次に、図8および図9を参照して、第2実施形態について説明する。この第2実施形態では、3つの第1流体通路部11a~11cを共通の形状に形成した上記第1実施形態と異なり、3つの第1流体通路部111a~111cの形状を異ならせた例について説明する。
 図8に示すように、第2実施形態の熱交換器200では、第1伝熱板110は、互いに異なる対の第1ポート2(一対の第1ポート2aおよび2b、一対の第1ポート2cおよび2d、一対の第1ポート2eおよび2f)(図1参照)に接続されるとともに互いに隔離された3つの第1流体通路部111(111a、111bおよび111c)を含んでいる。熱交換器200は、特許請求の範囲の「拡散接合型熱交換器」の一例である。
 第2実施形態では、複数(3つ)の第1流体通路部111のうち少なくとも一の第1流体通路部111は、流路15の流路幅、流路長さ、流路深さ、および、流路15の本数の少なくともいずれかが、他の第1流体通路部111と異なるように形成されている。
 図8では、3つの第1流体通路部111a、111bおよび111cのうち、Y方向中央の第1流体通路部111bが、Y方向両側の第1流体通路部111aおよび111cよりも大型に構成されている。図8の例では、第1流体通路部111aおよび111cは共通の構成としている。第1流体通路部111bは、全体として、X方向の長さL3b、Y方向の幅W3bを有する。第1流体通路部111aおよび111cは、全体としてそれぞれX方向の長さL3a、Y方向の幅W3aを有する。図8の例では、第1流体通路部111aおよび111cの長さL3aと第1流体通路部111bの長さL3bとは互いに等しい。長さL3aと長さL3bとが異なっていてもよい。第1流体通路部111aおよび111cの幅W3aは、第1流体通路部111bの幅W3bよりも小さい。幅W3aが幅W3bよりも大きくてもよい。図5に示した第1実施形態の構成と比較して、長さL3aは、図5の第1流体通路部11の長さL1と等しい一方、幅W3aは、図5の第1流体通路部11の幅W1よりも小さい。長さL3bは、図5の第1流体通路部11の長さL1と等しい。幅W3bは、図5の第1流体通路部11の幅W1よりも大きい。そのため、第2実施形態では、第1伝熱板110において、第1流体通路部111aおよび111cが小型化された分、より大きなスペースが第1流体通路部111bに割り当てられている。
 第1流体通路部111a(111c)の流路115a(115c)は、それぞれ4本の熱交換通路116a(116c)を含んでいる。なお、接続通路部117a(117c)は、上記第1実施形態とは異なり、4分岐して各熱交換通路116a(116c)に並列的に接続している。熱交換通路116a(116c)は、流路長さL31を有する。図9に示すように、第1流体通路部111a(111c)の流路115a(115c)は、流路幅W31を有し、流路深さH31を有する。
 第1流体通路部111bの流路115bは、第1流体通路部111a(111c)の4本よりも多い9本の熱交換通路116bを含んでいる。接続通路部117bは、9分岐して各熱交換通路116bに並列的に接続している。熱交換通路116bは、流路長さL32を有する。図9に示すように、第1流体通路部111bの流路115bは、流路幅W32を有し、流路深さH32を有する。
 第1流体通路部111bの流路115bの流路幅W32は、第1流体通路部111a(111c)の流路115a(115c)の流路幅W31よりも大きい。第1流体通路部111bの流路115bの流路深さH32は、それぞれ、第1流体通路部111a(111c)の流路115a(115c)の流路深さH31と等しい。また、第1流体通路部111bの熱交換通路116bの流路長さL32は、第1流体通路部111a(111c)の流路115a(115c)の流路長さL31と等しい。
 このように、図8および図9では、第1流体通路部111bの流路幅W32が第1流体通路部111aおよび111cの流路幅W31と比べて大きく、第1流体通路部111bの流路115bの本数(9本)が、第1流体通路部111aおよび111cの流路115a(115c)の本数(4本)と比べて多くなっている。これらの流路幅および流路115の本数は、第1流体通路部111a~111cのそれぞれに流通させる流体の種類や負荷(熱交換量)の大きさに応じて設定されている。したがって、第1流体通路部111bは、第1流体通路部111aおよび111cと比べて、より熱交換量が大きくなるように構成されている。
 以上のように、第2実施形態では、第1流体通路部111bが、流路幅および流路の本数において、他の第1流体通路部111aおよび111cと異なるように形成されている。第2実施形態では、流路幅および流路の本数を異ならせた例を示したが、流路幅、流路長さ、流路深さおよび流路の本数のいずれか1つのみを異ならせてもよい。流路幅、流路長さ、流路深さおよび流路の本数の全てが異なっていてもよい。また、第1流体通路部111a、111bおよび111cのそれぞれが、互いに異なる構成(流路幅、流路長さ、流路深さおよび流路の本数のいずれかが異なる構成)を有していてもよい。
 なお、第2伝熱板20については、説明を省略したが、第2伝熱板20の第2流体通路部21についても、上記第1流体通路部111a~111cのそれぞれに対応して同じ形状を有するように第2流体通路部を構成すればよい。
 第2実施形態のその他の構成は、上記第1実施形態と同様である。
(第2実施形態の効果)
 第2実施形態でも、上記第1実施形態と同様に、互いに異なる対の第1ポート2(2aおよび2b、2cおよび2d、2eおよび2fの各対)に接続されるとともに互いに隔離された複数の第1流体通路部111を含む第1伝熱板110を設けることにより、複数種類の流体を共通の拡散接合型熱交換器200で取り扱う場合にも、部品種類および部品点数を削減することができる。
 また、上記構成により、同一の第1伝熱板110に複数種類の第1流体通路部111a~111cを形成することができるので、流体毎の負荷(熱交換量)などに応じた、種類毎の流体通路部の構成の自由度を十分に確保することができる。つまり、第1伝熱板110内で第1流体通路部111a、111b、111cの形状やレイアウトを自由に設定することが可能となる。
 また、第2実施形態では、上記のように、複数の第1流体通路部111a~111cのうちの第1流体通路部111bを、流路115bの流路幅W32、流路長さL32、流路深さH32、および、流路115bの本数の少なくともいずれかが、他の第1流体通路部111a(111c)と異なるように形成する。このように複数種類の第1流体通路部111a~111cの構成(流路の流路幅、流路長さ、流路深さ、および、本数)を異ならせることによって、積層する伝熱板の枚数の変更によっては調整しきれない余剰の熱交換量を、第1流体通路部111a~111cの各々で容易に微調整することができる。その結果、容易かつ精度よく、第1流体通路部111の種類毎の負荷(熱交換量)に応じて熱交換量を最適化することができる。
 第2実施形態のその他の効果は、上記第1実施形態と同様である。
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記第1実施形態では、第1伝熱板10を通過する流体と第2伝熱板20を通過する流体とが互いに対向する方向に流れる対向流型の熱交換器100の例を示したが、本発明はこれに限られない。本発明では、熱交換器は、第1伝熱板10を通過する流体と第2伝熱板20を通過する流体とが互いに同じ方向に流れる並行流型、または、互いに交差する直交流型(図10参照)などであってもよい。
 また、上記第1実施形態では、複数の第1伝熱板10および複数の第2伝熱板20を、交互に積層することによりコア1を構成した例を示したが、本発明はこれに限られない。本発明では、第1伝熱板と第2伝熱板とを必ずしも交互に積層しなくともよい。たとえば、Z方向に沿って、第2伝熱板、第1伝熱板、第2伝熱板、第2伝熱板、第1伝熱板・・・、となるように、1層の第1伝熱板に対して2層(複数層)の第2伝熱板を積層させてもよい。逆に、2層(複数層)の第1伝熱板に対して1層の第2伝熱板を積層させてもよい。
 また、上記第1および第2実施形態では、第1伝熱板10(110)に3つの第1流体通路部11を設けた例を示したが、本発明はこれに限られない。本発明では、第1伝熱板10に2つまたは4つ以上の第1流体通路部11を設けてもよい。
 また、上記第1実施形態では、第2伝熱板20に、第1伝熱板10の第1流体通路部11と対応するように複数の第2流体通路部21を設けた例を示したが、本発明はこれに限られない。本発明では、第2流体通路部をたとえば1つだけ設けてもよい。具体的には、図10に示す第1変形例のように、第1伝熱板10の3つの第1流体通路部11に対して、共通の1つの第2流体通路部221を第2伝熱板220に設けてもよい。なお、この第1変形例では、第2流体通路部221は、第1流体通路部11と直交するY方向に延びており、直交流型の熱交換器となっている。第2流体通路部221は、X方向の幅W5が第1流体通路部11の長さL1と略等しく、第2伝熱板220のY方向の一端から他端まで延びるように形成されている。これにより、1つ(共通)の第2流体通路部221を流れるD流体と、3つの第1流体通路部11をそれぞれ流れるA流体、B流体、C流体とが、熱交換をする。
 なお、第2流体通路部の数は、いくつでもよい。つまり、第1流体通路部と同数、または1つ以外の複数であってもよい。たとえば、1つの第1流体通路部に対応して複数(たとえば2つ)の第2流体通路部を設けてもよい。
 また、上記第1実施形態では、3つの第2流体通路部21a~21cを、それぞれ、互いに異なる対の第2ポート3(3aおよび3b、3cおよび3d、3eおよび3fの各対)に接続した例を示したが、本発明はこれに限られない。本発明では、3つの第2流体通路部21a~21cを共通の第2ポートに接続してもよい。この場合、たとえば、図6において、ヘッダ部6aおよび6bにそれぞれ設けた仕切板6cを除去すればよい。これにより、ヘッダ部6aおよび6bの内部空間がつながり、3つの第2流体通路部21a~21cが共通の第2ポート3に接続されることになる。この場合、第2ポート3は、3対(3つずつ)設けてもよいが、少なくとも入口側(たとえば3c)と、出口側(たとえば3d)とに一対設けられていればよい。
 また、上記第1実施形態では、第2伝熱板20の3つの第2流体通路部21に同じ種類の流体(D流体)を供給する例を示したが、本発明はこれに限られない。本発明では、図11に示す第2変形例のように、3つの第2流体通路部21に異なる種類の流体を供給してもよい。図11では、第1伝熱板10(図11(A))の3つの第1流体通路部11に、それぞれA流体、B流体、C流体が供給され、第2伝熱板20(図11(B))の3つの第2流体通路部21に、それぞれD流体、E流体、F流体が供給される。この第2変形例では、第1流体通路部11aのA流体と第2流体通路部21aのD流体との間、第1流体通路部11bのB流体と第2流体通路部21bのE流体との間、第1流体通路部11cのC流体と第2流体通路部21cのF流体との間で、それぞれ熱交換が行われる。A流体~F流体は、互いに異なる種類の流体であってもよいし、一部が同じ種類の流体であってもよい。
 また、上記第1実施形態では、第1伝熱板10および第2伝熱板20の2種類の伝熱板を設けた例を示したが、本発明はこれに限られない。本発明は、第3伝熱板など、3種以上の伝熱板を設ける構成を除外するものではない。ただし、第3伝熱板を設けるよりは、第3伝熱板に設ける流体通路部を第1伝熱板10および第2伝熱板20に形成する方が、部品種類(伝熱板の種類)および部品点数を削減することが可能である。
 また、上記第1および第2実施形態では、複数の第1流体通路部11を、それぞれ、入口側の導入口12から対応する出口側の導出口13に向かうX方向に向けて延びる長細形状に形成し、X方向と直交するY方向に沿って並んで配置した例を示したが、本発明はこれに限られない。本発明では、第1流体通路部を長細形状に形成しなくてもよい。たとえば、第1伝熱板において第1流体通路部を正方形状に形成したり、矩形以外の形状にしたりしてもよい。また、第1流体通路部を長手方向(X方向)と直交する短手方向(Y方向)に並べて配列しなくてもよい。たとえば第1伝熱板を縦横(行列状)に4分割した領域に、それぞれの第1流体通路部を配置してもよい。
 また、上記第1実施形態では、第1流体通路部11および第2流体通路部21に、熱交換通路16(26)および接続通路部17(27)を含む流路15(25)を設けた例を示したが、本発明はこれに限られない。本発明では、第1流体通路部および第2流体通路部をそれぞれ構成する流路の構成は、特に限定されない。流路の形状や数は、任意に設定してよい。たとえば、直線状の熱交換通路ではなく、屈曲または湾曲した曲線状の熱交換通路を設けてもよい。接続通路部の分岐数は、上述の4分岐、8分岐および9分岐以外でもよく、接続する熱交換通路の数に応じた分岐数とすればよい。第1流体通路部11a~11cのそれぞれを構成する流路15が、互いに異なる形状であってもよい。
 1 コア
 2(2a~2f) 第1ポート
 3(3a~3f) 第2ポート
 10、110 第1伝熱板
 11(11a~11c)、111(111a~111c) 第1流体通路部
 12 導入口(一端部)
 13 導出口(他端部)
 14 拡散接合面
 15 流路
 20、220 第2伝熱板
 21(21a~21c)、221 第2流体通路部
 100、200 熱交換器(拡散接合型熱交換器)
 X方向(第1方向)
 Y方向(第2方向)

Claims (6)

  1.  それぞれ溝状の流体通路部が形成された第1伝熱板および第2伝熱板が積層され拡散接合されたコアと、
     前記第1伝熱板に流体を導入および導出するための複数対の第1ポートと、
     前記第2伝熱板に流体を導入および導出するための少なくとも一対の第2ポートとを備え、
     前記第1伝熱板は、互いに異なる対の前記第1ポートに接続されるとともに互いに隔離された複数の第1流体通路部を含む、拡散接合型熱交換器。
  2.  前記第2ポートは、複数対設けられ、
     前記第2伝熱板は、前記第1伝熱板の前記第1流体通路部と対応するように形成され、互いに隔離された複数の第2流体通路部を含み、
     前記複数の第2流体通路部は、それぞれ、互いに異なる対の前記第2ポートに接続されている、請求項1に記載の拡散接合型熱交換器。
  3.  前記第2流体通路部は、前記第1流体通路部と同数設けられ、それぞれの前記第2流体通路部が、平面視で前記第1伝熱板の前記複数の第1流体通路部と重なる位置に配置されている、請求項2に記載の拡散接合型熱交換器。
  4.  前記複数の第1流体通路部は、それぞれ、前記第1伝熱板の面内において、入口側の前記第1ポートに接続する一端部から対応する出口側の前記第1ポートに接続する他端部に向かう第1方向に向けて延びる長細形状に形成され、前記第1方向と直交する第2方向に沿って並んで配置されている、請求項1に記載の拡散接合型熱交換器。
  5.  前記複数の第1流体通路部は、前記第1伝熱板の同一表面において互いに前記第2方向に離間して配置されており、
     前記第1伝熱板は、前記第2方向に隣接する前記第1流体通路部の間に前記第2伝熱板との拡散接合面を有する、請求項4に記載の拡散接合型熱交換器。
  6.  前記複数の第1流体通路部は、それぞれ、入口側の前記第1ポートに接続する一端部と対応する出口側の前記第1ポートに接続する他端部との間をつなぐ流路を有し、
     前記複数の第1流体通路部のうち少なくとも一の第1流体通路部は、前記流路の流路幅、流路長さ、流路深さ、および、前記流路の本数の少なくともいずれかが、他の前記第1流体通路部と異なるように形成されている、請求項1に記載の拡散接合型熱交換器。
PCT/JP2017/011612 2016-03-31 2017-03-23 拡散接合型熱交換器 WO2017170091A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17774632.8A EP3438591A4 (en) 2016-03-31 2017-03-23 BROADCAST TYPE HEAT EXCHANGER
US16/081,312 US20190086155A1 (en) 2016-03-31 2017-03-23 Diffusion-Bonded Heat Exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-070834 2016-03-31
JP2016070834A JP6321067B2 (ja) 2016-03-31 2016-03-31 拡散接合型熱交換器

Publications (1)

Publication Number Publication Date
WO2017170091A1 true WO2017170091A1 (ja) 2017-10-05

Family

ID=59965451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011612 WO2017170091A1 (ja) 2016-03-31 2017-03-23 拡散接合型熱交換器

Country Status (4)

Country Link
US (1) US20190086155A1 (ja)
EP (1) EP3438591A4 (ja)
JP (1) JP6321067B2 (ja)
WO (1) WO2017170091A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014204935A1 (de) * 2014-03-17 2015-10-01 Mahle International Gmbh Heizkühlmodul
JP7206609B2 (ja) * 2018-03-26 2023-01-18 株式会社富士通ゼネラル 金属積層体及び金属積層体の製造方法
JP7210151B2 (ja) 2018-03-30 2023-01-23 住友精密工業株式会社 拡散接合型熱交換器
JPWO2020129863A1 (ja) * 2018-12-21 2021-11-25 日本発條株式会社 接合方法および接合体
IT201900020376A1 (it) * 2019-11-05 2021-05-05 Microchannel Devices S R L Metodo per la fabbricazione di dispositivi idraulici multi-tubazione monolitici, in particolare scambiatori di calore
JP2024099428A (ja) 2023-01-12 2024-07-25 株式会社神戸製鋼所 マイクロチャネル型熱交換器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080083A (ja) * 1983-10-06 1985-05-07 Matsushita Electric Ind Co Ltd 熱交換器
GB2218794A (en) * 1988-05-16 1989-11-22 Atomic Energy Authority Uk Plate heat exchanger
JP2007292366A (ja) * 2006-04-24 2007-11-08 Luft Wasser Project:Kk 板状熱交換器
JP2010513833A (ja) * 2006-12-14 2010-04-30 ユーオーピー エルエルシー 天然ガス液化のための熱交換器
JP2013155971A (ja) 2012-01-31 2013-08-15 Kobe Steel Ltd 積層型熱交換器及び熱交換システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108377A1 (en) * 1982-11-04 1984-05-16 Matsushita Electric Industrial Co., Ltd. Heat exchanger
AU568940B2 (en) * 1984-07-25 1988-01-14 University Of Sydney, The Plate type heat exchanger
US4893673A (en) * 1984-10-31 1990-01-16 Rockwell International Corporation Entry port inserts for internally manifolded stacked, finned-plate heat exchanger
AU2003902200A0 (en) * 2003-05-06 2003-05-22 Meggitt (Uk) Ltd Heat exchanger core
CN104641196B (zh) * 2012-09-17 2018-05-18 马勒国际公司 热交换器
JP6590917B2 (ja) * 2014-10-01 2019-10-16 三菱重工コンプレッサ株式会社 プレート積層型熱交換器
JP5847913B1 (ja) * 2014-11-06 2016-01-27 住友精密工業株式会社 熱交換器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080083A (ja) * 1983-10-06 1985-05-07 Matsushita Electric Ind Co Ltd 熱交換器
GB2218794A (en) * 1988-05-16 1989-11-22 Atomic Energy Authority Uk Plate heat exchanger
JP2007292366A (ja) * 2006-04-24 2007-11-08 Luft Wasser Project:Kk 板状熱交換器
JP2010513833A (ja) * 2006-12-14 2010-04-30 ユーオーピー エルエルシー 天然ガス液化のための熱交換器
JP2013155971A (ja) 2012-01-31 2013-08-15 Kobe Steel Ltd 積層型熱交換器及び熱交換システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3438591A4

Also Published As

Publication number Publication date
JP2017180984A (ja) 2017-10-05
EP3438591A1 (en) 2019-02-06
EP3438591A4 (en) 2019-11-27
US20190086155A1 (en) 2019-03-21
JP6321067B2 (ja) 2018-05-09

Similar Documents

Publication Publication Date Title
JP6321067B2 (ja) 拡散接合型熱交換器
CN108885075B (zh) 热交换器
JP4011648B2 (ja) プレート積層型熱交換器
CN106403666B (zh) 热交换器
US20200006822A1 (en) Plate Assembly for Heat Exchanger
GB2303911A (en) Heat exchanger having a sandwiched plate structure
KR20170063651A (ko) 플레이트 적층형 열교환기
JP2016125686A (ja) オイルクーラ
CN108885072B (zh) 热交换器
WO2019188997A1 (ja) 拡散接合型熱交換器
JPWO2019043802A1 (ja) 熱交換器
JP2017180984A5 (ja)
JP5818397B2 (ja) プレート式熱交換器
US20180045469A1 (en) Heat exchanger device
US20080190594A1 (en) Heat Exchanger Device for Rapid Heating or Cooling of Fluids
WO2020105658A1 (ja) 拡散接合型熱交換器
JP2019027667A (ja) 複合オイルクーラ
WO2012008348A1 (ja) 熱交換器
EP3467422B1 (en) Heat exchanger assembly
JP2022128039A (ja) 熱交換器
JP2018141602A (ja) マイクロ流路熱交換器
JP6268045B2 (ja) プレート式熱交換器
WO2018047299A1 (ja) プレート式熱交換器および冷凍サイクル装置
KR101987850B1 (ko) 사공간을 삭제한 구조를 포함하는 인쇄기판형 열교환기
JP6319060B2 (ja) 熱交換器

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017774632

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017774632

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774632

Country of ref document: EP

Kind code of ref document: A1