JPWO2019131795A1 - シリコンバルク熱電変換材料 - Google Patents
シリコンバルク熱電変換材料 Download PDFInfo
- Publication number
- JPWO2019131795A1 JPWO2019131795A1 JP2019562126A JP2019562126A JPWO2019131795A1 JP WO2019131795 A1 JPWO2019131795 A1 JP WO2019131795A1 JP 2019562126 A JP2019562126 A JP 2019562126A JP 2019562126 A JP2019562126 A JP 2019562126A JP WO2019131795 A1 JPWO2019131795 A1 JP WO2019131795A1
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- thermoelectric conversion
- conversion material
- less
- bulk thermoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 152
- 239000010703 silicon Substances 0.000 title claims abstract description 152
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 150
- 239000000463 material Substances 0.000 title claims abstract description 88
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 79
- 239000011148 porous material Substances 0.000 claims abstract description 54
- 239000002245 particle Substances 0.000 claims description 25
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 18
- 229910052709 silver Inorganic materials 0.000 claims description 18
- 239000004332 silver Substances 0.000 claims description 18
- 239000000126 substance Substances 0.000 claims description 3
- 239000011856 silicon-based particle Substances 0.000 abstract description 11
- 239000002070 nanowire Substances 0.000 description 37
- 238000005530 etching Methods 0.000 description 28
- 229910052751 metal Inorganic materials 0.000 description 27
- 239000002184 metal Substances 0.000 description 27
- 239000000523 sample Substances 0.000 description 22
- 238000004519 manufacturing process Methods 0.000 description 18
- 239000000758 substrate Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 16
- 238000005245 sintering Methods 0.000 description 16
- 239000002923 metal particle Substances 0.000 description 12
- 238000009826 distribution Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 229910021419 crystalline silicon Inorganic materials 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 239000000956 alloy Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 239000002159 nanocrystal Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000000731 high angular annular dark-field scanning transmission electron microscopy Methods 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 4
- 108091006149 Electron carriers Proteins 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000003929 acidic solution Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000005685 electric field effect Effects 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000005355 Hall effect Effects 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000013074 reference sample Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003376 silicon Chemical class 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 101710134784 Agnoprotein Proteins 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- MKPXGEVFQSIKGE-UHFFFAOYSA-N [Mg].[Si] Chemical compound [Mg].[Si] MKPXGEVFQSIKGE-UHFFFAOYSA-N 0.000 description 1
- NPVASHFELHRKPC-UHFFFAOYSA-N [Mg].[Si].[Sn] Chemical compound [Mg].[Si].[Sn] NPVASHFELHRKPC-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000001350 scanning transmission electron microscopy Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
- C23C18/1639—Substrates other than metallic, e.g. inorganic or organic or non-conductive
- C23C18/1642—Substrates other than metallic, e.g. inorganic or organic or non-conductive semiconductor
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/54—Contact plating, i.e. electroless electrochemical plating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/8556—Thermoelectric active materials comprising inorganic compositions comprising compounds containing germanium or silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/857—Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/25—Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
- B22F2301/255—Silver or gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/05—Submicron size particles
- B22F2304/054—Particle size between 1 and 100 nm
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/32—Thermal properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electrochemistry (AREA)
- Silicon Compounds (AREA)
Abstract
Description
ここで、Sはゼーベック係数、σは電気伝導率、Tは絶対温度、κは熱伝導率である。この式から明らかなように、熱電変換材料の性能は、(1)ゼーベック係数Sまたは電気伝導率σを向上するか、(2)熱伝導率κを低減するか、のいずれかにより向上することが可能である。
本発明者らは、バルクシリコン熱電材料の実用化に当たり、ナノ結晶構造に着目し本願を完成するに至った。図1(a)に示すように、ナノ結晶構造中では、フォノン11は結晶粒界面13に衝突すると、一部のフォノンは散乱され、一部のフォノンは透過する。一方で、図1(b)に示したように、ナノポーラス構造中では、孔の表面に衝突したフォノンは全て散乱される。したがって、ナノポーラス構造を用いれば、ナノ結晶構造よりもフォノンの散乱を促進することができ、合金とすることも、ナノワイヤ構造とすることもなく、熱伝導率を低減することが可能であると考えられる。さらに、ナノポーラス構造とナノ結晶構造とを組み合わせることで、これまで以上の大幅な熱伝導率の低減が可能である。
図2は、本発明の一実施形態に係るシリコンバルク熱電変換材料の構造を示す模式図である。具体的には、シリコン粒100と、シリコン粒中及びシリコン粒表面に存在する第1の空孔200と、シリコン粒間に存在する第2の空孔300とを適切に制御したナノポーラス構造とすることによって、大幅な熱伝導率低減が可能であることを見出した。なお、本明細書において、「バルク」とは、out−of−plane方向およびin−plane方向の異方性が少ない(具体的にはZTの比が2倍以内である)ことを言う。
本実施形態において、シリコン粒100は、平均1nm以上300nm以下サイズである。シリコン粒は複数存在する。平均1nm以上300nm以下のシリコン粒100とは、シリコン粒100のサイズ(例えば円形であるならばその直径、多角形であれば当該多角形に外接する円の直径)の平均値が1nm以上300nm以下であることを意味する。ここで、シリコン粒100のサイズの平均値とは、ブロードな分布全体の平均値と解されるものではなく、ピークを構成する主要な粒子サイズの最大頻度となる粒子サイズと解されるべきである。本発明では、平均1nm以上300nm以下のシリコン粒100は、HAADF−STEM(倍率200000倍)で、面積0.65μm2の所定の観察領域を観察した際に検出できるシリコン粒100のサイズの平均を取った値を意味する。以下の節の観察条件を含めて、同等以上の分解能と同等以上の観察領域で観察出来る方法であれば、本観察方法を代替することが可能である。シリコン粒100の粒度分布は、ブロードであるか、又は、小さな粒径と大きな粒径の2つのピークを有することが好ましい。かかる粒度分布を有することによって、フォノンがより散乱するため、熱伝導率低減が可能である。
シリコン粒表面にも空孔200(第1の空孔)が存在する。また、シリコン粒中にも、空孔200(第1の空孔)が存在してもよい。なお、シリコン粒中にも空孔200(第1の空孔)が存在しうるのは、後述するように、本発明の一実施形態において、ナノワイヤ配列構造の段階で銀粒子によってナノワイヤ配列構造の横方向にもエッチングが行われ孔ができており、当該孔が焼結時に塞がることによりシリコン粒中に孔由来の空間が存在すると推察されるからである。第1の空孔200は、平均1nm以上30nm以下、好ましくは平均1nm以上10nm以下のサイズである。平均1nm以上30nm以下の空孔とは、空孔の開口部のサイズ(例えば円形であるならばその直径、多角形であれば当該多角形に外接する円の直径)の平均値が1nm以上30nm以下であることを意味する。ここで、第1の空孔200のサイズの平均値とは、ブロードな分布全体の平均値と解されるものではなく、ピークを構成する主要な空孔の開口部のサイズの最大頻度となる開口部のサイズと解されるべきである。本発明では、平均1nm以上30nm以下の空孔は、High-Angle Annular Dark Field Scanning TEM(HAADF−STEM(倍率200000倍))で、面積0.65μm2の所定の観察領域を観察した際に検出できる空孔のサイズの平均を取った値を意味する。ここで、第1の空孔200のサイズは、観察領域の画像を画像解析ソフト(旭化成エンジニアリング株式会社、A像くん(登録商標))を用いて第1の空孔200を検出し、検出された第1の空孔200の開口部のサイズを測定し、平均化した値である。
シリコン粒同士の間には、空孔300(第2の空孔)が存在する。空孔300(第2の空孔)は、平均100nm以上300nm以下のサイズである。平均100nm以上300nm以下の空孔とは、空孔の開口部のサイズ(例えば円形であるならばその直径、多角形であれば当該多角形に外接する円の直径)の平均値が100nm以上300nm以下であることを意味する。ここで、第2の空孔300のサイズの平均値とは、ブロードな分布全体の平均値と解されるものではなく、ピークを構成する主要な空孔の開口部のサイズの最大頻度となる開口部のサイズと解されるべきである。本発明では、平均100nm以上300nm以下の空孔は、HAADF−STEM(倍率20000倍)で、面積60μm2の所定の観察領域を観察した際に検出できる空孔のサイズの平均を取った値を意味する。ここで、第2の空孔300のサイズは、観察領域の画像を上述した画像解析ソフトを用いて第2の空孔300を検出し、観察領域の画像から検出した第2の空孔300の領域を除去して、シリコン粒の界面を決定した。決定したシリコン粒の界面から、第2の空孔300の開口部のサイズを測定し、平均化した値である。このような、第1の空孔と第2の空孔との階層的なナノポーラス構造を有することが、従来のナノ構造材料に比べても、さらに大幅な熱伝導率低減を実現するカギとなっている。さらに、シリコン粒のサイズにおいても、空孔と同様な階層的な構造を取り入れれば、さらなる特性向上も可能である。
結晶シリコン粒のアスペクト比は10未満であり、好ましくはアスペクト比3未満である。アスペクト比は、字義上は矩形における長辺と短辺の比率を指すが、本明細書においては、矩形に限られず、円形や多角形の場合においても観念され、その値は、結晶シリコン粒に外接する矩形の長軸と短軸の比にて計算する。このアスペクト比の制約は、バルク形態での等方的で良好な特性を実現するのに重要な要素である。
上記の構成を備えたシリコンバルク熱電変換材料は、シリコン単体の室温でのZTが0.2を超える特性を実現することが可能である。シリコン単体とは、わずかな不純物の残存は許容するものの、合金ではないとの意味である。
本発明の一実施形態では、平均1nm以上30nm以下の金属粒子23(例えば銀粒子)をさらに含んでもよい(図4)。粒内、粒表面及び粒間に金属粒子23(本実施例では以下に説明するナノワイヤ配列構造作成時のエッチングで使用した銀粒子)が存在しており、重元素がシリコンに不純物として混入している場合には熱伝導率が低下する場合があるという従来の知見に整合して熱伝導率が低下し、ZTが向上する。また、製造プロセスにて金属粒子23として銀粒子を使用した場合、特段のステップなく粒内、粒表面及び粒間に銀粒子が残留するものであるとの利点がある。
本発明の一実施形態では、上記の構成を備えたシリコンバルク熱電変換材料が、30GPa以下の弾性率を有する。または、シリコンバルク熱電変換材料の弾性率が20GPa以上30GPa以下であってもよい。本明細書において、シリコンバルク熱電変換材料の弾性率はナノインデンテーション法により測定するものとする。本実施形態のシリコンバルク熱電変換材料は、小さな弾性率を有することから、単結晶シリコンに比して、結晶シリコン粒の界面が柔らかい構造を有するものと推察される。本実施形態のシリコンバルク熱電変換材料においては、このように柔らかい結晶シリコン粒の界面が、結晶シリコン粒の界面でのフォノンの透過を低減し、熱伝導率を低減するものと推察される。
任意のシリコン基板21を用意し、該基板に対して金属粒子23によるメタルアシストエッチングを用いてナノワイヤ配列構造25を作製する。図5はメタルアシストエッチングによるナノ構造形成過程の概略図である。メタルアシストエッチングとは、シリコン上に金や銀等の金属ドットに形成し、その金属ドットを触媒としてシリコンをHF等の酸性溶液により選択的にエッチングする手法である。
上述したシリコンバルク熱電変換材料の製造方法においては、シリコン基板21の一方の面方向からのエッチングによりナノワイヤ配列構造25を作製する方法を説明した。変形例として、シリコンバルク熱電変換材料の量産化技術の一例を説明する。図6は、本発明の一実施形態の製造装置1000の模式図である。製造装置1000は、例えば、酸化膜除去槽1100、金属粒子成長槽1300及びエッチング槽1500を備えるが、これらの限定されるものではない。製造装置1000は、配管1710及び配管1730を介してエッチング槽1500に接続するリザーバータンク1700を備えることが好ましい。
まず、本実験により作製したシリコンバルク熱電変換材料の電子顕微鏡(SEM)観察画像を図10に示す。また図8、図9、図11(a)はメタルアシストエッチングにより得られたナノワイヤ配列構造のTEM像である。また、図11(b)はナノワイヤ配列構造のX線回折像である。
本発明の一実施形態では、シリコンバルク熱電変換材料のout−of−plane方向およびin−plane方向の熱伝導率を3ω法(Jaeho Lee et al. April 2011 Thermal conductivity anisotropy and grain structure in Ge2Sb2Te5 films Journal of Applied Physics 109, 084902)により測定した。測定の概略について説明する。図13は3ω法による熱伝導率測定の概略図である。3ω法とは、サンプル表面に形成した金属細線に交流電流を印加しサンプル表面を加熱した際のサンプル表面の温度変化を、金属細線に係る交流電圧中の3ω成分から検出し、この温度変化より熱伝導率を得る手法である。ここで、out−of−plane方向の熱伝導率は、測定サンプルとリファレンスサンプルとの温度変化をそれぞれ測定し、それぞれの値を以下の式に代入することで熱伝導率が得られる。
ここで、κsampleは測定サンプルの熱伝導率、Pは金属細線に流れる単位長さあたりの電力、dsampleは測定サンプルの厚さ、2bは金属細線の幅、ΔTsampleとΔTreferenceはそれぞれ測定サンプルおよびリファレンスサンプルの金属細線の温度変化を示す。In−plane方向の熱伝導率は、異なる線幅の金属細線について3ω成分を測定することで得ることができる。線幅の広い金属細線を用いる場合、図13に示すように、金属細線から生じる熱流はその殆どが測定サンプルのout−of−plane方向に流れる。一方で、線幅の狭い金属細線を用いる場合、金属細線から生じる熱流は一部がout−of−plaen方向に流れるが、一部はin−plane方向に流れる。したがって、線幅の異なる金属細線の3ω成分を測定し、その結果を以下の式によりフィッティングすることで、out−of−pane方向とin−plane方向の熱伝導率の異方性比を得ることができる。
ここで、ΔTは温度変化、Dは熱拡散率、ηはout−of−pane方向とin−plane方向の熱伝導率の異方性比、B+(λ)、B−(λ)、A+(λ)、A−(λ)はそれぞれサンプルの層数に基づいて再帰的に計算される無次元パラメータである。この式を実験結果として得られる温度変化の周波数依存性に対し、ηをフィッティングパラメータとしてフィッティングすることで熱伝導率の異方性比を求め、その値からin−plane方向の熱伝導率を得た。
作製したシリコンバルク熱電変換材料の熱伝導率を3ω法により測定した結果、out−of−plane方向の熱伝導率は1.86[W/(m・K)]、in−plane方向の熱伝導率は1.48[W/(m・K)]という値が得られた。この熱伝導率は、一般的なシリコンの値と比較すると、約1%程度と非常に低い値である。また、アモルファスシリコンの熱伝導率が約2[W/(m・K)]という値であり、これに匹敵する低熱伝導率を実現できている。また、out−of−plane方向、in−plane方向それぞれの熱伝導率の結果から明らかなとおり、熱伝導率の異方性比は非常に低い。この結果は、一部に残っているナノワイヤ構造の熱伝導率への影響は大きくなく、ナノポーラス構造部分によって熱伝導率が大幅に低減できていることを示している。一方で、TEM画像(図11)から明らかなとおり、ポーラス構造部分の空隙率はそれほど高くない。したがって、本構造においては電気伝導率の大幅な低減は抑制できることが予想される。以上の結果は本手法による熱電変換性能の大幅な向上の可能性を示していると考えられる。
本実施例に係るシリコンバルク熱電変換材料に4つの端子を付した上で、ホール効果測定を行って電気的特性を測定した。具体的には、室温において、電界効果移動度を測定し、電子キャリア濃度、導電度を計算した。上記のシリコンバルク熱電変換材料の電界効果移動度をホール効果測定によって測定した結果、図14に示す結果を得た。具体的には、referenceと示したシリコン基板に比して、その半分以下の電界効果移動度、さらに具体的には、電界効果移動度33以下においてZT=0.2以上を達成した。すなわち、図14のグラフからゼーベック係数S=720.9uV/K、電気伝導率=2876S/mであり、熱伝導率=1.48W/m/Kであるから、室温(300K)において、ZT=0.2と算出された。また、図14に示すとおり、上記の構成を備えたシリコンバルク熱電変換材料は、電子キャリア濃度6×1018cm-3以下、電気伝導率2880S/m以下であった。
実施例1に係るシリコンバルク熱電変換材料の機械的特性を評価した。機械的特性として、実施例1に係るシリコンバルク熱電変換材料の弾性率を測定した。弾性率の測定には、ナノインデンター(株式会社エリオニクス製、ENT-1100b)を用いた。比較例として、単結晶シリコン基板と、ナノ多結晶体の弾性率を測定した。なお、弾性率を測定する前に、実施例1のシリコンバルク熱電変換材料及び比較例の単結晶シリコン基板の表面に形成された酸化層を弗酸により除去し、室温にて弾性率を測定した。
Claims (4)
- シリコン単体で、室温でZTが0.2を超えるシリコンバルク熱電変換材料。
- 平均1nm以上300nm以下の複数のシリコン粒と、
前記複数のシリコン粒中及びシリコン粒表面に存在する平均1nm以上30nm以下の第1の空孔と、
前記複数のシリコン粒間に存在する平均100nm以上300nm以下の第2の空孔と、を有し、
前記シリコン粒のアスペクト比が10未満である、
シリコンバルク熱電変換材料。 - 平均1nm以上30nm以下の銀粒子を含む請求項2に記載のシリコンバルク熱電変換材料。
- 前記シリコン単体のin−plane方向とout−of−plane方向とのZTの比が2倍以内である、請求項1に記載のシリコンバルク熱電変換材料。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017249463 | 2017-12-26 | ||
JP2017249463 | 2017-12-26 | ||
PCT/JP2018/047940 WO2019131795A1 (ja) | 2017-12-26 | 2018-12-26 | シリコンバルク熱電変換材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019131795A1 true JPWO2019131795A1 (ja) | 2021-01-14 |
JP6966100B2 JP6966100B2 (ja) | 2021-11-10 |
Family
ID=67067468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019562126A Active JP6966100B2 (ja) | 2017-12-26 | 2018-12-26 | シリコンバルク熱電変換材料 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11456406B2 (ja) |
JP (1) | JP6966100B2 (ja) |
CN (1) | CN111527613B (ja) |
WO (1) | WO2019131795A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7437678B2 (ja) * | 2019-12-25 | 2024-02-26 | 国立大学法人神戸大学 | ナノホールが形成されたナノ粒子、並びに、ナノ粒子およびナノ粒子アレイの作製方法 |
WO2023167091A1 (ja) * | 2022-03-04 | 2023-09-07 | 国立研究開発法人科学技術振興機構 | シリコンバルク熱電変換材料の製造方法、シリコンバルク熱電変換材料及び熱電変換素子 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000261044A (ja) * | 1999-03-10 | 2000-09-22 | Sumitomo Special Metals Co Ltd | 熱電変換材料とその製造方法 |
JP2011249672A (ja) * | 2010-05-28 | 2011-12-08 | Kyushu Institute Of Technology | ナノ組織を有するバルク状熱電変換多孔体、ナノ粒子を用いたバルク状熱電変換多孔体の製造方法、及びその製造装置 |
JP2017017068A (ja) * | 2015-06-26 | 2017-01-19 | 国立研究開発法人産業技術総合研究所 | シリコン微結晶複合体膜、熱電材料及びそれらの製造方法 |
WO2017057237A1 (ja) * | 2015-10-02 | 2017-04-06 | セントラル硝子株式会社 | 熱電変換材料及びその製造方法 |
JP2017195339A (ja) * | 2016-04-22 | 2017-10-26 | トヨタ自動車株式会社 | 熱電材料の製造方法 |
JP2019506111A (ja) * | 2015-12-01 | 2019-02-28 | マトリックス インダストリーズ,インコーポレイテッド | 熱電デバイス及びシステム |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100385694C (zh) | 1999-03-10 | 2008-04-30 | 日立金属株式会社 | 热电转换材料及其制作方法 |
CN100407466C (zh) * | 2005-07-12 | 2008-07-30 | 北京科技大学 | 一种纳-微米多孔硅系列热电材料的制备方法 |
KR101125191B1 (ko) * | 2009-11-09 | 2012-03-19 | 한국과학기술원 | 콜로이드 입자로 안정화된 액적을 이용한 표면구조를 갖는 미세입자의 제조방법 |
TWI472477B (zh) * | 2010-03-02 | 2015-02-11 | Univ Nat Taiwan | 矽奈米結構與其製造方法及應用 |
US8568877B2 (en) * | 2010-03-09 | 2013-10-29 | Board Of Regents Of The University Of Texas System | Porous and non-porous nanostructures |
TW201200465A (en) * | 2010-06-29 | 2012-01-01 | Univ Nat Central | Nano/micro-structure and fabrication method thereof |
US20120282435A1 (en) * | 2011-03-24 | 2012-11-08 | University Of Massachusetts | Nanostructured Silicon with Useful Thermoelectric Properties |
US20140116491A1 (en) | 2012-10-29 | 2014-05-01 | Alphabet Energy, Inc. | Bulk-size nanostructured materials and methods for making the same by sintering nanowires |
KR101353373B1 (ko) * | 2012-11-26 | 2014-01-21 | 한국과학기술원 | 촉매 금속 식각 방법을 이용한 수직 나노 구조체의 제작방법, 이를 이용하여 제조된 수직 실리콘 나노 구조체, 및 이를 포함하는 소자 |
JP6411782B2 (ja) | 2013-08-07 | 2018-10-24 | 株式会社Nttファシリティーズ | 熱電材料の製造方法 |
US9793461B2 (en) * | 2014-09-05 | 2017-10-17 | Mossey Creek Technologies, Inc. | Nano-structured porous thermoelectric generators |
-
2018
- 2018-12-26 JP JP2019562126A patent/JP6966100B2/ja active Active
- 2018-12-26 US US16/957,642 patent/US11456406B2/en active Active
- 2018-12-26 CN CN201880081665.6A patent/CN111527613B/zh active Active
- 2018-12-26 WO PCT/JP2018/047940 patent/WO2019131795A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000261044A (ja) * | 1999-03-10 | 2000-09-22 | Sumitomo Special Metals Co Ltd | 熱電変換材料とその製造方法 |
JP2011249672A (ja) * | 2010-05-28 | 2011-12-08 | Kyushu Institute Of Technology | ナノ組織を有するバルク状熱電変換多孔体、ナノ粒子を用いたバルク状熱電変換多孔体の製造方法、及びその製造装置 |
JP2017017068A (ja) * | 2015-06-26 | 2017-01-19 | 国立研究開発法人産業技術総合研究所 | シリコン微結晶複合体膜、熱電材料及びそれらの製造方法 |
WO2017057237A1 (ja) * | 2015-10-02 | 2017-04-06 | セントラル硝子株式会社 | 熱電変換材料及びその製造方法 |
JP2019506111A (ja) * | 2015-12-01 | 2019-02-28 | マトリックス インダストリーズ,インコーポレイテッド | 熱電デバイス及びシステム |
JP2017195339A (ja) * | 2016-04-22 | 2017-10-26 | トヨタ自動車株式会社 | 熱電材料の製造方法 |
Non-Patent Citations (1)
Title |
---|
大西正人: "ナノ構造界面を利用した熱電変換材料のフォノンエンジニアリング", セラミックス, vol. 52, no. 2, JPN7021002577, 1 February 2017 (2017-02-01), JP, pages 75 - 77, ISSN: 0004550690 * |
Also Published As
Publication number | Publication date |
---|---|
CN111527613A (zh) | 2020-08-11 |
CN111527613B (zh) | 2023-12-05 |
JP6966100B2 (ja) | 2021-11-10 |
US11456406B2 (en) | 2022-09-27 |
WO2019131795A1 (ja) | 2019-07-04 |
US20210057626A1 (en) | 2021-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9219215B1 (en) | Nanostructures having high performance thermoelectric properties | |
Fu et al. | Bi 2 Te 3 nanoplates and nanoflowers: Synthesized by hydrothermal process and their enhanced thermoelectric properties | |
Martin et al. | Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites | |
US10020435B2 (en) | Composite thermoelectric material, thermoelectric element and module including the same, and preparation method thereof | |
JP5329423B2 (ja) | ナノ構造をもつ熱電材料における高い示性数のための方法 | |
Qi et al. | Thermoelectric devices based on one-dimensional nanostructures | |
Hsin et al. | Phase transformation and thermoelectric properties of bismuth-telluride nanowires | |
Jin et al. | Solvothermal synthesis and growth mechanism of ultrathin Sb2Te3 hexagonal nanoplates with thermoelectric transport properties | |
Wu et al. | Nanoporous (00l)-oriented Bi2Te3 nanoplate film for improved thermoelectric performance | |
JP6966100B2 (ja) | シリコンバルク熱電変換材料 | |
TWI555243B (zh) | 熱電材料及其製法 | |
Xu et al. | Enhanced thermoelectric properties of topological crystalline insulator PbSnTe nanowires grown by vapor transport | |
Cassinelli et al. | Influence of surface states and size effects on the Seebeck coefficient and electrical resistance of Bi 1− x Sb x nanowire arrays | |
US20190035996A1 (en) | Thermoelectric material ink, thermoelectric element and thermoelectric device manufactured using the thermoelectric material ink, and method of manufacturing the thermoelectric device | |
US8759662B1 (en) | Bulk dimensional nanocomposites for thermoelectric applications | |
US9269882B2 (en) | Thermoelectric material, thermoelectric element and module including the same, and method of preparing the thermoelectric material | |
Zhang et al. | Optimization of the thermopower of antimony telluride thin film by introducing tellurium nanoparticles | |
Khasimsaheb et al. | Thermoelectric properties of spark plasma sintered lead telluride nanocubes | |
Kim et al. | Enhanced thermoelectric efficiency in nanocrystalline bismuth telluride nanotubes | |
Souier et al. | Conductive scanning probe microscopy of nanostructured Bi 2 Te 3 | |
Hu et al. | The initial powder-refinement-induced donor-like effect and nonlinear change of thermoelectric performance for Bi2Te3-based polycrystalline bulks | |
Orvatinia et al. | Temperature effect on structural and electronic properties of zinc oxide nanowires synthesized by carbothermal evaporation method | |
WO2023167091A1 (ja) | シリコンバルク熱電変換材料の製造方法、シリコンバルク熱電変換材料及び熱電変換素子 | |
Homm et al. | Seebeck effect of as‐grown and micro‐structured metallic (Zn, Al) O | |
KR20170024471A (ko) | 열안정성이 개선된 열전 파우더, 열전 재료 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200625 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20200715 |
|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20200625 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210713 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211005 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211014 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6966100 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |