JPWO2019220610A1 - 固定子、電動機、圧縮機、及び空気調和装置 - Google Patents

固定子、電動機、圧縮機、及び空気調和装置 Download PDF

Info

Publication number
JPWO2019220610A1
JPWO2019220610A1 JP2020518912A JP2020518912A JPWO2019220610A1 JP WO2019220610 A1 JPWO2019220610 A1 JP WO2019220610A1 JP 2020518912 A JP2020518912 A JP 2020518912A JP 2020518912 A JP2020518912 A JP 2020518912A JP WO2019220610 A1 JPWO2019220610 A1 JP WO2019220610A1
Authority
JP
Japan
Prior art keywords
winding
sectional area
end portion
cross
coil end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020518912A
Other languages
English (en)
Other versions
JP7046170B2 (ja
Inventor
恵実 塚本
恵実 塚本
浩二 矢部
浩二 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019220610A1 publication Critical patent/JPWO2019220610A1/ja
Application granted granted Critical
Publication of JP7046170B2 publication Critical patent/JP7046170B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/02Windings characterised by the conductor material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

固定子(2)は、固定子コア(21)と、固定子コア(21)に巻回されたコイル(22)とを有する。コイル(22)は、少なくとも1つの第1巻線(221)と、第1巻線(221)と直列に接続された少なくとも1つの第2巻線(222)とを有する。コイル(22)のコイルエンド部(22a)の第1側の総断面積をS1とし、コイルエンド部(22a)の第2側の総断面積をS2とし、第1側における第1巻線(221)の総断面積をA1とし、第2側における第1巻線(221)の総断面積をA2としたとき、(A1/S1)>(A2/S2)を満たす。

Description

本発明は、電動機の固定子に関する。
近年、電動機の分野では、出力の増加と小型化が求められている。電動機の出力が増加すると、固定子のコイルに流す電流が増加する。また、電動機を小型化する場合にも、同一出力を得るために必要な電流が増加する。コイルに流れる電流が増加すると、コイルの温度が上昇する。コイルの温度上昇は電動機の効率の低下を引き起こす。したがって、コイルの熱を外部へ放出することにより、コイルの温度上昇を低減することが望ましい。
例えば、圧縮機に用いる電動機において、コイルのコイルエンド部が圧縮機内の冷媒および潤滑油に接触するように、固定子を形成することができる。そのため、コイルで発生した熱は、コイルの外部に露出するコイルエンド部から放出させることが望ましい。コイルの発熱量はコイルの電気抵抗の大きさに依存するので、コイルの発熱を低減するためにはコイルの電気抵抗が小さいことが望ましい。
近年、電動機の低コスト化および軽量化のため、コイルの巻線として、銅線コイルに加えて、アルミニウム線コイルを併用することが提案されている(例えば、特許文献1参照)。
国際公開WO2014/188466
しかしながら、互いに異なる種類の巻線で形成されたコイルを用いた場合、従来の技術では、コイルのコイルエンド部からの放熱効率が不十分であるため、固定子の温度上昇、特にコイルの温度上昇を充分に低減できないという問題がある。
本発明は、コイルのコイルエンド部における放熱効率を改善することを目的とする。
本発明の固定子は、固定子コアと、少なくとも1つの第1巻線と、前記少なくとも1つの第1巻線と直列に接続されており前記少なくとも1つの第1巻線とは異なる材料で形成された少なくとも1つの第2巻線とを有し、前記固定子コアに巻回されたコイルとを備え、前記コイルは、前記固定子コアの外側に位置するコイルエンド部を有し、前記コイルエンド部において前記コイルと前記固定子コアとの接点からの前記コイルエンド部の最大高さを2等分する直線をP1とし、前記直線P1を挟んで前記固定子コアの反対側である、前記コイルエンド部の第1側の総断面積をSとし、前記直線P1を挟んで前記第1側の反対側である、前記コイルエンド部の第2側の総断面積をSとし、前記コイルエンド部の前記第1側における前記少なくとも1つの第1巻線の総断面積をAとし、前記コイルエンド部の前記第2側における前記少なくとも1つの第1巻線の総断面積をAとしたとき、(A/S)>(A/S)を満たす。
本発明によれば、コイルのコイルエンド部における放熱効率を改善することができる。
本発明の実施の形態1に係る電動機の構造を概略的に示す平面図である。 コイルの第1巻線と第2巻線との接続状態を示す図である。 図1に示される、線C3−C3に沿ったコイルの束の断面図である。 図1に示される、線C3−C3に沿ったコイルの束の断面図である。 第1巻線と第2巻線について、断面積、断面積比、電気抵抗、電流、損失、損失密度および損失密度比を示す表である。 第2巻線の直径を0.9[mm]に設定し、第1巻線の直径を変化させた場合の、断面積比kと損失密度比との関係を示すグラフである。 スクロール圧縮機を示す断面図である。 空気調和装置(冷凍サイクル装置)を示す図である。
実施の形態1.
各図に示されるxyz直交座標系において、z軸方向(z軸)は、電動機1の回転子3の軸線Axと平行な方向を示し、x軸方向(x軸)は、z軸方向(z軸)に直交する方向を示し、y軸方向(y軸)は、z軸方向及びx軸方向の両方に直交する方向を示す。軸線Axは、回転子3の回転中心である。軸線Axと平行な方向は、「回転子3の軸方向」又は単に「軸方向」ともいう。径方向は、軸線Axと直交する方向である。
図1は、本発明の実施の形態1に係る電動機1の構造を概略的に示す平面図である。矢印D1は、軸線Axを中心とする固定子2の周方向を示す。矢印D1は、軸線Axを中心とする回転子3の周方向も示す。固定子2及び回転子3の周方向は、単に「周方向」ともいう。
電動機1は、固定子2と、回転子3とを有する。電動機1は、例えば、誘導電動機である。電動機1は、例えば、スクロール圧縮機などの圧縮機に用いられる。
回転子3は、固定子2の内側に回転可能に配置されている。
固定子2は、固定子コア21と、コイル22(固定子コイルともいう)とを有する。
固定子コア21は、環状に形成されている。固定子コア21は、複数の電磁鋼板を軸方向に積層することにより形成されている。複数の電磁鋼板は、互いにカシメで固定されている。複数の電磁鋼板の各々は、予め定められた形状に打ち抜かれている。複数の電磁鋼板の各々の厚さは、例えば、0.1mmから0.7mmである。
固定子コア21は、ヨーク21aと、複数のティース21bとを有する。ヨーク21aは、円環状に形成されている。各ティース21bは、ヨーク21aから径方向に延在する。言い換えると、各ティース21bは、回転子3の回転中心に向けてヨーク21aから突出している。
ティース21bは、周方向に等間隔で配列されている。周方向において互いに隣接するティース21b間に形成されたスペースは、スロットである。ティース21bの数は、例えば、30個である。ただし、ティース21bの数は30個に限定されない。ティース21bの先端は、周方向に広がっている。
コイル22は、固定子コア21に巻回されている。具体的には、コイル22は、ティース21bに巻回されている。図1に示される例では、コイル22は、分布巻きで固定子コア21に巻回されている。ただし、コイル22の巻回は、分布巻きに限定されない。例えば、コイル22は、集中巻きで固定子コア21に巻回されていてもよい。
コイル22は、複数の束220を有する。各束220をコイル束ともいう。図1に示される例では、各束220が分布巻きで固定子コア21に巻回されている。コイル22は、固定子コア21の外側に位置するコイルエンド部22aを有する。具体的には、各束220は、コイルエンド部22aを有する。コイルエンド部22aは、軸方向における固定子コア21の外側に位置する。言い換えると、コイルエンド部22aは、コイル22のうちの、軸方向における固定子コア21の外側に位置する部分である。すなわち、コイルエンド部22aは、図1に示されるコイル22の部分である。ただし、束220の数及びコイルエンド部22aの数は、図1に示される例に限定されない。
図2は、コイル22の第1巻線221と第2巻線222との接続状態を示す図である。
コイル22は、少なくとも1つの第1巻線221と、少なくとも1つの第2巻線222とを有する。第2巻線222は、第1巻線221と直列に接続されている。すなわち、各束220は、少なくとも1つの第1巻線221及び少なくとも1つの第2巻線222で形成されている。図2に示される例では、コイル22は、U相、V相、及びW相を持つ3相コイルであり、コイル22の結線は、Y結線である。
第1巻線221は、第2巻線222とは異なる材料で形成されている。第2巻線222は、第1巻線221とは異なる材料で形成されている。すなわち、第1巻線221及び第2巻線222は、互いに異なる材料で形成されている。第2巻線222の電気抵抗率は第1巻線221よりも低い。すなわち、第2巻線222の熱伝導率は、第1巻線221よりも高い。第1巻線221の熱損失量は、第2巻線222よりも大きい。
本実施の形態では、第1巻線221はアルミ線であり、第2巻線222は銅線である。ただし、第1巻線221はアルミ線に限定されず、第2巻線222は銅線に限定されない。
図3は、図1に示される、線C3−C3に沿ったコイル22の束220(具体的には、束220のコイルエンド部22a)の断面図である。矢印L1は、コイルエンド部22aの第1側からの放熱経路を示す。矢印L2は、コイルエンド部22aの第2側からの放熱経路を示す。コイルエンド部22aの熱は、放熱経路L1及びL2、特に放熱経路L1に向けて放出される。
直線P1は、コイルエンド部22aにおいてコイル22と固定子コア21との接点からのコイルエンド部22aの最大高さを2等分する直線である。図3に示される例では、コイル22と固定子コア21との接点からのコイルエンド部22aの最大高さは2×R1で示される。コイルエンド部22aの最大高さは、軸方向における最大高さである。
コイルエンド部22aの第1側は、直線P1を挟んで固定子コア21の反対側である。具体的には、コイルエンド部22aの第1側は、直線P1から+z側の第1領域201である。コイルエンド部22aの第2側は、直線P1を挟んでコイルエンド部22aの第1側の反対側である。具体的には、コイルエンド部22aの第2側は、直線P1から−z側の第2領域202である。すなわち、コイルエンド部22aの断面は、yz平面において第1領域201及び第2領域202を有する。
第1領域201は、yz平面において、束220の第1側における外側端部に配置された各巻線(すなわち、第1巻線221又は第2巻線222)との接線で形成された外縁と直線P1で囲まれた領域である。第2領域202は、yz平面において、束220の第2側における外側端部に配置された各巻線(すなわち、第1巻線221又は第2巻線222)との接線で形成された外縁と直線P1で囲まれた領域である。
本実施の形態では、第1領域201には、少なくとも1つの第1巻線221及び少なくとも1つの第2巻線222が配置されており、第2領域202にも、少なくとも1つの第1巻線221及び少なくとも1つの第2巻線222が配置されている。
ただし、第1領域201には、少なくとも1つの第1巻線221のみが配置されてもよい。この場合、第1領域201には第2巻線222が存在しない。
コイルエンド部22aの第1側の総断面積をSとする。すなわち、総断面積Sは、yz平面における第1領域201の面積である。コイルエンド部22aの第2側の総断面積をSとする。総断面積Sは、yz平面における第2領域202の面積である。コイルエンド部22aの第1側における少なくとも1つの第1巻線221の総断面積をAとする。言い換えると、総断面積Aは、第1領域201に配置された各第1巻線221の断面積の和である。コイルエンド部22aの第2側における少なくとも1つの第1巻線221の総断面積をAとする。言い換えると、総断面積Aは、第2領域202に配置された各第1巻線221の断面積の和である。
この場合、固定子2は、(A/S)>(A/S)を満たす。A/Sは、総断面積Sにおける少なくとも1つの第1巻線221(具体的には、少なくとも1つの第1巻線221の総断面積A)の占める比率である。A/Sは、総断面積Sにおける少なくとも1つの第1巻線221(具体的には、少なくとも1つの第1巻線221の総断面積A)の占める比率である。これにより、固定子2における放熱効率を改善することができる。
コイルエンド部22aの第1側に配置された少なくとも1つの第2巻線222の総断面積をCとし、コイルエンド部22aの第2側に配置された少なくとも1つの第2巻線222の総断面積をCとする。言い換えると、総断面積Cは、第1領域201に配置された各第2巻線222の断面積の和であり、総断面積Cは、第2領域202に配置された各第2巻線222の断面積の和である。この場合、固定子2は、(A/S)>(C/S)を満たす。これにより、固定子2における放熱効率をさらに改善することができる。
さらに、固定子2は、(A/C)>(A/C)を満たすことが望ましい。これにより、固定子2における放熱効率をさらに改善することができる。
図4は、図1に示される、線C3−C3に沿ったコイル22の束220(具体的には、束220のコイルエンド部22a)の断面図である。
直線P2は、コイルエンド部22aの断面上において直線P1を2等分する直線である。したがって、コイルエンド部22aの断面上における直線P1の長さは、2×R2で表される。半径rは、コイルエンド部22aの断面上における直線P1及び直線P2の交点を中心とする半径である。半径rは、コイルエンド部22aの断面上における、直線P1の長さの半分(すなわち、R2)及び直線P2の長さの半分(すなわち、R1)よりも短い。
コイルエンド部22aの第1側において半径rで囲まれた領域の外側の総断面積をSOとする。コイルエンド部22aの第1側において半径rで囲まれた領域の総断面積をSiとする。半径rで囲まれた領域は、yz平面において直線P1及び直線P2の交点を中心とする半径rの円である。総断面積SOは、yz平面において、第1領域201のうちの半径rで囲まれた領域の外側の面積である。言い換えると、総断面積SOは、総断面積Sから半径rの半円を除いて得られる面積である。総断面積Siは、yz平面において、第1領域201のうちの半径rで囲まれた領域の面積である。言い換えると、総断面積Siは、第1領域201における半径rの半円の面積である。
yz平面において、第1領域201のうちの半径rで囲まれた領域の外側に配置された少なくとも1つの第1巻線221の総断面積をAOとする。言い換えると、総断面積AOは、第1領域201のうちの半径rで囲まれた領域の外側に配置された各第1巻線221の断面積の和である。yz平面において、第1領域201のうちの半径rで囲まれた領域に配置された少なくとも1つの第1巻線221の総断面積をAiとする。言い換えると、総断面積Aiは、第1領域201のうちの半径rの半円で囲まれた領域に配置された各第1巻線221の断面積の和である。
この場合、固定子2は、(AO/SO)>(Ai/Si)を満たす。AO/SOは、総断面積SOに占める少なくとも1つの第1巻線221(具体的には、少なくとも1つの第1巻線221の総断面積AO)の占める比率である。Ai/Siは、総断面積Siに占める少なくとも1つの第1巻線221(具体的には、少なくとも1つの第1巻線221の総断面積Ai)の占める比率である。これにより、固定子2における放熱効率をさらに改善することができる。
<各巻線の直径>
次に、第1巻線221の直径及び第2巻線222の直径の関係について説明する。第1巻線221と第2巻線222とは互いに直列に接続されているため、第1巻線221及び第2巻線222に流れる電流は互いに等しい。従って、電気抵抗率の高い第1巻線221で生じる損失は、第2巻線222で生じる損失よりも大きい。そのため、上述のように、放熱効率のよい第1領域201に、第1巻線221をできるだけ多く集めることが望ましい。
第1巻線221の電気抵抗をRAl[Ω]とし、電気抵抗率をρAl[Ω・m]とし、直径をφAl[mm]とする。第2巻線222の電気抵抗をRCu[Ω]とし、電気抵抗率をρCu[Ω・m]とし、直径をφCu[mm]とする。コイルの電気抵抗は、電気抵抗率ρにコイルの長さLを乗算し、コイルの断面積Sで除算して得られる(すなわちρ×L/S)。すなわち、一般に、コイルの長さLが等しい場合、コイルの電気抵抗は、電気抵抗率が高いほど高く、断面積が大きいほど低い。
1本の第1巻線221の断面積をSAlとし、1本の第2巻線222の断面積をSCuとする。第1巻線221および第2巻線222の長さLが互いに等しく、第1巻線221及び第2巻線222に流れる電流が1[A]である場合、第1巻線221で発生する損失[W]、すなわち電流の2乗と電気抵抗の積は、ρAl×(L/SAl)で表され、第2巻線222で発生する損失[W]はρCu×(L/SCu)で表される。
第1巻線221で生じる損失が、第2巻線222で生じる損失と等しくなる場合には、ρAl×(L/SAl)=ρCu×(L/SCu)が成立する。この式をSAlについて解くと、SAl=(ρAl/ρCu)×SCuとなる。すなわち、第1巻線221の断面積SAlは、第2巻線222の断面積SCuの(ρAl/ρCu)倍となる。
コイルの断面積は直径の2乗に比例するため、第1巻線221で生じる損失が第2巻線222で生じる損失と等しくなる場合の第1巻線221の直径φAl[mm]は、第2巻線222の直径φCu[mm]の√(ρAl/ρCu)倍となる。
そのため、第1巻線221で生じる損失を、第2巻線222で生じる損失以上にするためには、第1巻線221の直径φAlを第2巻線222の直径φCuの√(ρAl/ρCu)倍以下にすればよい。言い換えると、第1巻線221の直径φAlを、√(ρAl/ρCu)×φCu以下にすればよい。
そのため、第1巻線221の電気抵抗率ρAl[W/m]および直径φAl[mm]と、第2巻線222の電気抵抗率ρCu[W/m]および直径φCu[mm]とが、以下の式(1)を満足することが最も望ましい。
Figure 2019220610
第1巻線221の直径φAlが√(ρAl/ρCu)×φCu以下であれば、第1巻線221の電気抵抗が第2巻線222の電気抵抗以下となり、従って第1巻線221で生じる損失が第2巻線222で生じる損失以上となる。すなわち、第1領域201に集められた第1巻線221で高い損失(すなわち発熱)が生じ、その熱が第1領域201から放熱経路L1へ放出されるため、特に高い放熱効果が得られる。
例えば、第1巻線221の電気抵抗率ρAlを2.82×10−8[Ω・m]とし、第2巻線222の電気抵抗率ρCuを1.68×10−8[Ω・m]とすると、第1巻線221の直径φAl[mm]の上限は、第2巻線222の直径φCu[mm]の1.296倍となる。第1巻線221の直径φAlが1.296×φCuよりも小さければ、特に高い放熱効果が得られる。
また、式(1)では、第1巻線221の直径φAlの下限を、第2巻線222の直径φCuと等しくしている。第1巻線221の単位断面積当たりの機械的強度は第2巻線222よりも低いため、巻線工程において第1巻線221の十分な強度を確保するためには、第1巻線221の直径φAlが第2巻線222の直径φCu以上(すなわちφCu≦φAl)であることが望ましいためである。
このように、第1巻線221の電気抵抗率ρAlおよび直径φAlと、第2巻線222の電気抵抗率ρCuおよび直径φCuとが式(1)を満足すれば、第1領域201に集められた第1巻線221で高い損失を発生させ、その熱を第1領域201から放熱経路L1へ効率よく放出することができる。さらに、巻線工程での第1巻線221の十分な強度を確保することができる。
なお、式(1)を導出する際に、第1巻線221及び第2巻線222に流れる電流を1[A]と仮定したが、電流は1[A]に限定されない。第1巻線221及び第2巻線222に流れる任意の電流をI[A]と表すと、第1巻線221で生じる損失が第2巻線222で生じる損失と等しくなる場合には、ρAl×(L/SAl)×I=ρCu×(L/SCu)×Iが成立し、上記のSAl=(ρAl/ρCu)×SCuが得られ、ここから式(1)が導出されるためである。
また、第1巻線221の電気抵抗率ρAlおよび直径φAlと、第2巻線222の電気抵抗率ρCuおよび直径φCuとの関係は、上記の式(1)に限定されるものではなく、以下の式(2)を満足するようにしてもよい。
Figure 2019220610
式(2)における第1巻線221の直径φAlの上限は、式(1)と同様である。理由は、上述した通りである。一方、式(2)における第1巻線221の直径φAlの下限は、0.5×φCu、すなわち、第2巻線222の直径φCuの1/2である。
第1巻線221と第2巻線222とが互いに直列に接続されたコイル22を固定子コア21のティース21bに巻き付ける工程では、工程の複雑化を回避するため、共通の巻線機を用いることが望ましい。一方、第1巻線221と第2巻線222とで直径が互いに異なる場合には、巻線機の巻線ノズルのノズル径を、太い方の巻線に合わせる必要がある。
第1巻線221の直径φAlが、第2巻線222の直径φCuの1/2よりも小さい場合、巻線ノズルに第1巻線221が2列に挿入される可能性があり、第1巻線221が損傷を受ける可能性がある。また、巻線機は、第1巻線221の巻回時と第2巻線222の巻回時とで同じ張力を付与するため、第1巻線221が細すぎると断線の可能性がある。
以上の理由から、式(2)では、第1巻線221の直径φAl[mm]を、0.5×φCu[mm]以上としている。これにより、第1領域201に集められた第1巻線221で高い損失を発生させ、その熱を第1領域201から放熱経路L1へ効果的に放出すると共に、巻線工程での第1巻線221の損傷および断線を防止することができる。
<各巻線の断面積比>
1本の第2巻線222の断面積SCuに対する1本の第1巻線221の断面積SAlの比、すなわちSAl/SCuを、断面積比kとする。断面積SAlはπ×(φAl/2)であり、断面積SCuはπ×(φCu/2)であるため、断面積比kは、k=(φAl/φCuと表すことができる。断面積比kを用いると、式(1)のφCu≦φAlは、1≦kと表される。また、式(2)の0.5×φCu≦φAlは、k≦0.25と表される。
上記の通り、第1巻線221と第2巻線222とは互いに直列に接続され、電気抵抗率の高い第1巻線221で生じる損失は第2巻線222で生じる損失よりも高い。したがって、コイルエンド部22aの第1領域201には、損失の高い第1巻線221が密に配置されることが望ましい。これより、第1巻線221の熱を放熱経路L1へ効率よく放出することができる。
ここで、損失密度について説明する。損失密度[W/mm]は、コイルで生じる損失を、コイルの1本あたりの断面積で除算した値である。ここでは、第1巻線221の損失密度が第2巻線222の損失密度に対してどのような範囲にあれば高い放熱効果が向上するか、検討する。
1本の第1巻線221の断面積SAl[mm]と、1本の第2巻線222の断面積SCu[mm]とは、断面積比kの定義(k=SAl/SCu)から、SAl=k×SCuの関係にある。コイル22に流れる電流を1[A]とすると、第1巻線221で生じる損失[W]はRAlであり、第2巻線222で生じる損失[W]はRCuである。
そのため、第1巻線221の損失密度[W/m]は、RAl/SAlであり、断面積比kを用いると、RAl/(k×SCu)と表される。一方、第2巻線222の損失密度[W/m]は、RCu/SCuである。
第2巻線222の損失密度に対する第1巻線221の損失密度の比を、損失密度比と定義する。損失密度比は、{RAl/(k×SCu)}/{RCu/SCu}であるため、RAl/(k×RCu)と表される。
図5は、第1巻線221と第2巻線222について、断面積[mm]、断面積比、電気抵抗[Ω/km]、電流[A]、損失[W]、損失密度[W/mm]および損失密度比を示す表である。
損失密度比が1以上の場合、すなわち、第1巻線221の損失密度が第2巻線222の損失密度以上である場合には、第1領域201に配置された第1巻線221で高い損失を発生させ、その熱を第1領域201から放熱経路L1へ効率よく放出することができる。そのため、1≦RAl/(k×RCu)であることが望ましい。
また、第1巻線221の単位断面積当たりの機械的強度は第2巻線222よりも低いため、共通の巻線機を用いた巻線工程での十分な強度確保のため、第1巻線221の直径φAlは第2巻線222の直径φCu以上であることが望ましい。そのため、1≦kであることが望ましい。
以上から、断面積比kと、第1巻線221の電気抵抗RAl[Ω]と、第2巻線222の電気抵抗RCu[Ω]とが以下の式(3)、(4)を満足することにより、第1領域201に集められた第1巻線221で高い損失を発生させ、その熱を第1領域201から放熱経路L1へ効率よく放出し、なお且つ、巻線工程での第1巻線221の十分な強度を確保することができる。
Figure 2019220610
1≦k …(4)
ここで、損失密度比RAl/(k×RCu)の上限は、kに1を代入したRAl/RCuである。例えば、第2巻線222の直径φCuを0.9[mm]とし、電気抵抗RCuを27.1[Ω]とし、第1巻線221の直径φAlを0.9[mm]とし、電気抵抗RAlを73.72[Ω]とした場合、RAl/(k×RCu)の上限は、RAl/RCu=1.679となる。そのため、損失密度比RAl/(k×RCu)の望ましい範囲は、1≦RAl/(k×RCu)≦1.679と表される。
図6は、第2巻線222の直径φCuを0.9[mm]に設定し、第1巻線221の直径φAlを変化させた場合の、断面積比kと損失密度比との関係を示すグラフである。図6に示すように、第2巻線222の直径φCuを0.9[mm]とした場合の損失密度比RAl/(k×RCu)の望ましい範囲は、1≦RAl/(k×RCu)≦1.679である。
また、断面積比kと、第1巻線221の電気抵抗RAl[Ω]と、第2巻線222の電気抵抗RCu[Ω]とは、以下の式(5)、(6)を満足するようにしてもよい。式(5)は、上述した式(3)と同じである。
Figure 2019220610
0.25≦k …(6)
上記の通り、第1巻線221と第2巻線222とを共通の巻線機で巻回する場合、巻線機の巻線ノズルのノズル径を太い方の巻線に合わせる必要がある。第1巻線221の直径φAlが第2巻線222の直径φCuの1/2以下の場合、第1巻線221が巻線ノズルに2列に挿入されて損傷を受ける可能性がある。また、巻線機は、第1巻線221の巻回時と第2巻線222の巻回時とで同じ張力を付与するため、第1巻線221が細すぎると断線の可能性がある。
そのため、第1巻線221の直径φAl[mm]の下限を、0.5×φCu[mm]とすることが望ましい。これを断面積比kで表すと、0.25≦kとなる。
以上から、断面積比kと、第1巻線221の電気抵抗RAl[Ω]と、第2巻線222の電気抵抗RCu[Ω]とが式(5)、(6)を満足することにより、コイルエンド部22aの第1領域201に集められた第1巻線221で高い損失を発生させ、その熱を第1領域201から放熱経路L1へ効率よく放出することができ、なお且つ、巻線工程での第1巻線221の十分な損傷および断線を防止することができる。
ここで、損失密度比RAl/(k×RCu)の上限は、kに0.25を代入したRAl/(0.25×RCu)である。例えば、第2巻線222の直径φCuを0.9[mm]とし、電気抵抗RCuを27.1[Ω]とし、第1巻線221の直径φAlを0.45[mm]とし、電気抵抗RAlを174.9[Ω]とした場合、RAl/(k×RCu)の上限は、RAl/(0.25×RCu)=25.815である。この場合、損失密度比RAl/(k×RCu)の望ましい範囲は、1≦RAl/(k×RCu)≦25.815と表される。
<誘導電動機>
実施の形態1で説明した電動機1は、例えば、誘導電動機である。
一般に、誘導電動機は、インバータを用いずに駆動される場合が多い。すなわち、電動機1を制御する制御部は、コイル22に一定電圧を供給して電動機1を駆動する場合が多い。そのため、電動機1の負荷または供給電圧の変動により、コイル22を流れる電流が大幅に増加し、コイル22の温度が上昇する場合がある。
実施の形態1に係る固定子2を有する電動機1は、上記の通り、高い放熱効果を有し、コイル22の温度上昇を低減することができるため、電流の変動の大きい誘導電動機で特に大きな効果を発揮する。なお、電動機1は、誘導電動機以外の電動機、例えば、同期電動機であっても高い放熱効果が得られる。
<実施の形態1の効果>
例えば、熱損失量の大きい巻線を、コイルエンド部22aの第1側よりも第2側に密に配置した場合、固定子2の熱(例えば、固定子コア21の熱及びコイル22の熱)が第2側から第1側へ伝達されにくい。この場合、固定子2の熱が固定子2の外部へ放出されにくいため、固定子2の温度上昇を低減することが困難である。したがって、固定子2の熱は、放熱経路L2よりも放熱経路L1へ放出させることが望ましい。コイル22の周囲に液体(例えば、冷媒)などの媒質が存在する場合、コイル22の熱をその媒質へ放出しやすい。この場合、コイル22の熱は放熱経路L2よりも放熱経路L1へ放出されやすい。したがって、熱が放熱経路L1へ放出されやすいように、コイル22を形成することが望ましい。
本実施の形態に係る固定子2では、第2巻線222が第1巻線221と直列に接続されており、熱損失量の大きい第1巻線221をコイルエンド部22aの第2側よりも第1側に多く配置し、熱損失量の小さい第2巻線222をコイルエンド部22aの第1側よりも第2側に多く配置している。具体的には、固定子2は、(A/S)>(A/S)を満たす。すなわち、コイルエンド部22aの第1側、すなわち、第1領域201における第1巻線221の密度は、コイルエンド部22aの第2側、すなわち、第2領域202における第1巻線221の密度よりも大きい。
したがって、熱損失量の大きい第1巻線221が、コイルエンド部22aの第1側に密に配置される。これにより、固定子2の熱、特にコイル22の熱がコイルエンド部22aの第2側から第1側へ効率的に伝達され、第1側から放熱経路L1へ放出されるので、コイル22のコイルエンド部22aにおける放熱効率を改善することができ、電動機1の高速回転時の固定子2(特に、コイル22)における温度上昇を低減することができる。その結果、固定子2を有する電動機1の出力を高めることができる。
さらに、固定子2は、(A/S)>(C/S)を満たすことが望ましい。これにより、コイル22の熱が第1側から放熱経路L1へ効率的に放出されるので、固定子2における放熱効率をさらに改善することができ、固定子2における温度上昇を低減することができる。
さらに、固定子2は、(A/C)>(A/C)を満たすことが望ましい。これにより、固定子2の熱、特にコイル22の熱がコイルエンド部22aの第2側から第1側へ効率的に伝達され、その熱を第1側から放熱経路L1へ容易に放出させることができる。その結果、固定子2における放熱効率をさらに改善することができ、固定子2における温度上昇を低減することができる。
コイルエンド部22aの第1側には、少なくとも1つの第1巻線221のみが配置されてもよい。この場合、コイルエンド部22aの第1側には第2巻線222が存在しない。これにより、コイルエンド部22aの第1側、すなわち第1領域201には、熱損失量の大きい第1巻線221のみが配置されるので、コイル22の熱を第1側から放熱経路L1へ容易に放出させることができる。その結果、固定子2における放熱効率をさらに改善することができ、固定子2における温度上昇を低減することができる。
さらに、固定子2は、(AO/SO)>(Ai/Si)を満たすことが望ましい。これにより、コイル22の外側に露出する領域に、熱損失量の大きい第1巻線221を多く配置することができる。すなわち、第1領域201において、半径rで囲まれた領域の外側に多く第1巻線221を配置することができる。その結果、固定子2における放熱効率をさらに改善することができ、固定子2における温度上昇を低減することができる。
第1巻線221及び第2巻線222は、互いに直列に接続されているので、第1巻線221及び第2巻線222に流れる電流値は互いに等しい。第1巻線221の電気抵抗RAlは、第2巻線222の電気抵抗RCuよりも大きいので、第1巻線221に生じる熱損失量は、第2巻線222に生じる熱損失量よりも大きい。したがって、上述のように、第1巻線221の多くを第1領域201に配置することにより、コイルエンド部22aにおける放熱効率を改善することができる。
第1巻線221の電気抵抗率ρAl[Ω・m]および直径φAl[mm]と、第2巻線222の電気抵抗率ρCu[Ω・m]および直径φCu[mm]とが、上記の式(1)を満足する。これにより、第1領域201に集められた第1巻線221で高い損失(すなわち発熱)が生じ、その熱が第1領域201から放熱経路L1へ放出されるため、放熱効果をさらに高めることができる。さらに、第1巻線221の直径φAlが第2巻線222の直径φCu以上であるので、巻線工程での第1巻線221の十分な強度を確保することができる。
また、第1巻線221の電気抵抗率ρAl[Ω・m]および直径φAl[mm]と、第2巻線222の電気抵抗率ρCu[Ω・m]および直径φCu[mm]とが、上記の式(2)を満足する。これにより、放熱効果をさらに高めることができる。さらに、第1巻線221の直径φAlが第2巻線222の直径φCuの1/2以上であるとき、巻線工程での第1巻線221の損傷および断線を防止することができる。
また、第1巻線221の電気抵抗RAlと、第2巻線222の電気抵抗RCuと、第2巻線222の断面積SCuに対する第1巻線221の断面積SAlの比である断面積比kとが、上記の式(3)を満足する。すなわち、第1巻線221の損失密度が第2巻線222の損失密度以上となる。したがって、損失密度が大きい第1巻線221の多くが第1領域201に配置される。その結果、第1巻線221で高い損失が発生するので、その熱を第1領域201から放熱経路L1へ効率的に放出することができ、放熱効果をさらに高めることができる。
また、断面積比kが1以上であれば、共通の巻線機を用いた巻線工程において、第1巻線221の十分な強度を確保することができる。また、断面積比kが0.25以上であれば、共通の巻線機を用いた巻線工程において、第1巻線221の破損および断線を防止することができる。
実施の形態1に係る固定子2を有する電動機1は、上述の固定子2の効果を有する。さらに、実施の形態1に係る固定子2を有する電動機1を、誘導電動機に適用することにより、特に高い効果が得られる。
実施の形態2.
<スクロール圧縮機>
次に、実施の形態1で説明した電動機1が適用される圧縮機としてのスクロール圧縮機300について説明する。
図7は、スクロール圧縮機300を示す断面図である。
スクロール圧縮機300は、密閉容器307と、密閉容器307内に配置された圧縮機構305と、圧縮機構305を駆動する電動機1と、圧縮機構305と電動機1とを連結するシャフト306と、シャフト306の下端部(すなわち圧縮機構305側と反対側の端部)を支持するサブフレーム308とを備えている。
圧縮機構305は、渦巻部分を有する固定スクロール301と、固定スクロール301の渦巻部分との間に圧縮室を形成する渦巻部分を有する揺動スクロール302と、シャフト306の上端部を保持するコンプライアンスフレーム303と、密閉容器307に固定されてコンプライアンスフレーム303を保持するガイドフレーム304とを備える。
固定スクロール301には、密閉容器307を貫通する吸入管310が圧入されている。また、密閉容器307には、固定スクロール301から吐出される高圧の冷媒ガスを外部に吐出する吐出管311が設けられている。この吐出管311は、密閉容器307の圧縮機構305と電動機1との間に設けられた図示しない開口部に連通している。
電動機1は、固定子2を密閉容器307に嵌め込むことにより密閉容器307に固定されている。電動機1の構成は、上述した通りである。密閉容器307には、電動機1に電力を供給するガラス端子309が溶接により固定されている。
電動機1が回転すると、その回転が揺動スクロール302に伝達され、揺動スクロール302が揺動する。揺動スクロール302が揺動すると、揺動スクロール302の渦巻部分と固定スクロール301の渦巻部分とで形成される圧縮室の容積が変化する。そして、吸入管310から冷媒ガスが吸入され、圧縮されて、吐出管311から吐出される。
電動機1の回転時には、コイル22に電流が流れて、コイル22で発熱する。コイル22で発生した熱は、実施の形態1で説明したように、固定子2の外部へ放出される。
スクロール圧縮機300は、実施の形態1で説明した電動機1を有するので、実施の形態1で説明した効果を有する。さらに、実施の形態1に係る固定子2を有する電動機1は高い放熱効果を有するため、スクロール圧縮機300の内部の温度上昇を低減することができる。さらに、実施の形態1で説明したように、電動機1の出力を高めることができるので、スクロール圧縮機300の出力も高めることができる。
実施の形態1で説明した電動機1は、スクロール圧縮機300以外の圧縮機に適用してもよい。
実施の形態3.
<空気調和装置>
次に、実施の形態1で説明した電動機1が適用される空気調和装置400について説明する。
図8は、空気調和装置400(冷凍サイクル装置ともいう)を示す図である。
空気調和装置400は、圧縮機401と、凝縮器402と、絞り装置(減圧装置ともいう)403と、蒸発器404とを備えている。圧縮機401、凝縮器402、絞り装置403および蒸発器404は、冷媒配管407によって連結されて冷凍サイクルを構成している。すなわち、圧縮機401、凝縮器402、絞り装置403および蒸発器404の順に、冷媒が循環する。
圧縮機401、凝縮器402および絞り装置403は、室外機410に設けられている。圧縮機401は、実施の形態2で説明したスクロール圧縮機300である。ただし、圧縮機401は、実施の形態1で説明した固定子2を有する電動機1を有すれば、スクロール圧縮機以外の圧縮機でもよい。室外機410には、凝縮器402に室外の空気を供給する室外側送風機405が設けられている。蒸発器404は、室内機420に設けられている。この室内機420には、蒸発器404に室内の空気を供給する室内側送風機406が設けられている。
空気調和装置400の動作の一例を説明する。圧縮機401は、吸入した冷媒を圧縮して送り出す。凝縮器402は、圧縮機401から流入した冷媒と室外の空気との熱交換を行い、冷媒を凝縮して液化させて冷媒配管407に送り出す。室外側送風機405は、凝縮器402に室外の空気を供給する。絞り装置403は、開度を変化させることによって、冷媒配管407を流れる冷媒の圧力等を調整する。
蒸発器404は、絞り装置403により低圧状態にされた冷媒と室内の空気との熱交換を行い、冷媒に空気の熱を奪わせて気化させて、冷媒配管407に送り出す。室内側送風機406は、蒸発器404に室内の空気を供給する。これにより、蒸発器404で熱が奪われた冷風が、室内に供給される。
空気調和装置400は、実施の形態1で説明した電動機1を有するので、実施の形態1で説明した効果を有する。さらに、空気調和装置400は、圧縮機401として、実施の形態2で説明したスクロール圧縮機300を用いるので、実施の形態2で説明した効果を有する。上記の通り、実施の形態1で説明した電動機1は高い放熱効果を有するため、圧縮機401内の温度上昇を低減することができ、空気調和装置400の安定した運転が可能となる。また、電動機1の出力増加に伴う圧縮機401の出力増加によって、空気調和装置400の出力も増加させることができる。
以上、本発明の望ましい実施の形態について具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種の改良または変形を行なうことができる。
1 電動機、 2 固定子、 3 回転子、 21 固定子コア、 21a ヨーク、 21b ティース、 22 コイル、 22a コイルエンド部、 201 第1領域、 202 第2領域、 221 第1巻線、 222 第2巻線、 300 スクロール圧縮機(圧縮機)、 305 圧縮機構、 307 密閉容器、 400 空気調和装置、 401 圧縮機、 402 凝縮器、 403 絞り装置(減圧装置)、 404 蒸発器。
本発明の固定子は、固定子コアと、少なくとも1つの第1巻線と、前記少なくとも1つの第1巻線と直列に接続されており前記少なくとも1つの第1巻線とは異なる材料で形成された少なくとも1つの第2巻線とを有し、前記固定子コアに巻回されたコイルとを備え、前記コイルは、前記固定子コアの外側に位置するコイルエンド部を有し、前記コイルエンド部において前記コイルと前記固定子コアとの接点からの前記コイルエンド部の最大高さを2等分する直線をP1とし、前記直線P1を挟んで前記固定子コアの反対側である、前記コイルエンド部の第1側の総断面積をSとし、前記直線P1を挟んで前記第1側の反対側である、前記コイルエンド部の第2側の総断面積をSとし、前記コイルエンド部の前記第1側における前記少なくとも1つの第1巻線の総断面積をAとし、前記コイルエンド部の前記第2側における前記少なくとも1つの第1巻線の総断面積をAとしたとき、(A/S)>(A/S)を満たし、前記コイルエンド部の前記第1側に前記少なくとも1つの第1巻線及び前記少なくとも1つの第2巻線が配置されている

Claims (15)

  1. 固定子コアと、
    少なくとも1つの第1巻線と、前記少なくとも1つの第1巻線と直列に接続されており前記少なくとも1つの第1巻線とは異なる材料で形成された少なくとも1つの第2巻線とを有し、前記固定子コアに巻回されたコイルと
    を備え、
    前記コイルは、前記固定子コアの外側に位置するコイルエンド部を有し、
    前記コイルエンド部において前記コイルと前記固定子コアとの接点からの前記コイルエンド部の最大高さを2等分する直線をP1とし、前記直線P1を挟んで前記固定子コアの反対側である、前記コイルエンド部の第1側の総断面積をSとし、前記直線P1を挟んで前記第1側の反対側である、前記コイルエンド部の第2側の総断面積をSとし、前記コイルエンド部の前記第1側における前記少なくとも1つの第1巻線の総断面積をAとし、前記コイルエンド部の前記第2側における前記少なくとも1つの第1巻線の総断面積をAとしたとき、
    (A/S)>(A/S
    を満たす
    固定子。
  2. 前記コイルエンド部の前記第1側に配置された前記少なくとも1つの第2巻線の総断面積をCとしたとき、
    (A/S)>(C/S
    を満たす
    請求項1に記載の固定子。
  3. 前記コイルエンド部の前記第1側に配置された前記少なくとも1つの第2巻線の総断面積をCとし、前記コイルエンド部の前記第2側に配置された前記少なくとも1つの第2巻線の総断面積をCとしたとき、
    (A/C)>(A/C
    を満たす
    請求項1又は2に記載の固定子。
  4. 前記コイルエンド部の前記第1側には、前記少なくとも1つの第1巻線のみが配置されている請求項1に記載の固定子。
  5. 前記コイルエンド部の断面上において前記直線P1を2等分する直線をP2とし、前記コイルエンド部の前記断面上における前記直線P1及び前記直線P2の交点を中心とする半径をrとし、前記半径rは、前記コイルエンド部の前記断面上における、前記直線P1の長さの半分及び前記直線P2の長さの半分よりも短いとし、前記コイルエンド部の前記第1側において前記半径rで囲まれた領域の外側の総断面積をSOとし、前記コイルエンド部の前記第1側において前記半径rで囲まれた領域の総断面積をSiとし、前記総断面積SOに占める前記少なくとも1つの前記第1巻線の占める比率をAO/SOとし、前記総断面積Siに占める前記少なくとも1つの前記第1巻線の占める比率をAi/Siとしたとき、
    (AO/SO)>(Ai/Si
    を満たす
    請求項1から4のいずれか1項に記載の固定子。
  6. 前記第1巻線の直径をφAl[mm]とし、前記第2巻線の直径をφCu[mm]とし、前記第1巻線の電気抵抗率をρAl[Ω・m]とし、前記第2巻線の電気抵抗率をρCu[Ω・m]としたとき、
    Figure 2019220610
    を満たす
    請求項1から5のいずれか1項に記載の固定子。
  7. 前記第1巻線の直径をφAl[mm]とし、前記第2巻線の直径をφCu[mm]とし、前記第1巻線の電気抵抗率をρAl[Ω・m]とし、前記第2巻線の電気抵抗率をρCu[Ω・m]としたとき、
    Figure 2019220610
    を満たす
    請求項1から5のいずれか1項に記載の固定子。
  8. 前記第1巻線の電気抵抗をRAl[Ω]とし、前記第2巻線の電気抵抗をRCu[Ω]とし、1本の前記第1巻線の断面積をSAlとし、1本の前記第2巻線の断面積をSCuとし、前記断面積SCuに対する前記断面積SAlの比SAl/SCuをkとしたとき、
    1≦{RAl/(k×RCu)}且つ1≦k
    を満たす
    請求項1から7のいずれか1項に記載の固定子。
  9. 前記第1巻線の電気抵抗をRAl[Ω]とし、前記第2巻線の電気抵抗をRCu[Ω]とし、1本の前記第1巻線の断面積をSAlとし、1本の前記第2巻線の断面積をSCuとし、前記断面積SCuに対する前記断面積SAlの比SAl/SCuをkとしたとき、
    1≦{RAl/(k×RCu)}且つ0.25≦k
    を満たす
    請求項1から7のいずれか1項に記載の固定子。
  10. 前記少なくとも1つの第1巻線はアルミ線である請求項1から9のいずれか1項に記載の固定子。
  11. 前記少なくとも1つの第2巻線は銅線である請求項1から10のいずれか1項に記載の固定子。
  12. 請求項1から11のいずれか1項に記載の固定子と、
    前記固定子の内側に回転可能に配置された回転子と
    を備える
    電動機。
  13. 前記電動機は、誘導電動機である請求項12に記載の電動機。
  14. 密閉容器と、
    前記密閉容器内に配置された圧縮機構と、
    前記圧縮機構を駆動する、請求項12又は13に記載の電動機と
    を備える
    圧縮機。
  15. 請求項14に記載の圧縮機と、凝縮器と、減圧装置と、蒸発器とを備える空気調和装置。
JP2020518912A 2018-05-18 2018-05-18 固定子、電動機、圧縮機、及び空気調和装置 Active JP7046170B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019235 WO2019220610A1 (ja) 2018-05-18 2018-05-18 固定子、電動機、圧縮機、及び空気調和装置

Publications (2)

Publication Number Publication Date
JPWO2019220610A1 true JPWO2019220610A1 (ja) 2020-12-10
JP7046170B2 JP7046170B2 (ja) 2022-04-01

Family

ID=68540063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020518912A Active JP7046170B2 (ja) 2018-05-18 2018-05-18 固定子、電動機、圧縮機、及び空気調和装置

Country Status (2)

Country Link
JP (1) JP7046170B2 (ja)
WO (1) WO2019220610A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174330A (ja) * 1996-12-17 1998-06-26 Toshiba Corp 三相電機子巻線
JP2010183788A (ja) * 2009-02-09 2010-08-19 Jtekt Corp 電動モータ
WO2015111369A1 (ja) * 2014-01-22 2015-07-30 パナソニックIpマネジメント株式会社 三相モータ
WO2015166726A1 (ja) * 2014-04-30 2015-11-05 三菱電機株式会社 電動機、密閉型圧縮機及び冷凍サイクル装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5807202B2 (ja) * 2010-12-09 2015-11-10 パナソニックIpマネジメント株式会社 密閉型電動圧縮機
DE112013007001B4 (de) * 2013-05-20 2017-06-01 Mitsubishi Electric Corporation Stator mit Wicklungen aus Materialien mit unterschiedlichen spezifischen elektrischen Widerständen
CN104283350A (zh) * 2013-07-02 2015-01-14 丹佛斯(天津)有限公司 定子、电机和压缩机
WO2019163021A1 (ja) 2018-02-21 2019-08-29 三菱電機株式会社 固定子、電動機、圧縮機および空気調和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174330A (ja) * 1996-12-17 1998-06-26 Toshiba Corp 三相電機子巻線
JP2010183788A (ja) * 2009-02-09 2010-08-19 Jtekt Corp 電動モータ
WO2015111369A1 (ja) * 2014-01-22 2015-07-30 パナソニックIpマネジメント株式会社 三相モータ
WO2015166726A1 (ja) * 2014-04-30 2015-11-05 三菱電機株式会社 電動機、密閉型圧縮機及び冷凍サイクル装置

Also Published As

Publication number Publication date
JP7046170B2 (ja) 2022-04-01
WO2019220610A1 (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
JP7046155B2 (ja) 固定子、電動機、圧縮機および空気調和装置
US8441165B2 (en) Motor for compressor and hermetic compressor having the same
JP6305535B2 (ja) 回転子、電動機、圧縮機、及び送風機
JP6906701B2 (ja) 固定子、電動機、圧縮機、及び空気調和装置
CN110832746B (zh) 电动机、空气调节机、电动吸尘器以及电动机的制造方法
JP6914346B2 (ja) 固定子、電動機、圧縮機、空気調和装置および固定子の製造方法
WO2018216169A1 (ja) ステータ、電動機、圧縮機および空気調和装置
EP3324515B1 (en) Rotor, electric motor, compressor, and refrigerator/air conditioning equipment
JP2006230054A (ja) 電動機及び電動機の製造方法及び密閉型圧縮機及び冷凍空調装置
JP2010119297A (ja) 電動機及び電動機の製造方法及び密閉型圧縮機及び冷凍空調装置
JP7046170B2 (ja) 固定子、電動機、圧縮機、及び空気調和装置
US20230231456A1 (en) Electric motor, driving device, compressor, and air conditioner
WO2019102574A1 (ja) 電動機、圧縮機および冷凍サイクル装置
JP7237178B2 (ja) ロータ、電動機、圧縮機、及び空気調和機
JP7086212B2 (ja) 固定子、電動機、圧縮機、空気調和装置および固定子の製造方法
JP7362801B2 (ja) 電動機、圧縮機、送風機、及び冷凍空調装置
WO2022113346A1 (ja) ステータ、モータ、圧縮機および冷凍サイクル装置
WO2022193608A1 (zh) 电机、压缩机和制冷设备
US11962191B2 (en) Rotor, electric motor, compressor, and air conditioner
WO2022163342A1 (ja) モータ、圧縮機、及び冷凍装置
US20230291263A1 (en) Stator, electric motor, compressor, air conditioner, and method for fabricating stator
KR101405964B1 (ko) 모터 및 이를 포함하는 압축기
CN115997329A (zh) 定子、电动机、压缩机以及空调装置
WO2020095440A1 (ja) 圧縮機及び冷凍サイクル装置
JPWO2020170418A1 (ja) モータ、圧縮機および空気調和装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220322

R150 Certificate of patent or registration of utility model

Ref document number: 7046170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150