JPWO2020004620A1 - 累進屈折力レンズの設計方法、製造方法、設計システム及び累進屈折力レンズ - Google Patents

累進屈折力レンズの設計方法、製造方法、設計システム及び累進屈折力レンズ Download PDF

Info

Publication number
JPWO2020004620A1
JPWO2020004620A1 JP2020527681A JP2020527681A JPWO2020004620A1 JP WO2020004620 A1 JPWO2020004620 A1 JP WO2020004620A1 JP 2020527681 A JP2020527681 A JP 2020527681A JP 2020527681 A JP2020527681 A JP 2020527681A JP WO2020004620 A1 JPWO2020004620 A1 JP WO2020004620A1
Authority
JP
Japan
Prior art keywords
lens
difference
sight
eye
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020527681A
Other languages
English (en)
Other versions
JP7090155B2 (ja
Inventor
和磨 神津
和磨 神津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Lens Thailand Ltd
Original Assignee
Hoya Lens Thailand Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Lens Thailand Ltd filed Critical Hoya Lens Thailand Ltd
Publication of JPWO2020004620A1 publication Critical patent/JPWO2020004620A1/ja
Application granted granted Critical
Publication of JP7090155B2 publication Critical patent/JP7090155B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/025Methods of designing ophthalmic lenses considering parameters of the viewed object
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/027Methods of designing ophthalmic lenses considering wearer's parameters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • G02C7/063Shape of the progressive surface
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • G02C7/068Special properties achieved by the combination of the front and back surfaces

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

累進屈折力レンズの装用時における、装用者から有限距離前方且つ装用者の正中面上の箇所Oの物体を視認するときの状態Aと、前頭面と平行な面であって箇所Oを含む面内にて、箇所Oと鉛直方向の高さ一定で箇所Oの水平方向側方に位置する箇所Pの物体を視認するときの状態Bとの差Vを、累進屈折力レンズに対応する参照用単焦点レンズの装用時又は裸眼相当時における、箇所Oの物体を視認するときの状態Cと、 箇所Pの物体を視認するときの状態Dとの差Wに近づけるよう、累進屈折力レンズの表面形状を調整する、累進屈折力レンズの設計方法およびその関連技術を提供する。

Description

本発明は、累進屈折力レンズの設計方法、製造方法、設計システム及び累進屈折力レンズに関する。なお、優先権の基礎となる日本国出願の特願2018−123739の記載内容は全て本明細書にて参照可能である。
眼鏡レンズにおいては、度数が連続的に変化する部分を備えたものが知られている。このような眼鏡レンズは累進屈折力レンズとも呼ばれる。
遠用部及び近用部を備えるいわゆる累進多焦点レンズが例示される。他には、所定の距離を見るための一つの領域から離れるに従って度数が変化する非球面単焦点レンズなどが例示される。
例えば、累進多焦点レンズにおいては、遠用部から近用部にかけて度数が連続的に変化する際の基準となる線として主注視線と呼ばれる曲線が設定されている。
主注視線とは、装用者が眼鏡レンズを装用して天地方向である鉛直方向の天の方向(上方)から地の方向(下方)、又はその逆方向へと視線を移した際に、眼鏡レンズにおいて視線が通過する頻度が最も高い部分が集まって形成される線を指す。この主注視線は、眼鏡レンズを設計する際の基礎となる部分である。累進屈折力レンズは、この主注視線に沿って、遠用部から近用部にかけて変化する度数が処方情報に定められた度数変化になるように、レンズ形状は設計される。
特許文献1には、物体側の面(外面、凸面)と眼球側の面(内面、凹面)とを備える累進屈折力レンズに関する技術が開示されている。具体的には、外面における遠用度数測定位置である遠用基準点での縦横方向の屈折力と、外面における近用度数測定位置である近用基準点での縦横方向の屈折力が所定の関係を満たすよう制御する技術が開示されている。この制御により、累進屈折力レンズに特有であるところの遠近倍率差を低減し、装用者が知覚する歪みを低減することが開示されている。
特許文献2には、装用者の輻湊が加味された主注視線が通過する部分において生じ得るアウトプリズムの作用が生じ得ることが開示されている。そして、該アウトプリズムの作用を少なくとも一部相殺するインプリズムの形状を、累進屈折力レンズの主注視線上の、遠用部から近用部の部分に備えさせることが開示されている。それにより、主注視線上のアウトプリズムの作用により大きい輻湊が強いられる状態を、インプリズムの作用により軽減できることが開示されている。
国際公開第03/100505号パンフレット 国際公開第2016/104811号パンフレット
本発明者は、以下の累進屈折力レンズに特有の課題について着目した。
(奥行方向の歪み)
図1は、天地の天の方向(鉛直上方)から天地の地の方向(鉛直下方)を見たときの、従来の累進屈折力レンズである右眼用レンズ10R及び左眼用レンズ10L、ならびに、眼鏡レンズ10を通して見える、装用者にとっての見かけの目標物体面20の位置を示す概略図である。以降、見かけの目標物体面20のことを「見かけ面20」とも称する。
従来の累進屈折力レンズの場合、装用者から有限距離前方且つ装用者の正中面(medial plane)上の箇所Oの物体を視認するときの状態Aを仮想する。
図2は、装用者から有限距離前方且つ装用者の正中面上の箇所Oの物体を視認するときの状態Aにおいて、累進屈折力レンズを通して見える見かけ面20の奥行方向の位置が、実際の目標物体面22の奥行方向に対して手前側に位置する様子を示す概略説明図である。以降、実際の目標物体面22のことを「実際面22」とも称する。
図2に示すように、実際面22の奥行方向の位置に対し、見かけ面20の奥行方向の位置は、手前側に位置する。
その一方、前頭面(frontal plane)と平行な面であって箇所Oを含む面内にて、箇所Oと鉛直方向の高さ一定で箇所Oの水平方向側方に位置する箇所Pの物体を視認するときの状態Bを仮想する。状態Bだと、眼鏡レンズ10を通して見える見かけ面20の奥行方向の位置は、図1に示すように、先ほどとは逆に、実際面22の奥行方向に対して奥行側に位置する。
つまり、累進屈折力レンズだと、両眼視時の左右眼の輻湊差によって生じる奥行方向の見かけの位置に変化が生じる。しかも、正面の箇所Oでの奥行方向の見かけの位置と、その側方の箇所Pでの奥行方向の見かけの位置とが異なることが多い。その結果、奥行方向の像の歪みが生じ得る。この像の歪みを解消すれば、快適な装用感が得られる。
(上下方向の眼位差)
図3は、水平方向から見たときの、従来の累進屈折力レンズである右眼用レンズ10R及び左眼用レンズ10Lを通して近方距離且つ側方にある物体を見たときの、右眼Rと左眼Lとで上下方向の眼位差が生じている様子を示す図である。
図3に示すように、眼鏡レンズを装用して1つの点を注視するとき両眼間で鉛直方向に関して視線の向きの差が生じる場合、装用者は、両眼視の状態で同一視するために鉛直方向に左右で異なる眼位状態へと強制的に移行する。なお、本明細書においては、視線の向きとは眼球側の視線の向きのことを指し、右眼球又は左眼球が向く方向のことを指す。
一般的に、人の眼は鉛直方向のプリズム作用の差に対する許容度は狭く、仮に同一視できたとしても不快な装用感を起こし易い。またその程度が装用者の許容度を超える場合、複視として像が知覚されることになる。上下方向の眼位差を解消すれば、このような像の知覚を抑制でき、ひいては快適な装用感が得られる。
そこで、本発明の一実施例は、累進作用に起因する不必要なプリズム作用により生じる影響を小さくし、快適な装用感を得る技術を提供することを目的とする。
累進屈折力レンズに特有の課題を解決する方法としては、累進屈折力レンズを装用した時の状態を、単焦点レンズを装用した時の状態又は裸眼相当の状態(後述)へと近づけることが有効である。
その一方、この方法に則ると、例えば有限距離側方にある物体を累進屈折力レンズを通して見る状態(後述の「状態B、累進側方視状態B」)を、単焦点レンズを通して見る状態又は裸眼相当の状態(後述の「状態D、参照側方視状態D」)に近づけるよう、累進屈折力レンズを設計することになる。
但し、その場合、累進側方視状態Bと参照側方視状態Dの差だけに着目してしまうと、本発明の課題の欄にて列挙したような、累進作用に起因する不必要なプリズム作用により生じる要素と、累進作用のうち調節力をサポートするための加入度数に起因する必要なプリズム作用により生じる要素とが混在している状態となる。この「必要なプリズム作用により生じる要素」とは、例えば、調節力をサポートするための加入度数が付加されたレンズを通して見る際に必要となる輻輳量が挙げられる。輻輳量とは、近方距離の物体を見る際に左右眼が内寄りになる度合いを示し、本明細書においては内寄せ量とも称する。なお、本明細書における「内寄せ量」は、片眼における内寄りになる度合いを示すこともあるし、両眼における内寄りになる度合いを示すこともある。
累進作用に起因する不必要なプリズム作用により生じる要素と必要なプリズム作用により生じる要素とが混在した状態だと、累進作用に起因する不必要なプリズム作用により生じる影響を選択して小さくするという課題の解決が困難となる。
そこで本発明者は、累進屈折力レンズの装用時において、装用者から有限距離前方且つ装用者の正中面上の箇所Oの物体を視認するときの状態(後述の状態A、累進正面視状態A)と、先ほどの累進側方視状態Bとの差Vに着目した。
この着目には、累進正面視状態Aにおける、累進屈折力レンズの累進作用に起因したプリズム作用によって生じる左右眼の輻輳角及び眼位差を解消するのではなく受け入れることに特徴の一つがある。
有限距離における正面視状態だと、右眼も左眼も内寄せが生じる。そのため、累進正面視状態Aにおける奥行方向の歪み及び上下方向の眼位差には、内寄せにより生じる基本的な要素が既に含まれている。そのうえで、正面視状態と側方視状態との差分に着目することにより、内寄せ量により生じる基本的な要素が差し引かれる。言い方を変えると、右眼用の累進屈折力レンズにしても左眼用の累進屈折力レンズにしても、視線が主注視線を通過する際の左右眼の輻湊角及び眼位差は受け入れる。その結果、差Vと差Wとの差分は、累進作用に起因する不必要なプリズム作用により生じる要素が主に反映された状態となる。つまり、累進作用に起因する不必要なプリズム作用により生じる要素を検討することが可能となる。
同様に、単焦点レンズ又は裸眼相当の状態においても、参照正面視状態Cと参照側方視状態Dとの差Wに着目した。そして、この差Vを差Wに近づけるよう、累進屈折力レンズを設計することにより、累進屈折力レンズを装用した時の状態を、単焦点レンズを装用した時の状態又は裸眼相当の状態へと近づけるという手法を想到した。
上記知見に基づきなされたのが以下の態様である。
本発明の第1の態様は、
累進屈折力レンズの装用時における、
装用者から有限距離前方且つ装用者の正中面上の箇所Oの物体を視認するときの状態Aと、
前頭面と平行な面であって箇所Oを含む面内にて、箇所Oと鉛直方向の高さ一定で箇所Oの水平方向側方に位置する箇所Pの物体を視認するときの状態Bとの差Vを、
累進屈折力レンズに対応する参照用単焦点レンズの装用時又は裸眼相当時における、
箇所Oの物体を視認するときの状態Cと、
箇所Pの物体を視認するときの状態Dとの差Wに近づけるよう、累進屈折力レンズの表面形状を調整する、累進屈折力レンズの設計方法である。
本発明の第2の態様は、第1の態様に記載の態様であって、
差Vは、状態Aでの右眼の視線の向きと左眼の視線の向きとの角度差VAと、状態Bでの右眼の視線の向きと左眼の視線の向きとの角度差VBとの差であり、
差Wは、状態Cでの右眼の視線の向きと左眼の視線の向きとの角度差WCと、状態Dでの右眼の視線の向きと左眼の視線の向きとの角度差WDとの差であり、
累進屈折力レンズの表面形状を調整して状態Bでの角度差VBを変動させることにより、差Wからの所定の許容範囲内に差Vを収める。
本発明の第3の態様は、第2の態様に記載の態様であって、
装用者の正中面上且つ右眼と左眼の中間位置に回旋中心を設定した統合眼及び統合眼用の累進屈折力レンズを仮想したとき、
角度差VAは、状態Aでの、右眼の視線の向きと統合眼の視線の向きとの角度差VARと、左眼の視線の向きと統合眼の視線の向きとの角度差VALとの差であり、
角度差VBは、状態Bでの、右眼の視線の向きと統合眼の視線の向きとの角度差VBRと、左眼の視線の向きと統合眼の視線の向きとの角度差VBLとの差であり、
角度差WCは、状態Cでの、右眼の視線の向きと統合眼の視線の向きとの角度差WCRと、左眼の視線の向きと統合眼の視線の向きとの角度差WCLとの差であり、
角度差WDは、状態Dでの、右眼の視線の向きと統合眼の視線の向きとの角度差WDRと、左眼の視線の向きと統合眼の視線の向きとの角度差WDLとの差である。
本発明の第4の態様は、第3の態様に記載の態様であって、
角度差VARと角度差VALの比、角度差VBRと角度差VBLの比、角度差WCRと角度差WCLの比、及び角度差WDRと角度差WDLの比の少なくともいずれかに応じ、累進屈折力レンズの表面形状の調整の際の、右眼用の累進屈折力レンズに対する補正量と左眼用の累進屈折力レンズに対する補正量とを按分する。
本発明の第5の態様は、第3または第4の態様に記載の態様であって、
統合眼用の累進屈折力レンズの等価球面度数として、右眼用の累進屈折力レンズの等価球面度数と、左眼用の累進屈折力レンズの等価球面度数との平均値を採用する。
本発明の第6の態様は、第2〜第5の態様のいずれかに記載の態様であって、
差Wからの所定の許容範囲は、差Wの50%以内である。
本発明の第7の態様は、
第1〜第6のいずれかに記載の累進屈折力レンズの設計方法を行う設計工程と、
設計工程後、累進屈折力レンズを得る加工工程と、
を有する、累進屈折力レンズの製造方法である。
本発明の第8の態様は、
累進屈折力レンズの装用時における、
装用者から有限距離前方且つ装用者の正中面上の箇所Oの物体を視認するときの状態Aと、
前頭面と平行な面であって箇所Oを含む面内にて、箇所Oと鉛直方向の高さ一定で箇所Oの水平方向側方に位置する箇所Pの物体を視認するときの状態Bとの差Vを、
累進屈折力レンズに対応する 参照用単焦点レンズの装用時又は裸眼相当時における、
箇所Oの物体を視認するときの状態Cと、
箇所Pの物体を視認するときの状態Dとの差Wに近づけるよう、累進屈折力レンズの表面形状を調整するソフトウェアモジュールを備えた、累進屈折力レンズの設計システムである。
本発明の第9の態様は、
近方視に用いる屈折力を有する近用部と、近方視よりも遠方の物体を見るための屈折力を有する遠用部と、遠用部と近用部との間で屈折力が累進的に変化する累進作用を有する中間部と、を備える累進屈折力レンズであって、
累進作用に起因する不必要なプリズム作用による像の歪み度合いを、累進屈折力レンズに対応する参照用単焦点レンズの装用時又は裸眼相当時における像の歪み度合いに近づけるプリズム作用調整領域を備える、累進屈折力レンズである。
本発明の第10の態様は、第9の態様に記載の態様であって、
プリズム作用調整領域は、主注視線から水平方向に外れた側方部の領域を含む。
本発明の第11の態様は、第9または第10の態様に記載の態様であって、
以下の2つの条件の少なくともいずれかを満たす。
[条件1]
レンズ水平方向を横軸、加入度で正規化された鉛直方向の表面プリズム差分を縦軸としたときのプロットにおいて、近用部における所定の水平断面上での所定箇所αの鉛直方向の表面プリズム差分の最大値と最小値の差が0.2[プリズムディオプトリ/ディオプター]以上である。
[条件2]
レンズ水平方向を横軸、加入度で正規化された水平方向の表面プリズム差分を縦軸としたときのプロットにおいて、近用部における所定の水平断面上での所定箇所γ内のx=0の位置において、水平方向の表面プリズム差分の絶対値が0.25[プリズムディオプトリ/ディオプター]以上であり、所定箇所γ内のx=0の位置は、プリズム参照点の真下または累進屈折力レンズの2つのアライメント基準マークの中点の真下に位置する。
本発明の第12の態様は、第11の態様に記載の態様であって、
所定の水平断面の位置は、加入度の85%から100%が達成される位置である。
好ましくは、累進屈折力レンズの表面形状を調整して状態Bでの角度差VBのみを変動させることにより、差Wからの所定の許容範囲内に差Vを収める。
好ましくは、参照用単焦点レンズの等価球面度数として、累進屈折力レンズの等価球面度数を採用する。
好ましくは、プリズム作用を調整する領域は、主注視線から水平方向に外れた側方部の領域を含み、更に好ましくは、主注視線から水平方向に外れた側方部の領域を含み且つ近用部を含む領域をプリズム作用調整領域とする。
累進屈折力レンズを、右眼用の累進屈折力レンズと左眼用の累進屈折力レンズとからなる一対の累進屈折力レンズと読み替えてもよい。
[条件1]および[条件2]を満たすのが好ましい。
なお、以下の条件を満たすことも好ましい。
[条件3]
横軸を視線の向き(tanθ)、縦軸を奥行き方向位置情報(単位:ディオプター)としたときの、累進屈折力レンズのプロットが、累進屈折力レンズに対応する参照用単焦点レンズの装用時又は裸眼相当時のプロットと交差しない。
本発明の一実施例によれば、累進作用に起因する不必要なプリズム作用により生じる影響を小さくし、快適な装用感を得る技術を提供できる。
図1は、天地の天の方向(鉛直上方)から天地の地の方向(鉛直下方)を見たときの、従来の累進屈折力レンズである右眼用レンズ及び左眼用レンズ、ならびに、累進屈折力レンズを通して見える、装用者にとっての見かけの目標物体面の位置を示す概略図である。 図2は、装用者から有限距離前方且つ装用者の正中面上の箇所Oの物体を視認するときの状態Aにおいて、従来の累進屈折力レンズを通して見える見かけ面の奥行方向の位置が、実際の目標物体面の奥行方向に対して手前側に位置する様子を示す更なる概略図である。 図3は、水平方向から見たときの、従来の累進屈折力レンズである右眼用レンズ及び左眼用レンズを通して近方距離且つ側方にある物体を見たときの、右眼と左眼とで上下方向の眼位差が生じている様子を示す概略図である。 図4Aは、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用する際の累進正面視状態Aの両眼の視線の方向を表した図である。 図4Bは、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用する際の累進側方視状態Bの両眼の視線の方向を表した図である。 図4Cは、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用する際の参照正面視状態Cの両眼の視線の方向を表した図である。 図4Dは、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用する際の参照側方視状態Dの両眼の視線の方向を表した図である。 図5は、目標物体面の一例を示す図である。 図6は、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用した後の累進屈折力レンズである右眼用レンズ及び左眼用レンズ、ならびに、累進屈折力レンズを通して見える、装用者にとっての見かけの目標物体面の位置を示す概略図である。 図7は、水平方向から見たときの、本発明の一態様の設計方法を採用した後の累進屈折力レンズである右眼用レンズ及び左眼用レンズを通して近方距離且つ側方にある物体を見たときの、右眼と左眼とで上下方向の眼位差が生じていない様子を示す概略図である。 図8Aは、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用する際の累進正面視状態Aの統合眼及び両眼の視線の方向を表した図である。 図8Bは、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用する際の累進側方視状態Bの統合眼及び両眼の視線の方向を表した図である。 図8Cは、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用する際の参照正面視状態Cの統合眼及び両眼の視線の方向を表した図である。 図8Dは、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用する際の参照側方視状態Dの統合眼及び両眼の視線の方向を表した図である。 図9は、本発明の一態様に係る設計方法で採用する統合眼用の累進屈折力レンズの基本設計を示す面平均度数分布図(左図)及び面非点収差分布図(右図)である。 図10は、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用した後の累進屈折力レンズである右眼用レンズ、左眼用レンズ、及び統合眼用レンズ、ならびに、累進屈折力レンズを通して見える、装用者にとっての見かけの目標物体面の位置を示す概略図である。 図11は、本発明の一態様に係る累進屈折力レンズの設計方法を実施するシステムの一例を説明する図である。 図12は、本発明の一態様に係る累進屈折力レンズの設計方法を実施するシステムにおける設計装置の装置構成を示す構成図である。 図13は、本発明の一態様に係る累進屈折力レンズの設計方法のフローを示す図である。 図14は、統合眼用レンズの面非点収差分布に対して内寄せを行いつつ初期設計された右眼用レンズ及び左眼用レンズの面非点収差分布の一例を示す図である。 図15は、左眼用レンズ及び右眼用レンズが累進屈折力レンズであるときの調整前後のレンズ面における面平均度数分布と面非点収差分布の変化の一例を示す図である。 図16は、各実施例の眼鏡レンズ対のうちの右眼用の眼鏡レンズ300の一例を説明する図である。 図17は、右眼用レンズ300及び左眼用レンズ400におけるレンズ表面プリズム屈折力分布から差分値の分布を算出する方法を説明する図である。 図18(a)は、眼鏡レンズ対を作製したときの参照用レンズ、実施例1のレンズ、従来のレンズを装用したときの、鉛直方向の両眼間の視線の向きの差、すなわち上下方向の眼位差の分布を示し、横軸は上記視線の向きの水平方向成分を、縦軸は上記視線の向きの鉛直方向成分を表している。図18(b)は、目標物体面22の奥行き方向の見かけの位置の変化すなわち奥行方向の歪みを示すグラフであり、縦軸は奥行き方向位置情報[ディオプター]を示し、横軸は水平方向の視線の向き[tanθ]を示す。 図19(a)は、図18(b)における横軸である水平方向の視線の向きを説明する図である。図19(b)は、図18(b)における縦軸である奥行き方向の位置情報を説明する図である。 図20は、実施例1のレンズおよび従来のレンズにおける、水平方向の表面プリズム差分の変化を示す図であり、縦軸は水平方向の表面プリズム差分[プリズムディオプトリ/ディオプター]、横軸はy=−14mm上のx座標[mm]を示す。 図21(a)は、眼鏡レンズ対を作製したときの参照用レンズ、実施例2のレンズ、従来のレンズを装用したときの、鉛直方向の両眼間の視線の向きの差、すなわち上下方向の眼位差の分布を示し、横軸は上記視線の向きの水平方向成分を、縦軸は上記視線の向きの鉛直方向成分を表している。図21(b)は、目標物体面22の奥行き方向の見かけの位置の変化すなわち奥行方向の歪みを示すグラフであり、縦軸は奥行き方向位置情報[ディオプター]を示し、横軸は水平方向の視線の向き[tanθ]を示す。 図22は、実施例3のレンズおよび従来のレンズにおける、鉛直方向の表面プリズム差分の変化を示す図であり、縦軸は鉛直方向の表面プリズム差分[プリズムディオプトリ/ディオプター]、横軸はy=−14mm上のx座標[mm]を示す。
以下、本発明の一態様について述べる。以下における説明は例示であって、本発明は例示された態様に限定されるものではない。
本明細書においては、鉛直方向をY方向、水平方向をX方向とし、両方向に垂直な方向をZ方向とする。Z方向は、正面視する方向であって正中面及び前頭面に垂直な方向でもある。
なお、各状態A、B、C、Dにおける視線の向きは光線追跡法を採用したシミュレーションにより把握可能である。ひいては、レンズ上にて視線が通過する位置も光線追跡法により把握可能である。光線追跡法としては公知の手法を採用すればよいため、詳細は省略する。
[本発明の一態様に係る累進屈折力レンズの設計方法]
本発明の一態様に係る累進屈折力レンズの設計方法の具体的な構成は以下の通りである。
「累進屈折力レンズの装用時における、
装用者から有限距離前方且つ装用者の正中面上の箇所Oの物体を視認するときの状態Aと、
前頭面と平行な面であって箇所Oを含む面内にて、箇所Oと鉛直方向の高さ一定で箇所Oの水平方向側方に位置する箇所Pの物体を視認するときの状態Bとの差Vを、
累進屈折力レンズに対応する参照用単焦点レンズの装用時又は裸眼相当時における、
箇所Oの物体を視認するときの状態Cと、
箇所Pの物体を視認するときの状態Dとの差Wに近づけるよう、累進屈折力レンズの表面形状を調整する、累進屈折力レンズの設計方法。」
累進屈折力レンズは、レンズの上側部分に設けられた遠方の物体を見るための屈折力を有する部分、すなわち遠方視に用いる屈折力を有する遠用部と、レンズの下側部分に設けられた近方の物体を見るための屈折力を有する部分、すなわち近方視に用いる屈折力を有する近用部、及び遠用部から近用部の間に設けられる中間部を、領域として有し、遠用部から近用部の間で屈折力が徐々に変化するレンズである。
遠用部は、近方距離よりも遠くの距離を見るための領域であれば特に限定は無い。例えば、無限遠ではなく所定距離(4m〜1m)を見るための領域であってもよい。このような領域を備えた眼鏡レンズとしては、中間距離(1m〜40cm)ないし近方距離(40cm〜10cm)の物体距離に対応する中近(intermediate-near)レンズ、該近方距離内にて対応する近近(near-near)レンズが挙げられる。
本発明の一態様は、累進屈折力レンズの装用時の状態を使用する。つまり、右眼用の累進屈折力レンズと左眼用の累進屈折力レンズとからなる一対の累進屈折力レンズを装用して両眼視を行う状態を使用する。一対の累進屈折力レンズを単にレンズ対又は眼鏡レンズ対ともいう。また、右眼用の累進屈折力レンズのことを単に右眼用レンズとも称し、左眼用の累進屈折力レンズのことを単に左眼用レンズとも称する。
図4Aは、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用する際の累進正面視状態Aの両眼の視線の方向を表した図である。
状態Aは、装用者から有限距離前方且つ装用者の正中面上の箇所Oの物体を視認するときの状態を指す。状態Aを累進正面視状態Aともいう。正中面とは、左右相称な動物の体の正中に対し平行に、体を左右に分ける面である。
図5は、目標物体面の一例を示す図である。
有限距離の具体的数値には、特に限定は無い。例えば、4m〜10cmの範囲内で適宜設定してもよい。また、上方だと装用者からの距離が長く下方だと該距離が短い目標物体面を図5のように適宜設定し、該目標物体面上に箇所O及び後述の箇所Pを設定してもよい。本明細書においては、一例として、箇所Oの装用者からの距離が40cmである場合を例示する。
目標物体面は、鉛直方向下方に位置するにつれて連続的に累進屈折力レンズ10からの距離が小さくなる部分を有することが好ましい。
図4Bは、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用する際の累進側方視状態Bの両眼の視線の方向を表した図である。
状態Bは、前頭面と平行な面であって箇所Oを含む面内にて、箇所Oと鉛直方向の高さ一定で箇所Oの水平方向側方に位置する箇所Pの物体を視認するときの状態を指す。状態Bを累進側方視状態Bともいう。前頭面とは、正中面に垂直な面であって人間の体を腹側と背側に分割する平面であり、水平方向に平行な面である。
そして、累進屈折力レンズの装用時における正面視状態Aと側方視状態Bとの差Vを得る。
差V及び後述の差Wは、状態としての差が表現可能なパラメータであれば特に限定は無く、例えば眼位差が挙げられる。
図4Cは、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用する際の参照正面視状態Cの両眼の視線の方向を表した図である。
図4Dは、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用する際の参照側方視状態Dの両眼の視線の方向を表した図である。
その一方で、累進屈折力レンズに対応する参照用単焦点レンズの装用時又は裸眼相当時における、箇所Oの物体を視認するときの状態C(参照正面視状態C)、及び箇所Pの物体を視認するときの状態D(参照側方視状態D)を把握する。
参照用単焦点レンズに関してであるが、右眼用の累進屈折力レンズに対する右眼用の参照用単焦点レンズを想定し、左眼用の累進屈折力レンズに対する左眼用の参照用単焦点レンズを想定する。以降、参照用単焦点レンズについては同様とする。また、参照用単焦点レンズのことを単に参照用レンズと称することもある。
累進屈折力レンズの累進成分以外の基本性能を備えたレンズであれば参照用単焦点レンズの具体的構成に特に限定は無い。該レンズは、具体的には、同じ球面度数S、好ましくは、乱視度数Cを加味した等価球面度数(S+C/2)である。以降、参照用単焦点レンズにおいては、累進屈折力レンズにおける等価球面度数を採用する場合を例示する。
また、参照用単焦点レンズとしては、例えば、乱視矯正のための非球面レンズ又は軸外収差を低減するための非球面レンズであってもよい。但し、参照用単焦点レンズは、実際面22の像の歪みを抑制する際の参照対象(目標)となるため、像の歪みは小さいことが好ましい。そのため、参照用単焦点レンズとしては、球面レンズである方が好ましい。また、同様の理由で、参照用単焦点レンズとしては、プリズム度数Δがゼロであるのが好ましい。Δは、プリズム度数の単位であり、1m光線が進行する際に光線進行方向に対して垂直方向に1cm光線が偏位することを指す。
ちなみに、装用者情報の処方データは、累進屈折力レンズのレンズ袋に記載されている。つまり、レンズ袋があれば、装用者情報の処方データに基づいた累進屈折力レンズの物としての特定が可能である。そして、累進屈折力レンズはレンズ袋とセットになっていることが通常である。そのため、レンズ袋が付属した累進屈折力レンズも本発明の技術的思想が反映されているし、レンズ袋と累進屈折力レンズとのセットについても同様である。
「裸眼相当時」とは、裸眼の状態を含むし、球面度数がゼロのレンズいわゆるゼロ度数レンズの装用時も含む。
そして、参照用単焦点レンズの装用時又は裸眼相当時における正面視状態Cと側方視状態Dとの差Wを得る。
そして、累進屈折力レンズの装用時の差Vを、参照用単焦点レンズの装用時又は裸眼相当時の差Wに近づけるよう、累進屈折力レンズを設計する。
具体的な設計手法には特に限定は無い。例えば、レンズ面の曲率を許容された範囲内で調整しながらレンズ面の勾配を調整することによりプリズム作用を調整することにより、差Vを差Wに近づけてもよい。より具体的には、レンズ上に調整点を複数設定し、各調整点における鉛直方向及び水平方向のプリズムを変更させることにより、差Vを差Wに近づけてもよい。
プリズム作用を調整する領域は、主に累進屈折力レンズ上の主注視線を含まない領域とするのが好ましい。プリズム作用調整領域としては、例えば、主注視線から水平方向に外れた側方部の領域を含むのが好ましい。
なお、主注視線は、眼鏡レンズにおいて視線が通過する部分が集まって形成される線を指す。そして、本発明の一態様においては、説明の便宜上、累進屈折力レンズにおける主注視線を、遠用度数測定点と近用度数測定点とを結ぶ線として定義する。またこの定義は、実用上、実際のレンズの主注視線の位置を特定する際にも適用できる。
ただ、もちろん、本発明の一態様では、累進屈折力レンズの装用時において、装用者から有限距離前方且つ装用者の正中面上の箇所Oの物体を視認するときの状態(後述の状態A、累進正面視状態A)と、先ほどの累進側方視状態Bとの差Vに着目したことに基づき種々の態様が創出されている。その着目自体には、主注視線の形状(直線、曲線問わず)に限定は無い。そもそも、装用者に応じて主注視線の形状が変化する場合があることを鑑みると、本発明の一態様の眼鏡レンズを構成するものとして主注視線そのものの形状および位置を一義的に規定する必要はない。
主注視線から水平方向に外れた側方部をプリズム作用調整領域とする場合、累進屈折力レンズの処方情報として与えられた遠用基準点における球面度数Sや円柱度数C、及び近用基準点における加入度に影響を与えることなくプリズム作用を調整することが可能となる。また、近用部を含む領域をプリズム作用調整領域とするのも好ましい。また、主注視線から水平方向に外れた側方部の領域であり且つ近用部を含む領域をプリズム作用調整領域とするのも好ましい。
図6は、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用した後の累進屈折力レンズである右眼用レンズ及び左眼用レンズ、ならびに、累進屈折力レンズを通して見える、装用者にとっての見かけの目標物体面の位置を示す概略図である。
図7は、水平方向から見たときの、本発明の一態様の設計方法を採用した後の累進屈折力レンズである右眼用レンズ10R及び左眼用レンズ10Lを通して近方距離且つ側方にある物体を見たときの、右眼Rと左眼Lとで上下方向の眼位差が生じていない様子を示す概略図である。
課題の欄で述べた(奥行方向の歪み)に関しては、図6に示すように、箇所Oの物体を見る累進正面視状態Aだと、実際面と見かけ面とで、奥行方向にずれが生じる。しかしながら、手段の欄にて述べたように、本発明の一態様では累進正面視状態Aの左右眼の輻湊角及び眼位差は受け入れる。そのため、このずれ自体は予測されたずれである。その一方、累進側方視状態Bだと、累進正面視状態Aでの奥行方向のずれが維持されている。つまり、正面視と側方視との間に、奥行方向のずれは無くなる又は殆ど無くなる。
課題の欄で述べた(上下方向の眼位差)に関しては、図7に示すように、本発明の一態様に係る設計方法を採用する場合、差Vを差Wに近づけたため、側方視での上下方向の眼位差は無くなる又は殆ど無くなる。
その結果、本発明の一態様ならば、累進作用に起因する不必要なプリズム作用により生じる影響を小さくし、快適な装用感が得られる。特に、累進屈折力レンズの中間部を通して見たときの中間視及び近用部を通して見たときの近方視の際の快適な装用感が得られる。
[本発明の一態様に係る累進屈折力レンズの設計方法の詳細]
以下、本発明の一態様の更なる具体例、好適例及び変形例について説明する。
差Vは、状態Aでの右眼の視線の向きと左眼の視線の向きとの角度差VAと、状態Bでの右眼の視線の向きと左眼の視線の向きとの角度差VBとの差であり、
差Wは、状態Cでの右眼の視線の向きと左眼の視線の向きとの角度差WCと、状態Dでの右眼の視線の向きと左眼の視線の向きとの角度差WDとの差である。
角度差VA、角度差VB、角度差WC、及び角度差WDは、基本的には、累進屈折力レンズの表面形状のプリズム作用によって生じる、水平方向及び鉛直方向のベクトル成分を合成した眼位差である。その一方、各角度差VA、VB、VC、VDの鉛直方向のベクトル成分のみを採用して鉛直方向眼位差を設定してもよい。逆に、水平方向のベクトル成分のみを採用して水平方向眼位差を設定してもよい。
課題にて述べた(上下方向の眼位差)の観点を鑑みると、該眼位差には鉛直方向における眼位差を含むのが好ましい。つまり、水平方向及び鉛直方向のベクトル成分を合成した眼位差を設定、又は、各角度差VA、VB、VC、VDの鉛直方向のベクトル成分のみを採用して鉛直方向眼位差を設定するのが好ましい。
各角度差VA、VB、VC、VDにより表される眼位差を差V、差Wの基として使用することにより、課題にて述べた(奥行方向の歪み)(上下方向の眼位差)が解決されていることを直接的に把握可能となるため、好ましい。
そのうえで、累進屈折力レンズの表面形状を調整して状態Bでの角度差VBを変動させることにより、差Wからの所定の許容範囲内に差Vを収めてもよい。
なお、本明細書における「差」の値がマイナスの場合、絶対値を該差の値とする。
この所定の許容範囲としては、例えば差Wの50%以内(0.5W≦V≦1.5W)であってもよく、40%以内だとより好ましく、30%以内だと更に好ましい。下限としては特に限定は無いが、例えば5%、10%が挙げられる。
眼位差を差V、差Wの基として使用しつつ、累進屈折力レンズの装用時と参照用単焦点レンズの装用時又は裸眼相当時とを対比する場合を想定する。
なお、視線の向きは、例えば、右眼用レンズ、左眼用レンズ、右眼用参照用単焦点レンズ、左眼用参照用単焦点レンズ、及び統合眼用レンズ(後述)を通して正面視する方向であって正中面及び前頭面に垂直なZ方向に対する傾斜角度で表すことも可能である。
累進屈折力レンズの装用時における累進正面視状態Aは、手段の欄にて述べたように、(奥行方向の歪み)(上下方向の眼位差)が生じていたとしても本発明の一態様では受け入れる。これは、累進屈折力レンズにおける状態Aの設計を変化させなくとも済むことを意味する。もちろん、該設計を変化させることを本発明から除外するものではない。
また、参照用単焦点レンズの装用時又は裸眼相当時の参照正面視状態C及び参照側方視状態Dは、参照用単焦点レンズの装用時又は裸眼相当時であり、設計は変更させなくとも済む。もちろん、該設計を変化させることを本発明から除外するものではない。
その結果、累進屈折力レンズの装用時における累進側方視状態Bでの角度差VBのみを変動させれば、差Wからの所定の許容範囲内に差Vを収めることが可能となり、作業の手間が大きく省ける。具体的な効果としては、所定の加入度数ADDを満たすように設計することが容易化される。また、箇所Oにおける奥行方向の位置がレンズ表面形状の調整で変化しない。そのため、適切なレンズ表面形状を得ることが容易化される。
装用者の正中面上且つ右眼と左眼の中間位置に回旋中心を設定した統合眼(cyclops eye)及び統合眼用の累進屈折力レンズを仮想するのも好ましい。
図8Aは、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用する際の累進正面視状態Aの統合眼及び両眼の視線の方向を表した図である。
図8Bは、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用する際の累進側方視状態Bの統合眼及び両眼の視線の方向を表した図である。
図8Cは、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用する際の参照正面視状態Cの統合眼及び両眼の視線の方向を表した図である。
図8Dは、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用する際の参照側方視状態Dの統合眼及び両眼の視線の方向を表した図である。
統合眼用の累進屈折力レンズの光学性能としては、右眼用の累進屈折力レンズと左眼用の累進屈折力レンズとでパラメータ(球面度数S、乱視度数C、等価球面度数(S+C/2)、プリズム度数Δ、加入度数ADD、累進帯長、内寄せ量等々)が同じ場合は、同じ値のパラメータを採用すればよい。その場合、右眼用の累進屈折力レンズ又は左眼用の累進屈折力レンズのいずれかのみを設計し、もう一方の眼用の累進屈折力レンズは、設計した累進屈折力レンズの分布図が左右対称となるよう設計してもよい。
説明の簡素化のため、本明細書に記載の具体例はこの場合を採用し、等価球面度数(S+C/2)を採用している。そして、右眼用レンズと左眼用レンズにおける等価球面度数の平均値を統合眼用レンズのパラメータとして採用している。また、乱視度数C及びプリズム度数Δはゼロに設定している。参照用単焦点レンズでの乱視度数C及びプリズム度数Δをゼロと設定するのが好ましいと同様、統合眼用レンズにしても像の歪みは小さいことが好ましいためである。
なお、右眼用レンズと左眼用レンズとでパラメータが異なる場合は、各パラメータにおいて両者の平均値を採用してもよい。例えば、右眼用レンズの等価球面度数と、左眼用レンズの等価球面度数との平均値を、統合眼用レンズの等価球面度数として設定してもよい。
なお、右眼用の参照用単焦点レンズと左眼用の参照単焦点レンズに対する統合眼用単焦点レンズのパラメータの決定方法は、上記の累進屈折力レンズにおける統合眼用レンズのパラメータの決定方法と同様であってもよい。例えば、右眼用の参照用単焦点レンズの等価球面度数と、左眼用の参照単焦点レンズの等価球面度数との平均値を採用してもよい。
図9は、本発明の一態様に係る設計方法で採用する統合眼用レンズの基本設計を示す面平均度数分布図(左図)及び面非点収差分布図(右図)である。
図9に示す各分布図の原点は、眼鏡レンズ中心240、すなわちプリズム測定点を示す。紙面中の上下方向はレンズ面の鉛直方向を、紙面中の左右方向はレンズ面の水平方向を示す。分布図は、60mm四方である。面非点収差及び面平均度数の等高線は0.25D[ディオプター]間隔で描かれている。本段落に記載の内容は、以降に登場する分布図においても同様とする。
図9には、遠用基準点220、近用基準点230が示されている。また、眼鏡レンズにおける隠しマーク302,304の位置も示されている。
図9に示す面平均度数分布には、遠用基準点220における度数には、処方情報に含まれる球面度数Sが設定される。近用基準点230の度数には、遠用基準点230の球面度数Sに処方情報に記載の加入度ADDが加算された度数が設定される。
本明細書において、面平均度数分布は、レンズ面各位置における各方向の曲率のうち最大の曲率と、最小の曲率との平均値に、レンズ材料の屈折率を掛けた値の分布である。
本明細書において、面非点収差分布は、レンズ面各位置における各方向の曲率のうち最大の曲率と最小の曲率の差分に、レンズ材料の屈折率を掛けた値の分布である。
なお、図9に示す両分布図は、レンズ面に関する図である。図9に示す面平均度数分布図だと、遠用の面平均度数を+4.00D、近用の面平均度数を+6.00D、加入度数ADDを2.00Dに設定しており、物体側の面である外面に両分布図を反映させることを想定している。以降に記載の実施例においても同様としている。
但し、本明細書の具体例はあくまで一例であり、眼球側の面である内面に該量分布図を反映させた形状を備えさせてもよいし、両面を累進面として該両分布図をもたらす累進成分を両面に分配して両面形状を設計してもよい。その場合、眼球側の面である内面は球面形状を採用してもよいし、軸外収差等を低減させる非球面形状を採用してもよい。
統合眼を仮想することにより多くの利点が得られる。以下、この利点について説明する。
右眼用レンズにしても左眼用レンズにしても、内寄せ量が加味された状態で設計がなされる。この内寄せ量は、処方された球面度数、円柱度数、加入度、プリズム度数、瞳孔間距離、等によって変化する。また、内寄せ量が設けられることにより主注視線が鼻側に移動する。それに伴い、近用基準点230も水平方向の一方の側に移動する。
その一方、統合眼は右眼と左眼の中間位置に回旋中心が設定されているため、内寄せ量を加味せずに済む。つまり、図9に示すように、統合眼用レンズだと、主注視線が子午線と一致する。
なお、子午線は、累進屈折力レンズに設けられた2つの隠しマークの位置の中点を通る鉛直方向の線でもある。また、子午線は、該分布図のY軸でもある。
つまり、統合眼用レンズの平均屈折力分布図及び非点収差分布図は、右眼用レンズ及び左眼用レンズの該分布図に比べてシンプルとなる。
これは、累進屈折力レンズでの差Vを、参照用単焦点レンズ又は裸眼相当の状態での差Wに近づける際に有用である。大元となる統合眼用レンズの平均屈折力分布図及び非点収差分布図をまずは変化させる。そのうえで左右眼の内寄せ量を加味した設計を左右眼用の各累進屈折力レンズにて行い(例えば後述の図14)、その設計を基に、差Vが差Wに近づいたかどうかを検討すれば済むようになる(利点1)。
この(利点1)は、左右眼で処方が異なる累進屈折力レンズである場合に特に重宝される。なぜなら、左右眼で処方が異なる場合であっても、大元となる統合眼用レンズの平均屈折力分布図及び非点収差分布図をまずは変化させ、そのうえで左右眼各々の処方の違いを加味した設計を左右眼用の各累進屈折力レンズにて行えばよいためである。最初から左右眼各々の処方の違いと内寄せ量を加味した状態で、左右眼用の各累進屈折力レンズに対して設計変更を行うことに比べると、上記本発明の一態様の手法は相当手間が省ける。
更に、統合眼用レンズの平均屈折力分布図及び非点収差分布図を大元とするため、この統合眼用レンズと右眼用レンズとの差(例:眼位差)を把握できる、という利点がある。同様に、統合眼用レンズと左眼用レンズとの差も把握できる(利点2)。
上記の構成をまとめると以下の表現になる。
「角度差VAは、図8Aに示す累進正面視状態Aでの、右眼の視線の向きと統合眼の視線の向きとの角度差VARと、左眼の視線の向きと統合眼の視線の向きとの角度差VALとの差であり、
角度差VBは、図8Bに示す累進側方視状態Bでの、右眼の視線の向きと統合眼の視線の向きとの角度差VBRと、左眼の視線の向きと統合眼の視線の向きとの角度差VBLとの差であり、
角度差WCは、図8Cに示す参照正面視状態Cでの、右眼の視線の向きと統合眼の視線の向きとの角度差WCRと、左眼の視線の向きと統合眼の視線の向きとの角度差WCLとの差であり、
角度差WDは、図8Dに示す参照側方視状態Dでの、右眼の視線の向きと統合眼の視線の向きとの角度差WDRと、左眼の視線の向きと統合眼の視線の向きとの角度差WDLとの差である。」
図10は、鉛直上方から鉛直下方を見たときの、本発明の一態様の設計方法を採用した後の累進屈折力レンズである右眼用レンズ、左眼用レンズ、及び統合眼用レンズ、ならびに、累進屈折力レンズを通して見える、装用者にとっての見かけの目標物体面の位置を示す概略図である。
課題の欄で述べた(奥行方向の歪み)に関しては、統合眼を採用する場合も、採用しない場合の図6と同様、正面視と側方視との間に、奥行方向のずれは無くなる又は殆ど無くなる。
課題の欄で述べた(上下方向の眼位差)に関しては、統合眼を採用する場合も、採用しない場合の図7と同様、側方視での上下方向の眼位差は無くなる又は殆ど無くなる。統合眼を採用する場合の図7に対応する図は、図7と同内容であるため省略する。
なお、(利点2)により、累進屈折力レンズの表面形状の調整の際の、右眼用レンズに対する補正量と左眼用レンズに対する補正量とを、両差に応じて変化させられる。この構成の一具体例は以下の表現になる。
「角度差VARと角度差VALの比、角度差VBRと角度差VBLの比、角度差WCRと角度差WCLの比、及び角度差WDRと角度差WDLの比の少なくともいずれかに応じ、累進屈折力レンズの表面形状の調整の際の、右眼用の累進屈折力レンズに対する補正量と左眼用の累進屈折力レンズに対する補正量とを按分する。」
なお、累進屈折力レンズの装用時における累進側方視状態Bでの角度差VBのみを変動させれば、差Wからの所定の許容範囲内に差Vを収めることが可能となるという知見に基づく場合、各比のうち、角度差VBRと角度差VBLの比に応じ、補正量を按分するのが好ましい。また、厳密に該比に応じて補正量を按分するのではなく、何らかの重み付けして補正量の按分を行ってもよい。
また、(利点2)により、例えば、右眼用レンズと左眼用レンズとで別々に本発明の一態様を適用することが可能となる。以下、一例を挙げる。
図8Aに示す累進正面視状態Aでの、右眼の視線の向きと統合眼の視線の向きとの角度差VARと、図8Bに示す累進側方視状態Bでの、右眼の視線の向きと統合眼の視線の向きとの角度差VBRとの差VRを得る。
同様に、図8Cに示す参照正面視状態Cでの、右眼の視線の向きと統合眼の視線の向きとの角度差WCRと、図8Dに示す参照側方視状態Dでの、右眼の視線の向きと統合眼の視線の向きとの角度差WDRとの差WRを得る。
そして、差VRが差WRに近づくように累進屈折力レンズを設計する。これにより、右眼用レンズは、累進作用に起因する不必要なプリズム作用により生じる影響が小さくなる。
左眼用レンズについても全く同様に累進屈折力レンズを設計することにより、左眼用レンズは、累進作用に起因する不必要なプリズム作用により生じる影響が小さくなる。
この手法では、統合眼用レンズとの角度差に基づき、右眼用レンズと左眼用レンズの各々に対して本発明の一態様を適用している。そのため、より厳密に、累進作用に起因する不必要なプリズム作用により生じる影響を小さくすることができる。その結果、より快適な装用感が得られる。
[本発明の一態様に係る累進屈折力レンズの設計方法の変形例]
本発明の一態様では、累進正面視状態Aと累進側方視状態Bとの差Vを把握し、参照正面視状態Cと参照側方視状態Dとの差Wを把握し、差Vが差Wに近づくようにレンズ表面形状を設計する場合を例示した。
この場合の概要を数式として表現すると、(A−B)−(C−D)となる。その一方、この数式は、(A−C)−(B−D)とも記載可能である。
つまり、累進正面視状態Aと参照正面視状態Cとの差V´を把握し、累進側方視状態Bと参照正面視状態Dとの差W´を把握し、差W´が差V´に近づくようにレンズ表面形状を設計することも可能である。また、累進側方視状態Bでの角度差VBを変動させることにより、差V´からの所定の許容範囲に差W´を収めることも可能である。この所定の許容範囲の好適例は、[本発明の一態様に係る累進屈折力レンズの設計方法の詳細]で述べた範囲と同様である。
但し、この変形例を採用した場合でも、上記の数式が示すように、結果的に、差Vを差Wに近づけることには変わりがないし、差Wからの所定の許容範囲内に差Vを収めることには変わりがない。つまり、[本発明の一態様に係る累進屈折力レンズの設計方法]及び[本発明の一態様に係る累進屈折力レンズの設計方法の詳細]にて述べた構成に、この変形例も含まれる。
なお、本発明の一態様のように、累進正面視状態Aと累進側方視状態Bとの差V、参照正面視状態Cと参照側方視状態Dとの差Wという組み合わせを採用することにより、差Wには参照用単焦点レンズのみが反映されることになる。すなわち、差Wには目指すべき目標としての値のみが反映されることになる。この差Wに、累進屈折力レンズのみが反映された差Vを近づけることにより、本発明の効果を奏させることが可能になる。そのため、差V及び差Wを採用するのが好ましい。
なお、(A+D)−(B+C)とも記載可能であるが、差Wに、目指すべき目標としての値のみを反映させる点を鑑みると、(A−B)−(C−D)を基に考えるのが好ましい。
[本発明の一態様に係る累進屈折力レンズの設計方法の一具体例(システム)]
以下、上記の累進屈折力レンズの設計方法をシステムに応用した一具体例を記載する。本例では統合眼を採用する場合について例示する。なお、これまでに述べた内容と重複する内容については記載を省略する。また、本例では右眼用レンズと左眼用レンズとを設計する場合を例示するため、説明の便宜上、両レンズをまとめてレンズ対と表現する場合もある。また、参照用単焦点レンズを参照用レンズ、統合眼用レンズを統合レンズと表現する場合もある。
図11は、本発明の一態様に係る累進屈折力レンズの設計方法を実施するシステムの一例を説明する図である。
図11に示すシステム50は、複数の眼鏡店端末と、眼鏡レンズである累進屈折力レンズの眼鏡レンズ対設計装置(以降、設計装置又はコンピュータ装置ともいう)60と、を備える。なお、以下の構成は図示しない制御部により制御されている。
眼鏡店端末は、図11では、眼鏡店端末52と、眼鏡店端末54とが例示されている。眼鏡店端末52,54は、図11に示す例ではWAN(Wide Area Network)あるいはインターネットを介して設計装置60と接続されている。設計装置60は、レンズ加工装置56と接続されており、設計装置60で設計された累進屈折力レンズの設計情報がレンズ加工装置56に送られる。レンズ加工装置56では、設計情報に基づいてレンズ面の加工が行われることで、累進屈折力レンズが作製される。
眼鏡店端末52では、顧客の累進屈折力レンズを作製するための情報が入力され、WANあるいはインターネットを介して設計装置60に送られる。設計装置60は、送信された情報を用いて、累進屈折力レンズ10を設計する。
累進屈折力レンズ10を作製するための情報は、累進屈折力レンズ10を装用することが予定されている装用者の眼に関する処方情報、累進屈折力レンズの製品情報、及び累進屈折力レンズを装着するフレーム情報を少なくとも含む。
処方情報は、例えば、右眼用レンズ10R及び左眼用レンズ10Lの遠用基準点における球面度数(平均度数ともいう)S、遠用基準点における円柱度数C、乱視軸Ax、累進屈折力レンズにおける加入度ADD、プリズム度数及び基底方向、瞳孔間距離PD、装用者の視知覚に関する生理的特徴量、視環境等の情報を含む。
製品情報は、レンズに関する設計タイプの情報、累進帯長の情報、レンズ径の情報、レンズ肉厚の情報等を含む。設計タイプは、例えば、累進屈折力レンズの場合、遠方視重視のレンズか、あるいは近方重視のレンズか、また、ハード設計のレンズか、あるいはソフト設計のレンズか、等の情報である。
フレーム情報は、フレーム玉型の形状、サイズ、フレーム材質、アイポイントの位置、フレーム前傾角、フレーム反り角、頂点間距離等の各種情報を含む。
図12は、本発明の一態様に係る累進屈折力レンズの設計方法を実施するシステムにおける設計装置の装置構成を示す構成図である。
設計装置60は、CPU62、ROM64、RAM66、通信部68を備えるコンピュータで構成されている。通信部68は、眼鏡店端末52,54とWANあるいはインターネットを介して接続される。
すなわち、コンピュータが、設計装置60として累進屈折力レンズの作製方法を実行する。設計装置60には、マウスやキーボード等の入力操作部70と、ディスプレイ71が接続されている。ディスプレイ71に表示される入力画面に従って、オペレータが入力操作部70を介してパラメータや情報を入力することにより、後述する設計を実行することができる。
設計装置60は、ROM64に記憶されたプログラムを呼び出してCPU62がプログラムを実行することにより、ソフトウェアモジュール72が形成され有効化される。
ソフトウェアモジュール72は、統合レンズ設計部72a、目標物体面設定部72b、レンズ対設計部72c、参照用レンズ設計部72d、視線計算部72e、判定部72f、表面形状調整部72g、及びレンズ表面設計部72h、を含む。
統合レンズ設計部72aは、図10に示す統合眼12M及び統合眼用レンズ10Mを設計し、図9に示す統合眼用レンズ10Mの面平均度数分布及び面非点収差分布を作成する。
目標物体面設定部72bは、累進屈折力レンズ10から有限距離離れた目標物体面22(実際面22)を装用者が注視する際の該有限距離を定め、実際面22を設定する部分である。
レンズ対設計部72cは、上述の処方情報に基づいて右眼用レンズ及び左眼用レンズの初期設計をする部分である。一例としては、処方情報に基づいて定めたレンズ表面形状を初期設計とする。
参照用レンズ設計部72dは、参照用単焦点レンズを設計する。本例においては、単焦点レンズ且つ累進屈折力レンズと同じ等価球面度数(S+C/2)を採用した参照点単焦点レンズを設計する場合を例示する。
なお、参照用単焦点レンズの代わりに球面度数がゼロのレンズいわゆるゼロ度数レンズを使用する場合も、参照用レンズ設計部72dを使用して構わない。また、裸眼の状態を採用する場合、参照用レンズ設計部72dは使用せずともよい。もちろん、裸眼の状態を採用する場合であっても、差Wを得るための他の各部は使用する。
視線計算部72eは、初期設計した累進屈折力レンズである右眼用レンズ及び左眼用レンズを通して実際面22上の箇所O(図8A、図8C)及びその側方の箇所P(図8B、図8D)を注視するときの右眼12Rの視線の向きと左眼12Lの視線の向きとを計算する部分である。
視線計算部72eは、また、図10に示す統合眼12M及び統合眼用レンズ10Mを通して実際面22上の箇所O及びその側方の箇所Pを注視するときの統合眼12Mの視線の向きを計算する。
視線計算部72eは、また、右眼用及び左眼用の参照用単焦点レンズを通して実際面22上の箇所O及びその側方の箇所Pを注視するときの右眼12Rの視線の向きと左眼12Lの視線の向きとを計算する。
判定部72fは、差Vが差Wに近づいたか否かを判定する。例えば、差Wからの所定の許容範囲内に差Vが収まったか否かを判定する。
表面形状調整部72gは、判定部72fがNGの判定結果を出した場合、初期設計した右眼用レンズ及び左眼用レンズのレンズ表面形状を調整する。
こうして、設計装置60は、判定部72fがOKの判定結果を出すまで、表面形状調整部72g、視線計算部72eを用いてレンズ表面形状の調整を行う。
レンズ表面設計部72hは、判定部72fがOKの判定結果を出したレンズ表面形状を用いて、両側のレンズ面における表面設計を具体的に行う。
なお、眼球側のレンズ面に加入度を付加した累進成分を含める内面累進屈折力レンズとするか、眼球側と反対側のレンズ面に加入度を付加した累進成分を含める外面累進屈折力レンズとするか、累進成分を、眼球側のレンズ面と眼球側と反対側のレンズ面の両面に配分した両面累進屈折力レンズとするかは、適宜選択可能である。
図13は、本発明の一態様に係る累進屈折力レンズの設計方法のフローを示す図である。
まず、設計装置60は、眼鏡店端末52,54等から、累進屈折力レンズ10の作製の注文を受ける(ステップS10)。この注文には、累進屈折力レンズ10を注文する装用者の処方情報、製品情報、及びフレーム情報が含まれる。
統合レンズ設計部72aは、受けた注文に含まれる処方情報を用いて、更には、製品情報を用いて統合眼12Mを仮想する。そして、図9に示すように、統合眼12M用の統合眼用レンズ10Mを設計する(ステップS12)。
次に、目標物体面設定部72bは、有限距離を定めて目標物体面22(実際面22)を設定する(ステップS14)。
図14は、統合眼用レンズの面非点収差分布に対して内寄せを行いつつ初期設計された右眼用レンズ210R及び左眼用レンズ210Lの面非点収差分布の一例を示す図である。
次に、レンズ対設計部72cは、右眼用及び左眼用の累進屈折力レンズの初期設計を行う(ステップS16)。また、レンズ対設計部72cは、図14に示すように、統合眼用レンズ10Mに対して内寄せを行って面平均度数分布及び面非点収差分布を作成する。
必要に応じて、レンズ対設計部72cは、右眼や左眼の円柱度数Cや加入度ADDに応じて、初期設計された右眼用及び左眼用レンズの面平均度数分布及び面非点収差分布の修正を加え、この修正結果を実現するレンズ表面形状を定める。
次に、視線計算部72eは、統合眼用レンズ10Mを通して統合眼12Mが、実際面22上において装用者からの所定距離(例えば40cm)に対応する部分を見るとき、統合眼12Mの視線が到達する実際面22上の箇所Pを算出する(ステップS18)。なお、箇所Oの位置座標は、所定距離を40cmと定めた段階で把握可能である。繰り返しになるが、箇所Pは、箇所Oと鉛直方向の高さ一定で箇所Oの水平方向側方に位置する箇所である。
箇所Pの算出方法としては、具体的には、統合眼12Mの視線の向きを正面視のZ方向(奥行方向)に対して傾斜角度θを与えて変化させて、そのときの視線が到達する実際面22上の箇所Pの位置座標を算出する。
なお、傾斜角度θを変化させることにより、図5の目標物体面20での装用者からの所定距離40cmに相当する部分において水平方向に箇所Pを複数算出可能である(例えば箇所P1、P2、P3・・・、まとめてPと表現する)。算出された各箇所Pにて、以降に述べる、右眼、左眼及び統合眼の視線の向きの計算を行う。
このとき、視線は、統合眼用レンズ10Mのプリズム作用により屈折する。この屈折量は、統合眼用レンズ10Mのどの部分を通過するかによって変化する。Z方向に対する統合眼の視線の傾斜角度と箇所Pの位置座標は、RAM66に記憶される。
次に、視線計算部72eは、初期設計された右眼用レンズ210R及び左眼用レンズ210Lを通して、右眼12R及び左眼12Lが実際面22上の各箇所Pを注視するときの右眼12R及び左眼12Lの眼球側の視線の向きを、統合眼用レンズにおける視線の向きと同様の手法で計算する(ステップS20)。そして、Z方向に対する右眼12R及び左眼12Lの視線の傾斜角度と箇所Pの位置座標は、RAM66に記憶される。
次に、視線計算部72eは、正中面上の箇所Oを注視するときの右眼12R、左眼12L、及び統合眼の視線の向きを、箇所Pに対する視線の向きと同様の手法で計算する(ステップS22)。Z方向に対する右眼12R、左眼12L、及び統合眼の視線の傾斜角度はRAM66に記憶される。
その一方で、参照用レンズ設計部72dは、右眼用の参照用単焦点レンズ及び左眼用の参照用単焦点レンズを設計する(ステップS26)。このステップは、設計装置60においてステップS16〜24が実行される間に、あるいは、ステップS16〜24が実行される前、あるいは、ステップS16〜24が実行された後に行えばよい。
次に、視線計算部72eは、統合眼用単焦点レンズ30Mを通して統合眼12Mが実際面22を見るとき、統合眼12Mの視線が実際面22に到達する箇所Pを算出する(ステップS28)。このステップは、上述したステップS18と同じであるので、この処理は省略してもよい。ステップS28は、ステップS18と同様の処理を行うので、その説明は省略する。
更に、視線計算部72eは、参照用単焦点レンズを通して実際面22上の点を注視するときの視線であって、実際面22上の各箇所Pに対応する右眼12R、左眼12L、及び統合眼12Mの視線の向きを計算する(ステップS30)。
更に、視線計算部72eは、実際面22上の箇所Oを参照用単焦点レンズ30L,30Rを通して注視するときの、右眼12Rと左眼12Lの視線の向きを計算する(ステップS32)。具体的には、視線計算部72eは、Z方向に対する左眼12L及び右眼12Rの視線の傾斜角度を計算する。箇所Oの位置座標と、計算した左眼12L及び右眼12Rの視線の傾斜角度はRAM66に記憶される。
なお、ステップS16〜S22と、ステップS26〜ステップ32の順番は特に制限はない。また、ステップS16の次にステップS26を行い、その後、ステップ18を行い、その後、ステップS28、ステップS20、ステップS30、・・・と交互に行ってもよい。 また、ステップS14とステップS16,26の処理の順番は、入れ替えてもよい。
判定部72fは、RAM66から記憶した各視線の向きを示す傾斜角度と箇所Oの位置座標とを呼び出して、各視線の向きの差を算出して判定を行う(ステップS34)。この判定は、各箇所Pに対して行う。
更に、所定距離を40cmから変化させ、同様の作業を行い、箇所Oの把握、各箇所Pの算出、ならびに、右眼、左眼及び統合眼の視線の向きの計算を行ってもよい。その場合、判定部72fにおいて、所定距離を40cmから変化させた場合の各箇所Pに対しても判定を行う。
判定部72fがNGの判定結果を出した場合、表面形状調整部72gは、初期設計した左眼用レンズ210L及び右眼用レンズ210Rのレンズ表面形状を調整する(ステップS36)。
判定部72fが全ての箇所Pに対してOKの判定結果を出した場合、調整されたレンズ表面形状が、最終的な累進屈折力レンズ10に用いるレンズ表面形状と定められる。
図15は、左眼用レンズ210L及び右眼用レンズ210Rが累進屈折力レンズであるときの調整前後のレンズ面における面平均度数分布と面非点収差分布の変化の一例を示す図である。
最後に、レンズ表面設計部72hは、判定部72fがOKの判定結果を出した際のレンズ表面形状(図15の分布図を備えた表面形状)に基づいて、累進屈折力レンズの両面において表面設計を行う(ステップS38)。
こうして、両面の表面設計の情報が、レンズ加工装置56に送られて、実際の累進屈折力レンズ10が作製される。
[本発明の一態様に係る累進屈折力レンズの設計システム]
本発明は、累進屈折力レンズの設計システムとしても技術的意義がある。その具体的な構成は以下のとおりである。なお、以降、本発明の一態様に係る種々のカテゴリーは、これまでに述べた好適例を適宜組み合わせてもよい。
「累進屈折力レンズの装用時における、
装用者から有限距離前方且つ装用者の正中面上の箇所Oの物体を視認するときの状態Aと、
前頭面と平行な面であって箇所Oを含む面内にて、箇所Oと鉛直方向の高さ一定で箇所Oの水平方向側方に位置する箇所Pの物体を視認するときの状態Bとの差Vを、
累進屈折力レンズに対応する 参照用単焦点レンズの装用時又は裸眼相当時における、
箇所Oの物体を視認するときの状態Cと、
箇所Pの物体を視認するときの状態Dとの差Wに近づけるよう、累進屈折力レンズの表面形状を調整するソフトウェアモジュールを備えた、累進屈折力レンズの設計システム。」
[本発明の一態様に係る累進屈折力レンズの設計システムに係るプログラム]
本発明は、累進屈折力レンズの設計システムに係るプログラム(以降、単にプログラムとも称する。)としても技術的意義がある。その具体的な構成は以下のとおりである。
「累進屈折力レンズの装用時における、
装用者から有限距離前方且つ装用者の正中面上の箇所Oの物体を視認するときの状態Aと、
前頭面と平行な面であって箇所Oを含む面内にて、箇所Oと鉛直方向の高さ一定で箇所Oの水平方向側方に位置する箇所Pの物体を視認するときの状態Bとの差Vを、
累進屈折力レンズに対応する 参照用単焦点レンズの装用時又は裸眼相当時における、
箇所Oの物体を視認するときの状態Cと、
箇所Pの物体を視認するときの状態Dとの差Wに近づけるよう、累進屈折力レンズの表面形状を調整するようコンピュータ(ソフトウェアモジュール)を機能させる、累進屈折力レンズの設計システムに係るプログラム。」
[本発明の一態様に係る累進屈折力レンズの製造方法]
本発明の一態様に係る累進屈折力レンズの製造方法は、これまでに説明した累進屈折力レンズの設計方法を行う設計工程と、該設計工程後、累進屈折力レンズを得る加工工程と、を有する。具体的な製造方法の内容は、公知の内容を採用すればよい。
[本発明の一態様に係る累進屈折力レンズ]
本発明は、累進屈折力レンズとしても技術的意義がある。その具体的な構成は以下のとおりである。
「近方視に用いる屈折力を有する近用部と、近方視よりも遠方の物体を見るための屈折力を有する遠用部と、遠用部と近用部との間で屈折力が累進的に変化する累進作用を有する中間部と、を備える累進屈折力レンズであって、
累進作用に起因する不必要なプリズム作用による像の歪み度合いを、累進屈折力レンズに対応する参照用単焦点レンズの装用時又は裸眼相当時における像の歪み度合いに近づけるプリズム作用調整領域を備える、累進屈折力レンズ。」
「累進作用に起因する不必要なプリズム作用による像の歪み度合い」とは、[本発明の一態様に係る累進屈折力レンズの設計方法]に関して説明した内容のうち、例えば、奥行方向の歪みおよび/または上下方向の眼位差が該当する。
「累進作用に起因する不必要なプリズム作用による像の歪み度合いを、累進屈折力レンズに対応する参照用単焦点レンズの装用時又は裸眼相当時における像の歪み度合いに近づける」とは、[本発明の一態様に係る累進屈折力レンズの設計方法の詳細]でいうところの、差Vが差Wに近づくようにレンズ表面形状が設計された状態を指す。
プリズム作用調整領域は、主注視線から水平方向に外れた側方部の領域を含むのが好ましい。
また、所定の水平断面の位置は、加入度の85%から100%が達成される位置であるのが好ましい。
また、本発明の一態様に係る累進屈折力レンズは、以下の2つの条件のうち少なくともいずれかを満たすのが好ましく、いずれの条件も満たすのがより好ましい。
[条件1]
レンズ水平方向を横軸、加入度で正規化された鉛直方向の表面プリズム差分を縦軸としたときのプロットにおいて、近用部における所定の水平断面上での所定箇所αの鉛直方向の表面プリズム差分の最大値と最小値の差が0.2[プリズムディオプトリ/ディオプター]以上である。
[条件2]
レンズ水平方向を横軸、加入度で正規化された水平方向の表面プリズム差分を縦軸としたときのプロットにおいて、近用部における所定の水平断面上での所定箇所γ内のx=0の位置において、水平方向の表面プリズム差分の絶対値が0.25[プリズムディオプトリ/ディオプター]以上である。なお、所定箇所γ内のx=0の位置は、プリズム参照点の真下または累進屈折力レンズの2つのアライメント基準マークの中点の真下に位置する。また、x=0は、プリズム参照点または該中点を含む鉛直線である。本明細書における表面プリズム差分に係るプロットのx=0の設定は、以降同様とする。
[条件1]についてであるが、これは主に上下方向の眼位差の低減に関係する条件である。本発明の一態様が一対の累進屈折力レンズである場合、該一対の累進屈折力レンズを通して物体を視認する。その際に右眼の視線が通過する右眼用レンズ上の箇所αの鉛直方向のプリズム度数と、左眼の視線が通過する左眼用レンズ上の箇所βの鉛直方向のプリズム度数との差を鉛直方向の表面プリズム差分とする。
一対の累進屈折力レンズを使用する場合の、鉛直方向の表面プリズム差分を得る方法は以下のとおりである。なお、本明細書において「加入度で正規化」とは、レンズ表面プリズム屈折力を該レンズに設定された加入度で除することを表す。そして、本明細書におけるプリズム度数(プリズム屈折力)の具体的な数値限定に関しては全て加入度により正規化された値とする。例えば、「加入度で正規化された鉛直方向の表面プリズム差分」とは、下の段落の記載を例に説明すると、「所定箇所αにおける、加入度で正規化された鉛直方向のプリズム度数(表面プリズム屈折力)から、所定箇所βにおける、加入度で正規化された鉛直方向のプリズム度数(表面プリズム屈折力)を差し引いた値」を意味する。
(一対の累進屈折力レンズを使用する場合の、鉛直方向の表面プリズム差分を得る方法)
1.原点を累進屈折力レンズ上の2つの隠しマークの中点とし、累進屈折力レンズに対して加入度で正規化されたレンズ表面プリズム屈折力分布において、右眼用レンズでの(近用基準点を含みうるy=−14mmにて)主注視線から水平方向xに距離dだけ離れた所定箇所αを特定する。
2.左眼用レンズでの(近用基準点を含みうるy=−14mmにて)主注視線から上記水平方向xの逆方向−xに距離dだけ離れた所定箇所βを特定する。
3.所定箇所αにおける鉛直方向のプリズム度数から所定箇所βにおける鉛直方向のプリズム度数を差し引いた値を、所定箇所αにおける鉛直方向の表面プリズム差分とする。
なお、一対の累進屈折力レンズでなく、一枚の累進屈折力レンズであったとしても、左右レンズにおいて処方度数が同じである場合、[条件1]を規定可能である。なぜなら、左右レンズにおいて処方度数が同じである場合、右眼用レンズを鏡面対称(後述の図17に示すように正面視だと左右対称)とすることにより左眼用レンズとなり、一枚の累進屈折力レンズ上において、所定領域αと所定領域βを設定できるためである。この考えに則って創出されたのが下記の表現である。
(一枚の累進屈折力レンズを使用する場合の、鉛直方向の表面プリズム差分を得る方法)
1.原点を累進屈折力レンズ上の2つの隠しマークの中点とし、累進屈折力レンズに対して加入度で正規化されたレンズ表面プリズム屈折力分布において、所定箇所αの、主注視線から離れる水平方向xおよび距離dを特定する。
2.方向xの逆方向−xへと所定箇所αから距離2d離れた所定箇所βを特定する。
3.所定箇所αにおける鉛直方向のプリズム度数から所定箇所βにおける鉛直方向のプリズム度数を差し引いた値を、所定箇所αにおける鉛直方向の表面プリズム差分とする。
実施例3にて示すように、横軸をレンズ水平方向、縦軸を鉛直方向の表面プリズム差分としたときのプロットにおいて、鉛直方向の表面プリズム差分の最大値と最小値の差が0.2[プリズムディオプトリ/ディオプター]以上である累進屈折力レンズは、従来の累進屈折力レンズにはない特徴である。なぜなら、上下方向の眼位差を低減すべく、本発明の一態様では、意図的にこのように設定されているためである。
[条件2]についてであるが、これは主に奥行方向の歪みの低減に関係する条件である。本発明の一態様が一対の累進屈折力レンズである場合、該一対の累進屈折力レンズを通して物体を視認する。その際に右眼の視線が通過する右眼用レンズ上の箇所γの水平方向のプリズム度数と、左眼の視線が通過する左眼用レンズ上の箇所δの水平方向のプリズム度数との差を水平方向の表面プリズム差分とする。
一対の累進屈折力レンズを使用する場合の、水平方向の表面プリズム差分を得る方法は以下のとおりである。
(一対の累進屈折力レンズを使用する場合の、鉛直方向の表面プリズム差分を得る方法)
1.原点を累進屈折力レンズ上の2つの隠しマークの中点とし、累進屈折力レンズに対して加入度で正規化されたレンズ表面プリズム屈折力分布において、近用部における所定の水平断面上での所定箇所γ(例えばy=−14mm且つx=0)を特定する。
2.左眼用レンズでの近用部における所定の水平断面上での所定箇所δ(例えばy=−14mm且つx=0)を特定する。
3.所定箇所γにおける水平方向のプリズム度数から所定箇所δにおける水平方向のプリズム度数を差し引いた値を、水平方向の表面プリズム差分とする。
なお、一対の累進屈折力レンズでなく、一枚の累進屈折力レンズであったとしても、左右レンズにおいて処方度数が同じである場合、[条件2]を規定可能である。なぜなら、左右レンズにおいて処方度数が同じである場合、右眼用レンズを左右対称とすることにより左眼用レンズとなり、一枚の累進屈折力レンズ上において、所定領域γと所定領域δを設定できるためである。この考えに則って創出されたのが下記の表現である。
(一枚の累進屈折力レンズを使用する場合の、水平方向の表面プリズム差分を得る方法)
1.原点を累進屈折力レンズ上の2つの隠しマークの中点とし、累進屈折力レンズに対して加入度で正規化されたレンズ表面プリズム屈折力分布において、近用部における所定の水平断面上での所定箇所γ(例えばy=−14mm且つx=0)を特定する。
2.所定箇所γにおける水平方向のプリズム度数の2倍の値の絶対値を、所定箇所γにおける水平方向の表面プリズム差分とする。
左右レンズにおいて処方度数が同じである場合、左右レンズ形状は鏡面対称形状となる。もし、右眼用レンズにおいてy=−14mm且つx=0での水平方向のプリズム度数を0.15[プリズムディオプトリ]とした場合、左眼用レンズの同部分での水平方向のプリズム度数は−0.15[プリズムディオプトリ]となる。その結果、水平方向の表面プリズム差分の絶対値は0.30[プリズムディオプトリ]となる。
後述の実施例1にて示すように、y=−14mmにおけるx=0の部分での水平方向の表面プリズム差分の絶対値が0.25[プリズムディオプトリ/ディオプター]以上である累進屈折力レンズは、従来の累進屈折力レンズにはない特徴である。なぜなら、奥行方向の歪みを低減すべく、本発明の一態様では、意図的にこのように設定されているためである。
なお、以下の条件を満たすことも好ましい。
[条件3]
横軸を視線の向き(tanθ)、縦軸を奥行き方向位置情報(単位:ディオプター)としたときの、累進屈折力レンズのプロットが、累進屈折力レンズに対応する参照用単焦点レンズの装用時又は裸眼相当時のプロットと交差しない。
[条件3]についてであるが、これは主に奥行方向の歪みの低減に関係する条件である。そのため、同じく奥行方向の歪みの低減に関係する条件に係る[条件2]に代えて[条件3]を適用してもよいし、[条件2][条件3]共に適用してもよい。後述の実施例1が示すように、横軸を視線の向き(tanθ)、縦軸を奥行き方向位置情報(単位:ディオプター)としたときの、累進屈折力レンズのプロットが、累進屈折力レンズに対応する参照用単焦点レンズの装用時又は裸眼相当時のプロットと交差しないということは、以下の内容を示す。
すなわち、視線の向きによらず、参照用レンズか本発明の一態様のレンズかどちらかは、もう一方のレンズと比べたとき、レンズを介して得られる物体の像が、常に奥行き方向または手前方向のいずれかに存在することを表す。これは、奥行方向の歪みの低減に寄与する。その結果、累進作用に起因する不必要なプリズム作用により生じる影響を小さくし、快適な装用感が得られる。
次に実施例を示し、本発明について具体的に説明する。もちろん本発明は、以下の実施例に限定されるものではない。
(各実施例共通)
以降の実施例においては、一対の累進屈折力レンズ(以降、眼鏡レンズ対)を作製した。 各実施例で作製される眼鏡レンズ対は、以下の構成を有する。
すなわち、右眼用レンズと左眼用レンズからなる累進屈折力レンズ対は、
累進屈折力レンズ対の右眼用レンズと左眼用レンズは、遠くを見るための度数が設定された遠用部と、近くを見るために遠用度数に加入度が付加された近用度数が設定された部分を含む近用部と、遠用部と近用部の間で度数が累進的に変化する中間部と、を備える。
このとき、右眼用レンズと左眼用レンズは、眼鏡レンズのプリズム作用、具体的には左眼用レンズ及び右眼用レンズのプリズム作用の差によって生じる像の歪みを、遠用度数あるいは近用度数に基づいて設定される参照用レンズのレンズ表面形状のプリズム作用、具体的にはプリズム作用の差によって生じる像の歪みに近似させるプリズム調整領域を備える。
プリズム調整領域は、近用度数を実現する領域を含み、右眼用レンズ及び左眼用レンズそれぞれのレンズの近用基準点、及び近用基準点を通る水平線上の、右眼用レンズと左眼用レンズそれぞれのレンズに設けられている2つの隠しマークの中点を通る鉛直線以外の領域を含む。
図16は、各実施例の眼鏡レンズ対のうちの右眼用の眼鏡レンズ300の一例を説明する図である。
図16には、隠しマーク302,304が示されている。隠しマーク302,304は、JISで規定されており、アライメント基準マークである。隠しマーク302,304は、レンズ中心から水平方向に17mm離れた2点に設けられている。したがって、眼鏡レンズ300の水平方向及びこれに直交する鉛直方向は、隠しマーク302,304によって決定することができる。隠しマーク302,304の中点306は、眼鏡レンズ300の中心に一致する。中点306を鉛直方向に主注視線が通過する。
近用基準点308は、中点306から鉛直下方向にかつ水平方向の鼻側に移動した位置にあり、通常は製造業者によって規定される。例えば、球面度数Sが0.00Dであり、加入度ADDが2.50Dである、累進帯長14mmの累進屈折力レンズの場合、近用基準点308は、中点306から鉛直下方向に14mmかつ水平方向の鼻側に2.5mm移動した位置にある。
プリズム調整領域は、近用度数(遠用部の球面度数Sに加入度ADDを付加した度数)を実現する領域(近用度数測定円)を含み、近用基準点308、及び近用基準点308を通る水平線HL上の、中点306を通る鉛直線VL以外の左右の領域を含む。この領域は、近用部の一部分で、下側の側方を見るときに使用する部分であるので、左眼及び右眼おのおのの視線に対するプリズム作用の差による奥行方向の像の歪みが生じ易い。このため、プリズム調整領域は、水平線HL上の鉛直線VL以外の左右の領域を含む。
また、本発明の一態様によれば、プリズム調整領域は、近用基準点を含むことが好ましい。近用基準点では、加入度ADDもしくは製造業者が表示する参照加入度が100%であり、特に、近用基準点を含む周辺の領域ではプリズム作用の差によって生じる奥行方向の像の歪みや不快な装用感を感じ易いため、プリズム調整領域が近用基準点を含むことが好ましい。
図17は、右眼用レンズ300及び左眼用レンズ400におけるレンズ表面プリズム屈折力分布から差分値の分布を算出する方法を説明する図である。
ここで、加入度ADDで正規化されたレンズ表面プリズム屈折力分布に注目する。加入度ADDで正規化されたレンズ表面プリズム屈折力は、一枚のレンズの両側のレンズ面のうち一方の表面において、鉛直方向における傾斜×(レンズ材料の屈折率−1)×100[プリズムディオプトリ]/加入度ADD[ディオプター]として定義する。傾斜は、無次元の値である。
右眼用レンズ300と左眼用レンズ400の、加入度ADDで正規化されたレンズ表面プリズム屈折力分布において、レンズ表面プリズム屈折力分布の原点を中点306とする。
さらに、正規化されたレンズ表面プリズム屈折力分布において、右眼用レンズ300と左眼用レンズ400の近用部における、水平断面上での右眼用レンズ300のレンズ表面プリズム屈折力分布の鉛直方向の成分と、左眼用レンズ410のレンズ表面プリズム屈折力分布の鉛直方向の成分との間の差分値(鉛直方向の表面プリズム差分のこと、以降同様)の分布を、原点(中点306、中点406)を通る鉛直線を境にして、第1の領域と第2の領域に分割する。近用部は、例えば、近用基準点308,408を中心として鉛直方向上側及び下側に、所定の距離離れた範囲内の領域310,410とすることができる。所定の距離とは、例えば2.5〜4mmの範囲内の距離である。
ここで、差分値は、原点(中点306、中点406)から水平方向の同じ側(右側あるいは左側)に同じ距離はなれた位置312,412における正規化されたレンズ表面プリズム屈折力の値の差分である。例えば、右眼用レンズ300の正規化されたレンズ表面プリズム屈折力分布の値から、左眼用レンズ400の正規化されたレンズ表面プリズム屈折力分布の値を差し引く。
したがって、第1の領域は、例えば、右眼用レンズ300の原点(中点306)を通る鉛直線から右側の領域における差分値、具体的には原点(中点306、中点406)から水平方向の右側に同じ距離だけ離れた位置312,412における値の差分値である。第2の領域は、例えば、右眼用レンズ300の原点(中点306)を通る鉛直線から左側の領域における差分値、具体的には原点(中点306、中点406)から水平方向の左側に同じ距離はなれた位置313,413における値の差分値である。
右眼用レンズ300と左眼用レンズ400は、このように定めた差分値の分布の第1の領域と第2の領域のうち、一方の領域の最小差分値と他方の領域の最大差分値の差の絶対値が0.2[プリズムディオプトリ/ディオプター]以上となるプリズム調整領域を有する。この規定は、[本発明の一態様に係る累進屈折力レンズ]で述べた[条件1]に該当する。つまり、各実施例では[条件1]を満たした眼鏡レンズ対を作製している。
ここでは鉛直方向の表面プリズム差分を例示したが、水平方向の表面プリズム差分も同様の手法で得られる。
なお、具体的なデータとして[条件1]を満たすことを実施例3にて示す。また、各実施例に係る眼鏡レンズ対が[条件2]も満たすことは、実施例1にて示す。
(実施例1)
実施例1に示すグラフ等における縦軸および横軸等の説明は、別実施例での同種の図においても同内容であるため、別実施例での記載を省略する。本明細書における「グラフ」は「プロット」と読み替えても差し支えない。
眼鏡レンズ対を作製するための処方情報のうち球面度数Sは0.00D[ディオプター]とし、加入度ADDは2.50D[ディオプター]とし、累進帯長を14mmとし、屈折率は1.60とした。
遠用基準点は、眼鏡レンズ中心240から鉛直上方向に8mm移動した位置とし、近用基準点は、眼鏡レンズ中心240から鉛直下方向に14mmかつ水平方向の鼻側に2.5mm移動した位置とした。
図18(a)は、眼鏡レンズ対を作製したときの参照用レンズ、実施例1のレンズ、従来のレンズを装用したときの、鉛直方向の両眼間の視線の向きの差、すなわち上下方向の眼位差の分布を示し、横軸は上記視線の向きの水平方向成分を、縦軸は上記視線の向きの鉛直方向成分を表している。
図18(b)は、目標物体面22の奥行き方向の見かけの位置の変化すなわち奥行方向の歪みを示すグラフであり、縦軸は奥行き方向位置情報[ディオプター]を示し、横軸は水平方向の視線の向き[tanθ]を示す。
図18(a)に示す各分布図の原点は、眼鏡レンズ中心240(プリズム測定点)を示す。図18(a)に示す各分布図の横軸上及び縦軸上の位置は、両眼の中心の中点Mから見た視線の向きを表している。
図19(a)は、図18(b)における横軸である水平方向の視線の向きを説明する図である。
図19(a)に示すように、統合眼12Mの中心位置を中心とし、正面視の方向を角度θ=0とし、正面視の方向から水平方向の側方に進む視線の方向が正面視の方向と成す角度をθとしたとき、水平方向の視線の向きは、tanθで示される。
つまり、図18(a)に示す領域は、水平方向、鉛直方向に、それぞれ、θ=±48度、すなわち96度の視野角の範囲を表している。例えば、図18(a)において、視線の向きがθ=48度のとき、図18(b)の横軸の値は、tanθ=1.11である。
図18(a)において、等高線のレベルは、両眼間の視線の鉛直方向の眼位差(左眼の視線の向きから右眼の視線の向きを引いたもの)をプリズムディオプトリの単位で示している。この各分布図において、絶対値が小さい程、鉛直方向の眼位差が小さいことを意味する。
図18(a)に示す鉛直方向の両眼間の視線の向きの差(眼位差)の分布では、実施例1の眼鏡レンズの分布は、従来の眼鏡レンズの分布に比べて参照用レンズの分布に近いことを示す。
図19(b)は、図18(b)における縦軸である奥行き方向の位置情報を説明する図である。
図19(b)に示すように、基準交点Oを注視するときの両眼間の視線の向きの成す角度(輻輳角)と瞳孔間距離PDの情報とを用いてレンズを通して見える基準交点Oの奥行き方向の距離Rcを算出する。
更に、レンズを通して交点Pを注視するときの視線の正面視の方向からの角度と瞳孔間距離PDの情報とを用いてレンズを通して見える交点Pの奥行き方向の距離Roを算出する。なお、距離Rc及び距離Roは、統合眼12Mの中心と基準交点Oとを通る鉛直面と統合眼用レンズ10Mが交差する点を基点としたときの距離である。
更に、算出した距離RcとRoそれぞれの逆数を求めて、それぞれDc、Do[ディオプター]とする。図18(b)に示すグラフの縦軸である奥行き方向の位置情報[ディオプター]とは、Dc−Doのことを示す。Dc−Doが小さい程、交点Pの奥行き方向の見かけの位置は基準交点Oを注視するときの奥行き方向の見かけの位置から相対的にズレていないことを意味する。
また、図18(b)に示すグラフに示す実施例1のレンズでは、参照用レンズに比べて目標物体面22の奥行き方向の位置ずれはあるものの、実施例1のレンズにおける奥行き方向の位置の変化量Δ1は、従来のレンズにおける変化量Δ2に比べて小さいことがわかる。
変化量Δ1が小さいことは、レンズを通して見える見かけの目標物体面20の奥行き方向の見かけの位置の、水平方向に沿った位置による変化が小さいことを示す。したがって、実施例1の眼鏡レンズ対10を装用した装用者は、奥行方向の像の歪みを感じ難く、さらに不快な装用感を低減することができる。
また、図18(b)だと、累進屈折力レンズに対応する参照用単焦点レンズの装用時又は裸眼相当時のプロットと交差しない。つまり、実施例1のレンズは、[条件3]を満たす。この点は、後述の実施例2のレンズにおいても同様である。
更に、実施例1においては、上記[条件2]について検討した。実施例1のレンズと従来のレンズにおける水平方向の表面プリズム差分をまとめた。
図20は、実施例1のレンズおよび従来のレンズにおける、水平方向の表面プリズム差分の変化を示す図であり、縦軸は水平方向の表面プリズム差分[プリズムディオプトリ/ディオプター]、横軸はy=−14mm上のx座標[mm]を示す。
図20に示すように、実施例1のレンズでは、近用部における所定の水平断面(y=−14mm)上での所定箇所γ内のx=0の位置において、水平方向の表面プリズム差分の絶対値が0.25[プリズムディオプトリ/ディオプター]以上であったが、従来例のレンズではそうではなかった。
なお、後述の実施例2および実施例3においても、図示はしないが図20に相当するグラフを作成したところ、図20と同様の関係が得られた。
本発明の一態様に係る累進屈折力レンズの設計方法を採用することにより、実施例1のレンズでは、参照用レンズのように両眼間の鉛直方向の視線の向きを揃えられることがわかった。その結果、装用者に与える不快な装用感を低減させられることがわかった。
(実施例2)
眼鏡レンズ対を作製するための処方情報のうち球面度数Sは−4.00D[ディオプター]とし、加入度ADDは2.50D[ディオプター]とし、累進帯長を14mmとし、屈折率は1.60とした。
遠用基準点は、眼鏡レンズ中心240から鉛直上方向に8mm移動した位置とし、近用基準点は、眼鏡レンズ中心240から鉛直下方向に14mmかつ水平方向の鼻側に2.3mm移動した位置とした。
図21(a)は、眼鏡レンズ対を作製したときの参照用レンズ、実施例2のレンズ、従来のレンズを装用したときの、鉛直方向の両眼間の視線の向きの差、すなわち上下方向の眼位差の分布を示し、横軸は上記視線の向きの水平方向成分を、縦軸は上記視線の向きの鉛直方向成分を表している。
図21(b)は、目標物体面22の奥行き方向の見かけの位置の変化すなわち奥行方向の歪みを示すグラフであり、縦軸は奥行き方向位置情報[ディオプター]を示し、横軸は水平方向の視線の向き[tanθ]を示す。
図21(a)に示す鉛直方向の両眼間の視線の向きの差(眼位差)の分布では、実施例2の眼鏡レンズの分布は、従来の眼鏡レンズの分布に比べて参照用レンズの分布に近いことを示す。
また、図21(b)に示すグラフに示す実施例2のレンズでは、参照用レンズに比べて目標物体面22の奥行き方向の位置ずれはあるものの、実施例2のレンズにおける奥行き方向の位置の変化量は、従来のレンズにおける変化量に比べて小さいことがわかる。
本発明の一態様に係る累進屈折力レンズの設計方法を採用することにより、実施例2のレンズでは、参照用レンズのように両眼間の鉛直方向の視線の向きを揃えられることがわかった。その結果、装用者に与える不快な装用感を低減させられることがわかった。
(実施例3)
眼鏡レンズ対を作製するための処方情報のうち球面度数Sは0.00D[ディオプター]とし、加入度ADDは2.50D[ディオプター]とし、累進帯長を14mmとし、屈折率は1.60とした。
遠用基準点は、眼鏡レンズ中心240から鉛直上方向に8mm移動した位置とし、近用基準点は、眼鏡レンズ中心240から鉛直下方向に14mmかつ水平方向の鼻側に2.5mm移動した位置とした。
図22は、実施例3のレンズおよび従来のレンズにおける、鉛直方向の表面プリズム差分の変化を示す図であり、縦軸は鉛直方向の表面プリズム差分[プリズムディオプトリ/ディオプター]、横軸はy=−14mm上のx座標[mm]を示す。なお、先に挙げた図20は“水平方向”の表面プリズム差分に係る。
図22が示すように、実施例3の眼鏡レンズの場合、図21でいうところの第1の領域と第2の領域のうち、一方の領域の最小差分値と他方の領域の最大差分値の差の絶対値が0.2[プリズムディオプトリ/ディオプター]以上である。その一方、従来の眼鏡レンズの場合、上記最小差分値と上記最大差分値の差の絶対値は0.2[プリズムディオプトリ/ディオプター]未満である。
このように、実施例3の累進屈折力レンズの上記最小差分値と上記最大差分値の差の絶対値が、従来の累進屈折力レンズに比べて大きいのは、本発明の一態様に係る累進屈折力レンズの設計方法の手法を採用してレンズ表面形状を調整したためである。具体的には、左眼及び右眼おのおの視線に対するプリズム作用の差を調整したためである。
すなわち、累進屈折力レンズの眼鏡レンズ対において、右眼レンズ300の原点(中点306)を挟んで左方向の領域と左眼レンズ400の原点(中点406)を挟んで左方向の領域の原点から同じ距離の位置におけるプリズム作用の差を、従来の眼鏡レンズ対に比べて増大させ、同様に、右眼レンズ300の原点(中点306)を挟んで右方向の領域と左眼レンズ400の原点(中点406)を挟んで右方向の領域の原点から同じ距離の位置におけるプリズム作用の差を従来の眼鏡レンズ対に比べて増大させたことによる。
これにより、プリズム作用の差を調整することにより不快な装用感のない参照用レンズにおけるプリズム作用の差に近づけることができる。このため、眼鏡レンズの装用者の両眼の視線の向きの差を考慮して、プリズム作用の差によって生じる不快な装用感を低減することができる。
ちなみに、各実施例によれば、図21に示す差分値の分布を求める領域310,410の位置は、加入度ADDの85%から100%が達成される位置であることが好ましい。この領域は、特に、プリズム作用の差によって生じる像の歪みや不快な装用感を感じ易い領域であるため、像の歪みや不快な装用感の改善の効果は大きくなる。
<総括>
以下、本開示の「累進屈折力レンズの設計方法、製造方法、設計システム、及び累進屈折力レンズ」について総括する。
本開示の一実施例は以下の通りである。
累進屈折力レンズの装用時における、
装用者から有限距離前方且つ装用者の正中面上の箇所Oの物体を視認するときの状態Aと、
前頭面と平行な面であって箇所Oを含む面内にて、箇所Oと鉛直方向の高さ一定で箇所Oの水平方向側方に位置する箇所Pの物体を視認するときの状態Bとの差Vを、
累進屈折力レンズに対応する 参照用単焦点レンズの 装用時又は裸眼相当時における、
箇所Oの物体を視認するときの状態Cと、
箇所Pの物体を視認するときの状態Dとの差Wに近づけるよう、累進屈折力レンズの表面形状を調整する、累進屈折力レンズの設計方法。
10 累進屈折力レンズ
10L 左眼用レンズ
10R 右眼用レンズ
10M 統合眼用レンズ
12L 左眼
12R 右眼
12M 統合眼
20 見かけの目標物体面(見かけ面)
22 目標物体面(実際面)
30L 右眼用の参照用単焦点レンズ
30R 左眼用の参照用単焦点レンズ
30M 統合眼用単焦点レンズ
50 システム
52,54 眼鏡店端末
56 レンズ加工装置
60 眼鏡レンズ対設計装置
62 CPU
64 ROM
66 RAM
68 通信部
70 入力操作部
71 ディスプレイ
72 ソフトウェアモジュール
72a 統合眼用レンズ設計部
72b 目標物体面設定部
72c レンズ対設計部
72d 参照用レンズ設計部
72e 視線計算部
72f 判定部
72g 表面形状調整部
72h レンズ表面設計部
100 (従来の)眼鏡レンズ対
100L (従来の)右眼用レンズ
100R (従来の)左眼用レンズ
200 主注視線
210L (初期設計した)左眼用レンズ
210R (初期設計した)右眼用レンズ
220 遠用基準点
230,308,408 近用基準点
240 眼鏡レンズ中心(プリズム測定点)
302,304 隠しマーク
306,406 中点
310,410 領域

Claims (12)

  1. 累進屈折力レンズの装用時における、
    装用者から有限距離前方且つ装用者の正中面上の箇所Oの物体を視認するときの状態Aと、
    前頭面と平行な面であって前記箇所Oを含む面内にて、前記箇所Oと鉛直方向の高さ一定で前記箇所Oの水平方向側方に位置する箇所Pの物体を視認するときの状態Bとの差Vを、
    累進屈折力レンズに対応する参照用単焦点レンズの装用時又は裸眼相当時における、
    前記箇所Oの物体を視認するときの状態Cと、
    前記箇所Pの物体を視認するときの状態Dとの差Wに近づけるよう、累進屈折力レンズの表面形状を調整する、累進屈折力レンズの設計方法。
  2. 前記差Vは、前記状態Aでの右眼の視線の向きと左眼の視線の向きとの角度差VAと、前記状態Bでの右眼の視線の向きと左眼の視線の向きとの角度差VBとの差であり、
    前記差Wは、前記状態Cでの右眼の視線の向きと左眼の視線の向きとの角度差WCと、前記状態Dでの右眼の視線の向きと左眼の視線の向きとの角度差WDとの差であり、
    累進屈折力レンズの表面形状を調整して前記状態Bでの前記角度差VBを変動させることにより、前記差Wからの所定の許容範囲内に前記差Vを収める、請求項1に記載の累進屈折力レンズの設計方法。
  3. 装用者の正中面上且つ右眼と左眼の中間位置に回旋中心を設定した統合眼及び統合眼用の累進屈折力レンズを仮想したとき、
    前記角度差VAは、前記状態Aでの、右眼の視線の向きと統合眼の視線の向きとの角度差VARと、左眼の視線の向きと統合眼の視線の向きとの角度差VALとの差であり、
    前記角度差VBは、前記状態Bでの、右眼の視線の向きと統合眼の視線の向きとの角度差VBRと、左眼の視線の向きと統合眼の視線の向きとの角度差VBLとの差であり、
    前記角度差WCは、前記状態Cでの、右眼の視線の向きと統合眼の視線の向きとの角度差WCRと、左眼の視線の向きと統合眼の視線の向きとの角度差WCLとの差であり、
    前記角度差WDは、前記状態Dでの、右眼の視線の向きと統合眼の視線の向きとの角度差WDRと、左眼の視線の向きと統合眼の視線の向きとの角度差WDLとの差である、請求項2に記載の累進屈折力レンズの設計方法。
  4. 前記角度差VARと前記角度差VALの比、前記角度差VBRと前記角度差VBLの比、前記角度差WCRと前記角度差WCLの比、及び前記角度差WDRと前記角度差WDLの比の少なくともいずれかに応じ、累進屈折力レンズの表面形状の調整の際の、右眼用の累進屈折力レンズに対する補正量と左眼用の累進屈折力レンズに対する補正量とを按分する、請求項3に記載の累進屈折力レンズの設計方法。
  5. 前記統合眼用の累進屈折力レンズの等価球面度数として、右眼用の累進屈折力レンズの等価球面度数と、左眼用の累進屈折力レンズの等価球面度数との平均値を採用する、請求項3又は4に記載の累進屈折力レンズの設計方法。
  6. 前記差Wからの所定の許容範囲は、前記差Wの50%以内である、請求項2〜5のいずれかに記載の累進屈折力レンズの設計方法。
  7. 請求項1〜6のいずれかに記載の累進屈折力レンズの設計方法を行う設計工程と、
    設計工程後、累進屈折力レンズを得る加工工程と、
    を有する、累進屈折力レンズの製造方法。
  8. 累進屈折力レンズの装用時における、
    装用者から有限距離前方且つ装用者の正中面上の箇所Oの物体を視認するときの状態Aと、
    前頭面と平行な面であって前記箇所Oを含む面内にて、前記箇所Oと鉛直方向の高さ一定で前記箇所Oの水平方向側方に位置する箇所Pの物体を視認するときの状態Bとの差Vを、
    累進屈折力レンズに対応する 参照用単焦点レンズの装用時又は裸眼相当時における、
    前記箇所Oの物体を視認するときの状態Cと、
    前記箇所Pの物体を視認するときの状態Dとの差Wに近づけるよう、累進屈折力レンズの表面形状を調整するソフトウェアモジュールを備えた、累進屈折力レンズの設計システム。
  9. 近方視に用いる屈折力を有する近用部と、近方視よりも遠方の物体を見るための屈折力を有する遠用部と、遠用部と近用部との間で屈折力が累進的に変化する累進作用を有する中間部と、を備える累進屈折力レンズであって、
    累進作用に起因する不必要なプリズム作用による像の歪み度合いを、累進屈折力レンズに対応する参照用単焦点レンズの装用時又は裸眼相当時における像の歪み度合いに近づけるプリズム作用調整領域を備える、累進屈折力レンズ。
  10. 前記プリズム作用調整領域は、主注視線から水平方向に外れた側方部の領域を含む、請求項9に記載の累進屈折力レンズ。
  11. 以下の2つの条件の少なくともいずれかを満たす、請求項9または10に記載の累進屈折力レンズ。
    [条件1]
    レンズ水平方向を横軸、加入度で正規化された鉛直方向の表面プリズム差分を縦軸としたときのプロットにおいて、前記近用部における所定の水平断面上での所定箇所αの前記鉛直方向の表面プリズム差分の最大値と最小値の差が0.2[プリズムディオプトリ/ディオプター]以上である。
    [条件2]
    レンズ水平方向を横軸、加入度で正規化された水平方向の表面プリズム差分を縦軸としたときのプロットにおいて、前記近用部における所定の水平断面上での所定箇所γ内のx=0の位置において、前記水平方向の表面プリズム差分の絶対値が0.25[プリズムディオプトリ/ディオプター]以上であり、前記所定箇所γ内のx=0の位置は、プリズム参照点の真下または累進屈折力レンズの2つのアライメント基準マークの中点の真下に位置する。
  12. 前記所定の水平断面の位置は、前記加入度の85%から100%が達成される位置である、請求項11に記載の累進屈折力レンズ。
JP2020527681A 2018-06-28 2019-06-28 累進屈折力レンズの設計方法、製造方法及び累進屈折力レンズ Active JP7090155B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018123739 2018-06-28
JP2018123739 2018-06-28
PCT/JP2019/025807 WO2020004620A1 (ja) 2018-06-28 2019-06-28 累進屈折力レンズの設計方法、製造方法、設計システム及び累進屈折力レンズ

Publications (2)

Publication Number Publication Date
JPWO2020004620A1 true JPWO2020004620A1 (ja) 2021-05-13
JP7090155B2 JP7090155B2 (ja) 2022-06-23

Family

ID=68987145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020527681A Active JP7090155B2 (ja) 2018-06-28 2019-06-28 累進屈折力レンズの設計方法、製造方法及び累進屈折力レンズ

Country Status (5)

Country Link
US (1) US12007627B2 (ja)
EP (1) EP3816717A4 (ja)
JP (1) JP7090155B2 (ja)
CN (2) CN112334820B (ja)
WO (1) WO2020004620A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7466137B2 (ja) * 2019-09-26 2024-04-12 学校法人北里研究所 サーバ装置、発注システム、情報提供方法、およびプログラム
JP2021162678A (ja) * 2020-03-31 2021-10-11 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 眼鏡レンズの評価装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033738A (ja) * 1999-07-22 2001-02-09 Seiko Epson Corp 累進多焦点レンズおよびその製造方法
JP2001510905A (ja) * 1997-07-18 2001-08-07 ソーラ インターナショナル ホールディングス リミテッド 表面補正レンズ
WO2003100505A1 (fr) * 2002-05-28 2003-12-04 Hoya Corporation Verres optiques varifocal aspheriques sur deux cotes
WO2006123503A1 (ja) * 2005-05-19 2006-11-23 Tokai Kogaku Co., Ltd 累進屈折力レンズ及びその製造方法
WO2010087450A1 (ja) * 2009-01-30 2010-08-05 Hoya株式会社 眼鏡レンズの評価方法、眼鏡レンズの設計方法、及び眼鏡レンズの製造方法
JP2011107239A (ja) * 2009-11-13 2011-06-02 Seiko Epson Corp 眼鏡レンズの設計方法および製造方法
WO2012014810A1 (ja) * 2010-07-27 2012-02-02 Hoya株式会社 眼鏡レンズの評価方法、眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズの製造システム、及び眼鏡レンズ
JP2012185448A (ja) * 2011-03-08 2012-09-27 Seiko Epson Corp 累進屈折力レンズ
US20130027659A1 (en) * 2011-07-26 2013-01-31 Shaw Peter John Spectacle lenses and method of making same
JP2013041125A (ja) * 2011-08-17 2013-02-28 Tokai Kogaku Kk 累進屈折力レンズの設計方法
WO2016104811A1 (ja) * 2014-12-26 2016-06-30 ホヤ レンズ タイランド リミテッド 眼鏡レンズ、その製造方法、供給システム、および供給プログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123739A (ja) 2017-01-31 2018-08-09 トヨタ自動車株式会社 始動可否判定装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510905A (ja) * 1997-07-18 2001-08-07 ソーラ インターナショナル ホールディングス リミテッド 表面補正レンズ
JP2001033738A (ja) * 1999-07-22 2001-02-09 Seiko Epson Corp 累進多焦点レンズおよびその製造方法
WO2003100505A1 (fr) * 2002-05-28 2003-12-04 Hoya Corporation Verres optiques varifocal aspheriques sur deux cotes
WO2006123503A1 (ja) * 2005-05-19 2006-11-23 Tokai Kogaku Co., Ltd 累進屈折力レンズ及びその製造方法
WO2010087450A1 (ja) * 2009-01-30 2010-08-05 Hoya株式会社 眼鏡レンズの評価方法、眼鏡レンズの設計方法、及び眼鏡レンズの製造方法
JP2011107239A (ja) * 2009-11-13 2011-06-02 Seiko Epson Corp 眼鏡レンズの設計方法および製造方法
WO2012014810A1 (ja) * 2010-07-27 2012-02-02 Hoya株式会社 眼鏡レンズの評価方法、眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズの製造システム、及び眼鏡レンズ
JP2012185448A (ja) * 2011-03-08 2012-09-27 Seiko Epson Corp 累進屈折力レンズ
US20130027659A1 (en) * 2011-07-26 2013-01-31 Shaw Peter John Spectacle lenses and method of making same
JP2013041125A (ja) * 2011-08-17 2013-02-28 Tokai Kogaku Kk 累進屈折力レンズの設計方法
WO2016104811A1 (ja) * 2014-12-26 2016-06-30 ホヤ レンズ タイランド リミテッド 眼鏡レンズ、その製造方法、供給システム、および供給プログラム

Also Published As

Publication number Publication date
JP7090155B2 (ja) 2022-06-23
CN112334820A (zh) 2021-02-05
US12007627B2 (en) 2024-06-11
WO2020004620A1 (ja) 2020-01-02
EP3816717A1 (en) 2021-05-05
CN115542572A (zh) 2022-12-30
US20210271108A1 (en) 2021-09-02
CN112334820B (zh) 2022-10-14
EP3816717A4 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
JP4979774B2 (ja) 一対の累進屈折力レンズ及びその設計方法
US10203519B2 (en) Systems and methods for augmented reality
CN107407827B (zh) 旨在安装在眼镜架上的眼镜眼科镜片
KR101281459B1 (ko) 안과용 렌즈를 결정하는 방법
WO1997019383A1 (fr) Lentilles multifocales pour lunettes et verre de lunettes
KR102042554B1 (ko) 안경 렌즈 결정 방법
JP2007241276A (ja) 累進焦点眼鏡レンズの決定方法
JP5969631B2 (ja) 眼鏡レンズ
WO2010111113A1 (en) Opthalmic lenses having reduced base out prism
CN107111159B (zh) 双眼用的一对眼镜镜片、其制造方法、供给系统及供给程序
JP2011203705A (ja) 眼鏡レンズ及びその設計方法
EP3430468A1 (en) Method for determining an ophthalmic lens adapted to a locomotion parameter
JP6495005B2 (ja) 両眼用の一対の眼鏡レンズ、その製造方法、供給システム、および供給プログラム
JP4383742B2 (ja) 急な屈折力変化をもつ累進多焦点レンズ
JP4226903B2 (ja) 急な屈折力変化をもつ累進多焦点レンズ
JP7090155B2 (ja) 累進屈折力レンズの設計方法、製造方法及び累進屈折力レンズ
JP2004502963A (ja) 揺動作用を低く抑えた累進眼鏡レンズ
WO2014097852A1 (ja) 眼鏡レンズの製造装置及び製造方法
JP5036946B2 (ja) わずかな拡大差を有する漸進的な眼鏡レンズ
JP3899659B2 (ja) 累進多焦点レンズおよびその製造方法
JP3788083B2 (ja) 累進多焦点レンズおよび眼鏡および製造方法
JP5068411B2 (ja) 目線の移動中に両眼特性を少し変えたプログレッシブ眼鏡レンズ
JP7203190B2 (ja) 計算方法、画像生成方法、眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズの販売方法、計算装置およびプログラム
CN113039480B (zh) 渐变眼科镜片
JP2021157122A (ja) 一対の累進屈折力レンズおよびその設計方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220613

R150 Certificate of patent or registration of utility model

Ref document number: 7090155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150