JPWO2019111919A1 - 固体撮像素子およびその製造方法 - Google Patents

固体撮像素子およびその製造方法 Download PDF

Info

Publication number
JPWO2019111919A1
JPWO2019111919A1 JP2019558237A JP2019558237A JPWO2019111919A1 JP WO2019111919 A1 JPWO2019111919 A1 JP WO2019111919A1 JP 2019558237 A JP2019558237 A JP 2019558237A JP 2019558237 A JP2019558237 A JP 2019558237A JP WO2019111919 A1 JPWO2019111919 A1 JP WO2019111919A1
Authority
JP
Japan
Prior art keywords
color
color filter
layer
solid
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019558237A
Other languages
English (en)
Other versions
JP7508779B2 (ja
Inventor
高橋 聡
聡 高橋
知宏 井本
知宏 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Publication of JPWO2019111919A1 publication Critical patent/JPWO2019111919A1/ja
Application granted granted Critical
Publication of JP7508779B2 publication Critical patent/JP7508779B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Optical Filters (AREA)

Abstract

混色を抑制した高精細で感度の良い固体撮像素子を提供する。固体撮像素子は、複数の光電変換素子を二次元的に配置した半導体基板と、上記半導体基板上に形成され、複数の光電変換素子に対応させて複数色の色フィルターを予め設定した規則パターンで二次元的に配置した色フィルター層と、上記複数色の色フィルターの間に配置した隔壁と、上記複数色から選択した第1の色の色フィルターと半導体基板との間に配置された透明導電層と、を備えることを特徴する。

Description

本発明は、CCD、CMOS等の光電変換素子を使用した固体撮像素子に関する技術である。
デジタルカメラ等に搭載されるCCD(電荷結合素子)やCMOS(相補型金属酸化膜半導体)等の固体撮像素子は、近年、高画素化、微細化が進んでおり、その画素は、特に微細なものでは1.4μm×1.4μmを下回るレベルの画素サイズとなっている。
固体撮像素子は、光電変換素子と一対の色フィルターパターンを有し、カラー化を図っている。また、固体撮像素子の光電変換素子が光電変換に寄与する領域(開口部)は、固体撮像素子のサイズや画素数に依存する。その開口部は、固体撮像素子の全面積に対し、20〜50%程度に限られている。開口部が小さいことはそのまま光電変換素子の感度低下につながることから、固体撮像素子では感度低下を補うために光電変換素子上に集光用のマイクロレンズを形成することが一般的である。
また、近年裏面照射の技術を用いたイメージセンサが開発されており、光電変換素子の開口部を固体撮像素子の全面積の50%以上にすることができるようになっている。しかしながら、この場合、色フィルターに隣接する色フィルターの漏れ光が入る可能性があるため、適切なサイズ、形状のマイクロレンズを形成することが必要となっている。
このような色フィルターパターンを固体撮像素子上に形成する方法としては、通常は特許文献1のようにフォトリソグラフィプロセスによりパターンを形成する手法が用いられる。
また、色フィルターパターンを固体撮像素子上に形成する他の方法としては、特許文献2には、全ての色フィルターパターンをドライエッチングによって形成する方法が記載されている。
近年、800万画素を超える高精細CCD撮像素子への要求が大きくなり、これら高精細CCDにおいて付随する色フィルターパターンの画素サイズとして1.4μm×1.4μmを下回るレベルの撮像素子への要求が大きくなっている。しかしながら、画素サイズを小さくすることにより、フォトリソグラフィプロセスにより形成された色フィルターパターンの解像性が不足し、固体撮像素子の特性に悪影響を及ぼすという問題が生じている。一辺が1.4μm以下、あるいは1.1μmや0.9μm近傍の固体撮像素子では、解像性の不足がパターンの形状不良に起因する色むらとなって現れる。
色フィルターパターンの画素サイズが小さくなると、色フィルターパターンのアスペクト比(色フィルターパターンの幅に対して高さ(厚み))が大きくなる。このような色フィルターパターンをフォトリソグラフィプロセスで形成する場合、本来除去されるべき部分(画素の有効外部分)の色フィルターが完全に除去されず、残渣となって他の色の画素に悪影響を及ぼしてしまう。残渣を除去するために現像時間を延長する等の方法を行った場合、硬化させた必要な画素まで剥がれてしまうという問題も発生している。
また、満足する分光特性を得ようとすると、色フィルターの膜厚を厚くせざるを得ない。しかしながら、色フィルターの膜厚が厚くなると、画素の微細化が進むに従って、色フィルターパターンの角が丸まる等、解像度が低下する傾向となる。色フィルターパターンの膜厚を厚くし且つ分光特性を得ようとすると、色フィルターパターン材料に含まれる顔料濃度を上げる必要がある。しかしながら、色フィルターパターン材料に含まれる顔料濃度を上げると光硬化反応に必要な光が色フィルターパターン層の底部まで届かず、色フィルター層の硬化が不充分となる。このため、フォトリソグラフィにおける現像工程で色フィルターの層が剥離し、画素欠陥が発生するという問題がある。
また、色フィルターの膜厚を薄くし且つ分光特性を得るために、色フィルター用材料に含まれる顔料濃度を上げた場合、相対的に光硬化成分を低減させることになる。このため、色フィルターの層の光硬化が不十分となり、色フィルターの形状の悪化、面内での色フィルターの形状不均一、色フィルターの形状崩れ等が発生しやすくなる。また、色フィルターの層を十分に光硬化させるために硬化時の露光量を多くすることで、スループットが低下するという問題が発生する。
色フィルターパターンの高精細化により、色フィルターパターンの膜厚は、製造工程上の問題だけではなく、固体撮像素子としての特性にも影響する。色フィルターパターンの膜厚が厚い場合、斜め方向から入射した光が特定色フィルターによって分光されたのち、隣接する他の色フィルターパターン部及び光電変換素子に入光する場合がある。この場合、混色が生じてしまう問題が発生する。この混色の問題は、色フィルターパターンの画素サイズが小さくなり、画素サイズと膜厚とのアスペクト比が大きくなるにつれて顕著になる。また、入射光の混色という問題は、光電変換素子が形成された基板上に平坦化層等の材料を形成することで、色フィルターパターンと光電変換素子との距離が長くなる場合にも顕著に生じる。このため、色フィルターパターンやその下部に形成される平坦化層等の膜厚の薄膜化が重要となる。
斜め方向からの入射等による混色防止のために、各色のカラーフィルタの間に光を反射や屈折させ、他の画素に入射する光を遮る隔壁を形成する方法が知られている。液晶ディスプレイ等の光学表示デバイスに用いられるカラーフィルタでは、黒色の材料によるブラックマトリクス(BM)構造による隔壁が一般的に知られている。しかし、固体撮像素子の場合、各カラーフィルタパターンのサイズが数μm以下である。このため、一般的なブラックマトリクスの形成方法を用いて隔壁を形成した場合、パターンサイズが大きい為、画素欠陥のように一部の画素がBMで塗りつぶされてしまい解像性が低下してしまう。
高精細化が進んでいる固体撮像素子の場合、求められる隔壁のサイズは数百nmサイズ、より好ましくは幅200nm以下程度であり、一つの画素サイズが1μm程度となるまで画素サイズの高精細化が進んでいる。この為、混色を抑制できる遮光性能を満たせるのであれば、100nm以下の幅(寸法)が望ましい。このサイズの隔壁形成には、BMを用いたフォトリソグラフィ法では困難である。このため、アルミニウム、タングステン、チタンなどの金属やSiO等の無機物やこれらを複合させて用い、蒸着、CVD、スパッタ等による成膜や、エッチング技術を用いて格子パターン上に削ることによって形成する方法で隔壁が形成されている。しかしながら、このような方法では、製造装置や製造工程の複雑化等で製造コストが非常に高価となってしまうという問題がある。
以上のことから、固体撮像素子の画素数を増やすためには、色フィルター層のパターンの高精細化が必要であり、色フィルター層の薄膜化や混色防止方法が重要となる。
上述のように、従来の、色フィルター材料に感光性を持たせてフォトリソグラフィにより形成される色フィルター層のパターン形成は、画素の寸法の微細化が進むにつれて、色フィルター層の膜厚の薄膜化も求められる。この場合、色フィルター材料中の顔料成分の含有割合が増えることから、感光性成分を十分な量含有できず、解像性が得られない、残渣が残りやすい、画素剥がれが生じやすいという問題があり、固体撮像素子の特性を低下させる課題があった。
そこで、色フィルターパターンの微細化及び薄膜化を行うために、特許文献2の技術が提案されている。特許文献2には、色フィルター用材料中の顔料濃度を向上できるように、感光性成分を含有しなくてもパターニングが可能なドライエッチングにより色フィルターパターンを形成することが記載されている。これらのドライエッチングを用いる技術により、顔料濃度を向上させることが可能となり、薄膜化を行っても十分な分光特性を得られる色フィルターパターンが作製可能となる。
特開平11−68076号公報 特許第4905760号公報
しかしながら、発明者らが、特許文献2に記載の色フィルターパターンの製造方法を検討したところ各色フィルターの膜厚の関係が示されておらず、全ての色フィルターで高感度化できない場合があることを知見した。また、混色に対する対策も不十分であることを知見した。また、各色フィルターパターンをドライエッチングで形成する際、色フィルター材は有機物と金属を含有した材料であることから、ドライエッチングでの形状加工は困難であり残渣が残りやすく、また残渣が発生しないように時間を長くドライエッチングを行う場合は、光電変換素子にプラズマダメージを与えやすいという知見を得た。
本発明は、上述のような点に鑑みてなされたものであって、混色を抑制し、プラズマダメージを低減し、高精細で感度の良い固体撮像素子を提供することを目的とする。
本発明の一態様による固体撮像素子は、複数の光電変換素子を二次元的に配置した半導体基板と、上記半導体基板上に形成され、上記複数の光電変換素子に対応させて複数色の色フィルターを予め設定した規則パターンで二次元的に配置した色フィルター層と、上記複数色から選択した第1の色の色フィルターと半導体基板との間に配置された透明導電層と、を備えることを特徴する。
上記透明導電層のシート抵抗をFとした場合に下記(1)式を満足してもよい。
F<100000 Ω/□ ・・・(1)
上記透明導電層は、珪素、炭素、酸素、水素、錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、カドミウム、ニオブ、タンタル、ハフニウム、銀、フッ素から選ばれる少なくとも1種類を含有する化合物が単層又は複層で形成されていてもよい。
上記透明導電層及び上記第1の色の色フィルターは、上記透明導電層のエッチングレートをTとし、上記第1の色の色フィルターのエッチングレートをGとしたとき、フッ素、酸素、水素、硫黄、炭素、臭素、塩素、窒素、アルゴン、ヘリウム、キセノン、クリプトンから選ばれる少なくとも1種類を含有するガスを用いたドライエッチングにおいて、下記(2)式を満足する材料構成となっていてもよい。
3≦G/T ・・・(2)
上記複数色の色フィルターの間に配置した隔壁を更に備えていてもよい。
上記隔壁は、亜鉛、銅、ニッケル、珪素、炭素、酸素、水素、窒素、臭素、塩素、インジウム、錫から選ばれる少なくとも1種類を含有していてもよい。
上記第1の色の色フィルターの膜厚をA[nm]、上記透明導電層の膜厚をB[nm]、上記第1の色以外の色の色フィルターの膜厚をC[nm]、上記透明導電層の可視光の透過率をD[%]、上記隔壁の寸法をE[nm]とした場合に、下記(3)〜(7)式を満足してもよい。
200[nm]≦A≦700[nm] ・・・(3)
0[nm]<B≦200[nm] ・・・(4)
A+B−200[nm]≦C≦A+B+200[nm] ・・・(5)
D≧80[%]・・・(6)
E≦200[nm]・・・(7)
上記透明導電層と上記第1の色の色フィルターとの間に、更に透明樹脂層を備えていてもよい。
上記透明導電層と上記半導体基板との間に、更に透明樹脂層を備えていてもよい。
上記透明樹脂層は、珪素、炭素、酸素、水素から選ばれる少なくとも1種類を含有してもよい。
上記第1の色の色フィルターには、熱硬化性樹脂を含有してもよい。
上記第1の色の色フィルターには、熱硬化性樹脂及び光硬化性樹脂を含有し、光硬化性樹脂の含有量よりも熱硬化性樹脂の含有量の方が多くてもよい。
上記第1の色の色フィルターには、光硬化性樹脂を含有してもよい。
上記第1の色の色フィルターは、着色剤である顔料の濃度が50質量%以上であってもよい。
上記色フィルター層上に、上記光電変換素子のそれぞれに対応して二次元的に配置されたマイクロレンズを有し、上記マイクロレンズのレンズトップからレンズボトムまでの高さが300nm以上800nm以下の範囲であってもよい。
上記複数色の色フィルターのうち、上記第1の色の色フィルターの専有面積が一番広くてもよい。
本発明の一態様による固体撮像素子の製造方法は、複数の光電変換素子を二次元的に配置した半導体基板に透明導電層を形成し、上記透明導電層上に第1の色の色フィルター用の塗布液を塗布し硬化させて透明導電層及び第1の色の色フィルター層をこの順に形成した後、上記第1の色の色フィルターの配置位置以外の上記第1の色の色フィルター層部分をドライエッチングによって除去して第1の色の色フィルターをパターン形成する第1の工程と、上記第1の色の色フィルターをパターン形成する第1の工程において、上記第1の色の色フィルター層をドライエッチングする際に生じる色フィルター層とドライエッチングガスの副生成物を、上記第1の色の色フィルターの側壁に隔壁として形成する第2の工程と、第2の工程後に、第1の色の以外の色の色フィルターを、フォトリソグラフィによってパターニングして形成する第3の工程と、を備えることを特徴とする。
本発明の他の態様による固体撮像素子の製造方法は、複数の光電変換素子を二次元的に配置した半導体基板に透明導電層を形成し、上記透明導電層上に透明樹脂層を形成し、第1の色の色フィルター用の塗布液を塗布し硬化させて、透明導電層、透明樹脂層及び第1の色の色フィルター層をこの順に形成した後、第1の色の色フィルターの配置位置以外の上記第1の色の色フィルター層部分及び該第1の色の色フィルター層部分の下層に位置する透明樹脂層をドライエッチングによって除去して第1の色の色フィルターをパターン形成する第1の工程と、上記第1の色の色フィルターをパターン形成する第1の工程において、上記第1の色の色フィルター層及びその除去する色フィルター層部分の下層に位置する透明樹脂層をドライエッチングする際に生じる色フィルター層及び透明樹脂層とドライエッチングガスの副生成物を、上記第1の色の色フィルターの側壁に隔壁として形成する第2の工程と、第2の工程後に、第1の色の以外の色の色フィルターを、フォトリソグラフィによってパターニングして形成する第3の工程と、を備えることを特徴とする。
上記第1の色の色フィルターの硬化時の加熱温度が170℃以上270℃以下であってもよい。
本発明の各態様によれば、各色フィルターの薄膜化及び色フィルター間の隔壁によって、混色を抑制でき、ドライエッチングによるプラズマダメージがなく、パターン配置した全ての色フィルターが高感度化した高精細な固体撮像素子を提供することが可能となる。
本発明の第1の実施形態に係る固体撮像素子の部分断面図である。 本発明の第1の実施形態に係る固体撮像素子の色フィルター配列の部分平面図である。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、透明導電層形成工程から第1の色の色フィルター加熱硬化工程までを示す図である。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、感光性樹脂材料塗布工程から第1の色の色フィルター層の現像工程までを示す図である。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、第1の色の色フィルター層の一部をドライエッチングする工程からエッチングマスク除去工程までを示す図である。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、第2の色の色フィルター塗布工程から第2の色の色フィルターの加熱硬化までを示す図である。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、第3の色の色フィルター塗布工程から第3の色の色フィルターの加熱硬化工程までを示す図である。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、平坦化層形成工程及びマイクロレンズ形成工程を示す図である。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、平坦化層形成工程からマイクロレンズ母型層形成工程を示す図である。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、マイクロレンズ母型形成工程からレンズ転写工程を示す図である。 本発明の第2の実施形態に係る固体撮像素子の部分断面図である。 本発明の第2の実施形態に係る固体撮像素子の製造工程断面図であって、透明導電層形成工程から感光性樹脂材料塗布工程までを示す図である。 本発明の第2の実施形態に係る固体撮像素子の製造工程断面図であって、感光性樹脂材料露光工程から第1の色の色フィルター層の現像工程までを示す図である。 本発明の第2の実施形態に係る固体撮像素子の製造工程断面図であって、第1の色の色フィルター層の一部をドライエッチングする工程からエッチングマスク除去工程までを示す図である。 本発明の第3の実施形態に係る固体撮像素子の部分断面図である。 本発明の第3の実施形態に係る固体撮像素子の製造工程断面図であって、透明樹脂層形成工程から感光性樹脂材料塗布工程までを示す図である。 本発明の第3の実施形態に係る固体撮像素子の製造工程断面図であって、感光性樹脂材料露光工程から第1の色の色フィルター層の現像工程までを示す図である。 本発明の第3の実施形態に係る固体撮像素子の製造工程断面図であって、第1の色の色フィルター層の一部をドライエッチングする工程からエッチングマスク除去工程までを示す図である。
以下、本発明の実施形態について図面を参照しながら説明する。
ここで、図面は模式的なものであり、色フィルターなどの高さ(厚み)と平面寸法との関係、各層の高さ(厚み)の比率等は現実のものとは異なる。また、以下に示す各実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造等が下記のものに特定されるものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
「第1の実施形態」
<固体撮像素子の構成>
本実施形態に係る固体撮像素子1は、図1に示すように、二次元的に配置された複数の光電変換素子11を有する半導体基板10と、半導体基板10の上方に配置された複数のマイクロレンズ18からなるマイクロレンズ群108と、半導体基板10とマイクロレンズ18との間に設けられた色フィルター層100及び隔壁17とを備えている。色フィルター層100は、複数色の各色フィルター14,15,16が所定の規則パターンで配置されて構成される。隔壁17は、複数色の各色フィルター14,15,16のそれぞれの間に構成される。
図1は、色フィルター層100の下部に透明導電層12がある構成の固体撮像素子1を示している。また、色フィルター層100と複数のマイクロレンズ18からなるマイクロレンズ群180との間に、平坦化層13が形成されている。平坦化層13は、後述するエッチバック方式のようにマイクロレンズ18と同化している場合は無くても良い。
以下、本実施形態に係る固体撮像素子1の説明にあたり、製造工程上最初に形成する、最も面積が広い色フィルターを第1の色の色フィルター14と定義する。また、製造工程上二番目に形成する色フィルターを第2の色の色フィルター15、製造工程上三番目に形成する色フィルターを第3の色の色フィルター16と定義する。他の実施形態であっても同様である。すなわち、本実施形態及び他の実施形態では、複数の色の色フィルターの一例である第1の色の色フィルター14、第2の色の色フィルター15及び第3の色の色フィルター16のうち、第1の色の色フィルター14の専有面積が一番広く構成されている。
本実施形態に係る固体撮像素子1では、第1の色の色フィルター14には、熱硬化性樹脂と光硬化性樹脂が含まれている。光硬化性樹脂の含有量は、熱硬化性樹脂の含有量よりも少ない。ここで、第1の色の色フィルター14は、最も面積が広い色フィルターで無くとも良く、また一番初めに形成される色フィルターで無くても良い。また本実施形態では、色フィルター層100が、複数色のグリーン、ブルー、レッドの3色から構成され、ベイヤー配列の配置パターンで配置される場合で例示するが、4色以上からなる色フィルター層であってもよい。以下の説明では、第1の色がグリーンの場合を想定して説明するが、第1の色がブルー又はレッドであっても良い。
以下、固体撮像素子の各部について詳細に説明する。
(光電変換素子及び半導体基板)
半導体基板10は、画素に対応させて複数の光電変換素子11が二次元的に配置されている。複数の光電変換素子11は、光を電気信号に変換する機能を有している。
光電変換素子11が形成されている半導体基板10は、通常、表面(光入射面)の保護及び平坦化を目的として、最表面に保護膜が形成されている。半導体基板10は、可視光を透過して、少なくとも300℃程度の温度に耐えられる材料で形成されている。このような材料としては、例えば、Si、SiO等の酸化物及びSiN等の窒化物、並びにこれらの混合物等、Siを含む材料等が挙げられる。
(マイクロレンズ)
各マイクロレンズ18は、画素位置に対応させて、半導体基板10の上方に配置されている。すなわち、マイクロレンズ18は、半導体基板10に形成された色フィルター層100上に、二次元配置された複数の光電変換素子11毎に設けられる。マイクロレンズ18は、マイクロレンズ18に入射した入射光を光電変換素子11のそれぞれに集光させることにより、光電変換素子11の感度低下を補う。
マイクロレンズ18は、レンズトップからレンズボトムの高さが300nm以上800nm以下の範囲であることが好ましい。
(透明導電層)
透明導電層12は、半導体基板10の表面保護、平坦化及び、プラズマエッチングによる帯電(チャージアップ)等のダメージ低減のために設けられた層である。すなわち、透明導電層12は、光電変換素子11の作製による半導体基板10の上面の凹凸を低減し、色フィルター用材料との密着性を向上させ、第1の色の色フィルターをパターン加工する際のプラズマエッチングの保護層となる。
透明導電層12は、例えば珪素、炭素、酸素、水素、錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、カドミウム、ニオブ、タンタル、ハフニウム、銀、フッ素から選ばれる少なくとも1種類を含有する化合物や酸化物が単層又は複層で形成される。これらの材料の化合物としては、たとえばITOやZnO、TiO、HfOなどの透明導電層を用いることができる。また、透明導電層12は、これらの酸化物や化合物に限らず、波長が400nmから700nmの可視光を透過し、色フィルター14、15、16のパターン形成や密着性を阻害しない材料であれば、いずれを用いて形成することができる。透明導電層12は、色フィルター14,15,16の分光特性に影響を与えないことが好ましい。例えば、透明導電層12は、波長が400nmから700nmの可視光に対して透過率80%以上であり、より好ましくは透過率90%以上となるように形成されることが好ましい。
透明導電層12のシート抵抗率は100000Ω/sq.より低い、所謂導電性がある物質であることが好ましい。特に一般的に使用されている透明導電層として、5000Ω/sq.以下である事が好ましく、透明導電層としてより望ましくは1500Ω/sq.以下であり、より好ましくは800Ω/sq.以下である。これらのシート抵抗を得られる透明導電層12は、上記に記載した材料で形成される。例えば、透明導電層12としてITOを用いた場合は、シート抵抗が50Ω/sq.以下も形成可能である。またZnOにAlやGaをドープした透明導電膜などでも同様のシート抵抗を得られる。
また上記透明導電層12は、ドライエッチングのプラズマダメージを低減する目的の為、エッチングレートが遅い化合物で構成されていることが好ましい。その為、透明導電層12のエッチングレートが色フィルター14のエッチングレートよりも遅い条件となる材料構成となっていることが望ましい。ドライエッチングで使用するガスとしてフッ素、酸素、硫黄、炭素、臭素、塩素、アルゴン、ヘリウム、キセノン、クリプトンから選ばれる少なくとも1種類を含有するガスを用いたドライエッチングにおいて、透明導電層12のエッチングレート(G)が色フィルター14のエッチングレート(T)よりも3倍以上遅い(3≦G/T)ことが好ましく、より好ましくは10倍以上遅い条件である。具体的には、透明導電層12にITO膜を用いて、ドライエッチングガスにフッ素、炭素、酸素を含んだガスを用いてドライエッチングを実施した場合は、ITO膜のエッチングがほぼ進行せず、色フィルター14よりもエッチングレートが20倍以上遅い条件となり、エッチングレートの設定を満足する。
また、透明導電層12は透過率を満たせるなら、Agを用いたナノインク、無機酸化物を用いたナノITOのような粒子の凝集物、カーボンナノチューブインク、導電性高分子などの透明樹脂を用いても良い。
本実施形態では、透明導電層12の膜厚B[nm]を、0[nm]より大きく200[nm]以下に形成する。透明導電層12の膜厚Bは、透過率、混色防止の観点からは薄いほど好ましく、5nm以上80nm以下がより好ましい。
(平坦化層)
平坦化層13は、第1から第3の色の色フィルター14,15,16(以下、「各色フィルター14,15,16」と称する場合がある)及び隔壁17の上面を平坦化するために設けられた層である。平坦化層13は、例えばアクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、フェノールノボラック系樹脂、ポリエステル系樹脂、ウレタン系樹脂、メラミン系樹脂、尿素系樹脂、スチレン系樹脂及びケイ素系樹脂等の樹脂を一又は複数含んだ樹脂により形成される。なお、平坦化層13は、マイクロレンズ18と一体化していても問題ない。平坦化層13の膜厚は、例えば1[nm]以上300[nm]以下である。混色防止の観点からは薄いほど好ましい。
(色フィルター)
所定パターンで色フィルター層100を構成する各色フィルター14,15,16は、入射光を色分解する各色に対応するフィルターである。各色フィルター14,15,16は、半導体基板10とマイクロレンズ18との間に設けられ、画素位置に応じて、複数の光電変換素子11のそれぞれに対応するように予め設定された規則パターンで配置されている。
図2に、各色フィルター14,15,16及び各色フィルター14,15,16の間に形成する隔壁17の配列を平面的に示す。図2に示す配列は、いわゆるベイヤー配列であり、四隅が丸みをおびた四角形状の各色フィルター14,15,16のパターン(第1、第2及び第3の色の色フィルタ)を敷き詰めた配列である。
各色フィルター14,15,16は、所定の色の顔料(着色剤)と、熱硬化成分や光硬化成分を含んでいる。例えば、第1の色の色フィルター14は着色剤としてグリーン顔料を含み、第2色の色フィルター15はブルー顔料を含み、第3の色の色フィルター16はレッド顔料を含んでいる。
本実施形態では、第1の色の色フィルター14は、熱硬化性樹脂と光硬化性樹脂とを含んでいるが、熱硬化性樹脂の配合量の方が多いことが好ましい。この場合、例えば、固形分中の硬化成分は5質量%以上40質量%以下とし、熱硬化性樹脂を5質量%以上20質量%以下とし、光硬化性樹脂を1質量%以上20質量%以下、好ましくは熱硬化性樹脂を5質量%以上15質量%以下とし、光硬化性樹脂を1質量%以上10質量%以下の範囲とする。
ここで、硬化成分を熱硬化成分のみとする場合には、固形分中の硬化成分は5質量%以上40質量%以下、より好ましくは5質量%以上15質量%以下の範囲とする。
一方、硬化成分を光硬化成分のみとする場合には、固形分中の硬化成分は10質量%以上40質量%以下、より好ましくは10質量%以上20質量%以下の範囲とする。
(隔壁)
隔壁17は、複数色の色フィルター14、15、16のそれぞれの間に構成される。本実施形態では、第1の色の色フィルター14の側壁部に設けられた隔壁17により、第1の色の色フィルター14と第2、第3の色の色フィルター15、16のそれぞれを分けることができる。隔壁17は、第1の色の色フィルター14に含まれる第1の色の色フィルター用材料及び透明導電層12に含まれる材料と、第1の色の色フィルター14を形成する際に用いるドライエッチングガスとの反応生成物を含んでいる。
隔壁17の材料は、第1の色の色フィルター14に含まれる材料及び透明導電層12の材料を含有している。隔壁17の材料は、たとえば亜鉛、銅、ニッケル、珪素、炭素、酸素、水素、窒素、臭素、塩素から少なくとも一種を含んだ化合物を含んでおり、透明導電層12に使用される材料として珪素、炭素、酸素、水素、錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、カドミウム、ニオブ、タンタル、ハフニウム、銀、フッ素から少なくとも一種を含んだ化合物から形成される。透明導電層12にITOを用いた場合は、インジウム、錫、酸素などを含んだ材料が隔壁17に微量含まれることがある。透明導電層12にITOなどを用いる場合は、エッチング条件によりエッチング量が微量となるため、隔壁17の材料は第1の色の色フィルター材料が大半の割合を占める。
本実施形態では、図2に示すベイヤー配列の各色フィルター14,15,16を有する固体撮像素子1について説明する。しかしながら、固体撮像素子1の色フィルターは、必ずしもベイヤー配列に限定されず、また、色フィルターの色もレッド(R)、グリーン(G)、ブルー(B)の3色に限定されない。また、色フィルターの配列の一部に屈折率を調整した透明の層を配置してもよい。
第1の色の色フィルター14の膜厚A[nm]は、200[nm]以上700[nm]以下に形成する。好ましくは、膜厚A[nm]は、400[nm]以上600[nm]以下である。より好ましくは膜厚A[nm]は500[nm]以下である。
また透明導電層12の膜厚B[nm]は、前述した値である0[nm]より大きく200[nm]以下に形成する。好ましくは、膜厚B[nm]は、5[nm]以上80[nm]以下である。より好ましくは膜厚B[nm]は50[nm]以下である。
また、第1の色以外の色の色フィルター15,16の膜厚をC[nm]とした場合に、下記式を満足する膜厚に形成する。
A+B−200[nm]≦C≦A+B+200[nm]
但し、第2の色の色フィルター15の膜厚と、第3の色の色フィルター16の膜厚とが異なっていても良い。ここで、(A+B)の膜厚とCの膜厚との膜厚差を200[nm]以下としているのは、一部の膜厚差が200[nm]を越える部分があると、他の画素への斜め入射光の影響により、受光感度が低下するおそれがあるためである。また、色フィルター層100に200[nm]を越える段差が形成される場合、上部のマイクロレンズ18の形成が困難となる場合がある。
また、色フィルター層100を薄膜化するため、第1から第3の色の色フィルター14,15,16に含有する顔料(着色剤)の濃度は、50質量%以上であることが好ましい。
ままた、隔壁17が複数色の色フィルター14、15、16のそれぞれの間に形成されている。隔壁は、幅(寸法)が200nm以下で形成されている。ここで、隔壁の高さを200nm以下としているのは、隔壁の幅(寸法)が200nmより大きくなると、隔壁によって光電変換素子11に入射する光が大幅に低減されて受光感度が低減してしまうおそれがあるためである。
<固体撮像素子の製造方法>
次に、図3及び図4を参照して、第1の実施形態の固体撮像素子の製造方法について説明する。
(透明導電層の形成工程)
図3(a)に示すように、複数の光電変換素子11を有する半導体基板10を準備し、その表面の色フィルター層形成位置全面に、透明導電層12を形成する。透明導電層12は、例えば上述した珪素、炭素、酸素、水素、錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、カドミウム、ニオブ、タンタル、ハフニウム、銀、フッ素等の材料を一つもしくは複数含んだ化合物や、酸化化合物、窒化化合物等により形成される。
透明導電層12として上述した化合物の膜を、スプレー法、塗布法、CVD法などの化学的作製法と真空蒸着法、イオンプレーティング法、スパッタ法などの物理的作製方法で形成する。化学的作製方法は、塩化物の加水分解や、有機化合物の熱分解反応により作製する方法である。また、透明導電層12はこれらの材料を含んだ物質の塗布、加熱硬化などで形成しても良い。
この際、半導体基板10の全面に透明導電層12を形成した場合、半導体基板10の電極部分なども覆っているため、電極部分の透明導電層12を除去する必要がある。透明導電層12の部分的な除去方法としては、マスク材料で除去部分だけを開口させてドライエッチングやウェットエッチングなどの除去方法を用いることや、リフトオフ法などの事前に除去可能な材料で埋めておく方法などの公知の方法が使用できる。透明導電層12にITOを用いる場合は、非加熱形成で非晶質のITOを形成し、フォトレジストを用いてマスク構造を形成し、しゅう酸などでウェットエッチングを行い、電極部分を開口させて、その後半導体基板を加熱することで、ITOを結晶化させても良い。
ここで、本実施形態に係る固体撮像素子の製造方法は、従来の感光性色フィルター用材料を用いてフォトリソグラフィによって色フィルター層100を構成する各色フィルター14,15,16を直接パターニングして製造する方法とは異なる。すなわち、本実施形態に係る固体撮像素子1の製造方法では、第1の色の色フィルター用材料を全面に塗布し硬化させて第1の色の色フィルター層14aを形成した後で(図3(d)参照)、その第1の色の色フィルター層14aにおける他の色フィルターを形成する箇所をドライエッチングで除去する。これにより、第1の色の色フィルター14のパターン(図4(c)参照)が形成される。また、第1の色の色フィルター層14a及び透明導電層12の一部をドライエッチングする際に生じる、第1の色の色フィルター層14a及び透明導電層12とドライエッチングガスの反応生成物が第1の色の色フィルター14の側壁(すなわち外周囲)に隔壁17として形成される。そして、周辺が第1の色の色フィルター14及び隔壁17で囲まれている部分に第2以降の色フィルター(第2及び第3の色の色フィルターのパターン15,16)をパターン形成する。このとき、先に形成した第1の色の色フィルター14及び隔壁17のパターンをガイドパターンとして用いて、高温の加熱処理により第2以降の色フィルター材料を硬化させる。このため、半導体基板10と色フィルター15,16との密着性を向上させることができる。
以下、その形成工程について説明する。
(第1の色の色フィルター層形成工程(第1の工程))
まず、半導体基板10上に形成した透明導電層12の表面に、第1の色の色フィルター14を形成する工程について図3から図5を用いて説明する。第1の色の色フィルター14は、固体撮像素子で最も専有面積の広い色の色フィルターが好ましい。
第1の色の色フィルター層形成工程では、複数の光電変換素子11を二次元的に配置した半導体基板10に透明導電層12を形成し、透明導電層12上に第1の色の色フィルター14用の塗布液を塗布し硬化させて透明導電層12及び第1の色の色フィルター層14aをこの順に形成した後、第1の色の色フィルター14の配置位置以外の第1の色の色フィルター層14a部分をドライエッチングによって除去して第1の色の色フィルター14をパターン形成する。以下、第1の色の色フィルター層形成工程の詳細について説明する。
複数の光電変換素子11が二次元的に配置された半導体基板10上に透明導電層12を形成する。次に、半導体基板10上に形成した透明導電層12上、すなわち透明導電層12の表面(図3(a)参照)に、図3(b)に示すように、樹脂材料を主成分とし第1の顔料(着色剤)を分散させた第1の樹脂分散液からなる第1の色の色フィルター用材料を塗布し、第1の色の色フィルター層14aを形成する。本実施形態に係る固体撮像素子1は、図2に示すようにベイヤー配列の色フィルターを用いることを想定している。このため、第1の色は、緑(G)であることが好ましい。第1の色の色フィルター層14aは、最終的に形成される第1の色の色フィルター14と同じか僅かに厚い膜厚を有するが、図3及び後述する図4では説明の便宜上、第1の色の色フィルター14(図5参照)よりも膜厚が薄い状態で図示されている。
第1の色の色フィルター用材料の樹脂材料としては、エポキシ樹脂等の熱硬化性樹脂及び紫外線硬化樹脂等の光硬化性樹脂を含有する混合樹脂を用いる。但し、光硬化性樹脂の配合量を熱硬化性樹脂の配合量よりも少なくする。樹脂材料として熱硬化性樹脂を多く用いることで、硬化性樹脂として光硬化性樹脂を多く用いる場合と異なり、第1の色の色フィルター層14aの顔料含有率を高くすることが可能となり、薄膜で且つ所望の分光特性を得られる第1の色の色フィルター14を形成し易くなる。ただし、本実施形態では、熱硬化性樹脂及び光硬化性樹脂の両方を含有する混合樹脂で説明するが、必ずしも混合樹脂に限定されず、いずれか一方の硬化性樹脂のみを含有する樹脂でもよい。
次に、図3(c)に示すように、第1の色の色フィルター層14aの全面に紫外線を照射して、第1の色の色フィルター層14aを光硬化する。本実施形態では、従来手法のように色フィルター用材料に感光性を持たせて露光することで所望のパターンを直接形成する場合と異なり、第1の色の色フィルター層14aの全面を硬化するため、感光性成分の含有量を低下させても硬化が可能となる。第1の色の色フィルター用材料に光硬化性樹脂を混合しない場合は、この露光工程を実施しなくても良い。後述する溶剤耐性などが、光硬化性樹脂を含有しなくても満足できる場合は、光硬化性樹脂を除去することで、より顔料濃度を向上させ、薄膜化が可能となる。
次に、図3(d)に示すように、第1の色の色フィルター層14aを150℃以上300℃以下で熱硬化する。より具体的には、第1の色の色フィルター層14aの硬化時の加熱温度は、170℃以上270℃以下であることが好ましい。固体撮像素子の製造においては、マイクロレンズ18の形成時に100℃以上300℃以下の高温加熱工程が用いられることが多いため、第1の色の色フィルター用材料は、高温耐性があることが望ましい。このため、樹脂材料として、高温耐性のある熱硬化性樹脂を用いることがより好ましい。
次に、図4(a)から図4(c)に示すように、前工程で形成した第1の色の色フィルター層14a上に開口部を有するエッチングマスクパターンを形成する。
まず、図4(a)に示すように、第1の色の色フィルター層14aの表面に、感光性樹脂材料を塗布して乾燥し、エッチングマスク20を形成する。
次に、図4(b)に示すように、感光性樹脂層に対してフォトマスク(図示せず)を用いて第1の色の色フィルター14を形成しない位置に相当する第1の色の色フィルター層14aの領域を露光し、必要なパターン以外が現像液に可溶となる化学反応を起こす。
次に、図4(c)に示すように、現像によりエッチングマスク20の不要部(露光部)を除去する。これにより、開口部20bを有するエッチングマスクパターン20aが形成される。開口部20bの位置には、後の工程で第2の色の色フィルター又は第3の色の色フィルターが形成される。
感光性樹脂材料としては、例えば、アクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、フェノールノボラック系樹脂、その他の感光性を有する樹脂を単独で又は複数混合あるいは共重合して用いることができる。感光性樹脂層をパターニングするフォトリソグラフィプロセスに用いる露光機は、スキャナー、ステッパー、アライナー、ミラープロジェクションアライナーが挙げられる。また、電子線での直接描画、レーザでの描画等により露光を行ってもよい。なかでも、微細化の必要な固体撮像素子の第1の色の色フィルター14を形成するためには、ステッパーやスキャナーが一般的に用いられる。
感光性樹脂材料としては、高解像で高精度なパターンを作製するために、一般的なフォトレジストを用いることが望ましい。フォトレジストを用いることで、感光性を持たせた色フィルター用材料でパターンを形成する場合と異なり、形状制御が容易で、寸法精度の良いパターンを形成することが出来る。
この際用いるフォトレジストは、ドライエッチング耐性の高いものが望ましい。ドライエッチング時のエッチングマスク材として用いる場合は、エッチング部材とのエッチング速度である選択比を向上させるために、現像後にポストベークと呼ばれる熱硬化工程が用いられることが多い。しかし、熱硬化工程が含まれると、ドライエッチング後に、エッチングマスクとして用いた残留レジストの除去工程での除去が困難となることがある。このため、フォトレジストとしては、熱硬化工程を用いなくてもエッチング部材との間で選択比が得られるものが好ましい。また、良好な選択比が得られない場合、フォトレジスト材料の膜厚を厚く形成する必要があるが、厚膜化すると微細パターン形成が困難となる。このため、フォトレジストとしては、ドライエッチング耐性が高い材料が好ましい。
具体的には、エッチングマスクである感光性樹脂材料とドライエッチングの対象である第1の色の色フィルター用材料のエッチング速度比(選択比)は、0.5以上が好ましく、0.8以上がより好ましい。この選択比があれば、エッチングマスクパターン20aを全て消滅させることなく、色フィルター14をエッチングする事が可能である。第1の色の色フィルター用材料の膜厚が0.2μm以上0.7μm以下程度の場合、感光性樹脂層の膜厚は、0.5μm以上2.0μm以下程度であることが望ましい。
また、この際に用いるフォトレジストとしては、ポジ型レジスト又は、ネガ型レジストのどちらでも問題ない。しかしながら、エッチング後のフォトレジスト除去を考えると、外部要因により、化学反応が進み硬化する方向に変化するネガ型レジストよりも、化学反応が進み溶解する方向に化学反応が起こりやすいポジ型レジストが望ましい。
以上のようにして、エッチングマスクパターンが形成される。
エッチングマスクパターン及びドライエッチングガスを用いたドライエッチングにより、図5(a)に示すように、開口部20bから露出する第1の色の色フィルター層14aの一部分を除去する。
ドライエッチングの手法としては、例えば、ECR、平行平板マグネトロン、DRM、ICP、あるいは2周波タイプのRIE(Reactive Ion Etching)等が挙げられる。エッチング方式については特に制限されないが、幅数mm以上の大面積パターンや数百nmの微小パターン等の線幅や面積が異なってもエッチングレートや、エッチング形状が変わらないように制御できる方式のものが望ましい。また100mmから450mm程度のサイズのウエハ全面で、面内均一にドライエッチングできる制御機構のドライエッチング手法を用いることが望ましい。
ドライエッチングガスは、反応性(酸化性・還元性)を有する、すなわちエッチング性のあるガスであればよい。反応性を有するガスとしては、例えば、フッ素、酸素、臭素、硫黄及び塩素等を含むガスを挙げることができる。また、アルゴンやヘリウム等の反応性が少なくイオンでの物理的衝撃によるエッチングを行う元素を含む希ガスを単体又は混合させて使用することが出来る。その為、ドライエッチングに用いるガスは、フッ素、酸素、水素、硫黄、炭素、臭素、塩素、窒素、アルゴン、ヘリウム、キセノン、クリプトンから選ばれる少なくとも1種類を含有するガスである。フッ素を含有したガスとしては、たとえば、CF、C、C、C、C、C10、CHF、CClF、CClF、NF、SF、HFなどであり、これらのフッ素系ガスを複数混合させたドライエッチングガスを用いても良い。
またガスを用いてのプラズマ環境下でのドライエッチング工程で、所望のパターンを形成する反応を起こすガスであれば、これらには限定されなくても問題ない。本実施形態では初期の段階で全ガス流量の90%以上を希ガス等のイオンの物理的衝撃が主体でエッチングを行うガスとし、そこにフッ素系ガスや酸素系ガスを混合したエッチングガスを用いることで、化学反応も利用してエッチングレートを向上させる。
ドライエッチングガスに希ガスを多く用いることで、希ガスイオンの物理的衝撃による効果により、垂直にエッチングが進行する異方性エッチングが進行しやすい条件となる。そのため、色フィルターのエッチングの初期では、希ガスが多い条件でエッチングを実施する。
固体撮像素子の半導体基板10はシリコンを主体とした材料により構成されている。このため、フッ素を含有したガスなど反応性の高いガスを用いてドライエッチングを行うと、半導体基板10がエッチングされてしまう可能性がある。その為、ドライエッチングを行う際、半導体基板10をエッチングしないガスを用いることが好ましい。また、半導体基板10をエッチングするガスを用いる場合には、最初に半導体基板10をエッチングするガスを用い、途中で半導体基板10をエッチングし難いガスに変更してエッチングを行う多段階エッチングとしてもよい。なお、半導体基板10に影響がなく、エッチングマスクパターン20aを用いて垂直に近い形状で第1の色の色フィルター用材料のエッチングが可能であり、第1の色の色フィルター用材料の残渣が形成されなければ、エッチングガスの種類は制限されない。
しかし、本実施形態では透明導電層12に珪素、炭素、酸素、水素、錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、カドミウム、ニオブ、タンタル、ハフニウム、銀、フッ素等の材料を一つ又は複数含んだ化合物や、酸化化合物、窒化化合物等を用いる場合、フッ素を含有したガスに対して、ドライエッチング耐性があり、透明導電層12のエッチング速度が遅いため、所望の位置の色フィルターを除去して、透明導電層12でエッチングを止めて、下層の半導体基板10をエッチングしないことが可能となる。
具体的には、希ガスの単ガス又は反応性ガスと希ガスの混合ガスの全ガス流量の90%以上が希ガスで、開口部20bに露出する第1の色の色フィルター層14a及び透明導電層12の一部をエッチングする。この時、半導体基板10へのダメージを低減するために、エッチングを途中で止めて、物理的にエッチングを行う希ガスの割合を低減してエッチングしても良い。
次の段階では、透明導電層12をエッチングし難い、酸素、フッ素系ガスを用いて、開口部20bに露出する第1の色の色フィルター層14aを全てエッチングする。この際用いる条件は、透明導電層12のエッチング速度が遅いため、色フィルターを残渣なくエッチングし、透明導電層12が無くならない時間で行う。図5では透明導電層12がドライエッチングガスに耐性があり、ほぼエッチングが進んでいない構成を示している。
この際、透明導電層12が完全に無くならない範囲であれば、ドライエッチングガスに希ガスを混ぜて、異方性を高めたエッチングを行っても良い。この条件の場合、希ガスの物理的衝撃により、透明導電層の材料が隔壁17に含有しやすくなる。以上のようにして、図5(a)に示すように、第1の色の色フィルター14が形成される。
(隔壁形成工程(第2の工程))
また、第1の色の色フィルター14をパターン形成する工程において、図5(a)に示すように、第1の色の色フィルター層14a及び透明導電層12をドライエッチングする際に生成される反応生成物(副生成物の一例)を、最終的に各色フィルター14,15,16のそれぞれの間に設けられる隔壁17を第1の色の色フィルター14の側壁に形成する。隔壁17は、第1の色の色フィルター用材料及び透明導電層材料とドライエッチングガスとの反応生成物により形成される。この際、異方性のあるエッチングを行う場合は、ドライエッチングによる反応生成物が第1の色の色フィルター14の側壁へ付着して形成される側壁保護層の制御が重要となる。また、ドライエッチング条件により、反応生成物の第1の色の色フィルター14の側壁への付着の仕方及び付着の量は変化する。
本実施形態の固体撮像素子の製造方法では、第1の色の色フィルター層14aのエッチングを行い、エッチングによって形成された開口部に第2及び第3の色の色フィルター用材料を充填して、多色の色フィルターを形成する。このため、ドライエッチングの際には、第1の色の色フィルター層14aを垂直にエッチングし、且つパターンサイズの制御を行う必要がある。そのために、ドライエッチングの際に反応生成物の側壁への付着の仕方及び付着量の制御が必要となる。
ドライエッチングにおいてイオンによる物理的衝撃を用いた反応により、反応生成物の側壁への堆積量(付着量)を増加させることが可能となる。例えば使用するドライエッチング用ガスとしては、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、及びキセノン(Xe)等の希ガスが考えられ、特にArやHeが望ましい。
本実施形態では、Ar、He等の反応性の少ない元素を含む希ガスを全ガス流量の90%以上にして、フッ素系又は酸素系等の反応性を有するガス種が1種類以上混合されたドライエッチングガスを用いる。これにより、化学反応を用いてエッチングレートを向上させ、且つ第1の色の色フィルター14の側壁に付着する反応生成物の量を制御できる。これにより、第1の色の色フィルター14の側壁に付着させた反応生成物を隔壁17として形成する。
上記ドライエッチング工程時に発生するプラズマダメージとして、プラズマによるチャージアップに起因する電気的ダメージや、Arイオン等の希ガス粒子の衝突による物理的ダメージやプラズマからの高エネルギーフォトン照射による光照射ダメージの3つが良く知られている。本実施形態によれば、半導体基板10の表面に導電性があり、エッチング速度が遅い透明導電層12があることによりこれらのダメージが半導体基板10に到達するのを抑制する効果が得られる。
上記ドライエッチング工程により、色フィルター用材料の残渣を発生させず、ドライエッチングによって発生する反応生成物により形成された隔壁17を有した第1の色の色フィルター14を得る。隔壁17が他色からの漏れ光及び移染を抑制することによって、混色抑制効果となる。
(エッチングマスクパターン除去工程)
次に、残存しているエッチングマスクパターン20aの除去を行う(図5(b)参照)。エッチングマスクパターン20aの除去には、例えば薬液や溶剤を用いることで第1の色の色フィルター14に影響を与えず、エッチングマスクパターン20aを溶解、剥離する除去方法が挙げられる。エッチングマスクパターン20aを除去する溶剤としては、例えば、N−メチル−2−ピロリドン、シクロヘキサノン、ジエチレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸ブチル、ジメチルスルホキシド、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート等の有機溶剤を単独又は、複数を混合した混合溶剤が用いられる。また、この際用いる溶剤は、色フィルター用材料に影響を与えないものであることが望ましい。色フィルター用材料に影響を与えないのであれば、酸系の薬品を用いた剥離方法でも問題ない。
また、溶剤等のウェットプロセス以外の除去方法も用いることができる。光励起や酸素プラズマを用いたレジストの灰化技術であるアッシング技術を用いる方法により、エッチングマスクパターン20aを除去することができる。また、これらの方法を組み合わせて用いることもできる。例えば、始めに、光励起や酸素プラズマによる灰化技術であるアッシング技術を用いて、エッチングマスクパターン20aの表層のドライエッチングによる変質層を除去した後、溶剤等を用いたウェットエッチングにより残りの層を除去する方法が挙げられる。また、第1の色の色フィルター用材料にダメージの無い範囲であれば、アッシングのみでエッチングマスクパターン20aを除去しても構わない。また、アッシング等のドライプロセスだけでなく、CMPによる研磨工程等を用いても良い。
上記の工程により、第1の色の色フィルター14及び隔壁17のパターニング形成が完了する。
(第2以降の色フィルターのパターンの形成工程について(第3の工程))
次に、隔壁形成工程の後に、図6に示すように、第1の色の色フィルター14とは異なる色を含む第2、第3の色の色フィルター15、16を形成する。
第1の色の色フィルター14及び隔壁17のパターンをガイドパターンとすると共に、第2、第3の色の色フィルター15、16に光硬化性樹脂を含んだ感光性色フィルター用材料を用いて形成し、従来手法で選択的に露光してパターンを形成する手法である。
まず図6(a)に示すように、第1の色の色フィルター14及び隔壁17をパターン形成した半導体基板10の表面全面に、第2の色の色フィルター用材料として感光性色フィルター用材料を塗布、乾燥を行い第2の色の色フィルター層15aを形成する。この際用いる感光性色フィルター用材料は、光照射により硬化するネガ型の感光性成分を含有する。
この際、第1の色の色フィルター14の膜厚をA[nm]、透明導電層12の膜厚をB[nm]、第2の色の色フィルター15の膜厚をC1[nm]とした場合に、下記(1)式〜(3a)式を満足するように、第2の色の色フィルター15の膜厚C1を設定する。
200[nm]≦A≦700[nm] ・・・(1)
0[nm]<B≦200[nm] ・・・(2)
A+B−200[nm]≦C1≦A+B+200 ・・・(3a)
図6では、A=C1の場合を例示しているが、(3a)式のように膜厚C1は、(A+B)±200[nm]の範囲に収まっていればよい。
第2の色の色フィルター15として、この膜厚C1の範囲であれば、硬化に十分な熱硬化性樹脂及び光硬化性樹脂を含みながら、所望の分光特性が得られる顔料濃度を有した色フィルターとする事ができる。
次に、図6(b)に示すように、第2の色の色フィルター15を形成する部分に対して、フォトマスクを用いて露光を行い、第2の色の色フィルター層15aのパターン領域を選択的に光硬化させて、現像工程で選択的に露光されていない第2の色の色フィルター層15aのパターン領域外(第3の色の色フィルタ形成位置)を除去する。次に、図6(c)に示すように露光・現像を行った第2の色の色フィルター層15aのパターン領域と半導体基板10との密着性向上及び実デバイス利用での耐熱性を向上させるために、高温加熱での硬化処理を行うことで第2の色の色フィルター層15aを硬化させる。これにより、第2の色の色フィルター15のパターンを形成する。この際、硬化に用いる温度は、200℃以上が好ましい。
次に、図7(a)に示すように、第3の色の色フィルター用材料を半導体基板10の全面に塗布、乾燥を行う。すなわち第2の色の色フィルター層15aのパターン領域外の全面に第3の色の色フィルター用材料を塗布して、第3の色の色フィルター層16aを形成する。次に、図7(b)に示すように、第3の色の色フィルター層16aのうちの第3の色の色フィルター16を形成するパターン領域を選択的に露光し、第3の色の色フィルター層16aを光硬化させて、現像によって露光されていない第3の色の色フィルター層16aのパターン領域外を除去する。次に、図7(c)のように、露光・現像を行った第3の色の色フィルター層16aの一部と半導体基板10との密着性向上及び実デバイス利用での耐熱性を向上させるために、高温加熱での硬化処理を行うことで第3の色の色フィルター層16aを硬化させる。これにより、第3の色の色フィルター16を形成する。
なお、この第2の色の色フィルター15以降のパターン形成工程を繰り返すことで、所望の色数の色フィルターを形成することが可能である。
この際、第3の色の色フィルター16の膜厚をC2[nm]とした場合に、下記(1)式〜(3b)式を満足するように、第3の色の色フィルター16の膜厚C2を設定する。
200[nm]≦A≦700[nm] ・・・(1)
0[nm]<B≦200[nm] ・・・(2)
A+B−200[nm]≦C2≦A+B+200 ・・・(3b)
図7では、A=C2の場合を例示しているが、(3b)式のように膜厚C2は、(A+B)±200[nm]の範囲に収まっていればよい。
第3の色の色フィルター16として、この膜厚C2の範囲であれば、硬化に十分な熱硬化性樹脂及び光硬化性樹脂を含みながら、所望の分光特性が得られる顔料濃度を有した色フィルターとする事ができる。
次いで、図8(a)に示すように、形成された色フィルター14,15,16及び隔壁17上に平坦化層13を形成する。平坦化層13は、例えばアクリル系樹脂等の樹脂材料を一つ又は複数含んだ樹脂を用いて形成することができる。複数色の各色フィルター14,15,16及び隔壁17上に樹脂材料を塗布して加熱により硬化することで、平坦化層13を形成することができる。また、平坦化層13は、例えば酸化物又は窒化物等の化合物を用いて形成することができる。この場合、平坦化層13は、蒸着、スパッタ、CVD等の各種の成膜方法により形成することができる。
最後に、図8(b)に示すように、平坦化層13上に、マイクロレンズ18を形成する。マイクロレンズ18は、熱フローを用いた作製方法、グレートーンマスクによるマクロレンズ作製方法、ドライエッチングを用いた平坦化層13へのマイクロレンズ転写方法等の公知の技術により形成される。
平坦化層13の膜厚は、例えば1[nm]以上300[nm]以下である。好ましくは100[nm]以下、より好ましくは60[nm]以下である。
ドライエッチングによるパターニング技術を用いてマイクロレンズを形成する方法は、図9(a)に示すように、先ず最終的にマイクロレンズとなる平坦化層13を複数色の各色フィルター14,15,16及び隔壁上に形成する。
次に、図9(b)に示すように、平坦化層13の上にマイクロレンズの母型を形成するためのマイクロレンズ母型層18aを塗布して形成する。マイクロレンズ母型層18aの材料は、アクリル系樹脂等の樹脂材料を一つもしくは複数含んだ樹脂を用いる。
次に、図10(a)に示すように、フォトマスク(図示せず)を用いて露光し、熱フロー法によってマイクロレンズのレンズ母型18bを形成する。
次に、図10(b)に示すように、レンズ母型18bをマスクとして、ドライエッチングの手法によってレンズ母型18bの形状を平坦化層13に転写する。レンズ母型18bの高さや材料を選択し、ドライエッチング条件を調整することで、適正なレンズ形状のマイクロレンズ18を平坦化層13に転写することができる。これにより、平坦化層13と一体化された複数のマイクロレンズ18が形成される。
上記の方法を用いることで、制御性良くマイクロレンズ18を形成することが可能となる。この手法を用いて、マイクロレンズ18のレンズトップからレンズボトムの高さが300〜800nmの膜厚となるようにマイクロレンズ18を作製することが望ましい。
(4色以上の複数色の色フィルターの場合)
4色以上の複数色の色フィルターを製造する場合は、第1の色の色フィルター形成時に、4色以上の色フィルター形成箇所を開口するように形成し、第三の色フィルター以降の工程を上述した第二の色フィルター15の形成工程と同様の処理を繰り返すことで形成することができる。また、最後の色の色フィルターを形成する工程で上述した第三の色フィルター16の形成工程と同様の処理を行う。これにより、4色以上の複数色の色フィルターを製造することができる。
以上の工程により、本実施形態の固体撮像素子1が完成する。
本実施形態では、第1の色の色フィルター14を、最も専有面積の広い色フィルターとすることが好ましい。そして、第2の色の色フィルター15及び第3の色の色フィルター16は、感光性を有したカラーレジストを用いてフォトリソグラフィによりそれぞれ形成する。
感光性を有したカラーレジストを用いる技術は従来の色フィルターパターンの製造技術である。第1の色の色フィルター用材料は、透明導電層12の全面に塗布後、高温で加熱するため、半導体基板10及び透明導電層12との密着性を良くすることができる。そのため、密着性が良好であり、矩形性良く形成した第1の色の色フィルター14及び隔壁17のパターンをガイドパターンとして、隔壁17によって四辺が囲われた場所を埋めるように第2、第3の色の色フィルター15、16を形成することができる。そのため第2以降の色フィルターに感光性を持たせたカラーレジストを用いた場合でも、従来のように解像性を重視したカラーレジストとする必要はない。このため、光硬化性樹脂中の光硬化成分を少なくすることができるため、色フィルター用材料中の顔料の割合を多くでき、色フィルター15、16の薄膜化に対応できる。
本実施形態では、第1の色の色フィルター14に熱硬化性樹脂と光硬化性樹脂の両方を用いている。第1の色の色フィルター14は、光硬化に関与する樹脂成分等の含有率が少なく、かつ顔料含有率の高い色フィルター用材料で形成することが望ましい。特に、1色目の色フィルター用材料における顔料の含有率を70質量%以上に構成することが望ましい。それにより、第1の色の色フィルター用材料に、従来の感光性カラーレジストを用いたフォトリソグラフィプロセスでは硬化不充分になってしまう濃度の顔料が含まれていても、第1の色の色フィルター14を精度良く、残渣や剥がれもなく形成することができる。
本実施形態では、第1の色の色フィルター14に硬化性、溶剤耐性を向上させるため、熱硬化樹脂と光硬化性樹脂を併用する材料を用いたが、求める分光特性によっては、顔料濃度や、経時特性などを重視して、熱硬化性樹脂のみ又は、光硬化性樹脂のみで材料を形成しても問題ない。熱硬化性樹脂のみを用いる場合は、顔料濃度を増やすことが可能となるため、色フィルターの薄膜化が可能となる。一方光硬化性樹脂のみを用いる場合は、溶剤耐性が低下しやすいが、経時特性などの面で材料設計の自由度が向上する利点がある。
本実施形態では、第1の色の色フィルター14と第2及び第3の色の色フィルター15、16との間に隔壁17が構成されて、隔壁17が他色からの漏れ光及び移染を抑制するため、混色が抑制される。
本実施形態では、第1の色の色フィルター14の下層に透明導電層12があることにより、第2及び第3の色の色フィルター15、16の形成箇所を開口するドライエッチング工程時のプラズマダメージを低減でき、エッチング速度が遅い透明導電層がエッチングストッパーの役割を果たすことで、半導体基板10をドライエッチングする可能性も低減できる。
以上のように、本実施形態によれば、各色フィルターの膜厚を全て薄膜化しマイクロレンズトップからデバイスまでの総距離を短くし、さらに複数色の色フィルター間に隔壁を有する事によって混色を抑制でき、パターン配置した全ての色フィルターが高感度化した高精細な固体撮像素子を提供することが可能となる。
「第2の実施形態」
以下、図11から図14を参照して、本発明の第2の実施形態に係る固体撮像素子及び固体撮像素子の製造方法について説明する。図11に示すように、本発明の第2の実施形態に係る固体撮像素子2は、第1の実施形態の構造で、透明導電層12と第1の色の色フィルター14との間に透明樹脂層30がある構造である。固体撮像素子2の各色フィルター14,15,16の平面配列は、図2に示すベイヤー配列である。
第2の実施形態は、第1の色の色フィルターの工程までが異なるため、図を用いて示す。
<固体撮像素子の構成>
本実施形態に係る固体撮像素子2は、第1の色の色フィルター14の形成前に透明樹脂層30を形成する点に特徴を有している。透明樹脂層30を導入することで、色フィルターの密着性、半導体基板10の平坦性、色フィルター材料エッチング後の残渣性を改善、隔壁17に含有する材料を変えることができ、第1の色の色フィルター14の形成が容易となる利点がある。
本実施形態に係る固体撮像素子2は、図11に示すように、二次元的に配置された複数の光電変換素子11を有する半導体基板10と、半導体基板10の上方に配置された複数のマイクロレンズ18からなるマイクロレンズ群180と、半導体基板10とマイクロレンズ18との間に設けられた、透明導電層12、色フィルター層100及び隔壁17とを備えている。色フィルター層100は、複数色の各色フィルター14,15,16が所定の規則パターンで配置されて構成される。隔壁17は、複数色の各色フィルター14,15,16のそれぞれの間に配置される。また、色フィルター層100と複数のマイクロレンズ18からなるマイクロレンズ群180との間に、平坦化層13が形成されている。
ここで、第2の実施形態に係る固体撮像素子2において、第1の実施形態に係る固体撮像素子1の各部と同様の構成である場合には、第1の実施形態に用いた参照符号と同じ参照符号を付すものとする。すなわち、光電変換素子11を有する半導体基板10、透明導電層12、色フィルター14、15、16、隔壁17、平坦化層13及びマイクロレンズ18のそれぞれは、第1の実施形態に係る固体撮像素子1の各部と同様の構成である。このため、第1の実施形態に係る固体撮像素子1の各部と共通する部分についての詳細な説明については省略する。その他の実施形態でも同様である。
<固体撮像素子の製造方法>
次に、図12から図14を参照して、本実施形態の固体撮像素子2の製造方法について説明する。
(第1の色の色フィルター層形成工程(第1の工程))
第1の色の色フィルター層形成工程では、複数の光電変換素子11を二次元的に配置した半導体基板10に透明導電層12を形成し、透明導電層12上に透明樹脂層30を形成し、第1の色の色フィルター14用の塗布液を塗布し硬化させて、透明導電層12、透明樹脂層30及び第1の色の色フィルター層14aをこの順に形成した後、第1の色の色フィルター14の配置位置以外の第1の色の色フィルター層14a部分及び第1の色の色フィルター層14a部分の下層に位置する透明樹脂層30をドライエッチングによって除去して第1の色の色フィルター14をパターン形成する。以下、第1の色の色フィルター層形成工程の詳細について説明する。
図12(a)に示すように、二次元的に配置された複数の光電変換素子11を有する半導体基板10の上に透明導電層12を形成する。透明導電層12は、半導体基板10の表面保護、平坦化及び、プラズマエッチングによる帯電(チャージアップ)等のダメージ低減のために設けられた層である。すなわち、透明導電層12は、光電変換素子11の作製による半導体基板10の上面の凹凸を低減し、色フィルター用材料との密着性を向上させ、第1の色の色フィルター層14aをパターン加工する際のプラズマエッチングの保護層となる。透明導電層12の材料及び、形成方法は第1の実施形態で説明したものを使用する。このあと、前述した第1の実施形態と同様の方法で、半導体基板10の電極部などの上の透明導電層12を除去する。
次に、図12(b)に示すように、透明導電層12の上に透明樹脂層30を形成する。透明樹脂層30は、例えばアクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、フェノールノボラック系樹脂、ポリエステル系樹脂、ウレタン系樹脂、メラミン系樹脂、尿素系樹脂、スチレン系樹脂及びケイ素系樹脂等の樹脂を一又は複数含んだ樹脂により形成される。透明樹脂層30の膜厚は、例えば1[nm]以上300[nm]以下である。混色防止の観点からは薄いほど好ましく、望ましくは、5nmから60nmである。
次に、図12(c)に示すように、透明樹脂層30の上に第1の色の色フィルター層14aを形成し、図12(d)に示すように、形成された第1の色の色フィルター層14aを加熱して硬化し、図12(e)に示すように、効果された第1の色の色フィルター層14aの上に感光性樹脂材料を塗布して乾燥し、感光性樹脂材料層を形成し、エッチングマスク20を形成する。第1の色の色フィルター層14aは、最終的に形成される第1の色の色フィルター14と同じか僅かに厚い膜厚を有するが、図12及び後述する図13では説明の便宜上、第1の色の色フィルター14(図14参照)よりも膜厚が薄い状態で図示されている。
次に、図13(a)に示すように、フォトマスク(図示せず)を用いて、第2及び第3の色の色フィルター15,16の形成箇所が開口するように露光し、現像することで、図13(b)に示すように、開口部20bを有するエッチングマスクパターン20aを形成する。これら工程は前述した第1の実施形態の工程と同様である。
次に、エッチングマスクパターン20aを用いて、第1の実施形態で説明したドライエッチングガスを用いたドライエッチングにより、図14(a)に示すように、開口部20bから露出する第1の色の色フィルター層14aの一部分を除去する。
本実施形態では、第1の色の色フィルター14の下層に透明樹脂層30があるため、透明樹脂層30をエッチング出来るドライエッチングガスで、エッチングを行うことが望ましい。また、エッチングマスクパターン20aを用いて、第1の色の色フィルター層14aを矩形性良くエッチングすることが望ましい。本実施形態では初期の段階で全ガス流量の90%以上を希ガス等のイオンの物理的衝撃が主体でエッチングを行うガスとし、そこにフッ素系ガスや酸素系ガスを混合したエッチングガスを用いることで、化学反応も利用してエッチングレートを向上させる。
ドライエッチングガスに希ガスを多く用いることで、希ガスイオンの物理的衝撃による効果により、垂直にエッチングが進行する異方性エッチングが進行しやすい条件となる。そのため、色フィルターのエッチングの初期では、希ガスが多い条件でエッチングを実施する。具体的には、希ガスの単ガス又は反応性ガスと希ガスの混合ガスの全ガス流量の90%以上が希ガスで第1の色の色フィルター層14aの一部または全てをエッチングする。この時、第1の色の色フィルター層14aがまだ残っている段階でエッチングを途中で止めて、物理的にエッチングを行う希ガスの割合を低減してエッチングすることが望ましい。具体的には、第1の色の色フィルター層14aの膜厚の50%から95%をエッチングした状態であり、より好ましくは、70%から90%をエッチングした段階で、エッチングガスの条件を切り替えることが望ましい。
次の段階では、残っている第1の色の色フィルター層14a及び透明樹脂層30をエッチングして、下層の透明導電層12で停止するようにする。透明導電層12のエッチングが遅いガスとして、酸素、フッ素系ガスを用いて残留している第1の色の色フィルター層14a及び透明樹脂層30を全てエッチングする。この際用いる条件は、透明導電層12のエッチング速度が遅く、透明樹脂層30は化学的エッチング反応で除去され易いため、第1の色の色フィルター14を残渣なくエッチングし、透明導電層12が無くならない時間で行う。図14では透明導電層12がドライエッチングガスに耐性があり、一部以外ほぼエッチングが進んでいない構成を示している。
具体的には、第1の色の色フィルター層14aの残り膜厚量の2倍から3倍程度の膜厚をエッチングする時間で調整を行うことで、第1の色の色フィルター層14a及び透明樹脂層30が残渣無くエッチングすることが望ましい。
このエッチングの際、第1の色の色フィルター14以外の色フィルター形成箇所は、透明樹脂層30がエッチングで除去されている。その為、図11に示すように、複数色の色フィルターの上部の高さをそろえた場合、第1の色の色フィルター14に対して、第2の色以降の色フィルターの膜厚は、透明樹脂層30の膜厚分膜厚を厚く調整をすることが可能となる。その為、第2の色以降の色フィルターに光硬化性樹脂を用いても、膜厚分顔料濃度の調整範囲が広がる利点がある。
上記工程以降の工程、すなわち隔壁形成工程(第2の工程)、エッチングマスクパターン除去工程及び第2以降の色フィルターのパターンの形成工程について(第3の工程)は、前述した第1の実施形態で説明したこれらの工程と同様である。
以上の工程により、本実施形態の固体撮像素子2が完成する。
第2の実施形態に係る発明は、第1の実施形態に記載した各効果に加えて、さらに以下の効果を有する。透明導電層12と第1の色の色フィルター14との間に透明樹脂層30があるため、残渣として残りやすい色フィルターの下層にドライエッチングの化学反応で容易にエッチングされる透明樹脂層30があるので、第1の色の色フィルター14のドライエッチング残渣が発生し難くエッチングが可能となる。
「第3の実施形態」
以下、図15から図18を参照して、本発明の第3の実施形態に係る固体撮像素子及び固体撮像素子の製造方法について説明する。
<固体撮像素子の構成>
本実施形態に係る固体撮像素子3は、図15に示す半導体基板10と透明導電層12の間に透明樹脂層30が形成されている点に特徴を有している。このため、半導体基板10を平坦化した上で、透明導電層12が形成でき、半導体基板10と透明導電層12が直接接続していない為、ドライエッチングによるプラズマダメージが、透明導電層12から半導体基板10に伝わりにくく、プラズマダメージの低減により効果がある利点がある。
本実施形態に係る固体撮像素子の構造は、第1の実施形態と第1の色の色フィルター14の形成工程は同様であり、透明樹脂層30は第2の実施形態と同様である。ただし、透明樹脂層30の形成工程が、半導体基板10と透明導電層12の間にある点が異なる。このため、透明樹脂層の形成工程について示す。
<固体撮像素子の製造方法>
次に、図16から図18を参照して、本実施形態の固体撮像素子3の製造方法について説明する。
図16(a)に示すように、半導体基板10上に透明樹脂材料を塗布、加熱して透明樹脂層30を形成する。透明樹脂層30の材料は第2の実施形態で説明した材料である。
次に、図16(b)に示すように、透明樹脂層30上に透明導電層12を形成する。
次に、図16(c)に示すように透明導電層12上に第1の色の色フィルター層14aを塗布により形成する。第1の色の色フィルター層14aは、最終的に形成される第1の色の色フィルター14と同じか僅かに厚い膜厚を有するが、図16及び後述する図17では説明の便宜上、第1の色の色フィルター14(図18参照)よりも膜厚が薄い状態で図示されている。
次に、図16(d)に示すように、第1の色の色フィルター層14aの全面を加熱によって熱硬化する。
次に、図16(e)に示すように、第1の色の色フィルター層14a上に感光性樹脂材料を塗布して乾燥し、感光性樹脂材料層を形成し、エッチングマスク20を形成する。
次に、図17(a)に示すように、フォトマスク(図示せず)を用いて、第2及び第3の色の色フィルター形成箇所が開口するように、エッチングマスク20を露光し、現像することで、図17(b)に示すように、開口部20bを有するエッチングマスクパターン20aを形成する。
図18(a)に示すように、開口部20bに露出する第1の色の色フィルター層14aをドライエッチングによりエッチングし、次に、図18(b)に示すように、エッチングマスクパターン20aを除去する。図18に示す工程及びそれ以降の工程は、前述した第1の実施形態で説明した工程と同様である。
以上の工程により、本実施形態の固体撮像素子3が完成する。
第3の実施形態に係る発明は、第1の実施形態に記載した各効果に加えて、さらに以下の効果を有する。透明導電層12と第1の色の色フィルター14との間に透明樹脂層30があるため、残渣として残りやすい色フィルターの下層にドライエッチングの化学反応で容易にエッチングされる透明樹脂層30があるので、色フィルターのドライエッチング残渣が発生し難くエッチングが可能となる。
以下、本発明の固体撮像素子及び従来法による固体撮像素子について、実施例により具体的に説明する。
<実施例1>
二次元的に配置された光電変換素子を備える半導体基板上に、透明導電層としてITO膜をマグネトロンスパッタリング法を用いて、50nmの膜厚で成膜した。成膜温度は、加工を容易にする為、非結晶膜になるように常温付近で形成した。次に半導体基板の電極部分を開口するために、シュウ酸が5%程度含有しているエッチング液を用いて、ウェットエッチングを実施した。ウェットエッチング時は、ポジ型レジスト(OFPR−800:東京応化工業株式会社製)を750rpmの回転数でスピンコートした後、90℃で1分間プリベークを行った。これにより、エッチングマスクとなるポジ型レジストを膜厚2.0μmで塗布したサンプルを作製した。
このサンプルに対して、フォトマスクを介して露光するフォトリゾグラフィーを行った。露光装置は光源にi線の波長を用いた露光装置を用いた。ポジ型レジストは、紫外線照射により、化学反応を起こして現像液に溶解するようになった。
次に、2.38質量%のTMAH(テトラメチルアンモニウムハイドライド)を現像液として用いて現像工程を行い、半導体基板の電極部分に開口部を有するエッチングマスクを形成した。次にエッチング液に3分浸漬させてウェットエッチングを行い、純水で洗浄して、電極部分を開口させた。次に、エッチングマスクとして用いたポジ型レジストの除去を行った。この際用いた方法は溶剤を用いた方法であり、剥離液104(東京応化工業株式会社製)を用いてスプレー洗浄装置でポジ型レジストの除去を行った。次にホットプレートにて250度で30分間加熱処理を行い、ITOの膜を結晶化させた。この際、シート抵抗は50Ω/sq.以下であり、可視光の透過率が89%であった。
次に、1色目であるグリーンの顔料を含む第1の色の色フィルター用材料として、感光性硬化樹脂と熱硬化性樹脂を含ませたグリーン顔料分散液を1000rpmの回転数でスピンコートした。この1色目の色フィルター用材料のグリーンの顔料には、カラーインデックスにてC.I.PG58を用いており、その顔料濃度は70質量%、膜厚は500nmであった。
次に、グリーンフィルター用材料の硬化を実施するため、i線の露光装置であるステッパーを用いて全面の露光を行い、感光性成分の硬化を実施した。この感光性成分の硬化により、グリーンフィルターの表面の硬化を実施した。続いて、ホットプレートで230℃で6分間ベークを行い、グリーンフィルターの熱硬化を行った。
次に、ポジ型レジスト(OFPR−800:東京応化工業株式会社製)を、スピンコーターを用いて1000rpmの回転数でスピンコートした後、90℃で1分間プリベークを行った。これにより、エッチングマスクとなるポジ型レジストを膜厚1.5μmで塗布したサンプルを作製した。
このサンプルに対して、フォトマスクを介して露光するフォトリゾグラフィーを行った。露光装置は光源にi線の波長を用いた露光装置を用いた。ポジ型レジストは、紫外線照射により、化学反応を起こして現像液に溶解するようになった。
次に、2.38質量%のTMAH(テトラメチルアンモニウムハイドライド)を現像液として用いて現像工程を行い、第2及び第3の色の色フィルターを形成する箇所に開口部を有するエッチングマスクを形成した。ポジ型レジストを用いる際には、現像後脱水ベークを行い、ポジ型レジストの硬化を行うことが多い。しかしながら、今回はドライエッチング後のエッチングマスクの除去を容易にするため、ベーク工程を実施しなかった。そのため、レジストが硬化せず選択比の向上が見込めないため、レジストの膜厚をグリーンフィルターである第1の色の色フィルターの膜厚の2倍以上である、1.5μmの膜厚で形成した。この際の開口部パターンは、1.1μm×1.1μmで形成した。
これにより、ポジ型レジストを用いたエッチングマスクパターンを形成した。
次に、形成したエッチングマスクパターンを用いて、グリーンフィルター層のドライエッチングを行った。この際、用いたドライエッチング装置は、ICP方式のドライエッチング装置を用いた。また、下地の半導体基板に影響を与えないように、途中でドライエッチング条件の変更を行い、ドライエッチングを多段階で実施した。
始めのガス種は、CF、O、Arガスの三種を混合してエッチングを実施した。CF、Oのガス流量を各5ml/min、Arのガス流量を200ml/minとした。すなわち、全ガス流量中、Arのガス流量が95.2%であった。また、この際のドライエッチング条件はチャンバー内の圧力を1Paの圧力とし、RFパワーを500W、コイルパワーを1000Wとして設定した。この条件を用いて、グリーンフィルター層の膜厚500nmの内、350nmをドライエッチングした段階で、次のドライエッチング条件に変更した。
次のガス種は、CFガスとOガスを混ぜた混合ガスを用い、エッチング条件はCFのガス流量を150ml/min、Oのガス流量を150ml/minで50対50の比率で混合し、チャンバー内圧力を2Pa、RFパワーを500W、コイルパワーを1000Wの条件とした。この条件を用いて、グリーンフィルター層の残留分のドライエッチングを行った。透明導電層として形成したITO膜はCFガス及びOガスのエッチングレートがグリーンのエッチングレートに対して20倍以上遅く、ほぼエッチングされない構成の為、この際、グリーンの残渣が残らないように、残留しているグリーンフィルターの膜厚150nmの3倍の450nmがエッチングされる時間設定でオーバーエッチングを実施した。この工程により、グリーンフィルターは残渣が残らず、ITO膜は膜厚50nmの内、5nmエッチングされる状況であった。
また、上記ドライエッチングの際に、グリーンフィルターパターンの側壁にグリーンフィルター用材料及び透明導電層であるITO材料と、ドライエッチングガスとの反応生成物を含んだ隔壁を形成した。この隔壁はドライエッチング条件の時間調整で、隔壁の寸法(横幅)を制御可能である。
上記ドライエッチング条件ではグリーンフィルターを500nmと透明導電層を5nmほどドライエッチングしたが、それらの反応生成物による隔壁の寸法は25nmであった。
次に、エッチングマスクとして用いたポジ型レジストの除去を行った。この際用いた方法は溶剤を用いた方法であり、剥離液104(東京応化工業株式会社製)を用いてスプレー洗浄装置でポジ型レジストの除去を行った。
(第2の色の色フィルターの作製)
次に第2の色の色フィルター形成工程を行った。第2の色の色フィルターを設けるべく顔料分散ブルーを含有している感光性を有したブルーレジストを半導体基板全面に塗布した。この時、ブルーレジスト塗布前に、密着性を向上させるためHMDS処理をしても良い。
次に、フォトリソグラフィによりブルーレジストを選択的に露光して、現像を行い、ブルーフィルターパターンを形成した。このとき、ブルーレジストに用いた顔料は、それぞれカラーインデックスにてC.I.PB156、C.I.PV23であり、顔料濃度は50質量%であった。また、ブルーフィルターの膜厚は550nmであった。また、ブルーレジストの主成分である樹脂としては、感光性を持たせたアクリル系の樹脂を用いた。
次に、ブルーフィルター層を強固に硬化させるため、ホットプレートで230℃で6分間ベークを行い硬化を行った。この加熱工程を経た後は、第3の色の色フィルター形成工程等の工程を経ても、剥がれや、パターンの崩れ等が確認されなかった。ブルーフィルターは周囲を矩形性の良いグリーンフィルター及び隔壁に覆われており、矩形性良く形成されるため、底面及び周囲との間で密着性良く硬化することが確認された。
(第3の色の色フィルターの作製)
次に第3の色の色フィルター形成工程を行った。第3の色の色フィルターを設けるべく顔料分散レッドを含有している感光性を有したレッドレジストを半導体基板全面に塗布した。
次に、フォトリソグラフィによりレッドレジストを選択的に露光して、現像を行い、レッドフィルターパターンを形成した。このとき、レッドレジストに用いた顔料は、それぞれカラーインデックスにてC.I.PR254、C.I.PY139であり、顔料濃度は60質量%であった。また、レッドフィルターの膜厚は550nmであった。
次に、レッドフィルター層を強固に硬化させるため、ホットプレートで230℃で6分間ベークを行い硬化を行った。この際、第3の色の色フィルターは周囲を矩形性の良いグリーンフィルター及び隔壁に覆われており、矩形性良く形成されるため、底面及び周囲との間で、密着性良く硬化することが確認された。
上記の工程により、グリーンからなる第1の色の色フィルターの膜厚A(500nm)と、その下層の透明導電層B(50nm)、ブルーとレッドからなる第2及び第3の色の色フィルターである膜厚C(550nm)は、本発明に基づく膜厚となっている。また、本実施例では第2及び第3の色の色フィルター層の下層に透明導電層が膜厚45nmで構成されている。
次に、上記の工程で形成した色フィルター上にアクリル樹脂を含む塗布液を回転数1000rpmでスピンコートし、ホットプレートにて200℃で30分間の加熱処理を施して、樹脂を硬化し、平坦化層を形成した。
最後に、平坦化層上に、上述した公知の技術であるエッチバックによる転写方法を用いてレンズトップからレンズボトムまでの高さを500nmとなるマイクロレンズを形成し、実施例1の固体撮像素子を完成した。
以上のようにして得た固体撮像素子は、第1の色の色フィルターの下部に透明導電層が50nm形成され、第2、第3の色の色フィルターの下部に透明導電層が45nm形成されている。また、1色目であるグリーンフィルターは熱硬化性樹脂と少量の感光性硬化樹脂を用いているため固形分中の顔料の濃度を上げることが可能で、所望の分光特性が得られる膜厚が従来の感光性レジストを用いてパターニングする時よりも、色フィルターを薄膜化できた。また、第2および第3の色の色フィルターである、ブルー及びレッドは感光性樹脂を用いているが、従来工程と異なり第1の色の色フィルターは矩形性良くパターンが形成されてガイドパターンとなっている部分に穴埋めを行うだけである。そのため、ブルー及びレッドは感光性樹脂の割合を従来よりも少なくできる為、顔料濃度を上げて、膜厚が薄くとも求める分光特性を形成しやすくなる利点がある。これらの効果により、グリーン、ブルー、レッドの各色は従来工程より薄膜化が可能で、マイクロレンズから半導体基板までの距離が小さくなり、良好な感度を有するものとなった。
また、透明導電層の可視光の透過率は89%で、形成した隔壁の寸法が25nmであるため、本発明の規定を満足している。
また、エッチング時に半導体基板の上に透明導電層があり、エッチング時のエッチングストッパーの役割を果たし、導電性があるため、グリーンのドライエッチング時のプラズマダメージを逃す効果があり、半導体基板に形成した光電変換素子に対して、ドライエッチングの影響は観測されなかった。
更に、グリーンフィルターからなる第1の色の色フィルターの色フィルター用材料は、熱硬化で内部を固めており、さらに少量の感光性樹脂を用いて露光で表面を固めるため、溶剤耐性が向上した。顔料含有率の高いグリーンフィルター用材料を用いた場合、溶剤や他の色フィルター材料と反応して分光特性が変化することがある。そのため、上記の熱硬化及び光硬化を併用することで、溶剤耐性を向上することが可能となり、分光特性の変化を抑制する効果がある。
本実施例では、第1の色の色フィルターであるグリーンフィルターの硬化性、溶剤耐性を向上させるため、熱硬化樹脂と光硬化性樹脂を併用する材料を用いたが、求める分光特性によっては、顔料濃度や、経時特性などを重視して、熱硬化性樹脂のみ又は、光硬化性樹脂のみで材料を形成しても問題ない。
本実施例は、ブルー及びレッドで求める分光特性を得るために、グリーンよりも膜厚が厚く構成している。その為、図1(a)に示すようなグリーン、ブルー、レッドの高さがそろっている構造ではなく、ブルーとレッドが50nm程度突き出す構造となった。
<実施例2>
実施例2では、第2の実施形態で説明した構成の固体撮像素子に対応する実施例である。
実施例2の固体撮像素子は、透明導電層の上に透明樹脂層が形成されている構成である。透明樹脂層があることで、色フィルターの密着性が改善し、第1の色の色フィルターをエッチングする際に残渣が発生しにくくなる効果がある。
二次元的に配置された光電変換素子を備える半導体基板上に、透明導電層としてITO膜をマグネトロンスパッターを用いて、30nmの膜厚で成膜した。成膜温度は、加工を容易にする為、非結晶膜になるように常温付近で形成した。次に半導体基板の電極部分を開口するために、シュウ酸が5%程度含有しているエッチング液を用いて、ウェットエッチングを実施した。ウェットエッチング時は、ポジ型レジスト(OFPR−800:東京応化工業株式会社製)を750rpmの回転数でスピンコートした後、90℃で1分間プリベークを行った。これにより、エッチングマスクとなるポジ型レジストを膜厚2.0μmで塗布したサンプルを作製した。
このサンプルに対して、フォトマスクを介して露光するフォトリゾグラフィーを行った。露光装置は光源にi線の波長を用いた露光装置を用いた。ポジ型レジストは、紫外線照射により、化学反応を起こして現像液に溶解するようになった。
次に、2.38質量%のTMAH(テトラメチルアンモニウムハイドライド)を現像液として用いて現像工程を行い、半導体基板の電極部分に開口部を有するエッチングマスクを形成した。次にエッチング液に3分浸漬させてウェットエッチングを行い、純水で洗浄して、電極部分を開口させた。次に、エッチングマスクとして用いたポジ型レジストの除去を行った。この際用いた方法は溶剤を用いた方法であり、剥離液104(東京応化工業株式会社製)を用いてスプレー洗浄装置でポジ型レジストの除去を行った。次にホットプレートにて250度で30分間加熱処理を行い、ITOの膜を結晶化させた。この際、シート抵抗は50Ω/sq.以下であり、可視光の透過率が95%であった。
(透明樹脂層の形成)
半導体基板上に形成された透明導電層であるITO上に、アクリル樹脂を含む塗布液を回転数3000rpmでスピンコートし、ホットプレートにて230℃で6分間の加熱処理を施して、樹脂を硬化し、透明樹脂層を形成した。この際の透明樹脂層の膜厚は30nmで可視光の透過率は95%であった。
(第1の色の色フィルターの形成)
次に、第1の色の色フィルター(グリーンフィルター)の色フィルター用材料として、感光性硬化樹脂と熱硬化性樹脂を含ませたグリーン顔料分散液を1000rpmの回転数でスピンコートした。この1色目の色フィルター用材料のグリーンの顔料には、カラーインデックスにてC.I.PG58を用いており、その顔料濃度は70質量%、膜厚は500nmであった。
次に、グリーンフィルター用材料の硬化を実施するため、i線の露光装置であるステッパーを用いて全面の露光を行い、感光性成分の硬化を実施した。この感光性成分の硬化により、グリーンフィルターの表面の硬化を実施した。続いて、ホットプレートで230℃で6分間ベークを行い、グリーンフィルターの熱硬化を行った。
(第1の色の色フィルターの形成)
実施例1に示す方法にてエッチングマスクを形成したあとで、グリーンフィルター層及び透明樹脂層をエッチングした。エッチング条件は実施例1と同様の条件を用いているが、グリーンフィルターの下層に透明樹脂層があるため、グリーンフィルターの残渣が残留しにくい。その為、実施例1では、グリーンフィルターの残留分150nmの3倍の450nmをエッチングする時間調整を行うオーバーエッチングを行ったが、今回は2倍のグリーンフィルター300nmをエッチングする時間でオーバーエッチングを実施した。その結果、第2及び第3の色の色フィルター形成箇所は、グリーンフィルター及び透明樹脂層は全てエッチングされ、透明導電層は膜厚30nmからほぼ変化が無かった。その後、実施例1に示す方法にてエッチングマスクとして用いたポジ型レジストの除去を行った。
また、上記ドライエッチングの際に、グリーンフィルターパターンの側壁にグリーンフィルター用材料、透明樹脂層のアクリル樹脂の材料及び透明導電層であるITO材料と、ドライエッチングガスとの反応生成物を含んだ隔壁を形成した。この隔壁はドライエッチング条件の時間調整で、隔壁の寸法(横幅)を制御可能である。
上記ドライエッチング条件ではグリーンフィルターを500nmと透明樹脂層を30nmほどドライエッチングしたが、それらの反応生成物による隔壁の寸法は30nmであった。
(第2、第3の色の色フィルター等の作製)
実施例2では、この後、実施例1と同様の手法で第2、第3の色の色フィルター、上層の平坦化層及びマイクロレンズを形成し、実施例2の固体撮像素子を形成した。
上記の工程により、実施例2も実施例1同様に第1の色の色フィルターであるグリーンの膜厚500nmとその下層の透明樹脂層の膜厚30nm、またその下層の透明導電層の膜厚30nm、第2及び第3の色の色フィルターであるブルーとレッドの膜厚550nm、透明樹脂層と透明導電層の可視光の透過率(95%)、隔壁の寸法E(30nm)は、本発明の規定を満足している。また、本実施例では第2及び第3の色の色フィルター層の下層のみ透明樹脂層が無く、透明導電層のみが構成されている。
本実施例は、ブルー及びレッドで求める分光特性を得るために、グリーンよりも膜厚が厚く構成している。その為、図1(b)に示すようにグリーン、ブルー、レッドの高さがそろっている構造ではなく、ブルーとレッドが20nm程度突き出す構造となった。
本実施例では、実施例1に比べて透明導電層の膜厚を50nmから30nmに薄膜化している。透明樹脂層及び透明導電層の膜厚が厚くなればなるほど、色フィルターから光電変換素子までの距離が長くなり、混色などにより受光感度が低下しやすくなるためである。
また、透明樹脂層及び、透明導電層の可視光の光透過率は100%ではないため、厚くなると透過率が低下しやすいためである。ドライエッチングのプラズマダメージの低下及び色フィルターの残渣除去の観点からは、透明樹脂層及び透明導電層の膜厚が厚いほうが、製造工程上の条件範囲が広がるため、混色の発生や透過率の低下により受光感度が悪化しない範囲で膜厚を形成することが可能となる。
<実施例3>
実施例3は、第3の実施形態で説明した構成の固体撮像素子に対応する実施例である。
実施例3に示す固体撮像素子は、実施例1の半導体基板と透明導電層の間に透明樹脂層がある構成である。透明樹脂層があることにより、半導体基板の平坦化がより可能となるため、ITOなどの透明導電層を性能良く形成しやすくなる。また、半導体基板と透明導電層が直接接していない為、色フィルターのドライエッチング時のプラズマダメージが半導体基板に影響しにくい特徴がある。
(透明樹脂層の形成)
半導体基板上に、アクリル樹脂を含む塗布液を回転数2000rpmでスピンコートし、ホットプレートにて200℃で20分間の加熱処理を施して、樹脂を硬化し、透明樹脂層を形成した。この際の透明樹脂層の膜厚は60nmで可視光の透過率は91%であった。
次に透明樹脂層上に、透明導電層としてITO膜をマグネトロンスパッターを用いて、30nmの膜厚で成膜した。成膜温度は、加工を容易にする為、非結晶膜になるように常温付近で形成した。次に半導体基板の電極部分を開口するために、シュウ酸が5%程度含有しているエッチング液を用いて、ウェットエッチングを実施した。ウェットエッチング時は、ポジ型レジスト(OFPR−800:東京応化工業株式会社製)を750rpmの回転数でスピンコートした後、90℃で1分間プリベークを行った。これにより、エッチングマスクとなるポジ型レジストを膜厚2.0μmで塗布したサンプルを作製した。
このサンプルに対して、フォトマスクを介して露光するフォトリゾグラフィーを行った。露光装置は光源にi線の波長を用いた露光装置を用いた。ポジ型レジストは、紫外線照射により、化学反応を起こして現像液に溶解するようになった。
次に、2.38質量%のTMAH(テトラメチルアンモニウムハイドライド)を現像液として用いて現像工程を行い、半導体基板の電極部分に開口部を有するエッチングマスクを形成した。次にエッチング液に3分浸漬させてウェットエッチングを行い、純水で洗浄して、電極部分を開口させた。次に、エッチングマスクとして用いたポジ型レジストの除去を行った。この際用いた方法は溶剤を用いた方法であり、剥離液104(東京応化工業株式会社製)を用いてスプレー洗浄装置でポジ型レジストの除去を行った。次にホットプレートにて250度で30分間加熱処理を行い、ITOの膜を結晶化させた。この際、シート抵抗は50Ω/sq.以下であり、可視光の透過率が95%であった。
(第1の色の色フィルターの形成)
次に、第1の色の色フィルター(グリーンフィルター)の色フィルター用材料として、感光性硬化樹脂と熱硬化性樹脂を含ませたグリーン顔料分散液を1000rpmの回転数でスピンコートした。この1色目の色フィルター用材料のグリーンの顔料には、カラーインデックスにてC.I.PG58を用いており、その顔料濃度は70質量%、膜厚は500nmであった。
次に、グリーンフィルター用材料の硬化を実施するため、i線の露光装置であるステッパーを用いて全面の露光を行い、感光性成分の硬化を実施した。この感光性成分の硬化により、グリーンフィルターの表面の硬化を実施した。続いて、ホットプレートで230℃で6分間ベークを行い、グリーンフィルターの熱硬化を行った。
実施例3では、この後実施例1と同様の手法で第1の色の色フィルターをドライエッチングでパターン加工した後、第2及び第3の色の色フィルター、上層の平坦化層及びマイクロレンズを形成し、実施例3の固体撮像素子を形成した。
上記の工程により、実施例3も実施例1同様に第1の色の色フィルターであるグリーンの膜厚A(500nm)とその下層の透明導電層の膜厚B(30nm)、第2及び第3の色の色フィルターであるブルーとレッドの膜厚C(550nm)、可視光の透過率D(95%)、隔壁の寸法E(30nm)は、本発明の規定を満足している。
本実施例の効果により、透明樹脂層で平坦化することにより、透明導電層を薄膜でも品質良く形成できており、ドライエッチングによるプラズマダメージは半導体基板に影響を与えない効果がある。また、副次的効果であるが、透明導電層の下層に透明樹脂層があることにより、透明樹脂層をウェットエッチングなどの公知の方法と除去することで、結晶化したITOなどの硬い透明導電層が容易に除去できる特徴がある。そのため、工程のやり直しなどプロセスマージンが広がる利点がある。
本実施例は、ブルー及びレッドで求める分光特性を得るために、グリーンよりも膜厚が厚く構成している。その為、図15に示すようにグリーン、ブルー、レッドの高さがそろっている構造ではなく、ブルーとレッドが50nm程度突き出す構造となった。
<従来法>
特許文献1に記載の従来法に基づき、フォトリソグラフィプロセスによって各色の色フィルターパターンを形成した。
但し、グリーン、ブルー、レッドの三色の膜厚を700nmと薄膜に設定し、各色の色フィルター全部の下層に透明樹脂層(100nm)を設けた。
その他は、第1実施例と同様にして、従来法による固体撮像素子を製造した。
(評価)
以上の各実施例において、透明樹脂層の有無及び、透明樹脂層の形成位置の違い、透明樹脂層、透明導電層の高さ(厚み)の違いがあるが、グリーンの膜厚(500nm)とその下層の透明導電層の膜厚(30nmから50nm)、透明樹脂層の膜厚(30nm)、第2及び第3の色の色フィルターであるブルーとレッドの膜厚(550nm)は、本発明で規定する膜厚を満足している。
このような各実施例の固体撮像素子の赤色信号、緑色信号及び青色信号の強度について、従来法のフォトリソグラフィでグリーン、ブルー、レッドの三色の膜厚を700nmで分光特性を合わせた構造で作製した固体撮像素子の赤色信号、緑色信号及び青色信号の強度と比較評価をした。
以下の表1に図1、図11及び図15に示す上記第1から第3の実施形態係る固体撮像素子1,2,3に対応する実施例1から3に係る固体撮像素子における各色の信号強度の評価結果を表1に示す。表1に示す数値は、実施例1から3に係る固体撮像素子における各色の信号強度を従来法における固体撮像素子における各色の信号強度で規格化された値である。
Figure 2019111919
表1に示すように、ドライエッチング法を用いて、グリーンフィルターを薄膜化及び矩形性良く形成して、さらにドライエッチングで発生した反応生成物を隔壁として形成した実施例1から実施例3の固体撮像素子では、従来法のフォトリソグラフィで形成した場合と比較して、各色の信号強度が増加した。これは、隔壁により、画素の斜め方向からの入斜光がカラーフィルタを通過して他のカラーフィルタパターンに向かう場合に、隔壁により入射が遮られるか、又は光路が変わるためである。このため、他のカラーフィルタパターンに向かう光が他の光電変換素子に入射することが抑制され、混色が抑制される。また、隔壁により、他色からの移染も隔壁によってブロックされるため、混色が抑制される。
実施例1から実施例3の作製方法でOCF形成後に分光特性の評価をした結果、分光特性の変化は観察されなかった。これは、実施例1から3の熱硬化及び光硬化により、薄膜化したグリーンフィルターを十分に硬化しており、溶剤耐性を満たしていることを示している。薄膜化したグリーンフィルターでフォトリソグラフィ形成のグリーンフィルター膜厚(700nm)と同等の色分光を行う為に、顔料含有率の高いグリーンフィルター用材料を使用したが分光特性の変化は発生せず、薄膜化の効果によりマイクロレンズトップからデバイスまでの距離が短くなりグリーンの信号強度が増加した。
また、薄膜化によっても斜め方向からの入斜光が色フィルターを通過して他の色フィルターパターンに向かう確率が低下し、他の色フィルターパターンに向かう光が他の光電変換素子に入射することが抑制され、混色を抑制したため信号強度が増加した。
また、実施例1から実施例3の手法を用いて、透明導電層及び透明樹脂層の形成位置の変更により若干の受光感度の変化が確認された。しかし、どの構成の実施例に置いても、ドライエッチングによるプラズマダメージの受光感度への影響は確認されなかった。
第2の色の色フィルター15及び第3の色の色フィルター16の高さが第1の色の色フィルター14と透明樹脂層30および透明導電層12の膜厚を足した値より低い高さで色フィルターを形成した場合においても、膜厚を薄くした分、顔料含有率を高くする事で、従来手法のフォトリソグラフィで形成した場合と比較して、信号強度が増加した。
以上、各実施形態により本発明を説明したが、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本発明の範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
10・・・半導体基板
11・・・光電変換素子
12・・・透明導電層
13・・・平坦化層
14・・・第1の色の色フィルター
15・・・第2の色の色フィルター
16・・・第3の色の色フィルター
17・・・隔壁
18・・・マイクロレンズ
19・・・マイクロレンズ母型層
20・・・エッチングマスク
30・・・透明樹脂層

Claims (19)

  1. 複数の光電変換素子を二次元的に配置した半導体基板と、
    上記半導体基板上に形成され、上記複数の光電変換素子に対応させて複数色の色フィルターを予め設定した規則パターンで二次元的に配置した色フィルター層と、
    上記複数色から選択した第1の色の色フィルターと半導体基板との間に配置された透明導電層と、
    を備えることを特徴する固体撮像素子。
  2. 上記透明導電層のシート抵抗をFとした場合に下記(1)式を満足することを特徴とする請求項1に記載の固体撮像素子。
    F<100000 Ω/□ ・・・(1)
  3. 上記透明導電層は、珪素、炭素、酸素、水素、錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、カドミウム、ニオブ、タンタル、ハフニウム、銀、フッ素から選ばれる少なくとも1種類を含有する化合物が単層又は複層で形成されることを特徴とする請求項1又は請求項2に記載の固体撮像素子。
  4. 上記透明導電層及び上記第1の色の色フィルターは、上記透明導電層のエッチングレートをTとし、上記第1の色の色フィルターのエッチングレートをGとしたとき、フッ素、酸素、水素、硫黄、炭素、臭素、塩素、窒素、アルゴン、ヘリウム、キセノン、クリプトンから選ばれる少なくとも1種類を含有するガスを用いたドライエッチングにおいて、下記(2)式を満足する材料構成となっていることを特徴とする請求項1から請求項3のいずれか1項に記載の固体撮像素子。
    3≦G/T ・・・(2)
  5. 上記複数色の色フィルターの間に配置した隔壁を更に備えることを特徴する請求項1から請求項4のいずれか1項に記載した固体撮像素子。
  6. 上記隔壁は、亜鉛、銅、ニッケル、珪素、炭素、酸素、水素、窒素、臭素、塩素、インジウム、錫から選ばれる少なくとも1種類を含有することを特徴とする請求項5に記載の固体撮像素子。
  7. 上記第1の色の色フィルターの膜厚をA[nm]、上記透明導電層の膜厚をB[nm]、上記第1の色以外の色の色フィルターの膜厚をC[nm]、上記透明導電層の可視光の透過率をD[%]、上記隔壁の寸法をE[nm]とした場合に、下記(3)〜(7)式を満足することを特徴とする請求項5又は請求項6に記載の固体撮像素子。
    200[nm]≦A≦700[nm] ・・・(3)
    0[nm]<B≦200[nm] ・・・(4)
    A+B−200[nm]≦C≦A+B+200[nm] ・・・(5)
    D≧80[%]・・・(6)
    E≦200[nm]・・・(7)
  8. 上記透明導電層と上記第1の色の色フィルターとの間に、更に透明樹脂層を備えることを特徴する請求項5から請求項7のいずれか1項に記載の固体撮像素子。
  9. 上記透明導電層と上記半導体基板との間に、更に透明樹脂層を備えることを特徴する請求項2から請求項6のいずれか1項に記載の固体撮像素子。
  10. 上記透明樹脂層は珪素、炭素、酸素、水素から選ばれる少なくとも1種類を含有することを特徴とする請求項8又は請求項9に記載の固体撮像素子。
  11. 上記第1の色の色フィルターには、熱硬化性樹脂を含有することを特徴とする請求項1から請求項10のいずれか1項に記載の固体撮像素子。
  12. 上記第1の色の色フィルターには、熱硬化性樹脂及び光硬化性樹脂を含有し、光硬化性樹脂の含有量よりも熱硬化性樹脂の含有量の方が多いことを特徴とする請求項1から請求項10のいずれか1項に記載の固体撮像素子。
  13. 上記第1の色の色フィルターには、光硬化性樹脂を含有することを特徴とする請求項1から請求項10のいずれか1項に記載の固体撮像素子。
  14. 上記第1の色の色フィルターは、着色剤である顔料の濃度が50質量%以上であることを特徴とする請求項1から請求項13のいずれか1項に記載の固体撮像素子。
  15. 上記色フィルター層上に、上記光電変換素子のそれぞれに対応して二次元的に配置されたマイクロレンズを有し、上記マイクロレンズのレンズトップからレンズボトムまでの高さが300nm以上800nm以下の範囲であることを特徴とする請求項1から請求項14のいずれか1項に記載の固体撮像素子。
  16. 上記複数色の色フィルターのうち、上記第1の色の色フィルターの専有面積が一番広いことを特徴とする請求項1から請求項15のいずれか1項に記載の固体撮像素子。
  17. 複数の光電変換素子を二次元的に配置した半導体基板に透明導電層を形成し、上記透明導電層上に第1の色の色フィルター用の塗布液を塗布し硬化させて透明導電層及び第1の色の色フィルター層をこの順に形成した後、上記第1の色の色フィルターの配置位置以外の上記第1の色の色フィルター層部分をドライエッチングによって除去して第1の色の色フィルターをパターン形成する第1の工程と、
    上記第1の色の色フィルターをパターン形成する第1の工程において、上記第1の色の色フィルター層をドライエッチングする際に生じる色フィルター層とドライエッチングガスの副生成物を、上記第1の色の色フィルターの側壁に隔壁として形成する第2の工程と、
    第2の工程後に、第1の色の以外の色の色フィルターを、フォトリソグラフィによってパターニングして形成する第3の工程と、
    を備えることを特徴とする固体撮像素子の製造方法。
  18. 複数の光電変換素子を二次元的に配置した半導体基板に透明導電層を形成し、上記透明導電層上に透明樹脂層を形成し、第1の色の色フィルター用の塗布液を塗布し硬化させて、透明導電層、透明樹脂層及び第1の色の色フィルター層をこの順に形成した後、第1の色の色フィルターの配置位置以外の上記第1の色の色フィルター層部分及び該第1の色の色フィルター層部分の下層に位置する透明樹脂層をドライエッチングによって除去して第1の色の色フィルターをパターン形成する第1の工程と、
    上記第1の色の色フィルターをパターン形成する第1の工程において、上記第1の色の色フィルター層及びその除去する色フィルター層部分の下層に位置する透明樹脂層をドライエッチングする際に生じる色フィルター層及び透明樹脂層とドライエッチングガスの副生成物を、上記第1の色の色フィルターの側壁に隔壁として形成する第2の工程と、
    第2の工程後に、第1の色以外の色の色フィルターを、フォトリソグラフィによってパターニングして形成する第3の工程と、
    を備えることを特徴とする固体撮像素子の製造方法。
  19. 上記第1の色の色フィルターの硬化時の加熱温度が170℃以上270℃以下であることを特徴とする請求項17又は請求項18に記載の固体撮像素子の製造方法。
JP2019558237A 2017-12-06 2018-12-05 固体撮像素子およびその製造方法 Active JP7508779B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017234559 2017-12-06
JP2017234559 2017-12-06
PCT/JP2018/044637 WO2019111919A1 (ja) 2017-12-06 2018-12-05 固体撮像素子およびその製造方法

Publications (2)

Publication Number Publication Date
JPWO2019111919A1 true JPWO2019111919A1 (ja) 2020-12-24
JP7508779B2 JP7508779B2 (ja) 2024-07-02

Family

ID=66751615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019558237A Active JP7508779B2 (ja) 2017-12-06 2018-12-05 固体撮像素子およびその製造方法

Country Status (3)

Country Link
JP (1) JP7508779B2 (ja)
TW (1) TW201931615A (ja)
WO (1) WO2019111919A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335557A (ja) * 1989-07-03 1991-02-15 Mitsubishi Electric Corp カラーフィルタの製造方法
JP2005079338A (ja) * 2003-08-29 2005-03-24 Matsushita Electric Ind Co Ltd 固体撮像装置とその製造方法
JP2008103478A (ja) * 2006-10-18 2008-05-01 Fujifilm Corp 固体撮像装置及びその製造方法
JP2009103746A (ja) * 2007-10-19 2009-05-14 Fujifilm Corp カラーフィルタ及びその製造方法並びに固体撮像装置
JP2013076859A (ja) * 2011-09-30 2013-04-25 Fujifilm Corp カラーフィルタの製造方法、固体撮像素子の製造方法、及び固体撮像素子
JP2013088378A (ja) * 2011-10-21 2013-05-13 Sony Corp ケミカルセンサ、ケミカルセンサモジュール、生体分子検出装置及び生体分子検出方法
JP2016152265A (ja) * 2015-02-16 2016-08-22 株式会社東芝 固体撮像素子
WO2016208326A1 (ja) * 2015-06-25 2016-12-29 ソニー株式会社 光電変換素子、撮像素子、積層型撮像素子及び撮像装置
WO2017013924A1 (ja) * 2015-07-22 2017-01-26 ソニーセミコンダクタソリューションズ株式会社 撮像装置及びその製造方法
WO2017086321A1 (ja) * 2015-11-16 2017-05-26 凸版印刷株式会社 固体撮像素子の製造方法及び固体撮像素子、並びにカラーフィルタの製造方法及びカラーフィルタ
JP2017098321A (ja) * 2015-11-19 2017-06-01 凸版印刷株式会社 固体撮像素子および電子機器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286906A (ja) 2001-03-23 2002-10-03 Mitsubishi Chemicals Corp 反射防止方法及び反射防止構造並びに反射防止構造を有する反射防止構造体及びその製造方法
JP2010015072A (ja) 2008-07-07 2010-01-21 Hitachi High-Technologies Corp カラーフィルタ基板の修復方法とその装置
JP2012114159A (ja) 2010-11-22 2012-06-14 Panasonic Corp 固体撮像装置とその製造方法
JP2013012615A (ja) 2011-06-29 2013-01-17 Fujifilm Corp 固体撮像素子及びその製造方法、それに用いる固体撮像素子用の透明導電性膜
JP2013041141A (ja) 2011-08-17 2013-02-28 Asahi Glass Co Ltd 撮像装置、固体撮像素子、撮像装置用レンズ、及び近赤外光カットフィルタ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335557A (ja) * 1989-07-03 1991-02-15 Mitsubishi Electric Corp カラーフィルタの製造方法
JP2005079338A (ja) * 2003-08-29 2005-03-24 Matsushita Electric Ind Co Ltd 固体撮像装置とその製造方法
JP2008103478A (ja) * 2006-10-18 2008-05-01 Fujifilm Corp 固体撮像装置及びその製造方法
JP2009103746A (ja) * 2007-10-19 2009-05-14 Fujifilm Corp カラーフィルタ及びその製造方法並びに固体撮像装置
JP2013076859A (ja) * 2011-09-30 2013-04-25 Fujifilm Corp カラーフィルタの製造方法、固体撮像素子の製造方法、及び固体撮像素子
JP2013088378A (ja) * 2011-10-21 2013-05-13 Sony Corp ケミカルセンサ、ケミカルセンサモジュール、生体分子検出装置及び生体分子検出方法
JP2016152265A (ja) * 2015-02-16 2016-08-22 株式会社東芝 固体撮像素子
WO2016208326A1 (ja) * 2015-06-25 2016-12-29 ソニー株式会社 光電変換素子、撮像素子、積層型撮像素子及び撮像装置
WO2017013924A1 (ja) * 2015-07-22 2017-01-26 ソニーセミコンダクタソリューションズ株式会社 撮像装置及びその製造方法
WO2017086321A1 (ja) * 2015-11-16 2017-05-26 凸版印刷株式会社 固体撮像素子の製造方法及び固体撮像素子、並びにカラーフィルタの製造方法及びカラーフィルタ
JP2017098321A (ja) * 2015-11-19 2017-06-01 凸版印刷株式会社 固体撮像素子および電子機器

Also Published As

Publication number Publication date
TW201931615A (zh) 2019-08-01
JP7508779B2 (ja) 2024-07-02
WO2019111919A1 (ja) 2019-06-13

Similar Documents

Publication Publication Date Title
JP6658768B2 (ja) 固体撮像素子の製造方法及び固体撮像素子
US20200258929A1 (en) Solid-state imaging device and method of manufacturing the same
US10998363B2 (en) Solid-state imaging device and method of producing solid-state imaging device
JP7119557B2 (ja) 固体撮像素子及び固体撮像素子の製造方法
KR102471568B1 (ko) 고체 촬상 소자 및 그 제조 방법
JP5210829B2 (ja) カラーフィルタの製造方法及び固体撮像装置
JP2010134353A (ja) カラーフィルタの製造方法及び固体撮像装置
JP7508779B2 (ja) 固体撮像素子およびその製造方法
JP7310130B2 (ja) 固体撮像素子及びその製造方法
JP6838394B2 (ja) 固体撮像素子およびその製造方法
JP6809215B2 (ja) 固体撮像素子およびその製造方法
JP2020202497A (ja) 固体撮像素子及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240603