JP7119557B2 - 固体撮像素子及び固体撮像素子の製造方法 - Google Patents

固体撮像素子及び固体撮像素子の製造方法 Download PDF

Info

Publication number
JP7119557B2
JP7119557B2 JP2018094105A JP2018094105A JP7119557B2 JP 7119557 B2 JP7119557 B2 JP 7119557B2 JP 2018094105 A JP2018094105 A JP 2018094105A JP 2018094105 A JP2018094105 A JP 2018094105A JP 7119557 B2 JP7119557 B2 JP 7119557B2
Authority
JP
Japan
Prior art keywords
color filter
color
layer
solid
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018094105A
Other languages
English (en)
Other versions
JP2019200279A (ja
Inventor
聡 高橋
知宏 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2018094105A priority Critical patent/JP7119557B2/ja
Publication of JP2019200279A publication Critical patent/JP2019200279A/ja
Application granted granted Critical
Publication of JP7119557B2 publication Critical patent/JP7119557B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は、CCD、CMOS等の光電変換素子を使用した固体撮像素子に関する技術である。
デジタルカメラ等に搭載されるCCD(電荷結合素子)やCMOS(相補型金属酸化膜半導体)等の固体撮像素子は、近年、高画素化、微細化が進んでおり、その画素は、特に微細なものでは1.4μm×1.4μmを下回るレベルの画素サイズとなっている。
固体撮像素子は、光電変換素子と一対の色フィルターパターンを有し、カラー化を図っている。また、固体撮像素子の光電変換素子が光電変換に寄与する領域(開口部)は、固体撮像素子のサイズや画素数に依存する。その開口部は、固体撮像素子の全面積に対し、20~50%程度に限られている。開口部が小さいことはそのまま光電変換素子の感度低下につながることから、固体撮像素子では感度低下を補うために光電変換素子上に集光用のマイクロレンズを形成することが一般的である。
また、近年、裏面照射の技術を用いたイメージセンサが開発されており、光電変換素子の開口部を固体撮像素子の全面積の50%以上にすることができるようになっている。しかしながら、この場合、色フィルターに隣接する色フィルターの漏れ光が入る可能性があるため、適切なサイズ、形状のマイクロレンズを形成することが必要となっている。
このような色フィルターパターンを固体撮像素子上に形成する方法としては、通常はフォトリソグラフィプロセスによりパターンを形成する手法が用いられる(例えば特許文献1)。
また、色フィルターパターンを固体撮像素子上に形成する他の方法としては、全ての色フィルターパターンをドライエッチングによって形成する方法が用いられる(例えば特許文献2)。
また、近年、800万画素を超える高精細CCD撮像素子への要求が大きくなり、これら高精細CCDにおいて付随する色フィルターパターンの画素サイズとして1.4μm×1.4μmを下回るレベルの撮像素子への要求が大きくなっている。しかしながら、画素サイズを小さくすることにより、フォトリソグラフィプロセスにより形成された色フィルターパターンの解像性が不足し、固体撮像素子の特性に悪影響を及ぼすという問題が生じている。一辺が1.4μm以下、あるいは1.1μmや0.9μm近傍の固体撮像素子では、解像性の不足がパターンの形状不良に起因する色むらとなって現れる。
また、画素の微細化に伴い、カラーフィルタの薄膜化も必要とされる。これは、カラーフィルタの画素サイズが小さくなっても、膜厚が厚いままであると、解像性が低下し、また、受光素子までの距離が相対的に長くなり、集光効率が低下する傾向がある。薄膜化したカラーフィルタであれば、解像度が高く、生産性に優れ、かつ、集光のために設けられるマイクロレンズと受光素子との距離が近くなるのでデバイス特性が向上し得る。しかし、膜厚が薄くなっても分光特性は維持される必要がある。そこで、着色材含有感光性組成物の全固形分中における着色材含有量を増加させる試みがなされている。
しかし、着色材含有量を増加させた感光性組成物を用いて、画素パターンを作成すると、感光性組成物中の着色材を増加させた分、感光性成分の量が少なくなり、光重合反応によるアルカリ耐性の向上が不十分になり、アルカリ液による現像処理後の四角形状の画素パターン上部の角が丸くなりやすく、断面形状の矩形性が低下する。画素上部の角が丸くなると隣接画素との間に隙間ができる。
また、隣接画素との間に隙間があると、光が画素の上面から垂直に入射した際に、隙間のところで光路が曲げられ、隣接画素に入射してしまい、本来光が入るべき画素の感度は低下する。また、隣接画素に光が入射することで混色が起き、分光感度特性が低下し、ノイズが大きく、画質劣化といった問題が起こる。また、隣接部の厚みが薄くなり色特性が悪くなる。従って、パターン上部の形状を角型にした矩形性の良い断面形状が求められている。
色フィルターパターンの高精細化により、色フィルターパターンの膜厚は、製造工程上の問題だけではなく、固体撮像素子としての特性にも影響する。色フィルターパターンの膜厚が厚い場合、斜め方向から入射した光が特定色フィルターによって分光されたのち、隣接する他の色フィルターパターン部及び光電変換素子に入射する場合がある。この場合、混色が生じてしまう問題が発生する。この混色の問題は、色フィルターパターンの画素サイズが小さくなり、画素サイズと膜厚とのアスペクト比が大きくなるにつれて顕著になる。また、入射光の混色という問題は、光電変換素子が形成された基板上からマイクロレンズまでに形成される材料の膜厚により、光電変換素子までの距離が長くなる場合にも顕著に生じる。このため、マイクロレンズ、色フィルターパターンやその下部に形成される平坦化層等の膜厚の薄膜化が重要となる。
斜め方向からの入射等による混色防止のために、各色のカラーフィルタの間に光を反射や屈折させ、他の画素に入射する光を遮る隔壁を形成する方法が知られている。液晶ディスプレイ等の光学表示デバイスに用いられるカラーフィルタでは、黒色の材料によるブラックマトリクス(BM)構造による隔壁が一般的に知られている。しかし、固体撮像素子の場合、各カラーフィルタパターンのサイズが数μm以下である。このため、一般的なブラックマトリクスの形成方法を用いて隔壁を形成した場合、パターンサイズが大きい為、画素欠陥のように一部の画素がBMで塗りつぶされてしまい解像性が低下してしまう。
高精細化が進んでいる固体撮像素子の場合、求められる隔壁のサイズは数百nmサイズ、より好ましくは幅200nm以下程度であり、一つの画素サイズが1μm程度となるまで画素サイズの高精細化が進んでいる。この為、混色を抑制できる遮光性能を満たせるのであれば、100nm以下の膜厚が望ましい。このサイズの隔壁形成には、BMを用いたフォトリソグラフィ法では困難である。このため、アルミニウム、タングステン、チタンなどの金属やSiO等の無機物やこれらを複合させて用い、蒸着、CVD、スパッタ等による成膜や、エッチング技術を用いて格子パターン上に削ることによって形成する方法で隔壁が形成されている。しかしながら、このような方法では、製造装置や製造工程の複雑化等で製造コストが非常に高価となってしまうという問題がある。
以上のことから、固体撮像素子の画素数を増やすためには、色フィルター層のパターンの高精細化が必要であり、色フィルター層の薄膜化や混色防止方法が重要となる。
上述のように、従来の色フィルター材料に感光性を持たせてフォトリソグラフィにより形成される色フィルター層のパターン形成は、画素の寸法の微細化が進むにつれて、色フィルター層の膜厚の薄膜化も求められる。この場合、色フィルター材料中の顔料成分の含有割合が増えることから、感光性成分を十分な量含有できず、解像性が得られない、矩形性が悪い、分光感度特性が低下しやすいという問題があり、固体撮像素子の特性を低下させる課題があった。
そこで、色フィルターパターンの微細化及び薄膜化を行うために、特許文献2の技術が提案されている。特許文献2には、色フィルター用材料中の顔料濃度を向上できるように、感光性成分を含有しなくてもパターニングが可能なドライエッチングにより色フィルターパターンを形成することが記載されている。これらのドライエッチングを用いる技術により、顔料濃度を向上させることが可能となり、薄膜化を行っても十分な分光特性を得られる色フィルターパターンが作製可能となる。
特開平11-68076号公報 特許第4905760号公報
しかしながら、本発明の発明者らが、特許文献2に記載の色フィルターパターンの製造方法を検討したところ、第一の色フィルターとしてグリーンを用いた場合、ドライエッチング後のエッチングマスク洗浄工程で他溶剤と反応して針状結晶が発生する場合や、第二以降の色フィルターであるブルー及びレッドの色フィルターを隣接する領域に形成した際、混色による針状結晶が発生することが判明した。
本発明は、上述のような点に鑑みてなされたものであって、各色フィルター形成時の針状結晶の発生を抑制し、各色フィルター材の混色を抑制し、高精細で感度の良い固体撮像素子を提供することを目的とする。
上記目的を達成するために、本発明の一態様による固体撮像素子は、二次元的に配置された複数の光電変換素子を有する半導体基板と、前記半導体基板上に形成され、前記複数の光電変換素子に対応させて複数色の色フィルターが予め設定した規則パターンで二次元
的に配置された色フィルター層と、前記複数色の色フィルターと前記半導体基板との間に形成された平坦化層と、前記複数色の色フィルター間に配置された隔壁と、前記色フィルター層上に形成され、前記複数色の色フィルターのそれぞれに対応させて二次元的に配置されたマイクロレンズと、前記複数色から選択した第1色の色フィルターと前記マイクロレンズとの間のみに配置された透明保護層と、を備え、前記平坦化層は錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、ニオブ、タンタル、ハフニウム及び銀のうち少なくとも1種類を含有し、前記平坦化層の膜厚は0nmを超過し200nm以下の範囲内であり、且つ前記透明保護層の膜厚は5nm以上20nm以下の範囲内であることを特徴とする。
また、上記目的を達成するために、本発明の他の一態様による固体撮像素子は、二次元的に配置された複数の光電変換素子を有する半導体基板と、前記半導体基板上に形成され、前記複数の光電変換素子に対応させて複数色の色フィルターが予め設定した規則パターンで二次元的に配置された色フィルター層と、前記複数色の色フィルターそれぞれの下層に形成され、前記複数色から選択した第1色の色フィルター以外の色フィルターの下層において膜厚が変化している平坦化層と、前記複数色の色フィルター間に配置された隔壁と、前記色フィルター層上に形成され、前記複数色の色フィルターのそれぞれに対応させて二次元的に配置されたマイクロレンズと、前記第1色の色フィルターと前記マイクロレンズとの間のみに配置された透明保護層と、を備え、前記平坦化層は錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、ニオブ、タンタル、ハフニウム及び銀のうち少なくとも1種類を含有することを特徴とする。
また、本発明の一態様による固体撮像素子の製造方法は、複数の光電変換素子を二次元的に配置した半導体基板上に平坦化層を形成し、次に前記平坦化層上に塗布した塗布液を熱硬化させて第1色の色フィルターを形成し、次に前記第1色の色フィルターの上部に透明保護層を形成し、前記透明保護層を形成した後、前記第1色の色フィルターの一部をドライエッチングによって除去して、前記透明保護層が上部に形成された前記第1色の色フィルターをパターン形成する第1の工程と、前記第1の工程において前記第1色の色フィルターをドライエッチングする際に生じた、前記第1色の色フィルターとドライエッチングガスとの反応生成物により、前記第1色の色フィルターの外周囲に隔壁を形成する第2の工程と、前記第2の工程後に、前記半導体基板上に前記第1色の色フィルターと異なる他の色の色フィルターを、フォトリソグラフィによってパターン形成する第3の工程と、前記第3の工程後に、前記第1色の色フィルター及び前記他の色の色フィルターの上部にマイクロレンズを形成する第4の工程と、を備え、前記第1の工程において、錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、ニオブ、タンタル、ハフニウム及び銀のうち少なくとも1種類を含有する前記平坦化層を形成し、前記平坦化層の膜厚は0nmを超過し200nm以下の範囲内に形成し、且つ前記透明保護層の膜厚は5nm以上20nm以下の範囲内に形成することを特徴とする。
本発明の各態様によれば、各色フィルターの薄膜化及び色フィルター間の隔壁によって、混色を抑制でき、透明保護層によりドライエッチング時のプロセス耐性及び、各色フィルター形成時の混色を抑制することで針状結晶の発生を低減し、パターン配置した全ての色フィルターが高感度化した高精細な固体撮像素子を提供することが可能となる。
本発明の第1の実施形態に係る固体撮像素子の部分断面図である。 本発明の第1の実施形態に係る固体撮像素子の色フィルター配列の部分平面図である。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、平坦化層形成工程から透明保護層形成工程までを示す図である。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、感光性樹脂材料塗布工程から露光現像工程までを示す図である。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、ドライエッチング工程からエッチングマスク除去工程までを示す図である。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、第2の色フィルター塗布工程から第2の色フィルターの加熱硬化までを示す図である。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、第3の色フィルター塗布工程から第3の色フィルターの加熱硬化工程までを示す図である。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、マイクロレンズ形成工程を示す図である(その1)。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、マイクロレンズ形成工程を示す図である(その2)。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、マイクロレンズを熱フローを用いて形成する工程を示す図である(その1)。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、マイクロレンズを熱フローを用いて形成する工程を示す図である(その2)。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、マイクロレンズをグレートーンマスクを用いて形成する工程を示す図である(その1)。 本発明の第1の実施形態に係る固体撮像素子の製造工程断面図であって、マイクロレンズをグレートーンマスクを用いて形成する工程を示す図である(その2)。 本発明の第2の実施形態に係る固体撮像素子の部分断面図である。
以下、本発明の実施形態について図面を参照しながら説明する。
ここで、図面は模式的なものであり、色フィルター等の各層の厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なる。また、以下に示す各実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造等が下記のものに特定されるものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
<第1実施形態>
(固体撮像素子の構成)
本発明の第1実施形態について、図1から図8を用いて説明する。
図1に示すように、本実施形態に係る固体撮像素子1は、二次元的に配置された複数の光電変換素子11を有する半導体基板10と、半導体基板10の上方に配置された複数のマイクロレンズ18と、半導体基板10とマイクロレンズ18との間に設けられた色フィルター層100及び隔壁30とを備えている。色フィルター層100は、複数色の色フィルターで構成されている。具体的には、色フィルター層100は、第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16が所定の規則パターンで配置されて構成される。また、隔壁30は、第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16のそれぞれの間に形成される。また、固体撮像素子1において、色フィルター層を構成する複数色の色フィルターの内、第1の色フィルター14の上面にのみ、透明保護層13が構成されている。
図1は、第1の色フィルター14の下部にのみ平坦化層12が存在する構成の固体撮像素子1を図示している。また平坦化層12は、第2の色フィルター15及び第3の色フィルター16の下部に構成されていても良い。また、図1では色フィルター層100と複数のマイクロレンズ18からなるマイクロレンズ群180とが連続して構成されているが、本発明はこれに限られず、色フィルター層100とマイクロレンズ群180との間に平坦化層12が構成されていてもよい。また、図1に示すマイクロレンズ18は、後述するエッチバック方式で形成されていることにより、色フィルター層100とマイクロレンズ群180とが連続している構成となっている。
以下、本実施形態に係る固体撮像素子1の説明にあたり、製造工程上最初に形成し、且つ色フィルター層100における占有面積が最も広い色フィルターを第1の色フィルター14と定義する。また、製造工程上二番目に形成する色フィルターを第2の色フィルター15、製造工程上三番目に形成する色フィルターを第3の色フィルター16と定義する。他の実施形態であっても同様である。また本実施形態では、色フィルター層100が、複数色としてグリーン、ブルー、レッドの3色の色フィルターから構成され、ベイヤー配列の配置パターンで配置される場合を例示するが、色フィルター層100は、4色以上の色フィルターで構成されてもよい。また、以下の説明では、第1の色フィルター14がグリーンである場合を想定して説明するが、第1の色フィルター14がブルー又はレッドであっても良い。また、第1の色フィルター14には、熱硬化性樹脂が含まれている。ここで、第1の色フィルター14は、最も面積が広い色フィルターで無くとも良く、また製造工程上最初に形成される色フィルターで無くても良い。
以下、固体撮像素子1の各構成要素について詳細に説明する。
(光電変換素子及び半導体基板)
図1に示すように、本実施形態による固体撮像素子1における半導体基板10には、画素位置に対応させて複数の光電変換素子11が二次元的に配置されている。複数の光電変換素子11は、光を電気信号に変換する機能を有している。
光電変換素子11が形成されている半導体基板10は、通常、表面(光入射面)の保護及び平坦化を目的として、最表面に保護膜が形成されている。半導体基板10は、可視光を透過して、少なくとも300℃程度の温度に耐えられる材料で形成されている。ここで、半導体基板10に用いられる材料としては、例えば、Si、SiO等の酸化物及びSiN等の窒化物、並びにこれらの混合物等のSiを含む材料等が挙げられる。
(マイクロレンズ)
固体撮像素子1における各マイクロレンズ18は、半導体基板10の上方において、画素位置に対応する位置に配置されている。すなわち、マイクロレンズ18は、複数の光電変換素子11のそれぞれに対応する位置に設けられる。マイクロレンズ18は、マイクロレンズ18に入射した入射光を光電変換素子11のそれぞれに集光させることにより、光電変換素子11の感度低下を補うことができる。マイクロレンズ18は、レンズトップからレンズボトムの高さが300nm以上800nm以下の範囲であることが好ましい。
マイクロレンズ18は、例えばアクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、フェノールノボラック系樹脂、ポリエステル系樹脂、ウレタン系樹脂、メラミン系樹脂、尿素系樹脂、スチレン系樹脂及びケイ素系樹脂等のうち一又は複数を含んだ樹脂材料により形成される。上記の樹脂材料を用いて、後述するエッチバック方式でマイクロレンズ形状に加工することにより、マイクロレンズ18が形成される。またマイクロレンズ18は、有機化合物以外で形成されてもよい。具体的には、マイクロレンズ18は、例えば珪素、炭素、酸素、水素、錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、ニオブ、タンタル、ハフニウム、銀及びフッ素のうち少なくとも1種類を含有する化合物、酸化物又は窒化物により形成されてもよい。これらの材料の化合物としては、例えばITOやZnO、TiO及びHfO等を用いることができる。
マイクロレンズ18は、第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16のそれぞれの分光特性に影響を与えないことが好ましい。このため、例えば、マイクロレンズ18は、波長が400nm以上700nm以下の可視光に対して透過率90%以上であり、より好ましくは透過率95%以上となるように形成されることが好ましい。したがって、マイクロレンズ18は、上述の酸化物や化合物に限らず、波長が400nm以上700nm以下の可視光を透過し、第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16のパターン形成や密着性を阻害しない材料であれば、有機化合物又は無機化合物のいずれを用いて形成してもよい。また、マイクロレンズ18は、上述の酸化物や化合物に限らず、波長が380nm以上780nm以下の可視光を透過する構成であってもよい。
(平坦化層)
固体撮像素子1における平坦化層12は、半導体基板10の表面保護及び平坦化のために、半導体基板10の最表面上に設けられた層である。平坦化層12は、光電変換素子11の作製によって生じる半導体基板10の上面の凹凸を低減し、第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16を形成するためのカラーフィルタ用材料の半導体基板10に対する密着性を向上させることができる。
平坦化層12は、例えばアクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、フェノールノボラック系樹脂、ポリエステル系樹脂、ウレタン系樹脂、メラミン系樹脂、尿素系樹脂、スチレン系樹脂及びケイ素系樹脂等のうち一又は複数を含む樹脂により形成される。また平坦化層12は、有機化合物以外でも、例えば珪素、炭素、酸素、水素、錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、ニオブ、タンタル、ハフニウム、銀及びフッ素のうち少なくとも1種類を含有する化合物、酸化化合物又は窒化化合物により形成されても良い。これらの材料の化合物としては、例えばITOやZnO、TiO、HfO等を用いることができる。また、平坦化層12は、これらの材料の単体で形成されても良い。このように、平坦化層12は、これらの材料のうち少なくとも1種類を含有する化合物で形成されても良いし、これらの材料の単体で形成されても良い。また、平坦化層12は、これらの材料により単層又は多層に形成される。
また、平坦化層12は、上述の酸化物や化合物に限らず、波長が400nm以上700nm以下の可視光を透過し、第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16のパターン形成や密着性を阻害しない材料を用いて形成すればよい。また、平坦化層12は、波長が380nm以上780nm以下の可視光を透過する構成であってもよい。例えば、平坦化層12は、SiO等の酸化膜やSiN等の窒化膜、及びこれらの混合物を塗布して加熱を行って硬化する方法や、蒸着、スパッタ、CVD等の各種の成膜方法により形成しても構わない。
また、本実施形態による固体撮像素子1において、平坦化層12は、当該平坦化層12を構成する材料によっては隔壁30の形成に用いられる隔壁形成用材料の供給源としても機能する。詳しくは後述するが、平坦化層12は、後述する第1の色フィルターのドライエッチング時において、ドライエッチングガスと反応して隔壁30となる反応生成物を形成するための隔壁形成用材料を供給することができる。
平坦化層12の膜厚は、例えば0nmを超過し200nm以下である。色フィルター層100を構成する複数色の色フィルター間での混色防止の観点からは、平坦化層12の膜厚は可能な限り薄いことが好ましい。なお、図1は、平坦化層12に有機系樹脂を用いる例を示している。また、詳しくは後述するが、本実施形態による固体撮像素子1の製造工程では、第1の色フィルター14はドライエッチング方式を用いて形状加工される。このとき、第1の色フィルター14の下部以外に形成された平坦化層12は残渣なくエッチングされる。このため、図1に示すように、第2の色フィルター15及び第3の色フィルター16の下部には平坦化層12が形成されていない。
(色フィルター層)
所定のパターンにより色フィルター層100を構成する各色フィルター(第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16)は、入射光を色分解する各色(グリーン、ブルー及びレッド)に対応するフィルターである。図1に示すように、第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16は、半導体基板10とマイクロレンズ18との間に設けられ、複数の光電変換素子11のそれぞれに対応するように、画素位置に応じて予め設定された規則パターンで配置されている。
図2には、第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16及び、色フィルター層100を構成する各色フィルターの間に形成された隔壁30の配列を平面的に示す図である。図2に示す配列は、いわゆるベイヤー配列であり、四隅が丸みをおびた四角形状の第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16(第1、第2及び第3の色フィルタの一例)を敷き詰めた配列である。なお、固体撮像素子1の色フィルターは、必ずしもベイヤー配列に限定されず、また、色フィルターの色もレッド(R)、グリーン(G)、ブルー(B)の3色に限定されない。また、色フィルターの配列の一部に屈折率を調整した透明の層を配置してもよい。
色フィルター層100を構成する各色フィルターは、所定の色の顔料(着色剤)と、熱硬化成分または光硬化成分とを含んでいる。例えば、第1の色フィルター14は着色剤としてグリーン顔料を含み、第2の色フィルター15はブルー顔料を含み、第3の色フィルター16はレッド顔料を含んでいる。
また、本実施形態よる固体撮像素子1では、第1の色フィルター14は、熱硬化性樹脂を含む構成としている。第1の色フィルター14が熱硬化性樹脂を含む場合、例えば、固形分中の硬化成分は5質量%以上40質量%以下とし、好ましくは熱硬化性樹脂を5質量%以上15質量%以下の範囲とする。また、固形分中の硬化成分が上述の範囲であれば、第1の色フィルター14において、熱硬化性樹脂と光硬化性樹脂とを混合して用いても良い。
また、固体撮像素子1において色フィルター層100を薄膜化するため、第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16に含有する顔料(着色剤)の濃度は、50質量%以上であることが好ましい。
(透明保護層)
透明保護層13は、第1の色フィルター14の表面保護、平坦化及び、ドライエッチング方式で形状加工する際のダメージ低減(帯電(チャージアップ)等によるプラズマダメージ低減や洗浄工程でのダメージ低減)のために設けられた層である。また透明保護層13は、第2の色フィルター15及び第3の色フィルター16を形成する際の混色の影響を低減するための保護層として設けられた層でもある。すなわち、透明保護層13は、第1の色フィルター14をドライエッチング方式で形成する際、及び第2の色フィルター15及び第3の色フィルター16を形成する際に、各色フィルター用材料へのダメージを低減するための保護層となる。この透明保護層13により、第1の色フィルター14に用いられる材料の自由度が向上する。
透明保護層13は、例えばアクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、フェノールノボラック系樹脂、ポリエステル系樹脂、ウレタン系樹脂、メラミン系樹脂、尿素系樹脂、スチレン系樹脂及びケイ素系樹脂等のうち一又は複数を含む樹脂により形成される。
また透明保護層13は、有機化合物以外でも、例えば珪素、炭素、酸素、水素、錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、ニオブ、タンタル、ハフニウム、銀及びフッ素のうち少なくとも1種類を含有する化合物、酸化物または窒化物により形成されても良い。これらの材料の化合物としては、例えばITO、ZnO、TiO及びHfO等を用いることができる。また、透明保護層13は、これらの材料の単体で形成されても良い。このように、透明保護層13は、これらの材料のうち少なくとも1種類を含有する化合物で形成されても良いし、これらの材料の単体で形成されても良い。また、透明保護層13は、これらの材料により、単層又は多層で形成される。
また、透明保護層13は、第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16の分光特性に影響を与えないことが好ましい。このため、例えば、透明保護層13は、波長が400nm以上700nm以下の可視光に対して透過率90%以上であり、より好ましくは透過率95%以上となるように形成されることが好ましい。したがって、透明保護層13は、上述の酸化物や化合物に限らず、波長が400nm以上700nm以下の可視光を透過し、第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16のパターン形成や密着性を阻害しない材料であれば、有機化合物又は無機化合物のいずれを用いて形成してもよい。また、透明保護層13は波長が380nm以上780nm以下の可視光を透過する構成であってもよい。
また、透明保護層13は、屈折率がマイクロレンズ18と同等であることが好ましい。より好ましくは、透明保護層13とマイクロレンズ18とに同一の材料を用いることである。この場合、マイクロレンズ18と透明保護層13とに屈折率差が生じないため、マイクロレンズ18から入射した光が透明保護層13を透過して第1の色フィルター14に入射する際に影響が少ないという効果が得られる。また、透明保護層13とマイクロレンズ18とに屈折率差が無いことで、マイクロレンズ18及び第1の色フィルター14の膜厚設計が容易になるという利点が生じる。
また、本実施形態による固体撮像素子1において、透明保護層13の材料とマイクロレンズ18の材料とが異なっていても良い。例えば、固体撮像素子1の所望の分光特性に合わせて、透明保護層13の材料とマイクロレンズ18の材料との違いによって屈折率を変化させることで、第1の色フィルター14と透明保護層13との界面での反射率の低下及び、マイクロレンズ18と透明保護層13との界面での反射率の低下を図ることが出来る。また、第1の色フィルター14がグリーンで、第3の色フィルター16がレッドの場合、透明保護層13とマイクロレンズ18のそれぞれを形成する材料の違いによる屈折率差に基づいて、グリーン(第1の色フィルター14)からレッド(第3の色フィルター16)に入射光が曲げられやすく、レッドに光が入ることで、見かけ上、レッドの感度が上がる混色が発生することがある。このように、本実施形態による固体撮像素子1の所望の感度特性に合わせて透明保護層13の屈折率を変えることで、混色の発生を部分的に制御することも可能となる。
ただし、透明保護層13とマイクロレンズ18との屈折率差が過剰になると、透明保護層13と、第1の色フィルター14又はマイクロレンズ18との界面mにおける反射等が発生するおそれが生じる。このため、透明保護層13の屈折率をT、マイクロレンズ18の屈折率をnとした場合に、n-1≦T≦n+1の条件を満たす範囲であることが望ましい。
また、詳しくは後述するが、透明保護層13は、第1の色フィルター14を形状加工(パターン形成)の工程において、最初にドライエッチングによりエッチングされ、透明保護層13のエッチング後、下層の第1の色フィルター14がドライエッチングによりエッチングされる。ここで、本実施形態において、第1の色フィルター14のパターン形成時におけるドライエッチングで使用するガスとしては、フッ素、酸素、硫黄、炭素、臭素、塩素、アルゴン、ヘリウム、キセノン及びクリプトンのうち少なくとも1種類を含有するガスを用いられる。
また、半導体基板10のサイズが大きい場合、膜厚ばらつき及びエッチングプロセスばらつきが発生する。このため、上述のようなガスを使用したドライエッチングにおいて、透明保護層13のエッチングレート(G)は、第1の色フィルター14のエッチングレート(T)の2倍以下(2≧G/T)であることが好ましく、さらに、透明保護層13と第1の色フィルター14とは、エッチングレートが同等の材料で構成されていることが好ましい。これにより、ドライエッチングプロセスが容易になる。ただし、透明保護層13及び第1の色フィルター14の材料は、ドライエッチング可能な材料であって、後述するエッチングマスクの膜厚を増加することにより、エッチングマスクパターンが形成できる範囲であればよく、透明保護層13及び第1の色フィルター14のエッチングレートは、上述したエッチングレートの範囲には限られない。
本実施形態では、透明保護層13の膜厚B(nm)を、0nmを超過し200nm以下の範囲で形成する。透明保護層13の膜厚Bは、透過率、混色防止の観点からは、可能な限り薄いことが好ましく、5nm以上50nm以下がより好ましい。また、第1の色フィルター14をドライエッチング方式で形状加工する際において、透明保護層13の膜厚Bが薄い方がプロセス設計が容易になる。このため、保護層としての機能が得られる範囲であれば、透明保護層13の膜厚Bは薄い方が好ましく、より好ましくは30nm以下である。
(隔壁)
本実施形態による固体撮像素子1において隔壁30は、色フィルター層100を構成する複数色の色フィルター(第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16)のそれぞれの間に構成される。本実施形態では、第1の色フィルター14の側壁部(外周囲)に設けられた隔壁30により、第1の色フィルター14と、第2の色フィルター15及び第3の色フィルター16のそれぞれとを分け隔てることができる。隔壁30は、第1の色フィルター14に含まれる第1の色フィルター用材料及び平坦化層12に含まれる材料と、第1の色フィルター14を形成する際に用いるドライエッチングガスとの反応生成物を含んでいる。
すなわち、隔壁30の材料には、第1の色フィルター14用材料及び平坦化層12の材料が含まれている。具体的には、隔壁30の材料は、例えば亜鉛、銅、ニッケル、珪素、炭素、酸素、水素、窒素、臭素及び塩素のうち少なくとも一種を含む化合物を含有している。また、平坦化層12に含まれる有機化合物が、隔壁30に微量に含まれることがある。
(色フィルター層を構成する各色フィルターの膜厚)
本実施形態に置いて、第1の色フィルター14の膜厚A(nm)は、200nm以上700nm以下に形成する。好ましくは、膜厚Anmは、400nm以上600nm以下である。より好ましくは、膜厚Aは、500nm以下である。
また、透明保護層13の膜厚B(nm)は、前述した値である0nmを超過し200nm以下の範囲で形成する。好ましくは、膜厚Bは、5nm以上50nm以下である。より好ましくは、膜厚Bは、30nm以下である。
また、平坦化層12の膜厚D(nm)は、前述した値である0nmを超過し200nm以下の範囲で形成する。好ましくは、膜厚Dは、5nm以上50nm以下である。より好ましくは、膜厚Dは30nm以下である。
また、本実施形態において、第1の色フィルター以外の色フィルター(第2の色フィルター15及び第3の色フィルター16)の膜厚をC(nm)とした場合、膜厚Cは、下記式(1)を満足する膜厚として形成する。
A+B-300(nm)≦C≦A+B+300(nm)・・・(1)
ここで、第1の色フィルター14の膜厚Aと透明保護層13の膜厚Bとを合わせた膜厚(A+B)と、膜厚Cとの膜厚差を300nm以下としているのは、色フィルター層100において一部でも膜厚差が300nmを越える部分があると、他の画素、すなわち一の色フィルターから他の色フィルターへの斜め入射光の影響により、固体撮像素子1の受光感度が低下するおそれが生じるためである。また、色フィルター層100に300nmを越える段差が形成される場合、色フィルター層100の上部にマイクロレンズ18を形成する際、エッチバック方式以外による形成が困難となる場合がある。したがって、色フィルター層100において、各色フィルターの膜厚差が300nm以下となるように構成している。なお、第2の色フィルター15の膜厚と、第3の色フィルター16の膜厚とは異なっていても良い。
また、色フィルター層100を構成する複数色の色フィルターのそれぞれの間に形成される隔壁30幅(横方向の厚み)が200nmより大きくなると、隔壁30によって光電変換素子11に入射する光が大幅に低減されて受光感度が低減してしまうおそれがある。したがって、隔壁30は、幅が200nm以下に形成されている。
<固体撮像素子の製造方法>
次に、図1及び図2を参照しつつ、図3から図8を用いて本実施形態による固体撮像素子の製造方法について説明する。
(平坦化層の形成工程)
図3-1(a)に示すように、複数の光電変換素子11を有する半導体基板10を準備し、その表面の色フィルター層形成位置全面に、平坦化層12を形成する。平坦化層12は、例えば上述したアクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、フェノールノボラック系樹脂、ポリエステル系樹脂、ウレタン系樹脂、メラミン系樹脂、尿素系樹脂、スチレン系樹脂及びケイ素系樹脂等の樹脂を一又は複数含んだ樹脂を塗布して硬化させることで形成する。本実施形態では、平坦化層12に有機系樹脂を用いることで、第1の色フィルター以外の色フィルター(第2の色フィルター15及び第3の色フィルター16)の下層に平坦化層12がほぼ無い構造となる。
ここで、本実施形態による固体撮像素子1の製造方法は、従来の製造方法、例えば感光性色フィルター用材料を用いたフォトリソグラフィによって色フィルターを構成する各色フィルターを直接パターニングする製造法とは異なる。
すなわち、本実施形態に係る固体撮像素子1の製造方法では、第1の色フィルター用材料を全面に塗布し、塗布した第1の色フィルター用材料を硬化させて第1の色フィルター14を形成し(図3-1(c)参照)、その後、第1の色フィルターの上部に透明保護層13を形成する(図3-1(d)参照)。さらに、形成された第1の色フィルター14及び透明保護層13における他の色フィルターの形成対象となる箇所について、ドライエッチングにより第1の色フィルター14及び透明保護層13を除去する(図3-3(h)~(j)参照)。これにより、上部を透明保護層13によって覆われた第1の色フィルター14のパターンが形成される(図3-3(i)参照)。また、第1の色フィルター14及び平坦化層12の一部をドライエッチングする際に、第1の色フィルター14及び平坦化層12とドライエッチングガスとの反応生成物が、第1の色フィルター14の側壁(すなわち外周囲)において隔壁30として形成される。そして、図2に示すように、第1の色フィルター14及び隔壁30で囲まれている部分に第1の色フィルター以外の色フィルター(第2の色フィルター15及び第3の色フィルター16)をパターン形成する。このとき、本実施形態では、先に形成した第1の色フィルター14及び隔壁30のパターンをガイドパターンとして用いて、高温の加熱処理により第2の色フィルター15用材料及び第3の色フィルター16用材料を硬化させる。このため、半導体基板10と第2の色フィルター15、第3の色フィルター16との密着性を向上させることができる。
以下、本実施形態における色フィルター層100の複数色の色フィルターそれぞれの形成工程について説明する。
(第1の色フィルターの形成工程)
まず、半導体基板10上に形成した平坦化層12の表面に、第1の色フィルター14を形成する工程(第1の工程の一例)について、図3-1(a)~図3-3(j)を用いて説明する。第1の色フィルター14は、固体撮像素子で最も占有面積の広い色の色フィルターが好ましい。
複数の光電変換素子11が二次元的に配置された半導体基板10上に形成した平坦化層12の表面(図3-1(a)参照)に、樹脂材料を主成分とし第1の顔料(着色剤)を分散させた第1の樹脂分散液からなる第1の色フィルター用材料を塗布し(図3-1(b)参照)、第1の色フィルター14を形成する。本実施形態による固体撮像素子1は、図2に示すようにベイヤー配列の色フィルターを用いることを想定している。このため、第1の色フィルター14の着色は、緑(G)であることが好ましい。
第1の色フィルター用材料の樹脂材料としては、エポキシ系樹脂等の熱硬化性樹脂を用いる。樹脂材料として熱硬化性樹脂を多く用いることで、光硬化性樹脂を用いる従来手法と異なり、第1の色フィルター14の顔料含有率を高くすることが可能となり、膜厚が薄く且つ固体撮像素子1の所望の分光特性を得られる第1の色フィルター14を形成し易くなる。ただし、固体撮像素子1の所望の分光特性を得られる膜厚で硬化するのであれば、熱硬化性樹脂と光硬化性樹脂とを用いた混合樹脂を第1の色フィルター用材料として用いてもよい。
本実施形態では、図1に示すように、第1の色フィルター14の上部は透明保護層13に覆われる構成になる。このため、第1の色フィルター14は、溶剤耐性や第2の色フィルター15及び第3の色フィルター16形成時における混色等の影響が小さくなる。したがって、第1の色フィルター14は、熱硬化性樹脂の含有率を低下させて、顔料含有率を高くし、膜厚が薄くても所望の分光特性を得ることができる。このため、第1の色フィルター14を十分に硬化できるのであれば、可能な限り硬化性樹脂の含有量を低下させても良い。
第1の色フィルター14を形成すると、次に、第1の色フィルター14を150℃以上300℃以下で熱硬化する(図3-1(c)参照)。より具体的には、第1の色フィルター14を、170℃以上270℃以下の温度で加熱して熱硬化させることが好ましい。本実施形態による固体撮像素子1の製造においては、後述するマイクロレンズ18の形成時に、100℃以上300℃以下の高温加熱工程が用いられることが多い。このため、第1の色フィルター用材料は、高温耐性があることが望ましく、より具体的には、上述のように、樹脂材料として高温耐性のある熱硬化性樹脂を用いることがより好ましい。
次に、前工程(図3-1(b)、図3-1(c)参照)で形成した第1の色フィルター層14a上に透明保護層13を形成する(図3-1(d)参照)。
透明保護層13の材料は、上述したとおりの有機化合物もしくは無機化合物が用いられ、当該材料をスプレー法、塗布法及びCVD法等の化学的作製法と、真空蒸着法、イオンプレーティング法及びスパッタ法等の物理的作製方法とで形成する。ここで、化学的作製方法は、塩化物の加水分解や、有機化合物の熱分解反応により透明保護層13を作製する方法である。また、透明保護層13は、上述の材料を含んだ物質の塗布、加熱硬化などで形成してもよい。透明保護層13は、第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16の分光特性に影響を与えないことが好ましい。例えば、波長が400nm以上700nm以下、または380nm以上780nm以下の可視光に対して透過率90%以上であり、より好ましくは透過率95%以上となるように形成されることが好ましい。
透明保護層13の膜厚は、上述のように、0nmを超過し、200nm以下の範囲で形成する。透明保護層13の膜厚Bは、透過率、混色防止の観点からは薄いほど好ましく、5nm以上50nm以下がより好ましい。また第1の色フィルター14をドライエッチング方式で形状加工する際、膜厚が薄いほうがプロセス設計が容易になるため、保護層の機能が得られるなら薄い方が好ましく、より好ましくは30nm以下である。
次に、図3-2(e)から図3-2(g)に示すように、前工程(図3-1(b)~図3-1(d)参照)で形成した第1の色フィルター14及び透明保護層13上に開口部を有するエッチングマスクパターンを形成する。
エッチングマスクパターン形成にあたり、まず、第1の色フィルター14の表面に、感光性樹脂材料を塗布して乾燥し、エッチングマスク20を形成する(図3-2(e)参照)。
次に、エッチングマスク20(感光性樹脂層)に対して、フォトマスク(不図示)を用いて第1の色フィルター14を形成しない位置に相当する領域を露光すると、エッチングマスク20において必要なパターン以外の部分に相当する不要部20aが現像液に可溶となる化学反応を起こす(図3-2(f)参照)。
次に、現像によりエッチングマスク20の不要部(露光部)20aを除去する。これにより、開口部20bを有するエッチングマスク20がパターン形成される(図3-2(g)参照)。開口部20bの位置には、第1の色フィルター形成工程の後の工程において、第2の色フィルター15又は第3の色フィルター16が形成される。
ここで、エッチングマスク20を形成する感光性樹脂材料としては、例えば、アクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、フェノールノボラック系樹脂、その他の感光性を有する樹脂を単独又は複数混合あるいは共重合して用いることができる。
また、感光性樹脂材料としては、高解像で高精度なパターンを作製するために、一般的なフォトレジストを用いることが望ましい。フォトレジストを用いることで、感光性を持たせた色フィルター用材料でパターンを形成する場合と異なり、形状制御が容易で、寸法精度の良いパターンを形成することが出来る。
ここで用いるフォトレジストは、ドライエッチング耐性の高いものが望ましい。ドライエッチング時のエッチングマスク材としてフォトレジストを用いる場合は、エッチング部材とのエッチング速度である選択比を向上させるために、現像後にポストベークと呼ばれる熱硬化工程が用いられることが多い。しかし、熱硬化工程が含まれると、ドライエッチング後に、エッチングマスクとして用いた残留レジストの除去工程における除去が困難となることがある。このため、フォトレジストとしては、熱硬化工程を用いなくてもエッチング部材との間で選択比が得られるものが好ましい。また、良好な選択比が得られない場合、フォトレジスト材料の膜厚を厚く形成する必要があるが、厚膜化すると微細パターン形成が困難となる。したがって、フォトレジストとしては、ドライエッチング耐性が高い材料が好ましい。
具体的には、エッチングマスクである感光性樹脂材料とドライエッチングの対象である第1の色フィルター用材料のエッチング速度比(選択比)は、0.5以上が好ましく、0.8以上がより好ましい。この選択比があれば、エッチングマスク20を全て消滅させることなく、第1の色フィルター14をエッチングする事が可能である。第1の色フィルター用材料の膜厚が0.2μm以上0.7μm以下程度の場合、感光性樹脂層の膜厚は、0.5μm以上2.0μm以下程度であることが望ましい。
また、ここで用いるフォトレジストとしては、ポジ型レジスト又は、ネガ型レジストのどちらでも問題はない。しかしながら、エッチング後のフォトレジスト除去を考慮すると、外部要因によって化学反応が進んで硬化する方向に変化するネガ型レジストよりも、化学反応が進んで溶解する方向に化学反応が起こりやすいポジ型レジストの方が望ましい。
また、感光性樹脂層をパターニングするフォトリソグラフィプロセスに用いる露光機は、スキャナー、ステッパー、アライナー、ミラープロジェクションアライナー等が挙げられる。また、電子線での直接描画、レーザーでの描画等により、エッチングマスク20の不要部20aに対して露光を行ってもよい。なかでも、微細化の必要な固体撮像素子1の第1の色フィルター14を形成するためには、一般的に、ステッパーやスキャナーが用いられる。
以上のようにして、エッチングマスク20がパターン形成される。
次にパターン形成されたエッチングマスク20及びドライエッチングガスを用いたドライエッチングにより、開口部20bから露出する透明保護層13及びその下層の第1の色フィルター14の一部分を除去する(図3-3(h)参照)。
ドライエッチングの手法としては、例えば、ECR、平行平板マグネトロン、DRM、ICP、又は2周波タイプのRIE(Reactive Ion Etching)等が挙げられる。エッチング方式については特に制限されないが、幅が数mm以上の大面積パターンや、幅が数百nmの微小パターン等、線幅や面積が異なっても、エッチングレートやエッチング形状が変わらないように制御できるエッチング方式が望ましい。また100mm以上450mm以下程度のサイズのウエハ全面で、面内均一にドライエッチングできる制御機構のドライエッチング手法を用いることが望ましい。
また、図3-3(h)に示すドライエッチングにおいて用いるドライエッチングガスは、反応性(酸化性・還元性)を有するガス、すなわちエッチング性のあるガスであればよい。反応性を有するガスとしては、例えば、フッ素、酸素、臭素、硫黄及び塩素等を含むガスを挙げることができる。また、アルゴンやヘリウム等のように反応性が少なくイオンでの物理的衝撃によるエッチングを行う元素を含む希ガスを、単体又は混合させて使用することも出来る。このため、ドライエッチングに用いるガスは、フッ素、酸素、水素、硫黄、炭素、臭素、塩素、窒素、アルゴン、ヘリウム、キセノン及びクリプトンのうち少なくとも1種類を含有するガスとなる。フッ素を含有したガスとしては、例えば、CF、C、C、C、C10、CHF、CClF、CClF、NF、SF及びHF等であり、これらのフッ素系ガスを複数混合させたガスをドライエッチングガスとして用いてもよい。
また、ガスを用いたプラズマ環境下におけるドライエッチング工程で、所望のパターンを形成する反応を起こすガスであれば、上述のドライエッチングガスには限定されない。本実施形態では、ドライエッチングの初期の段階で、全ガス流量の90%以上を、希ガス等のイオンの物理的衝撃が主体でエッチングを行うガスとし、この状況下でフッ素系ガスや酸素系ガスを混合したドライエッチングガスを用いることで、物理的衝撃に加えて化学反応も利用してエッチングレートを向上させる。
ドライエッチングガスに希ガスを多く用いることで、希ガスイオンの物理的衝撃による効果により、垂直にエッチングが進行する異方性エッチングが進行し易くなる。そのため、第1の色フィルター14のドライエッチングの初期においては、希ガスが多い条件下でエッチングを実施する。
また、本実施形態による固体撮像素子1の半導体基板10は、シリコンを主体とした材料により構成されている。このため、フッ素を含有したガス等、反応性の高いガスを用いてドライエッチングを行うと、半導体基板10がエッチングされてしまうおそれがある。このため、ドライエッチングを行う際、半導体基板10をエッチングしないガスを用いることが好ましい。また、半導体基板10をエッチングするおそれのあるガスを用いる場合には、最初に当該ガスを用い、途中で半導体基板10をエッチングし難いガスに変更してエッチングを行う多段階エッチングとしてもよい。なお、半導体基板10に影響がなく、パターン形成されたエッチングマスク20を用いて垂直に近い形状で第1の色フィルター用材料のエッチングが可能であり、第1の色フィルター用材料の残渣が形成されないという条件を満たせば、ドライエッチングガスの種類は制限されない。
平坦化層12に、上述した有機化合物である樹脂を用いた場合、一般的に平坦化層12のエッチングレートは、第1の色フィルター14よりも早くなる。このため、半導体基板10をエッチングするおそれのあるドライエッチングガスを用いる場合は、第1の色フィルター14が残っている段階で、ドライエッチングガスを切り替える(半導体基板10をエッチングし難いガスに変更する)必要がある。
具体的には、まず希ガスの単体又は反応性ガスと希ガスとの混合ガスが全ガス流量の90%以上の状態で、開口部20bに露出する透明保護層13及び第1の色フィルター14の一部をエッチングする。このとき、半導体基板10へのダメージを低減するためにエッチングを途中で止め、物理的にエッチングを行う希ガスの割合を低減した後、エッチングを再開しても良い。このようなドライエッチングガスの使用条件では、第1の色フィルター14の膜厚の50%から95%程度をエッチングした段階でエッチングを止める(図3-3(h)参照)。
多段階エッチングの場合、希ガスの割合を低減する段階では、半導体基板10をエッチングし難いガス、すなわち酸素系ガスや窒素系ガス等を用いて、開口部20bに露出する第1の色フィルター14を全てエッチングする(図3-3(i)参照)。この際用いるドライエッチングガスの条件は、第1の色フィルター14及び平坦化層12を残渣なくエッチングし、且つ半導体基板10をエッチングしないことである。以上のようにして、第1の色フィルター14が形成される。
(隔壁形成工程(第2の工程))
また、図3-3(i)に示すように、透明保護層13、第1の色フィルター14及び平坦化層12をドライエッチングする際に生成される反応生成物により、隔壁30が第1の色フィルター14の側壁に形成される。隔壁30は、最終的に色フィルター層100を構成する複数色の色フィルター(第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16)のそれぞれを分け隔てる構成となる。隔壁30は、第1の色フィルター用材料及び平坦化層材料と、ドライエッチングガスとの反応生成物により形成される。ここで、第1の色フィルター14のドライエッチング時において異方性のあるエッチングを行う場合は、ドライエッチングによる反応生成物が第1の色フィルター14の側壁へ付着することで形成される側壁保護層の制御が重要となる。また、ドライエッチング条件により、反応生成物の第1の色フィルター14の側壁(外周囲)への付着の仕方及び付着の量は変化する。
本実施形態の固体撮像素子1の製造方法では、第1の色フィルター14のエッチングを行い、このエッチングによって形成された開口部10bに第2の色フィルター及び第3の色フィルター用材料を充填して、多色の色フィルター層100を形成する。このため、第1の色フィルター14のドライエッチングの際には、第1の色フィルター14を半導体基板10の表面に対して垂直にエッチングし、且つパターンサイズの制御を行う必要がある。このため、ドライエッチングの際に反応生成物の側壁への付着の仕方及び付着量の制御が必要となる。
反応生成物の側壁への付着の制御として、ドライエッチングにおいてイオンによる物理的衝撃を用いた反応により、第1の色フィルター14の側壁への反応生成物の堆積量(付着量)を増加させることが可能となる。例えば、使用するドライエッチングガスとしては、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、及びキセノン(Xe)等の希ガスが考えられ、特にArやHeが望ましい。
本実施形態では、Ar、He等の反応性の少ない元素を含む希ガスを全ガス流量の90%以上にして、フッ素系又は酸素系等の反応性を有するガス種が1種類以上混合されたドライエッチングガスを用いる。これにより、物理的衝撃に加えて化学反応を用いてエッチングレートを向上させ、且つ第1の色フィルター14の側壁に付着する反応生成物の量を制御することができる。このようにして、第1の色フィルター14の側壁に付着させた反応生成物が隔壁30として形成される。
上記ドライエッチング工程(図3(h)~(i)参照)により、半導体基板10上における第1の色フィルターの形成対象位置以外の領域に第1の色フィルター用材料の残渣を発生させずに、ドライエッチング時における反応生成物により形成された隔壁30を有し、上部が透明保護層13に覆われた、すなわち上部及び側部の全ての面が覆われている第1の色フィルター14を得る。第1の色フィルター14の側壁に隔壁30が形成されることで、他色の色フィルターからの漏れ光及び移染を抑制し、透明保護層13が洗浄などのレジスト剥離プロセス及び他色の色フィルターとの混色による針状結晶を抑制する効果となる。
(エッチングマスク除去工程)
次に、残存しているエッチングマスク20のパターンの除去を行う(図3-3(j)参照)。エッチングマスク20の除去には、例えば薬液や溶剤を用いる。薬液や溶剤を用いることで、第1の色フィルター14に影響を与えずにエッチングマスク20を溶解、剥離することができる。エッチングマスク20を除去する溶剤としては、例えば、N-メチル-2-ピロリドン、シクロヘキサノン、ジエチレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸ブチル、ジメチルスルホキシド、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、モノエタノールアミン及びジエタノールアミン等の有機溶剤を単独で、又は、複数を混合した混合溶剤として用いる。また、エッチングマスク20の除去に用いる溶剤は、各色フィルター用材料に影響を与えないものであることが望ましい。各色フィルター用材料に影響を与えないのであれば、酸系の薬品を用いた剥離方法でも問題ない。
また、エッチングマスク20の除去には、溶剤等を用いるウェットプロセス以外の除去方法も用いることができる。例えば、光励起や酸素プラズマを用いたレジストの灰化技術であるアッシング技術により、エッチングマスク20を除去することができる。また、ウェットプロセスとアッシングとを組み合わせて用いることもできる。例えば、始めに、光励起や酸素プラズマによる灰化技術であるアッシングを用いてエッチングマスク20の表層に生じたドライエッチングによる変質層を除去した後、溶剤等を用いたウェットエッチングによりエッチングマスク20の残りの層を除去する方法が挙げられる。また、第1の色フィルター用材料にダメージの無い範囲であれば、アッシングのみでエッチングマスク20を除去しても構わない。また、アッシング等のドライプロセスやウェットプロセスだけでなく、CMPによる研磨工程等を用いてエッチングマスク20の除去を行ってもよい。
以上の工程により、第1の色フィルター14の上部に形成された透明保護層13及び隔壁30のパターニング形成が完了する。
(第2の色フィルター及び第3の色フィルターの形成工程)
次に、第1の色フィルター14とは異なる色を含む第2の色フィルター15及び第3の色フィルター16をパターン形成する工程(第3の工程)について、図1から図3-3を参照しつつ図4及び図5を用いて説明する。第3の工程は、第1の色フィルター14及び隔壁30のパターンをガイドパターンとすると共に、第2の色フィルター15及び第3の色フィルター16を、光硬化性樹脂を含んだ感光性色フィルター用材料を用いて形成し、従来手法で選択的に露光してパターン形成を行う手法である。
(第2の色フィルターの形成工程)
まず、第1の色フィルター14と、その上部の透明保護層13及び隔壁30をパターン形成した半導体基板10上の全面(図3-3(j)参照)に、第2の色フィルター用材料として感光性色フィルター用材料を塗布、乾燥を行い第2の色フィルター15を形成する(図4(a)参照)。このとき用いられる感光性色フィルター用材料は、光照射により硬化するネガ型の感光性成分を含有する。
次に半導体基板10の上に形成した第2の色フィルター15のうち、第2の色フィルター15を形成する領域(パターン領域)の第2の色フィルター15に対し、フォトマスク(不図示)を用いて露光を行う(図4(b)参照)。これにより、パターン領域の第2の色フィルター15を選択的に光硬化させて第2の色フィルター15を形成する。さらに、現像工程で選択的に露光されていない(光硬化していない)箇所、すなわちパターン領域外の第2の色フィルター15のを除去する(図4(c)参照)。ここで、第2の色フィルター15を除去した領域に、第3の色フィルター16が形成される。
次に、露光・現像を行ったパターン領域の第2の色フィルター15と半導体基板10との密着性向上、及び実デバイス利用での耐熱性向上のために、高温加熱での硬化処理を行うことで、第2の色フィルター15を硬化させる。これにより、第2の色フィルター15のパターン形成が完了する。このとき、第2の色フィルター15の熱硬化に用いる温度は、200℃以上が好ましい。
ここで、第3工程において形成される第2の色フィルター15の膜厚について説明する。
第1の色フィルター14の膜厚をA(nm)、透明保護層13の膜厚をB(nm)、第2の色フィルター15の膜厚をC1(nm)、平坦化層12の膜厚をD(nm)とした場合に、下記(1)式~(4a)式を満足するように、第2の色フィルター15の膜厚C1を設定する。
200nm≦A≦700nm ・・・(1)
0nm<B≦200nm ・・・(2)
0nm<D≦200nm ・・・(3)
A+B-300(nm)≦C1≦A+B+300(nm)・・・(4a)
図4(a)から図4(c)に示す第2の色フィルターの形成工程は、A+B+D=C1の条件を満たす膜厚C1を有する第2の色フィルターを形成する場合を例示しているが、(4a)式に示すように、膜厚C1は、(A+B)±300(nm)の範囲に収まっていればよい。
膜厚C1が上述の(4a)式の範囲であれば、硬化に十分な熱硬化性樹脂及び光硬化性樹脂を含みながら、所望の分光特性が得られる顔料濃度を有する色フィルターとして、第2の色フィルター15を形成することができる。
ここで、第1の色フィルター14の上部が透明保護層13に覆われていない場合、この第2の色フィルター15の硬化の際に、第1の色フィルター14と第2の色フィルター15とが混色し、針状結晶が発生するおそれがあった。これに対し、本実施形態に示すように、第1の色フィルターの上部を透明保護層13で覆うことで、第1の色フィルター14と第2の色フィルター15との混色や、針状結晶の発生を防止することができる。これにより、本実施形態において、第1の色フィルター材料と第2の色フィルター材料との混色や針状結晶の発生を考慮せずとも色フィルターの形成が可能となる。
(第3の色フィルターの形成工程)
第2の色フィルター15のパターン形成が完了すると、次に、第3の色フィルター用材料を半導体基板10上に塗布、乾燥を行う(図5(a)参照)。より詳細には、第1の色フィルター14とその上部の透明保護層13、隔壁30及び、第2の色フィルター15をパターン形成した半導体基板10の表面全面(図4(c)参照)に、第3の色フィルター用材料を塗布して、第3の色フィルター16を形成する。
次に、半導体基板10上に形成した第3の色フィルター16のうち、第3の色フィルター16を形成するパターン領域の第3の色フィルター16に対し、フォトマスク(不図示)を用いて選択的に露光し(図5(b)参照)、露光した第3の色フィルター16を選択的に光硬化させて第3の色フィルター16を形成する。さらに、現像によって露光されていない(光硬化していない)パターン領域外の第3の色フィルター16を除去する(図4(c)参照)。
次に、露光・現像を行ったパターン領域の第3の色フィルター16の一部と半導体基板10との密着性向上及び実デバイス利用での耐熱性向上のために、高温加熱での硬化処理を行うことで、第3の色フィルター16を硬化させる。これにより、第3の色フィルター16のパターン形成が完了する。このとき、第3の色フィルター16の熱硬化に用いる温度は、200℃以上が好ましい。
なお、この第2の色フィルター15以降のパターン形成工程を繰り返すことで、所望の色数の色フィルターを形成することが可能である。
ここで、第3工程において形成される第2の色フィルター15の膜厚について説明する。
本実施形態では、第3の色フィルター16の膜厚をC2(nm)とした場合に、下記(1)式~(4b)式を満足するように、第3の色フィルター16の膜厚C2を設定する。
200(nm)≦A≦700(nm)・・・(1)
0(nm)<B≦200(nm) ・・・(2)
0(nm)<D≦200(nm) ・・・(3)
A+B-300(nm)≦C2≦A+B+300(nm)・・・(4b)
図5(a)から図5(c)に示す第3の色フィルターの形成工程では、A+B+D=C2の条件を満たす膜厚C2を有する第3の色フィルターを形成する場合を例示しているが、(4b)式に示すように、膜厚C2は、(A+B)±300(nm)の範囲に収まっていればよい。
膜厚C2が上述の(4b)式の範囲であれば、硬化に十分な熱硬化性樹脂及び光硬化性樹脂を含みながら、本実施形態による固体撮像素子1の所望の分光特性が得られる顔料濃度を有する色フィルターとして、第3の色フィルター16を形成することができる。
(色フィルター層を4色以上の複数色の色フィルターで構成する場合)
図3-1から図5を用いて色フィルター層100を構成する3色の色フィルターの形成工程を説明したが、色フィルター層100を構成する色フィルターは3色に限られない。例えば、色フィルター層100は、4色以上の色フィルターによって構成されてもよい。4色以上の複数色による色フィルターを製造する場合は、第1の色フィルターのパターン形成時に、4色以上の色フィルターの形成箇所に対応する開口が設け、第3の色フィルターの形成以降の工程として、上述した第2の色フィルター15の形成工程と同様の処理を繰り返す。また、色フィルター層100を構成する最後の色フィルターを形成する工程では、上述した第3の色フィルター16の形成工程と同様の処理を行う。これにより、4色以上の複数色の色フィルターを作製して、色フィルター層100を構成することができる。
(マイクロレンズの形成工程)
次に、固体撮像素子1の製造工程の最後の工程として、マイクロレンズ18を形成する工程(第4工程)について、図6から図8を用いて説明する。マイクロレンズ18は、ドライエッチングを用いたマイクロレンズ転写方法(エッチバック方式)、熱フローを用いた作製方法及びグレートーンマスクによるマクロレンズ作製方法等のうちいずれかにより形成される。
ここで、ドライエッチングによるパターニング技術(マイクロレンズ転写方法)を用いて本実施形態による固体撮像素子1のマイクロレンズ18を形成する例を、図6を用いて説明する。本例では、マイクロレンズ形成材料上にドライエッチングマスクを形成し、ドライエッチングによりマイクロレンズ形状をマイクロレンズ形成材料に転写するエッチバック方式を用いてマイクロレンズ18を形成する。
まず、最終的にマイクロレンズ18となるマイクロレンズ転写層19を、複数色の色フィルター(第1の色フィルター14、第2の色フィルター15、第3の色フィルター16)及び隔壁30上に形成する(図―1(a)参照)。マイクロレンズ転写層19の材料は、上述したマイクロレンズ18の材料と同様に、アクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、フェノールノボラック系樹脂、ポリエステル系樹脂、ウレタン系樹脂、メラミン系樹脂、尿素系樹脂、スチレン系樹脂及びケイ素系樹脂等のうち一又は複数を含む樹脂、又は珪素、炭素、酸素、水素、錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、ニオブ、タンタル、ハフニウム、銀及びフッ素のうち少なくとも1種類を含有する化合物や酸化物であれば良い。
マイクロレンズ転写層19の膜厚は0.3μm以上10μm以下が好ましい。マイクロレンズ転写層19の膜厚は、半導体基板10に配置される光電変換素子11のサイズや、色フィルター層100を構成する複数色の色フィルターそれぞれのサイズに応じて変化する。例えば、第1の色フィルター14のサイズが1.0μmの場合は、マイクロレンズ18の膜厚は0.8μm以下程度が好ましく、マイクロレンズ転写層19の膜厚は2μm以下程度が好ましい。
また、マイクロレンズ18の材料に透明保護層13の材料と同一の材料を用いている場合、透明保護層13の界面における屈折率差等の光学特性の変化を考慮せずに、マイクロレンズ18を形成することが可能となる。また、マイクロレンズ18の材料として透明保護層13と異なる材料を用いる場合は、屈折率差により、色フィルター層100を構成する各色フィルター(第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16)への入射光が影響を受ける。このため、各色フィルターの屈折率を考慮することで、マイクロレンズ18により所望の集光特性が得られる。しかし、透明保護層13とマイクロレンズ18とで屈折率が異なる場合、マイクロレンズ18によって所望の集光特性を得る手順が複雑になる。このため、透明保護層13は、溶剤耐性などを得られる膜厚であって、且つプロセス上形成可能であれば、可能な限り膜厚が薄いことが好ましい。
次に、マイクロレンズ転写層19の上にマイクロレンズ母型層19aを塗布して形成する(図6-1(b)参照)。マイクロレンズ母型層19aは、マイクロレンズ18の母型を形成するために用いられる。マイクロレンズ母型層19aの材料には、感光性材料と、アクリル系樹脂等を一つ又は複数含む樹脂材料をとを用いる。これにより、マイクロレンズ母型層19aに感光性を持たせて、フォトリソグラフィを用いてマイクロレンズ母型層19aを所望の形状に加工できる。
次に、フォトマスク(不図示)を用いてマイクロレンズ母型層19aを露光し、熱フロー法によってマイクロレンズ母型層19aを半球形状のレンズ形状に形成する(図6-2(c)参照)。
また次に、レンズ形状に形成したマイクロレンズ母型層19aをマスクとして、ドライエッチングの手法によってマイクロレンズ母型層19aの形状をマイクロレンズ転写層19に転写して、マイクロレンズ18を形成する(図6-2(d)参照)。このように、マイクロレンズ母型層19aの高さや材料を適宜に選択し、ドライエッチング条件を調整することで、適正なレンズ形状をマイクロレンズ転写層19に転写してマイクロレンズ18を形成することができる。本実施形態では、上述の方法を用いることで、制御性良くマイクロレンズ18を形成することが可能となる。この手法を用いたマイクロレンズ18の作製において、マイクロレンズ18のレンズトップからレンズボトムの高さが300nm以上800nm以下の膜厚となるようにすることが望ましい。
次に、図7を用いて、熱フローを用いた作製方法によりマイクロレンズ18形成する例を説明する。
熱フローを用いた作製方法を用いる場合、まず色フィルター層100の各色フィルターを形成した半導体基板10の上方を覆うように平坦化膜19bを形成する(図7-1(a)参照)。このとき形成する平坦化膜19bは、第1の色フィルター14の下部に形成した平坦化層12の材料及び第1の色フィルター14の上部に形成した透明保護層13と同様の材料でよい。また、少なくとも、平坦化膜19bの材料は、上部に形成されるマイクロレンズ18の作製に問題のない材料であれば良い。
次に、平坦化膜19b上に、感光性を持たせた樹脂材料を用いてマイクロレンズ18となるマイクロレンズ材料層18aを形成する。このマイクロレンズ材料層18aは、ポジ型フォトレジストをスピンコート法にて塗布し、ホットプレート上で熱硬化して形成される。また、熱硬化により形成されるマイクロレンズ材料層18aの膜厚は、例えば0.3μm以上10.0μm以下の範囲内にあり、典型的には0.4μm以上2.0μm以内の範囲内となる。
ここで、本実施形態におけるマイクロレンズ材料層18aの形成に採用可能な材料としては、紫外線(g線、h線及びi線)及びエキシマー・レーザー等を含む遠紫外線、電子線、イオンビーム及びX線等の放射線に感応するポジ型フォトレジストにとして好適なポジ型レジスト樹脂が使用できる。このポジ型レジスト樹脂としては、例えば、ノボラック型フェノール樹脂及びポリビニルフェノール樹脂等が例示できる。
さらに、マイクロレンズ材料層18aに採用可能な材料には、本実施形態による固体撮像素子1の特性を損なわない程度に、必要に応じて上術のポジ型レジスト樹脂以外の他の添加剤を含有させることができる。ここで、他の添加剤としては、例えば半導体基板10との密着性向上のために用いる密着助剤、塗布性向上のために用いる界面活性剤、レベリング剤、分散剤及び硬化剤等が挙げられる。
次に、フォトマスク21を用いて、露光現像を実施する(図7-1(b)参照)。さらに、露光現像に次いで現像処理を行うことによって、色フィルター層100上において、マイクロレンズ材料層18aによりマイクロレンズの母型形状が形成される(図7-2(c)参照)。
次に、マイクロレンズ材料層18aをポストベークすることにより、マイクロレンズ18が形成される(図7-2(d)参照)。ポストベークする際の温度については、段階的にベーク処理を行うことにより、熱フロー量を制御することが可能となっている。ガラス転移温度以上の温度でベーク処理を行うとマイクロレンズ材料層18aが流動化し、現像工程においてマイクロレンズ材料層18aにより形成されたマイクロレンズ18の母型形状(図7-2(c)参照)を、図7-2(d)に示すように球面形状とすることが可能となる。
また、マイクロレンズ18の材料によっては、必要に応じて、ポストベーク前にブリーチング露光を行う。ブリーチング露光工程は、現像工程で母型形成したマイクロレンズ材料層18aの全体に光を照射して光透過性を向上させる工程である。ポジ型フォトレジストであるマイクロレンズ材料層18aは、感光剤(ジアゾナフトキノン類)を含有していることから、淡黄色または淡褐色に着色している。マイクロレンズ材料層18aに光を照射することにより、残存する未反応の感光剤(ジアゾナフトキノン類)が光分解して、可視光領域において吸収のないインデンカルボン酸に変化し、これにより光透過率が向上する。また、インデンカルボン酸は大気中の(HO)と反応しカルボン酸に変化する。カルボン酸は樹脂と結合しないため、結果として、マイクロレンズ材料層18aは膜硬化されない。また、ブリーチング露光工程において用いられる光源が発する光の波長は、可視光でも紫外光でも良く、特に限定されないが、ブリーチング露光工程における光源は、マイクロレンズ材料層18aの母型形成のための露光工程と同様の光源を選択することが好ましい。
また、上述のように熱フロー法によりマイクロレンズ18を形成する場合には、マイクロレンズ群180(図1参照)を構成する全てのマイクロレンズ18を一度に形成するのではなく、複数のマイクロレンズ18を複数回に分割して形成する、すなわち同様工程を数回繰り替えして最終的に複数のマイクロレンズ18を形成しても良い。複数回に分割してマイクロレンズ群180を構成する複数のマイクロレンズ18を形成することで、マイクロレンズ18間に生じる隙間の間隔を調整することが可能となる。
上述のように図7(a)から図7(d)に示す工程を行うことで、熱フロー法を用いてマイクロレンズ18を形成することができる。
次に、図8を用いて、グレートーンマスクを用いた方法によりマイクロレンズ18を形成する例を説明する。
この方法では、グレートーンマスクという特殊な露光用マスク(フォトマスク)を使用してマイクロレンズ18を形成する。グレートーンマスクは、作製対象のレンズ要素に対応するように光透過率を可変した遮光膜を、石英基板上に形成したものである。遮光膜に濃淡のグラデーション(階調)が付されたマスクということができる。グレートーンマスクにおける階調の濃淡は、露光に用いる光では解像しない小さな径のドットの、単位面積当たりの個数(粗密)の部分的な差によって達成される。グレートーンマスクを用いた露光法によれば、所望のマイクロレンズの形状を制御することが容易となる。具体的には、グレートーンマスクを用いた露光法により表面荒れを抑制することができるため、レンズ表面の光散乱が少なく、且つ滑らかなマイクロレンズを得ることが出来る。グレートーンマスクを用いて形成されるマイクロレンズ形状としては、球面形状、放物線形状、Sin形状、三角錐等があるが、集光効率の観点より、放物線形状が好ましい。また、本実施形態では、グレートーンマスクを用いてマイクロレンズ材料層を露光する際は、一般的なステッパーと呼ばれる露光装置を用いる。この露光装置における露光には紫外光が用いられ、波長は365nmが好適である。
グレートーンマスクを用いるマイクロレンズの形成方法においては、上述の熱フロー形成方法と同様に、色フィルター層100の各色フィルターを形成した半導体基板10上方を覆うように平坦化膜19bを形成する(図8-1(a)参照)。このとき形成する平坦化膜19bは、第1の色フィルター14の下部に形成した平坦化層12の材料及び第1の色フィルター14の上部に形成した透明保護層13と同様の材料でよい。また、少なくとも、平坦化膜19bの材料は、上部に形成されるマイクロレンズ18の形成に問題のない材料であれば良い。
次に平坦化膜19b上に、感光性を持たせた樹脂材料を用いて、マイクロレンズ18となるマイクロレンズ材料層18aを形成する(図8-1(b)参照)。このマイクロレンズ材料層18aは、ポジ型フォトレジストをスピンコート法にて塗布し、ホットプレート上で熱硬化して形成する。このとき、形成されるマイクロレンズ材料層の膜厚は、例えば0.3μm以上10.0μm以下の範囲内にあり、典型的には0.4μm以上2.0μm以下の範囲内となる。
次に、グレートーンマスク22を用いて、マイクロレンズ材料層18aの露光を実施する(図8-2(c)参照)。さらに、露光に次いで現像処理を行うことによって、色フィルター層100上にマイクロレンズの母型形状が形成される。グレートーンマスクを用いることで、現像処理の段階でマイクロレンズ材料層18aが所望のマイクロレンズ形状に形成される。
次に、マイクロレンズ材料層18aをポストベークする。これにより、マイクロレンズ18が形成される(図8-2(d)参照)。ポストベークする際の温度については、段階的にベーク処理を行うことにより、熱フロー量を制御することが可能となっている。ガラス転移温度以上の温度でベーク処理を行うとマイクロレンズ材料層18a流動化する。このため、グレートーンマスクを用いたマイクロレンズ作製において、ポストベークする際の温度は、マイクロレンズ材料のガラス転移温度以下の温度、例えば110以上160℃以下の範囲とし、さらに、複数回に分けて段階的にベーク処理を行う。これにより、マイクロレンズ材料層18aを流動化させることなく、膜硬化を進めてマイクロレンズ18を形成することが出来る。段階的なベーク処理において設定可能な温度の最小値は、生産プロセスの許容値に基づき約5℃である。なお、ガラス転移温度以上の温度でベーク処理すると、現像後の時点で所望のマイクロレンズ形状に形成されたマイクロレンズ材料層18aが流動化し、現像後に得られたマイクロレンズ形状を維持することが出来ない。
また、マイクロレンズ18の材料によっては、必要に応じて、ポストベーク前にブリーチング露光を行う。ブリーチング露光工程は、上述したように現像工程で形成したマイクロレンズ材料層18aの全体に光を照射して光透過性を向上させる工程である。
上述のように、図8-1(a)から図8-2(d)に示す工程を行うことで、グレートーンマスクを用いてマイクロレンズを形成することができる。
以上の工程により、本実施形態の固体撮像素子1が完成する。
本実施形態では、上述したように、第1の色フィルター14を、最も占有面積の広い色フィルターとすることが好ましい。そして、第2の色フィルター15及び第3の色フィルター16は、感光性を有したカラーレジストを用いてフォトリソグラフィによりそれぞれ形成する。
また、第1の色フィルター用材料は、平坦化層12の表面全面に塗布後、高温で加熱する。このため、半導体基板10及び平坦化層12との密着性を良くすることができる。これにより、半導体基板10及び平坦化層12との密着性が良好であり、且つ矩形性良く形成された第1の色フィルター14及び隔壁30のパターンをガイドパターンとして、隔壁30によって四辺が囲われた場所を埋めるように、第2の色フィルター15及び第3の色フィルター16を形成することができる(図2参照)。ここで、第2の色フィルター15及び第3の色フィルター16の形成に用いる手法は、感光性を有したカラーレジストを用いる技術であって、従来の色フィルターパターンの製造技術である。しかしながら、本実施形態では、感光性を持たせたカラーレジストを用いて第2の色フィルター15及び第3の色フィルター16を形成する場合でも、従来のように解像性を重視したカラーレジストとする必要がない。このため、第2の色フィルター15及び第3の色フィルター16において光硬化性樹脂中の光硬化成分を少なくすることが可能となり、第2及び第3色フィルター用材料中の顔料の割合を増加できるとともに、第2の色フィルター15及び第3の色フィルター16の薄膜化に対応することができる。
また、本実施形態では、第1の色フィルター14の材料として熱硬化性樹脂を用いている。さらに、第1の色フィルター14は、顔料含有率の高い色フィルター用材料で形成することが望ましい。特に、第1の色フィルター用材料における顔料の含有率は、70質量%以上に構成することが望ましい。これにより、第1の色フィルター用材料として、従来の感光性カラーレジストを用いたフォトリソグラフィプロセスでは硬化が不十分となるおそれがある濃度の顔料が含まれている場合であっても、第1の色フィルター14を精度良く、残渣や剥がれもなく形成することができる。
また、本実施形態では、第1の色フィルター14における硬化性、溶剤耐性を向上させるため、第1の色フィルター用材料として熱硬化樹脂材料を用いたが、所望の分光特性によっては、顔料濃度や経時特性などを重視し、光硬化性樹脂のみ又は熱硬化性樹脂と光硬化性樹脂とを併用した材料を第1の色フィルター用材料として用いてもよい。第1の色フィルター用材料として光硬化性樹脂のみを用いる場合は、溶剤耐性が低下し易いものの、経時特性等の面で材料設計の自由度が向上するという利点がある。
また、本実施形態では、第1の色フィルター14と、第2の色フィルター15及び第3の色フィルター16との間に隔壁30が構成されている。このため、隔壁30が他色の色フィルターからの漏れ光及び移染を抑制して、色フィルターそう100における混色を抑制することができる。
また、本実施形態では、第1の色フィルター14の上部に、透明保護層13が形成されていることにより、第1の色フィルター14の形成時におけるエッチングマスク除去プロセスや、第2の色フィルター15及び第3の色フィルター16の形成時における材料混色のおそれを低減でき、針状結晶の発生を抑制することが可能となる。
以上のように、本実施形態による製造方法で製造した固体撮像素子1は、二次元的に配置された複数の光電変換素子11を有する半導体基板10と、半導体基板10上に形成され、複数の光電変換素子11に対応させて複数色の色フィルターが予め設定した規則パターンで二次元的に配置された色フィルター層100と、複数色の色フィルターと半導体基板10との間に形成された平坦化層12と、複数色の色フィルターの間に配置された隔壁30と、色フィルター層100上に形成され、複数色の色フィルターのそれぞれに対応させて二次元的に配置されたマイクロレンズ18と、複数色の色フィルターから選択した第1の色フィルター14とマイクロレンズ18との間のみに配置された透明保護層13と、を備える。
また、本実施形態による固体撮像素子1の製造方法は、複数の光電変換素子11を二次元的に配置した半導体基板10上に平坦化層12を形成し、次に平坦化層12上に塗布した第1の色フィルター材料(塗布液の一例)を硬化させて第1の色フィルター14(一の色フィルターの一例)を形成し、次に第1の色フィルター14の上部に透明保護層13を形成し、透明保護層13を形成した後、半導体基板10上における第1の色フィルターの一部をドライエッチングによって除去して、透明保護層13が上部に形成された第1の色フィルター14をパターン形成する第1の工程と、第1の工程において第1の色フィルター14をドライエッチングする際に生じた、第1の色フィルター14とドライエッチングガスとの反応生成物により、第1の色フィルター14の外周囲(側壁)に隔壁30を形成する第2の工程と、第2の工程後に、第1の色フィルター14以外の色フィルターである第2の色フィルター15及び第3の色フィルター16(他の色フィルターの一例)を、フォトリソグラフィによってパターン形成する第3の工程と、第3の工程後に、第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16上にマイクロレンズを形成する第4の工程と、を備える。
本実施形態の固体撮像素子1の製造方法によれば、色フィルター層100を構成する複数色のフィルターそれぞれの膜厚を全て薄膜化し、マイクロレンズトップからデバイスまでの総距離を短くし、さらに複数色の色フィルター間に隔壁30を有することによって色フィルター層100内での混色を抑制できる。さらに、本実施形態では、色フィルター層100における各色フィルター形成時において、プロセスダメージ及び混色に基づく針状結晶の発生を抑制することで、各色フィルターにおいて所望の分光特性が得られる。このように、半導体基板10上にパターン形成された全ての色フィルターを有することで、本実施形態による固体撮像素子1が高感度化される。これにより、高精細な固体撮像素子の提供を実現することが可能となる。
<第2実施形態>
次に、本発明の第2実施形態について、図9を用いて説明する。
(固体撮像素子の構成)
図9に示すように、本実施形態に係る固体撮像素子2は、二次元的に配置された複数の光電変換素子11を有する半導体基板10と、半導体基板10の上方に配置された複数のマイクロレンズ18とを備えている。また、半導体基板10とマイクロレンズ18との間には、色フィルター層100と、隔壁30とが設けられている。色フィルター層100は、複数色の色フィルター(第1の色フィルター14、第2の色フィルター15及び第3の色フィルター16)が所定の規則でパターン形成されて構成される。また、隔壁30は、複数色の色フィルターのそれぞれの間に形成される。また、複数色の色フィルターの内、第1の色フィルター14の上面にのみ透明保護層13が構成されている。複数色の色フィルターそれぞれの下層には、平坦化層12が形成されている。平坦化層12は、一部膜厚が変化している。具体的には、平坦化層12は、第2の色フィルター15及び第3の色フィルター16の下層においてのみ、後述するドライエッチング工程により膜厚が変化している。
以下、固体撮像素子2の製造方法について、上記第1実施形態における固体撮像素子1の製造方法と異なる部分を記載する。
本実施形態では、複数の光電変換素子11を有する半導体基板10を準備し、半導体基板10の表面全面、すなわち色フィルター層100の形成位置全面に、平坦化層12を形成する。本実施形態における平坦化層12は、後述するドライエッチング工程でのエッチングストッパーの役割を担う。平坦化層12は上記第1実施形態と同様に、珪素、炭素、酸素、水素、錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、ニオブ、タンタル、ハフニウム、銀及びフッ素等の材料のうちを一又は複数含有する化合物や、酸化化合物、窒化化合物等により形成してもよい。これらの材料を用いる平坦化層12は、スプレー法、塗布法、CVD法等の化学的作製法と、真空蒸着法、イオンプレーティング法、スパッタ法等の物理的作製方法とで形成する。化学的作製方法は、塩化物の加水分解や、有機化合物の熱分解反応により平坦化層12を作製する方法である。また、平坦化層12は、これらの材料を含んだ物質の塗布、加熱硬化などで形成しても良い。
本実施形態において、平坦化層12の膜厚は、例えば0nmを超過し300nm以下である。色フィルター層100を構成する複数色の色フィルター間での混色防止の観点からは、平坦化層12の膜厚は可能な限り薄いことが好ましい。また、平坦化層12は、可視光に対する透過率が90%以上であることが望ましく、具体的には、透過率が95%以上であることがより望ましい。本実施形態では、ドライエッチング方式を用いて第1の色フィルター14を形状加工するが、第1の色フィルター14に対してエッチングレートが遅く、第2の色フィルター15及び第3の色フィルター16の下部に平坦化層12が形成された構成となっている。
本実施形態において、平坦化層12上に第1の色フィルター14、透明保護層13及び、エッチングマスクを形成する工程は、第1の実施形態と同様である。
一方、本実施形態では、平坦化層12の材料に、無機化合物を採用する。具体的には、平坦化層12の材料として、珪素、炭素、酸素、水素、錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、ニオブ、タンタル、ハフニウム、銀及びフッ素等のうち一つ又は複数を含んだ化合物や、酸化化合物、窒化化合物等を用いる。これらの無機化合物は、フッ素を含有したガスに対してドライエッチング耐性があり、平坦化層12のエッチング速度が遅くなる。このため、無機化合物を材料とする本実施形態の平坦化層12は、色フィルター層100において所望の位置の色フィルターをドライエッチングにより除去する際に、エッチングされず、平坦化層12の下層の半導体基板10のエッチングを防止することが可能となる。
具体的には、希ガス単体又は反応性ガスと希ガスとの混合ガスが、全ガス流量の90%以上の状態での、透明保護層13及び第1の色フィルター14のドライエッチングにおいて、開口部20b(図3-2(g)参照)に露出する透明保護層13、第1の色フィルター14及び平坦化層12の一部を、エッチングする。このとき、半導体基板10へのダメージを低減するために、エッチングを途中で止め、物理的にエッチングを行う希ガスの割合を段階的に低減する多段階エッチングを行っても良い。
多段階エッチングの場合、希ガスの割合を低減する段階では、平坦化層12及び半導体基板10をエッチングし難いガス、すなわち酸素系ガスやフッ素系ガスを用いて、開口部20bに露出する第1の色フィルター14を全てエッチングする。この段階におけるドライエッチングにおいては、平坦化層12のエッチング速度が遅いため、第1の色フィルター14を残渣なくエッチングし、且つ平坦化層12がエッチングにより無くならない(残存する)範囲の時間で行う。
また、このとき、平坦化層12が完全に無くならない範囲であれば、ドライエッチングガスに希ガスを混合し、異方性を高めたエッチングを行っても良い。この条件の場合、希ガスの物理的衝撃により、平坦化層12の材料が隔壁30に含有しやすくなる。平坦化層12の材料にSiを含有した材料を用いている場合は、隔壁30にSiOなどが含有しやすく隔壁の屈折率を制御しやすい利点がある。
なお、第2の色フィルターの形成工程においても、ドライエッチングの工程は第1の実施形態と同様である。
このように、本実施形態による固体撮像素子2の製造工程では、上述のようなドライエッチング工程を行うことにより、第1の色フィルター14の下部以外においても、平坦化層12が残存する。このため、第1実施形態による固体撮像素子1と異なり、図9に示すように第2の色フィルター15及び第3の色フィルター16の下部にも平坦化層12が維持される。本実施形態は、ドライエッチング工程において平坦化層12を残存させるため、上記第1実施形態と比較して平坦化層12の形成工程のプロセスの複雑さが増すものの、ドライエッチング工程による半導体基板10へのプラズマダメージを抑制し易いという効果が得られる。
具体的には、平坦化層12に無機系材料を用いることで、平坦化層12の形成工程は複雑になるものの、平坦化層12をエッチングストッパー層とすることにより、半導体基板10へのプラズマダメージを低減することができる。また、平坦化層12とドライエッチングガスとの反応生成物が隔壁30に含まれることにより、隔壁30の屈折率が調整できるという効果を奏する。また、隔壁30に無機系の反応生成物の層が含まれることにより、色フィルター層100における複数の色フィルター間での混色を抑制する効果が向上させることができる。
なお、第2の色フィルター15及び第3の色フィルターの形成工程(第3工程)、マイクロレンズ形成工程(第4工程)は、上記第1実施形態と同様である。
以下、本発明の固体撮像素子及び従来法による固体撮像素子について、実施例1により具体的に説明する。本実施例では、上記第1実施形態に係る固体撮像素子1(図1参照)の製造方法を用いて固体撮像素子を得た。
(実施例1)
(平坦化層の形成)
二次元的に配置された光電変換素子11を備える半導体基板10上に、アクリル系樹脂を含む塗布液を回転数3000rpmでスピンコートし、ホットプレートにて230℃で6分間の加熱処理を施して、樹脂を硬化し、平坦化層12を形成した。この際の平坦化層12の膜厚は50nmで可視光の透過率は98%であった。
(第1の色フィルターの形成)
次に、色フィルター層100を構成する複数色の色フィルターのうち1色目であるグリーンの顔料を含む第1の色フィルター用材料として、熱硬化性樹脂を含ませたグリーン顔料分散液を平坦化層12上に1000rpmの回転数でスピンコートした。この1色目の色フィルター用材料のグリーンの顔料には、カラーインデックスにてC.I.PG58を用いており、その顔料濃度は70質量%、膜厚は500nmであった。
次に、第1の色フィルター用材料(グリーンフィルター用材料)の硬化を実施するため、ホットプレートにおいて温度230℃により6分間ベークを行い、第1の色フィルター14の熱硬化を行った。
(透明保護層の形成)
次に、第1の色フィルター14(グリーンフィルター)上に、アクリル樹脂を含む塗布液の粘度を調整して回転数3000rpmでスピンコートし、ホットプレートにて温度230℃で6分間の加熱処理を施して樹脂を硬化し、透明保護層13を形成した。この際の透明保護層13の膜厚は20nmであり、透明保護層13の可視光の透過率は99%であった。また、この際に用いたアクリル樹脂を含む塗布液は、後述するマイクロレンズ18を転写する材料を希釈して粘度を調整したものである。
次に、ポジ型レジスト(OFPR-800:東京応化工業株式会社製)を、スピンコーターを用いて1000rpmの回転数でスピンコートした後、温度90℃で1分間プリベークを行った。これにより、エッチングマスクとなるポジ型レジストを膜厚1.5μmで塗布したサンプルを作製した。
次に、このサンプルに対して、フォトマスクを介して露光するフォトリソグラフィを行った。フォトリソグラフィには、i線の波長の紫外線を照射可能な光源を有する露光装置を用いた。ポジ型レジストは、紫外線照射によって化学反応を起こし、現像液に溶解するようになった。
次に、2.38質量%のTMAH(テトラメチルアンモニウムハイドライド)を現像液として用いて現像工程を行い、半導体基板10上において、第2の色フィルター15及び第3の色フィルター16を形成する箇所に開口部を有するエッチングマスクを形成した。
ポジ型レジストを用いる際には、現像後脱水ベークを行い、ポジ型レジストの硬化を行うことが多い。しかしながら、本実施例においてはドライエッチング後のエッチングマスクの除去を容易にするため、ベーク工程を実施しなかった。これにより、レジストが硬化せず選択比の向上が見込めないため、ポジ型レジストの膜厚をグリーンフィルターである第1の色フィルター14の膜厚の2倍以上である、1.5μmの膜厚で形成した。この際のエッチングマスクの開口部パターンは、1.1μm×1.1μmで形成した。
本実施例では、このようにして、ポジ型レジストを用いたエッチングマスクパターンを形成した。
次に、形成したエッチングマスクパターンを用いて、透明保護層13とグリーンフィルターである第1の色フィルター14のドライエッチングを行った。このとき用いたドライエッチング装置としては、ICP方式のドライエッチング装置を用いた。また、透明保護層13及び第1の色フィルター14の下地である半導体基板10に影響を与えないように、ドライエッチングの途中でドライエッチング条件の変更を行う多段階ドライエッチングを実施した。
多段階ドライエッチングにおける最初のガス種としては、CF、O及びArガスの三種を混合したガスを用いてエッチングを実施した。CF及びOのガス流量を各5ml/minとし、Arのガス流量を200ml/minとした。すなわち、全ガス流量中、Arのガス流量が95.2%であった。また、この際のドライエッチング条件は、ドライエッチング装置におけるチャンバー内の圧力を1Paの圧力とし、RFパワーを500W、コイルパワーを1000Wとして設定した。
本実施例において、上述のドライエッチング条件でエッチングレートを評価した結果、透明保護層13のエッチングレートはグリーンフィルター(第1の色フィルター14に相当)のエッチングレートに対して凡そ二分の一であった。このため、透明保護層13の膜厚が20nm、第1の色フィルター14の膜厚が500nmの膜厚構成において、第1の色フィルター14の膜厚を540nmと仮定してエッチング時間の調整を実施した。
本実施例では、このドライエッチング条件を用いて、第1の色フィルター14の膜厚を540nmと仮定したことにより、第1の色フィルター14の膜厚の内370nmをドライエッチングした段階で、次のドライエッチング条件に変更した。
本実施例における多段階ドライエッチングでの次のガス種としては、CFガスとOガスを混ぜた混合ガスを用いた。また、ドライエッチング条件はCFのガス流量を150ml/min、Oのガス流量を150ml/minで50対50の比率で混合し、チャンバー内圧力を2Pa、RFパワーを500W、コイルパワーを1000Wの条件とした。このドライエッチング条件を用いて、第1の色フィルター14(本実施例ではグリーンフィルター)の残留分170nmのドライエッチングを行った。第1の色フィルター14の下層には平坦化層12として形成したアクリル樹脂層が50nmあり、平坦化層12の下層は半導体基板10となっている。半導体基板10はCFガスでエッチングされてしまうため、平坦化層12の膜厚が50nm残っている段階でCFガスを使用しないガス条件へ変更を行った。
本実施例における多段階ドライエッチングでの次のガス種としては、Oガスを用いた。また、ドライエッチング条件は、Oガス流量を150ml/min、チャンバー内圧力を2Pa、RFパワーを100W、コイルパワーを1000Wの条件とした。このドライエッチング条件を用いて、残存している平坦化層12の膜厚50nmのドライエッチングを行った。
また、上記ドライエッチングの際に、第1の色フィルター14(グリーンフィルターパターン)の側壁には、第1の色フィルター用材料及び平坦化層12の材料であるアクリル樹脂材料と、ドライエッチングガスとの反応生成物を含んだ隔壁30が形成された。本実施例において、この隔壁30の寸法(横幅)は、ドライエッチング条件の時間調整により、制御可能である。本実施例におけるドライエッチング条件では、上述のように第1の色フィルター14を500nmと、平坦化層12とをドライエッチングしたが、ドライエッチング時におけるこれらの反応生成物による隔壁の寸法(幅)は25nmであった。また、平坦化層12の下層の半導体基板10は表面にSiを含有する保護層が形成されていることが多い。このため、光電変換素子11にダメージが生じない条件であれば、半導体基板10をエッチングしてもよい。この場合、ドライエッチング時における反応生成物に半導体基板10の表面保護層であるSi成分が含まれることから、隔壁30にSi成分が含まれることになる。
次に、ドライエッチング工程においてエッチングマスクとして用いたポジ型レジストの除去を行った。ポジ型レジストの除去方法は、溶剤を用いた方法であり、具体的には、剥離液104(東京応化工業株式会社製)を用いてスプレー洗浄装置によりポジ型レジストの除去を行った。
(第2の色フィルターの作製)
次に第2の色フィルター15の形成工程を行った。第2の色フィルター15を設けるべくブルー顔料分散液を含有し、感光性を有したブルーレジストを半導体基板10上の全面に塗布した。このとき、ブルーレジストに用いた顔料は、それぞれカラーインデックスにてC.I.PB156、C.I.PV23であり、顔料濃度は50質量%であった。また、第2の色フィルター15(本実施例ではブルーフィルター)の膜厚は570nmであった。また、ブルーレジストの主成分である樹脂としては、感光性を持たせたアクリル系の樹脂を用いた。また、半導体基板10上へのブルーレジスト塗布前に、半導体基板10に対する密着性を向上させるためにHMDS処理を行ってもよい。
次に、フォトリソグラフィによりブルーレジストを選択的に露光して、現像を行い、第2の色フィルター15のパターンを形成した。
次に、第2の色フィルター15を強固に硬化させるため、ホットプレートで、温度230℃で6分間ベークを行った。この加熱工程を経た後の第2の色フィルター15は、第3の色フィルター16の形成工程等の工程を経ても、剥がれや、パターンの崩れ等が確認されなかった。第2の色フィルター15は、周囲を矩形性のよい第1の色フィルター14(グリーンフィルター)及び隔壁30に覆われており、矩形性良く形成される。このため、第2の色フィルター15は、底面(例えば半導体基板10の表面)及び周囲(例えば隔壁30)との間で密着性良く硬化することが確認された。
また、本実施例において、第1の色フィルター14(グリーンフィルター)の上部には透明保護層13が形成されており、第1の色フィルター14と第2の色フィルター15(ブルーフィルター)とは物理的に接触しない構成となっている。このため、本実施例では、第2の色フィルター15の加熱工程を経ても、第1の色フィルター14と第2の色フィルター15との間での混色及び反応による針状結晶は確認されなかった。
(第3の色フィルターの作製)
次に、第3の色フィルター16の形成工程を行った。第3の色フィルター16を設けるべく、レッド顔料分散液を含有し感光性を有するレッドレジストを半導体基板10上の全面に塗布した。このとき、レッドレジストに用いた顔料は、それぞれカラーインデックスにてC.I.PR254、C.I.PY139であり、顔料濃度は60質量%であった。また、第3の色フィルター16(本実施例ではレッドフィルター)の膜厚は570nmであった。
次に、フォトリソグラフィによりレッドレジストを選択的に露光して、現像を行い、第3の色フィルター16のパターンを形成した。
次に、第3の色フィルター16を強固に硬化させるため、ホットプレートで、温度230℃で6分間ベークを行った。また、第3の色フィルター16は周囲を矩形性のよい第1の色フィルター14(グリーンフィルター)及び隔壁30に覆われており、矩形性良く形成される。このため、底面(例えば半導体基板10の表面)及び周囲(例えば隔壁30)との間で、密着性良く硬化することが確認された。
また、本実施例において、第1の色フィルター14(グリーンフィルター)の上部には透明保護層13が形成されており、第1の色フィルター14と第3の色フィルター16(レッドフィルター)とは物理的に接触しない構成となっている。このため、本実施例では、第3の色フィルター16の加熱工程を経ても、第1の色フィルター14と第3の色フィルター16との混色及び反応による針状結晶は確認されなかった。
本実施例では、上述の工程により、グリーン顔料を含む第1の色フィルター14の膜厚A(500nm)と、第1の色フィルター14の下層の平坦化層12の膜厚(50nm)、第1の色フィルター14の上層の透明保護層13の膜厚B(20nm)、第2の色フィルター15及び第3の色フィルターの膜厚C(570nm)は、上記第1実施形態による固体撮像素子1に基づく膜厚となっている。また、本実施例では、第2の色フィルター15及び第3の色フィルターの下層は半導体基板10であって、平坦化層12は存在しない構成である。
次に、本実施例において上記の工程で形成した複数色の色フィルターで構成される色フィルター層100上に、透明保護層13に用いた材料と同一の材料であって粘度を調整したアクリル樹脂を含む塗布液を回転数1000rpmでスピンコートし、ホットプレートにて温度200℃で10分間の加熱処理を施して樹脂を硬化し、マイクロレンズ転写層19を2μmの膜厚で形成した。
次に、このマイクロレンズ転写層19の上に、アルカリ可溶性・感光性・熱リフロー性を有する樹脂を塗布して感光性犠牲層を形成した。その後、感光性犠牲層を、フォトマスクを使用してフォトリソグラフィのプロセスによりパターン化した後、温度250℃で熱処理して、マイクロレンズ母型層19aを形成した。マイクロレンズ母型層19aは、厚さ約0.5μmのスムースな半球形状であった。
次に、フロン系ガスであるCFとCとの混合系ガスを用いてドライエッチングを施し、マイクロレンズ母型層19aのパターンをマイクロレンズ転写層19に転写し、マイクロレンズ18を形成した。ここで、マイクロレンズ母型層19aのパターン転写時におけるドライエッチング時間は8分とした。なお、本実施例では、半球形状のレンズトップからレンズボトムまでの高さを500nmとするマイクロレンズ18を形成した。これにより、実施例1の固体撮像素子を完成した。(図1及び図6-2(d)参照)
以上のようにして得た本実施例による固体撮像素子は、第1の色フィルター14の下部に平坦化層12が50nm形成され、第2の色フィルター15及び第3の色フィルター16の下部は半導体基板10となっている。また、複数色の色フィルターのうち1色目である第1の色フィルター(グリーンフィルター)は、熱硬化性樹脂を用いているため固形分中の顔料の濃度を上げることが可能である。このため、本実施例による固体撮像素子の第1の色フィルター14は、従来の感光性レジストを用いてパターニングした場合よりも薄膜でありながら、所望の分光特性を得ることが出来た。また、本実施例において第2の色フィルター15(ブルーフィルター)及び第3の色フィルター(レッドフィルター)は、材料に感光性樹脂を用いている。しかしながら、本実施例における固体撮像素子においては、従来工程と異なり、矩形性良く形成された第1の色フィルター14及び隔壁30のパターンがガイドパターンとなっているため、第2の色フィルター15及び第3の色フィルター16を形成時には、隔壁30によって四辺が囲われた部分にを穴埋めするようにパターン形成するだけで良い。このため、本実施例における第2の色フィルター15及び第3の色フィルター16は、感光性樹脂の割合を従来よりも少なくすることができる。したがって、第2の色フィルター15及び第3の色フィルター16の顔料濃度を上げて、膜厚が薄くとも所望の分光特性を形成し易くすることができる。また、ブルーフィルター及びレッドフィルター形成箇所の下部には、平坦化層12がないため、グリーンフィルターと上部の透明保護層13の膜厚を合わせた膜厚と比較して、平坦化層12の分だけ、ブルーフィルター及びレッドフィルターの膜厚を厚く形成できる。
これらの効果により、本実施例における固体撮像素子では、第1の色フィルター14(グリーンフィルター)、第2の色フィルター15(ブルーフィルター)及び第3の色フィルター16(レッドフィルター)の各色フィルターについて、従来よりも薄膜化が可能であるため、従来の固体撮像素子と比較してマイクロレンズ18から半導体基板10までの距離が短くなり、良好な感度を有するものとなった。
また、従来、顔料含有率の高いグリーンフィルター用材料を用いた場合には、ドライエッチング工程に用いられる溶剤や他の色フィルター材料との反応によって分光特性が変化することがあった。しかしながら、本実施例において第1の色フィルター14の上部は透明保護層13で覆われており、他の色フィルター(第2の色フィルター15(ブルーフィルター)及び第3の色フィルター16(レッドフィルター))とは形成工程において接することがなく、第1の色フィルター14と、第2の色フィルター15及び第3の色フィルターとの間で混色が発生していない。これにより、本実施例では分光特性が変化せず、色フィルター間での混色の影響がないため針状結晶が抑制され、所望の分光特性が得られている。
また、本実施例では、第1の色フィルター14であるグリーンフィルターの硬化性、溶剤耐性を向上させるため、第1の色フィルター材料として熱硬化樹脂材料を用いたが、所望の分光特性によっては、顔料濃度や、経時特性などを重視して、光硬化性樹脂のみ又は熱硬化性樹脂と光硬化性樹脂を併用した材料で第1の色フィルターを形成してもよい。
(実施例2)
以下、本発明の固体撮像素子及び従来法による固体撮像素子について、実施例2により具体的に説明する。実施例2では、上記第2実施形態に係る固体撮像素子2(図9参照)の製造方法を用いて固体撮像素子を得た。
まず、二次元的に配置された光電変換素子11を備える半導体基板10上に、平坦化層12としてITO膜を成膜した。平坦化層12としてのITO膜は、マグネトロンスパッタリング法を用いて、30nmの膜厚で成膜した。ITO膜の成膜温度は常温付近とし、加工を容易な非結晶膜になるようにITO膜を形成した。
次に、半導体基板10の電極部分を開口するために、シュウ酸を5%程度含有しているエッチング液を用いて、半導体基板10のウェットエッチングを実施した。半導体基板10のウェットエッチング時は、ポジ型レジスト(OFPR-800:東京応化工業株式会社製)を750rpmの回転数でスピンコートした後、90℃で1分間プリベークを行った。これにより、エッチングマスクとなるポジ型レジストを膜厚2.0μmで塗布したサンプルを作製した。
次に、このサンプルに対して、フォトマスクを介して露光するフォトリソグラフィを行った。フォトリソグラフィには、i線の波長の紫外線を照射可能な光源を有する露光装置を用いた。ポジ型レジストは、紫外線照射により、化学反応を起こして現像液に溶解するようになった。
次に、2.38質量%のTMAH(テトラメチルアンモニウムハイドライド)を現像液として用いる現像工程を行い、半導体基板10の電極部分に開口部を有するエッチングマスクを形成した。次にエッチング液に3分浸漬させてウェットエッチングを行い、純水で洗浄して、半導体基板10の電極部分を開口させた。
次に、半導体基板10のウェットエッチングにおいてエッチングマスクとして用いたポジ型レジストの除去を行った。ポジ型レジストの除去方法は、溶剤を用いた方法であり、剥離液104(東京応化工業株式会社製)を用いてスプレー洗浄装置によりポジ型レジストの除去を行った。
次にホットプレートにおいて、250度で30分間加熱処理を行い、平坦化層12としてのITO膜を結晶化させた。このとき、シート抵抗は50Ω/sq.以下であり、可視光の透過率が94%であった。
次に、色フィルター層100を構成する複数色の色フィルターのうち1色目であるグリーンの顔料を含む第1の色フィルター用材料として、熱硬化性樹脂を含ませたグリーン顔料分散液を平坦化層12上に1000rpmの回転数でスピンコートした。この1色目の色フィルター用材料のグリーンの顔料には、カラーインデックスにてC.I.PG58を用いており、その顔料濃度は70質量%、膜厚は500nmであった。
次に、第1の色フィルター用材料の硬化を実施するため、ホットプレートにおいて温度230℃により6分間ベークを行い、第1の色フィルター14ーの熱硬化を行った。
(透明保護層の形成)
次に、第1の色フィルター14(本実施例では、グリーンフィルター)上に、アクリル樹脂を含む塗布液の粘度を調整して回転数3000rpmでスピンコートし、ホットプレートにて温度230℃で6分間の加熱処理を施して樹脂を硬化し、透明保護層13を形成した。この際の透明保護層13の膜厚は20nmであり、透明保護層13の可視光の透過率は99%であった。また、この際に用いたアクリル樹脂を含む塗布液は、後述するマイクロレンズ18を転写する材料を希釈して粘度を調整したものである。
次に、ポジ型レジスト(OFPR-800:東京応化工業株式会社製)を、スピンコーターを用いて1000rpmの回転数でスピンコートした後、温度90℃で1分間プリベークを行った。これにより、エッチングマスクとなるポジ型レジストを膜厚1.5μmで塗布したサンプルを作製した。
次に、このサンプルに対して、フォトマスクを介して露光するフォトリソグラフィを行った。フォトリソグラフィには、i線の波長の紫外線を照射可能な光源を有する露光装置を用いた。ポジ型レジストは、紫外線照射により、化学反応を起こして現像液に溶解するようになった。
次に、2.38質量%のTMAH(テトラメチルアンモニウムハイドライド)を現像液として用いて現像工程を行い、半導体基板10上において、第2の色フィルター15及び第3の色フィルター16を形成する箇所に開口部を有するエッチングマスクを形成した。ポジ型レジストを用いる際には、現像後脱水ベークを行い、ポジ型レジストの硬化を行うことが多い。しかしながら、実施例2においてはドライエッチング後のエッチングマスクの除去を容易にするため、ベーク工程を実施しなかった。これにより、レジストが硬化せず選択比の向上が見込めないため、ポジ型レジストの膜厚をグリーンフィルターである第1の色フィルター14の膜厚の2倍以上である、1.5μmの膜厚で形成した。この際の開口部パターンは、1.1μm×1.1μmで形成した。
本実施例では、このようにして、ポジ型レジストを用いたエッチングマスクパターンを形成した。
次に、形成したエッチングマスクパターンを用いて、透明保護層13と第1の色フィルター14のドライエッチングを行った。このとき、用いたドライエッチング装置としては、ICP方式のドライエッチング装置を用いた。また、下地の半導体基板10に影響を与えないように、途中でドライエッチング条件の変更を行い、ドライエッチングを多段階で実施した。
多段階ドライエッチングにおける最初のガス種としては、CF、O、及びArガスの三種を混合したガスを用いてエッチングを実施した。CF、O2のガス流量を各5ml/minとし、Arのガス流量を200ml/minとした。すなわち、全ガス流量中、Arのガス流量が95.2%であった。また、この際のドライエッチング条件はドライエッチング装置におけるチャンバー内の圧力を1Paの圧力とし、RFパワーを500W、コイルパワーを1000Wとして設定した。
本実施例において、上述のドライエッチング条件でエッチングレートを評価した結果、透明保護層13のエッチングレートは第1の色フィルター14(本実施例ではグリーンフィルター)のエッチングレートに対して凡そ二分の一であった。このため、透明保護層13の膜厚が20nm、第1の色フィルター14の膜厚が500nmの膜厚構成において、第1の色フィルター14の膜厚が540nmと仮定してエッチング時間の調整を実施した。
本実施例では、このドライエッチング条件を用いて、第1の色フィルター14(グリーンフィルター)の膜厚を540nmと仮定したことにより、第1の色フィルター14の膜厚の内370nmをドライエッチングした段階で、次のドライエッチング条件に変更した。
本実施例における多段階ドライエッチングでの次のガス種としては、CFガスとOガスを混ぜた混合ガスを用いた。また、ドライエッチング条件はCFのガス流量を150ml/min、O2のガス流量を150ml/minで50対50の比率で混合し、チャンバー内圧力を2Pa、RFパワーを500W、コイルパワーを1000Wの条件とした。このドライエッチング条件を用いて、第1の色フィルター14(本実施例ではグリーンフィルター)の残留分のドライエッチングを行った。平坦化層12として形成したITO膜は、CFガス及びOガスのエッチングレートが第1の色フィルター14のエッチングレートに対して20倍以上遅く、ほぼエッチングされない構成である。このとき、ドライエッチング後に第1の色フィルター14のグリーンの残渣が残らないように、残留している第1の色フィルター14の膜厚170nmの3倍の510nmがエッチングされる時間設定でオーバーエッチングを実施した。この工程により、第1の色フィルター14は残渣が残らず、ITO膜は、膜厚30nmの内に5nmエッチングされる状況であった。
また、上述のドライエッチングの際に、透明保護層13とグリーンフィルターパターン(第1の色フィルター14に相当)の側壁にグリーンフィルター用材料、透明保護層13及び平坦化層12の材料であるITO材料と、ドライエッチングガスとの反応生成物を含んだ隔壁30を形成した。この隔壁30はドライエッチング条件の時間調整で、隔壁30の寸法(横幅)を制御可能である。
上述のドライエッチング条件では、グリーンフィルター(第1の色フィルター14に相当)を500nm、透明保護層13を20nm、さらに平坦化層12を5nmほどドライエッチングしたが、ドライエッチングに基づくこれらの反応生成物により形成された隔壁30の寸法は30nmであった。
次に、ドライエッチング工程においてエッチングマスクとして用いたポジ型レジストの除去を行った。ポジ型レジストの除去方法は、溶剤を用いた方法であり、具体的には、剥離液104(東京応化工業株式会社製)を用いてスプレー洗浄装置によりポジ型レジストの除去を行った。
(第2の色フィルターの作製)
次に第2の色フィルター15の形成工程を行った。第2の色フィルター15を設けるべくブルー顔料分散液を含有し、感光性を有したブルーレジストを半導体基板10上の全面に塗布した。このとき、ブルーレジストに用いた顔料は、それぞれカラーインデックスにてC.I.PB156、C.I.PV23であり、顔料濃度は50質量%であった。また、第2の色フィルター15(本実施例ではブルーフィルター)の膜厚は570nmであった。また、ブルーレジストの主成分である樹脂としては、感光性を持たせたアクリル系の樹脂を用いた。また、半導体基板10上へのブルーレジスト塗布前に、半導体基板10上に対する密着性を向上させるためにHMDS処理を行ってもよい。
次に、フォトリソグラフィによりブルーレジストを選択的に露光して、現像を行い、第2の色フィルター15のパターンを形成した。
次に、第2の色フィルター15を強固に硬化させるため、ホットプレートで、温度230℃で6分間ベークを行った。この加熱工程を経た後の第2の色フィルター15は、第3の色フィルター16の形成工程等の工程を経ても、剥がれや、パターンの崩れ等が確認されなかった。第2の色フィルター15は、周囲を矩形性の良い第1の色フィルター14(グリーンフィルター)及び隔壁30に覆われており、矩形性良く形成される、このため、第2の色フィルター15は、底面(例えば半導体基板10の表面)及び周囲(例えば隔壁30)との間で密着性良く硬化することが確認された。
また、本実施例において、第1の色フィルター14(グリーンフィルター)の上部には透明保護層13が形成されており、第1の色フィルター14と第2の色フィルター15(ブルーフィルター)とは物理的に接触しない構成となっている。このため、本実施例では、第2の色フィルター15の加熱工程を経ても、第1の色フィルター14と第2の色フィルター15との間での混色及び反応による針状結晶は確認されなかった。
(第3の色フィルターの作製)
次に、第3の色フィルター16の形成工程を行った。第3の色フィルター16を設けるべくレッド顔料分散液を含有し、感光性を有するレッドレジストを半導体基板10上の全面に塗布した。このとき、レッドレジストに用いた顔料は、それぞれカラーインデックスにてC.I.PR254、C.I.PY139であり、顔料濃度は60質量%であった。また、第3の色フィルター16(本実施例ではレッドフィルター)の膜厚は570nmであった。
次に、フォトリソグラフィによりレッドレジストを選択的に露光して、現像を行い、第3の色フィルター16のパターンを形成した。
次に、第3の色フィルター16を強固に硬化させるため、ホットプレートで、温度230℃で6分間ベークを行った。また、第3の色フィルター16は周囲を矩形性の良い第1の色フィルター14(グリーンフィルター)及び隔壁30に覆われており、矩形性良く形成される。このため、底面(例えば半導体基板10の表面)及び周囲(例えば隔壁30)との間で、密着性良く硬化することが確認された。
また、本実施例において、第1の色フィルター14(グリーンフィルター)の上部には透明保護層13が形成されており、第1の色フィルター14と第3の色フィルター16(レッドフィルター)とは物理的に接触しない構成となっている。このため、本実施例では、第3の色フィルター16の加熱工程を経ても、第1の色フィルター14と第3の色フィルター16との混色及び反応による針状結晶は確認されなかった。
本実施例では、上述の工程により、グリーン顔料を含む第1の色フィルター14の膜厚A(500nm)と、第1の色フィルター14の上層の透明保護層13の膜厚(20nm)、第1の色フィルター14の下層の平坦化層12の膜厚B(30nm)、第2の色フィルター15及び第3の色フィルターの膜厚C(570nm)は、上記第1実施形態による固体撮像素子1に基づく膜厚となっている。また、本実施例では第2の色フィルター15及び第3の色フィルターの下層に、平坦化層12が膜厚25nmで構成されている。
また、本実施例において、最後に上記実施例1と同様の方法でレンズトップからレンズボトムまでの高さを500nmとするマイクロレンズ18を形成した。これにより、実施例2の固体撮像素子を完成した。
以上のようにして得た、本実施例による固体撮像素子は、第1の色フィルター14の下部に平坦化層12が30nm形成され、第2の色フィルター15及び第3の色フィルター16の下部に平坦化層12が25nm形成されている。また、複数色の色フィルターのうち1色目である第1の色フィルター(グリーンフィルター)は、熱硬化性樹脂を用いているため固形分中の顔料の濃度を上げることが可能である。このため、本実施例による固体撮像素子の第1の色フィルター14は、従来の感光性レジストを用いてパターニングした場合よりも薄膜でありながら、所望の分光特性を得ることが出来た。また、本実施例において第2の色フィルター15(ブルーフィルター)及び第3の色フィルター16(レッドフィルター)は、材料に感光性樹脂を用いている。しかしながら、本実施例における固体撮像素子においては、従来工程と異なり矩形性良く形成された第1の色フィルター14がガイドパターンとなっているため、第2の色フィルター15及び第3の色フィルター16を形成時には、隔壁30によって四辺が囲われた部分を穴埋めするようにパターン形成するだけでよい。このため、本実施例における第2の色フィルター15及び第3の色フィルター16は、感光性樹脂の割合を従来よりも少なくすることができる。したがって、第2の色フィルター15及び第3の色フィルター16の顔料濃度を上げて、膜厚が薄くとも所望の分光特性を形成し易くすることができる。
これらの効果により、本実施例における固体撮像素子では、第1の色フィルター14(グリーンフィルター)、第2の色フィルター15(ブルーフィルター)、及び第3の色フィルター16(レッドフィルター)の各色フィルターについて、従来よりも薄膜化が可能であるため、従来の固体撮像素子と比較してマイクロレンズから半導体基板までの距離が短くなり、良好な感度を有するものとなった。
また、本実施例による固体撮像素子においては、半導体基板10上にITO膜で形成した平坦化層12があるため、エッチング時においてエッチングストッパー層の役割を果たす。また、ITO膜は導電性があるため、第1の色フィルター14(グリーンフィルター)のドライエッチング時におけるプラズマダメージを逃す効果がある。このため、半導体基板10に形成した複数の光電変換素子11に対して、ドライエッチングの影響は観測されなかった。
さらに、グリーンフィルターからなる第1の色フィルター14の材料は、熱硬化により固められており、溶剤耐性が向上した。従来、グリーンフィルターの形成に顔料含有率の高いグリーンフィルター用材料を用いた場合、溶剤や他の色フィルター材料と反応して分光特性が変化することがあった。これに対し、本実施例による固体撮像素子では、第1の色フィルター14に上述の熱硬化を行うことで溶剤耐性を向上することが可能となり、分光特性の変化を抑制することができる。
また、本実施例では、第1の色フィルター14(グリーンフィルター)の硬化性、溶剤耐性を向上させるため、熱硬化樹脂を用いたが、所望の分光特性によっては、顔料濃度や、経時特性等を重視して、光硬化性樹脂のみ又は、熱硬化性樹脂と光硬化性樹脂を併用する材料を用いて第1の色フィルター14を形成してもよい。本実施例は、第2の色フィルター15(ブルーフィルター)及び第3の色フィルター16(レッドフィルター)で所望の分光特性を得るために、第1の色フィルター14よりも膜厚を厚く構成している。このため、複数色の色フィルターそれぞれの高さが一致した構造ではなく、図9に例示するように、第2の色フィルター15と第3の色フィルター16とが、第1の色フィルター14と比較して平坦化層12側に突出する構造となっている。本実施例では、第2の色フィルター15及び第3の色フィルター16が第1の色フィルター14に比べて45nm程度、平坦化層12側に突出する構造となっている。
<従来例1>
特許文献1に記載の従来法に基づき、フォトリソグラフィプロセスによって複数色の色フィルターパターンを形成した。
但し、グリーンフィルター、ブルーフィルター、レッドフィルターの3色の膜厚を700nmと薄膜に設定し、複数色の色フィルター全部の下層には平坦化層(100nm)を設けた。またフォトリソグラフィプロセスを用いているため、グリーンフィルターの上部には透明保護層は存在しない。
その他は、上記実施例1と同様にして、従来法により固体撮像素子を従来例1として製造した。
<従来例2>
上記の実施例1及び実施例2との比較に用いるため、第1の色フィルター上に透明保護層を形成しないサンプルを作製した。作製方法はグリーンフィルターを形成後、グリーンフィルター上に透明保護層を形成せずに、そのままポジ型レジストを用いてエッチングマスクを形成する。またエッチングの際には、グリーンフィルターの膜厚は500nmで想定してエッチング時間を調整して実施する。それ以外は、上記実施例1と同様の条件により、従来のドライエッチング法で従来例2の固体撮像素子を製造した。
(評価)
上記実施例1及び実施例2の固体撮像素子の赤色信号、緑色信号及び青色信号の強度を、従来法のフォトリソグラフィでグリーン、ブルー、レッドの三色の膜厚を700nmで分光特性を合わせた構造で作製した従来例1の固体撮像素子と、透明保護層が無い従来の構造である従来例2の固体撮像素子の赤色信号、緑色信号及び青色信号の強度と比較評価を行った。
以下の表1には、図1に示す上記第1実施形態に係る固体撮像素子に対応する実施例1による固体撮像素子、及び図9に示す第2の実施形態に係る固体撮像素子2に対応する実施例2による固体撮像素子における、各色の信号強度の評価結果が示されている。表1に示す数値は、従来例2、実施例1及び実施例2に係る固体撮像素子における各色の信号強度を、従来例1による固体撮像素子における各色の信号強度で規格化された値である。すなわち、表1に示す数値は、従来例1による固体撮像素子における各色の信号強度と、従来例2、実施例1及び実施例2に係る固体撮像素子のそれぞれにおける各色の信号強度との比を示している。
Figure 0007119557000001
表1に示すように、ドライエッチング法を用いて第1の色フィルター14(グリーンフィルター)を薄膜化及び矩形性良く形成し、さらにドライエッチングで発生した反応生成物を隔壁30として形成した実施例1の固体撮像素子及び実施例2の固体撮像素子と、従来ドライエッチング法で形成した従来例2の固体撮像素子とは、従来法のフォトリソグラフィで形成した従来法例1の固体撮像素子と比較して、各色の信号強度が増加した。
これは、実施例1及び実施例2による固体撮像素子は、隔壁30を有することにより、画素の斜め方向からの入射光が一の色フィルターを通過して他の色フィルターに向かう場合に、隔壁30により入射が遮られるか、又は光路が変わるためである。これにより、実施例1及び実施例2による固体撮像素子では、一の色フィルターから他の色フィルターに向かう光が、他の色フィルターに対応する光電変換素子11に入射することが抑制され、混色が抑制される。
また、実施例1及び実施例2による固体撮像素子では、隔壁30により、複数の色フィルター間における他色からの移染も隔壁30によってブロックされるため、これによっても混色が抑制される。
実施例1及び実施例2と、従来ドライエッチング法により製造した透明保護層の形成の無い従来例2との分光特性の評価をした結果、実施例1、2では、従来例2と比較してグリーンの信号強度の増加が確認された。これは従来のドライエッチング法では、グリーンフィルター上に透明保護層が無いため、グリーンフィルターの表面にブルーフィルター及びレッドフィルター形成時において混色による針状結晶がわずかであるが発生している影響である。これは、従来例2では、色フィルターを薄膜化するために顔料濃度を向上させているため、グリーンフィルター用材料が不安定化しており、他色の色フィルター形成時の高温工程で混色が生じているためである。
実施例1と実施例2とを比較すると、実施例1の方が実施例2よりも各信号強度が高かった。これは実施例2において平坦化層12として用いたITO膜の透過率が、実施例1において平坦化層12として用いた透明樹脂の透過率よりも多少低い影響である。実施例1では、ドライエッチング時に半導体基板にプラズマダメージが発生しないようなエッチング条件を実施している。その為、実施例1では半導体基板10にダメージが発生しなかった。しかし、半導体基板10にプラズマダメージが入らないドライエッチング条件は、プロセス自由度が低く、半導体基板10のサンプル構造によってもプラズマダメージの影響度は変わることが想定できる。このため、従来法例1よりも受光感度が向上する実施例1及び実施例2は、信号強度、プロセスの難易度、工程数、工程の複雑化、コストの影響などを想定して使用することが出来る。
以上、各実施形態により本発明を説明したが、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本発明の範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
1、2 固体撮像素子
10 半導体基板
11 光電変換素子
12 平坦化層
13 透明保護層
14 第1の色フィルター
15 第2の色フィルター
16 第3の色フィルター
18 マイクロレンズ
19 マイクロレンズ転写層
19a マイクロレンズ母型層
20 エッチングマスク
30 隔壁

Claims (19)

  1. 二次元的に配置された複数の光電変換素子を有する半導体基板と、
    前記半導体基板上に形成され、前記複数の光電変換素子に対応させて複数色の色フィルターが予め設定した規則パターンで二次元的に配置された色フィルター層と、
    前記複数色の色フィルターと前記半導体基板との間に形成された平坦化層と、
    前記複数色の色フィルター間に配置された隔壁と、
    前記色フィルター層上に形成され、前記複数色の色フィルターのそれぞれに対応させて二次元的に配置されたマイクロレンズと、
    前記複数色から選択した第1色の色フィルターと前記マイクロレンズとの間のみに配置された透明保護層と、
    を備え、
    前記平坦化層は錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、ニオブ、タンタル、ハフニウム及び銀のうち少なくとも1種類を含有し、
    前記平坦化層の膜厚は0nmを超過し200nm以下の範囲内であり、且つ前記透明保護層の膜厚は5nm以上20nm以下の範囲内である
    ことを特徴とする固体撮像素子。
  2. 前記透明保護層は、前記マイクロレンズと同一の材料で構成されていること
    を特徴とする請求項1に記載の固体撮像素子。
  3. 前記透明保護層は、珪素、炭素、酸素、水素及び窒素のうち少なくとも1種類を含有する有機化合物であって、可視光に対して90%以上の透過率であること
    を特徴とする請求項1または請求項2に記載の固体撮像素子。
  4. 前記透明保護層は、珪素、炭素、酸素、水素、窒素、フッ素、錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、ニオブ、タンタル、ハフニウム及び銀のうち少なくとも1種類を含有する単層又は多層であること
    を特徴とする請求項1から請求項3のいずれか1項に記載の固体撮像素子。
  5. 前記透明保護層は、アクリル樹脂を含有している
    ことを特徴とする請求項1又は2に記載の固体撮像素子。
  6. 前記平坦化層は、珪素、炭素、酸素、水素、窒素、フッ素、錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、ニオブ、タンタル、ハフニウム及び銀のうち少なくとも1種類を含有する単層又は多層であること
    を特徴とする請求項1から請求項5のいずれか1項に記載の固体撮像素子。
  7. 前記平坦化層は、前記第1色の色フィルターと前記半導体基板との間のみに形成されていること
    を特徴とする、請求項1から請求項6のいずれか1項に記載の固体撮像素子。
  8. 前記平坦化層は、珪素、炭素、酸素、水素及び窒素のうち少なくとも1種類を含有する有機化合物であって、可視光に対して90%以上の透過率であること
    を特徴とする、請求項1から請求項7のいずれか1項に記載の固体撮像素子。
  9. 前記透明保護層の屈折率をT、前記マイクロレンズの屈折率をnとする場合に下記式(1)を満たすこと
    を特徴とする請求項1から請求項のいずれか1項に記載の固体撮像素子。
    n-1≦T≦n+1・・・(1)
  10. 前記隔壁は、亜鉛、銅、ニッケル、珪素、炭素、酸素、水素、窒素、臭素及び塩素のうち少なくとも1種類を含有すること
    を特徴とする請求項1から請求項のいずれか1項に記載の固体撮像素子。
  11. 前記第1色の色フィルターの膜厚をA(nm)、前記透明保護層の膜厚をB(nm)、前記色フィルター層における前記第1色以外の色の色フィルターの膜厚をC(nm)、前記平坦化層の膜厚をD(nm)、前記透明保護層の可視光の透過率をE(%)、前記隔壁の寸法(横幅)をF(nm)とした場合に、下記式(2)~(7)を満足すること
    を特徴とする請求項1から請求項1のいずれか1項に記載の固体撮像素子。
    200(nm)≦A≦700(nm) ・・・(2)
    0(nm)<B≦200(nm) ・・・(3)
    0(nm)<D≦200(nm) ・・・(4)
    A+B-300(nm)≦C≦A+B+300(nm)・・・(5)
    E≧90(%) ・・・(6)
    F≦200(nm) ・・・(7)
  12. 前記第1色の色フィルターは、着色剤である顔料の濃度が50質量%以上であること
    を特徴とする請求項1から請求項1のいずれか1項に記載の固体撮像素子。
  13. 前記第1色の色フィルターは、熱硬化性樹脂を含有すること
    を特徴とする請求項1から請求項1のいずれか1項に記載の固体撮像素子。
  14. 前記複数色の色フィルターのうち、前記第1色の色フィルターの占有面積が一番広いこと
    を特徴とする請求項1から請求項1のいずれか1項に記載の固体撮像素子。
  15. 前記マイクロレンズは、レンズトップからレンズボトムの高さが300nm以上800nm以下の範囲内である
    ことを特徴する請求項1から請求項1のいずれか1項に記載の固体撮像素子。
  16. 二次元的に配置された複数の光電変換素子を有する半導体基板と、
    前記半導体基板上に形成され、前記複数の光電変換素子に対応させて複数色の色フィルターが予め設定した規則パターンで二次元的に配置された色フィルター層と、
    前記複数色の色フィルターそれぞれの下層に形成され、前記複数色から選択した第1色の色フィルター以外の色フィルターの下層において膜厚が変化している平坦化層と、
    前記複数色の色フィルター間に配置された隔壁と、
    前記色フィルター層上に形成され、前記複数色の色フィルターのそれぞれに対応させて二次元的に配置されたマイクロレンズと、
    前記第1色の色フィルターと前記マイクロレンズとの間のみに配置された透明保護層と、
    を備え
    前記平坦化層は錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、ニオブ、タンタル、ハフニウム及び銀のうち少なくとも1種類を含有す
    ことを特徴とする固体撮像素子。
  17. 複数の光電変換素子を二次元的に配置した半導体基板上に平坦化層を形成し、次に前記平坦化層上に塗布した塗布液を熱硬化させて第1色の色フィルターを形成し、次に前記第1色の色フィルターの上部に透明保護層を形成し、前記透明保護層を形成した後、前記第1色の色フィルターの一部をドライエッチングによって除去して、前記透明保護層が上部に形成された前記第1色の色フィルターをパターン形成する第1の工程と、
    前記第1の工程において前記第1色の色フィルターをドライエッチングする際に生じた、前記第1色の色フィルターとドライエッチングガスとの反応生成物により、前記第1色の色フィルターの外周囲に隔壁を形成する第2の工程と、
    前記第2の工程後に、前記半導体基板上に前記第1色の色フィルターと異なる他の色の色フィルターを、フォトリソグラフィによってパターン形成する第3の工程と、
    前記第3の工程後に、前記第1色の色フィルター及び前記他の色の色フィルターの上部にマイクロレンズを形成する第4の工程と、を備え、
    前記第1の工程において、錫、亜鉛、インジウム、アルミニウム、ガリウム、チタン、モリブデン、タングステン、ニオブ、タンタル、ハフニウム及び銀のうち少なくとも1種類を含有する前記平坦化層を形成し、前記平坦化層の膜厚は0nmを超過し200nm以下の範囲内に形成し、且つ前記透明保護層の膜厚は5nm以上20nm以下の範囲内に形成する
    ことを特徴とする固体撮像素子の製造方法。
  18. 前記第1の工程における前記第1色の色フィルターの熱硬化時の加熱温度が170℃以上270℃以下であること
    を特徴とする請求項1に記載の固体撮像素子の製造方法。
  19. 前記第4の工程において、マイクロレンズ形成材料上にドライエッチングマスクを形成し、ドライエッチングによりマイクロレンズ形状をマイクロレンズ形成材料に転写するエッチバック方式を用いて前記マイクロレンズを形成すること
    を特徴とする請求項1又は請求項1に記載の固体撮像素子の製造方法。
JP2018094105A 2018-05-15 2018-05-15 固体撮像素子及び固体撮像素子の製造方法 Active JP7119557B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018094105A JP7119557B2 (ja) 2018-05-15 2018-05-15 固体撮像素子及び固体撮像素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018094105A JP7119557B2 (ja) 2018-05-15 2018-05-15 固体撮像素子及び固体撮像素子の製造方法

Publications (2)

Publication Number Publication Date
JP2019200279A JP2019200279A (ja) 2019-11-21
JP7119557B2 true JP7119557B2 (ja) 2022-08-17

Family

ID=68613115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018094105A Active JP7119557B2 (ja) 2018-05-15 2018-05-15 固体撮像素子及び固体撮像素子の製造方法

Country Status (1)

Country Link
JP (1) JP7119557B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7415484B2 (ja) * 2019-11-27 2024-01-17 Toppanホールディングス株式会社 固体撮像素子用フィルターの製造方法、および、固体撮像素子の製造方法
JP7503399B2 (ja) * 2020-03-16 2024-06-20 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及びその製造方法、並びに電子機器
JP2021150554A (ja) * 2020-03-23 2021-09-27 ソニーセミコンダクタソリューションズ株式会社 裏面照射型固体撮像素子およびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085702A (ja) 2008-09-30 2010-04-15 Fujifilm Corp カラーフィルタの製造方法
JP2012132979A (ja) 2010-12-20 2012-07-12 Seiko Epson Corp カラーフィルターの製造方法、カラーフィルター、画像表示装置、および、電子機器
JP5489386B2 (ja) 2005-03-03 2014-05-14 富士フイルム株式会社 固体撮像素子の反射防止膜用光硬化性組成物、それを用いた固体撮像素子用反射防止膜、固体撮像素子用反射防止膜の製造方法、及び固体撮像素子
WO2017086321A1 (ja) 2015-11-16 2017-05-26 凸版印刷株式会社 固体撮像素子の製造方法及び固体撮像素子、並びにカラーフィルタの製造方法及びカラーフィルタ
JP2017117830A (ja) 2015-12-21 2017-06-29 凸版印刷株式会社 固体撮像素子用カラーフィルタの製造方法、固体撮像素子用カラーフィルタおよび固体撮像素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5489386B2 (ja) 2005-03-03 2014-05-14 富士フイルム株式会社 固体撮像素子の反射防止膜用光硬化性組成物、それを用いた固体撮像素子用反射防止膜、固体撮像素子用反射防止膜の製造方法、及び固体撮像素子
JP2010085702A (ja) 2008-09-30 2010-04-15 Fujifilm Corp カラーフィルタの製造方法
JP2012132979A (ja) 2010-12-20 2012-07-12 Seiko Epson Corp カラーフィルターの製造方法、カラーフィルター、画像表示装置、および、電子機器
WO2017086321A1 (ja) 2015-11-16 2017-05-26 凸版印刷株式会社 固体撮像素子の製造方法及び固体撮像素子、並びにカラーフィルタの製造方法及びカラーフィルタ
JP2017117830A (ja) 2015-12-21 2017-06-29 凸版印刷株式会社 固体撮像素子用カラーフィルタの製造方法、固体撮像素子用カラーフィルタおよび固体撮像素子

Also Published As

Publication number Publication date
JP2019200279A (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
JP6658768B2 (ja) 固体撮像素子の製造方法及び固体撮像素子
KR102468312B1 (ko) 고체 촬상 소자 및 고체 촬상 소자의 제조 방법
US20200258929A1 (en) Solid-state imaging device and method of manufacturing the same
JP7119557B2 (ja) 固体撮像素子及び固体撮像素子の製造方法
KR102471568B1 (ko) 고체 촬상 소자 및 그 제조 방법
JP7508779B2 (ja) 固体撮像素子およびその製造方法
JP7310130B2 (ja) 固体撮像素子及びその製造方法
JP6838394B2 (ja) 固体撮像素子およびその製造方法
JP6809215B2 (ja) 固体撮像素子およびその製造方法
JP2020202497A (ja) 固体撮像素子及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R150 Certificate of patent or registration of utility model

Ref document number: 7119557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150