JPWO2019111736A1 - 光学装置、測定装置、接合システムおよび測定方法 - Google Patents

光学装置、測定装置、接合システムおよび測定方法 Download PDF

Info

Publication number
JPWO2019111736A1
JPWO2019111736A1 JP2019558134A JP2019558134A JPWO2019111736A1 JP WO2019111736 A1 JPWO2019111736 A1 JP WO2019111736A1 JP 2019558134 A JP2019558134 A JP 2019558134A JP 2019558134 A JP2019558134 A JP 2019558134A JP WO2019111736 A1 JPWO2019111736 A1 JP WO2019111736A1
Authority
JP
Japan
Prior art keywords
substrate
filter
light
light source
target substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019558134A
Other languages
English (en)
Inventor
慶崇 大塚
慶崇 大塚
茂登 鶴田
茂登 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of JPWO2019111736A1 publication Critical patent/JPWO2019111736A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Optical Filters (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

実施形態に係る光学装置(2,2A)は、光源(21b)と、フィルタ(201)と、冷却機構(202)と、制御部(4a)とを備える。フィルタ(201)は、光源(21b)から発せられた光のうち一部の波長域の光を透過させる。冷却機構(202)は、フィルタ(201)を冷却する。制御部(4a)は、冷却機構(202)を制御することにより、フィルタ(201)が透過させる光の波長域を調節する。

Description

開示の実施形態は、光学装置、測定装置、接合システムおよび測定方法に関する。
半導体の製造工程では、半導体ウェハやガラス基板等の基板に対して光学装置を用いた測定が行われる場合がある。
たとえば、特許文献1には、基板同士を接合することによって形成された重合基板の内部を赤外線カメラを用いて撮像し、撮像された画像に基づいて重合基板の内部を検査する検査装置が開示されている。
かかる検査装置は、ハロゲン電球等の光源と、光源から照射される光のうち赤外線を透過させるフィルタとを有する光学装置を備えており、光学装置から照射された赤外線の反射光を赤外線カメラを用いて撮像する。赤外線は基板を透過するため、重合基板に照射された赤外線のうち、一部は透過し、残りの一部は重合基板の内部の構造物に当たって反射することで、重合基板の内部の画像が得られる。
特開2016−90410号公報
しかしながら、上述した従来技術には、基板の測定精度を向上させるという点で更なる改善の余地がある。
たとえば、重合基板に照射された赤外線のうち、重合基板の表面で反射する光の割合が、重合基板の内部の構造物に到達する光と比べて多い場合、得られる画像が不鮮明になり、その後の測定を精度良く行うことが困難となるおそれがある。このような課題は、重合基板以外の基板を測定する場合や赤外線以外の光を用いて基板を測定する場合においても同様に生じうる。
実施形態の一態様は、基板の測定精度を向上させることができる光学装置、測定装置、接合システムおよび測定方法を提供することを目的とする。
実施形態の一態様に係る光学装置は、光源と、フィルタと、冷却機構と、制御部とを備える。フィルタは、光源から発せられた光のうち一部の波長域の光を透過させる。冷却機構は、フィルタを冷却する。制御部は、冷却機構を制御することにより、フィルタが透過させる光の波長域を調節する。
実施形態の一態様によれば、基板の測定精度を向上させることができる。
図1は、第1の実施形態に係る測定装置の構成を示す図である。 図2は、赤外光の進路を示す図である。 図3は、フィルタ部を側方から見た場合の模式断面図である。 図4は、フィルタ部を正面から見た場合の模式断面図である。 図5は、フィルタの温度とフィルタが透過させる光の波長域との関係を示すグラフである。 図6は、第1の実施形態に係る測定装置が実行する処理の手順を示すフローチャートである。 図7は、第2の実施形態に係る接合システムの構成を示す平面図である。 図8は、接合装置の構成を示す模式平面図である。 図9は、接合装置の構成を示す模式側面図である。 図10は、接合システムが実行する処理を示すフローチャートである。 図11は、他の実施形態に係る測定装置の構成を示す図である。
以下、添付図面を参照して、本願の開示する光学装置、測定装置、接合システムおよび測定方法の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。
(第1の実施形態)
図1は、第1の実施形態に係る測定装置の構成を示す図である。また、図2は、赤外光の進路を示す図である。なお、以下においては、位置関係を明確にするために、互いに直交するX軸方向、Y軸方向およびZ軸方向を規定し、Z軸正方向を鉛直上向き方向とする。
図1に示す第1の実施形態に係る測定装置1は、重合基板Tの内部に存在するパターンを撮像することにより、たとえば、重合基板Tにおける第1基板W1と第2基板W2とのずれ量を測定する。
重合基板Tは、第1基板W1と第2基板W2とを接合することによって形成される。第1基板W1および第2基板W2は、シリコンウェハであり、板面には複数の電子回路が形成される。
図1に示すように、測定装置1は、対象基板である重合基板Tに光を照射する光学装置2と、重合基板Tからの反射光を撮像する撮像装置3と、撮像装置3によって撮像された画像に基づいて重合基板Tにおける第1基板W1と第2基板W2とのずれ量の測定を行う制御装置4とを備える。
光学装置2は、光を発生させる光発生部21と、各種の光学系を収容する鏡筒22と、鏡筒22に取り付けられた対物レンズ23とを備える。
光発生部21は、筐体21aと、光源21bと、フィルタ部21cと、導光部21dとを備える。
筐体21aは、光源21bとフィルタ部21cとを収容する容器である。光源21bは、たとえばハロゲン電球である。ハロゲン電球は、400nm以上6000nm以下の波長域の光を発生させる。また、ハロゲン電球は、発光によって発熱することにより、筐体21a内部に配置されたフィルタ部21cを加熱する。
なお、光源21bは、ハロゲン電球に限定されない。光源21bは、赤外領域(740nm以上1000μm以下)の少なくとも一部を含んだ光を発生させるものであり、且つ、発光によって少なくとも100℃以上の温度に発熱するものであれば、ハロゲン電球以外の光源であってもよい。たとえば、光源21bは、キセノンランプであってもよい。
フィルタ部21cは、光源21bから発せられた光のうち一部の波長域の光だけを透過させ、残りの波長域の光を遮断するフィルタを含んで構成される。フィルタ部21cの構成については後述する。
導光部21dは、たとえば光ファイバであり、フィルタ部21cを透過した光を鏡筒22の内部へ導く。
鏡筒22は、筒部22aと、反射鏡22bと、ハーフミラー22cとを備える。筒部22aには、重合基板Tに近い一端部に後述する対物レンズ23が取り付けられ、重合基板Tから遠い他端部に後述する撮像装置3が取り付けられる。筒部22aの内部には、反射鏡22bおよびハーフミラー22cが配置される。反射鏡22bは、導光部21dから鉛直下向きに入射した光の進路を水平向きに変更してハーフミラー22cに入射させる。ハーフミラー22cは、反射鏡22bから入射した光を重合基板Tに向けて反射させるとともに、重合基板Tから入射した光を通過させる。
なお、鏡筒22は、必ずしも反射鏡22bを備えることを要さず、導光部21dからの光を反射鏡22bを介すことなくハーフミラー22cに直接入射させてもよい。
対物レンズ23は、重合基板Tの像をつくり出す。図1において破線の矢印で示すように、光源21bから発せられた光は、フィルタ部21cに入射し、フィルタ部21cによって可視領域等の赤外領域以外の波長成分が取り除かれる。その後、フィルタ部21cを透過した光(以下、赤外光と記載する)は、導光部21dによって筒部22a内に導かれ、反射鏡22b、ハーフミラー22cおよび対物レンズ23を介して重合基板Tに垂直に入射する。その後、図1において一点鎖線の矢印で示すように、重合基板Tから反射した赤外光は、対物レンズ23を通って筒部22a内に入射し、ハーフミラー22cを通過して撮像装置3の撮像素子31に入射する。
撮像装置3は、たとえばCCD(Charge Coupled Device)カメラであり、撮像素子31を備える。撮像素子31は、赤外線撮像素子であり、赤外領域に感度領域を有する。撮像装置3によって撮像された画像は、制御装置4に入力される。
赤外線は、シリコンウェハを透過する性質を有する。一方、重合基板Tの内部に形成されたパターンPは、金属等のシリコン以外の材料によって形成されるため、赤外線は、パターンPに当たると透過せずに反射する。したがって、図2に示すように、重合基板Tに入射した赤外光L1のうち、重合基板Tの内部に進入し、且つ、進路上にパターンPが存在しない赤外光L3は、そのまま重合基板Tを透過し、一方、重合基板Tの内部に侵入し、且つ、進路上にパターンPが存在する赤外光L4は、パターンPに当たって反射して撮像装置3の撮像素子31に入射する。このようにして、重合基板Tの内部の画像が得られる。以下、赤外光L1を入射光L1、赤外光L3を透過光L3、赤外光L4を内部反射光L4と記載する。
入射光L1は、全てが重合基板Tの内部に進入するとは限らず、重合基板Tの表面で反射する赤外光(以下、表面反射光L2と記載する)が発生し得る。入射光L1のうち表面反射光L2の占める割合が多くなると、撮像装置3によって得られる画像が不鮮明になる、すなわち、パターンPの視認性が低下するため、その後の測定の精度が低下するおそれがある。したがって、重合基板Tを精度良く測定するためには、入射光L1のうち表面反射光L2の占める割合を少なくすること、言い換えれば、入射光L1のうち重合基板Tの内部に進入する光(透過光L3+内部反射光L4)の割合を多くすることが望ましい。
重合基板Tの内部に進入する光(透過光L3+内部反射光L4)の割合がもっとも多くなる入射光L1の波長域は、重合基板Tの種類によって異なる。このため、重合基板Tの種類に応じてフィルタを交換することも考えられるが、交換作業に時間や手間がかかり、また、複数種類のフィルタを用意する必要があることからコストも多くかかるため、好ましくない。
一方、フィルタ部21cが備えるフィルタは、透過させる光の波長域が温度によって変化する。そこで、第1の実施形態に係る測定装置1では、フィルタの温度を調節することにより、フィルタを透過する光の波長域を調節することとした。これにより、ハード構成を変更することなく、重合基板Tの内部に進入する光の割合が多くなる波長域の入射光L1をつくり出すことができる。
以下、かかる点について具体的に説明する。まず、第1の実施形態に係るフィルタ部21cの構成について図3および図4を参照して説明する。図3は、フィルタ部21cを側方から見た場合の模式断面図である。また、図4は、フィルタ部21cを正面から見た場合の模式断面図である。
図3および図4に示すように、フィルタ部21cは、フィルタ201と、フィルタ201を冷却する冷却機構202と、フィルタ201の温度を検知する温度センサ203とを備える。
フィルタ201は、対象基板である重合基板Tの材質と同じ材質で形成される。すなわち、第1の実施形態に係るフィルタ201は、シリコンで形成される。
フィルタ201は、透過させる光の波長域が温度によって変化する性質を有する。図5は、フィルタ201の温度とフィルタ201が透過させる光の波長域との関係を示すグラフである。図5に示すように、シリコンで形成されたフィルタ201を透過する光の波長域は、フィルタ201の温度が高くなるほど長波長側にシフトすることがわかる。
冷却機構202は、本体部221と、チラー222と、接続部223とを備える。本体部221は、光源から発せられる光を通過させるための開口221aを中央に有するリング状の部材であり、アルミニウムや銅といった熱伝導率が比較的高い金属で形成される。本体部221は、フィルタ201の光源21b側の面に取り付けられる。また、本体部221の内部には、冷却流体を流通させる流路221bが開口221aの周囲を巡るように形成される。
チラー222は、循環部222aと、温度調節部222bとを備える。循環部222aは、本体部221内の流路221bに冷却流体としての冷却水を循環させる。具体的には、循環部222aは、接続部223の第1接続部223aを介して流路221bの一端部に接続されるとともに、接続部223の第2接続部223bを介して流路221bの他端部に接続される。
循環部222aは、冷却水を第1接続部223aを介して流路221bの一端部に供給する。また、循環部222aは、流路221bの他端部から第2接続部223bを介して冷却水を回収し、第1接続部223aを介して流路221bの一端部に再度供給する。
温度調節部222bは、循環部222aによって循環される冷却水の温度を調節する。温度調節部222bは、後述する制御装置4の制御部4aによって制御される。
冷却機構202は、上記のように構成され、流路221bを循環する冷却水を用いて本体部221を冷却することで、本体部221に接触するフィルタ201を冷却する。
なお、循環部222aおよび接続部223は、流路221bに冷却流体を供給する供給部の一例に相当する。また、ここでは、冷却流体として水を用いる場合の例について説明したが、冷却流体は、水以外の液体であってもよい。また、冷却流体は、気体であってもよい。
温度センサ203は、たとえば、フィルタ201における本体部221が取り付けられる面とは反対側の面に取り付けられる。温度センサ203によって検知された温度は、制御装置4の後述する制御部4aに出力される。
制御装置4は、制御部4aと、記憶部4bとを備える。制御部4aは、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入出力ポートなどを有するマイクロコンピュータや各種の回路を含む。かかるマイクロコンピュータのCPUは、ROMに記憶されているプログラムを読み出して実行することにより、後述する制御を実現する。
なお、かかるプログラムは、コンピュータによって読み取り可能な記録媒体に記録されていたものであって、その記録媒体から制御装置4の記憶部4bにインストールされたものであってもよい。コンピュータによって読み取り可能な記録媒体としては、例えばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。
記憶部4bは、たとえば、RAM、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現される。かかる記憶部4bは、たとえば、フィルタ201を透過する光の波長域の設定値を記憶する。かかる設定値は、ユーザにより任意に変更可能である。
制御部4aは、記憶部4bに記憶された波長域の設定値に基づき、フィルタ201の目標温度を決定する。たとえば、制御部4aは、フィルタ201の温度とフィルタ201が透過させる光の波長域との関係を表す演算式またはテーブルを用いて波長域の設定値からフィルタ201の目標温度を決定することができる。
また、制御部4aは、温度センサ203によって検知されるフィルタ201の温度に基づき、フィルタ201の温度が目標温度となるようにチラー222の温度調節部222bを制御する。たとえば、制御部4aは、温度センサ203によって検知されるフィルタ201の温度が目標温度を超えている場合には、温度調節部222bを制御して冷却水の温度を低くする。一方、制御部4aは、温度センサ203によって検知されるフィルタ201の温度が目標温度を下回っている場合には、温度調節部222bを制御して冷却水の温度を高くする。
このように、制御部4aは、温度調節部222bを制御して、フィルタ201の冷却温度を調節することで、フィルタ201が透過させる光の波長域を調節することができる。
なお、制御部4aは、温度センサ203によって検知されるフィルタ201の温度と、光源21bからの光が当たるフィルタ201の中央部の温度との差を加味して、上記演算式またはテーブルにより得られる目標温度よりも低い温度をフィルタ201の目標温度として決定してもよい。
次に、第1の実施形態に係る測定装置1が実行する処理の手順について図6を参照して説明する。図6は、第1の実施形態に係る測定装置1が実行する処理の手順を示すフローチャートである。
図6に示すように、測定装置1では、まず、温度調節処理が行われる(ステップS101)。温度調節処理において、制御部4aは、温度センサ203の検知結果に基づき、フィルタ201の温度が目標温度となるように温度調節部222bを制御する。これにより、フィルタ201を透過する光の波長域が調節される。なお、温度調節処理は、その後の撮像処理(ステップS102)および測定処理(ステップS103)においても継続して行われてもよい。
つづいて、測定装置1では、撮像処理が行われる(ステップS102)。撮像処理では、撮像装置3が、対象基板である重合基板Tからの反射光を撮像し、撮像した画像を制御部4aへ出力する。
つづいて、測定装置1では、測定処理が行われる(ステップS103)。測定処理において、制御部4aは、撮像装置3によって撮像された画像に基づいて第1基板W1と第2基板W2とのずれ量の測定を行う。
ステップS103の測定処理を終えると、測定装置1は、1枚の重合基板Tについての処理を終了する。
上述してきたように、第1の実施形態に係る測定装置1は、光学装置2と、撮像装置3と、制御部4aとを備える。光学装置2は、重合基板T(対象基板の一例)に光を照射する。撮像装置3は、重合基板Tからの反射光を撮像する。制御部4aは、撮像装置3によって撮像された画像に基づいて重合基板Tの測定を行う。また、光学装置2は、光源21bと、光源21bから発せられた光のうち一部の波長域の光を透過させるフィルタ201と、フィルタ201を冷却する冷却機構202とを備える。また、制御部4aは、冷却機構202を制御することにより、フィルタ201が透過させる光の波長域を調節する。
これにより、重合基板Tの内部に進入する光の割合が多くなる波長域の入射光L1(図2参照)を重合基板Tに照射することができるため、表面反射光L2の割合が多くなることで、撮像装置3によって撮像される画像が不鮮明となることを抑制することができる。したがって、第1の実施形態に係る測定装置1によれば、重合基板Tの測定精度を向上させることができる。
また、第1の実施形態に係る測定装置1によれば、フィルタ201の温度を調節することによってフィルタ201が透過させる光の波長域を調節することとしたため、ハード構成を変更することなく、重合基板Tの内部に進入する光の割合が多くなる波長域の入射光L1をつくり出すことが可能である。
また、第1の実施形態に係る測定装置1では、光源21bによって加熱される位置、具体的には、筐体21aの内部にフィルタ201を配置することとしたため、光源21bから発せられる熱を利用してフィルタ201を加熱することができる。したがって、フィルタ201を加熱するための加熱機構を別途設ける必要がない。また、加熱機構を別途設けた場合と比較して、フィルタ201の温度調節が容易である。
(第2の実施形態)
次に、上述した測定装置1を搭載した接合システムの構成について説明する。図7は、第2の実施形態に係る接合システム100の構成を示す平面図である。
なお、以下では、第1基板W1と第2基板W2とを分子間力を用いて半永久的に接合する接合システム100を例に挙げて説明するが、基板同士を接合する手法は、分子間力を用いるものに限らず、たとえば、基板同士を接着剤により接合する手法であってもよい。また、以下では、既に説明した部分と同様の部分については、既に説明した部分と同一の符号を付し、重複する説明を省略する。
図7に示す接合システム100は、第1基板W1と第2基板W2とを接合することによって重合基板Tを形成する。
図7に示すように、接合システム100は、搬入出ステーション200と、処理ステーション300とを備える。搬入出ステーション200および処理ステーション300は、X軸正方向に沿って、搬入出ステーション200および処理ステーション300の順番で並べて配置される。
搬入出ステーション200は、載置台101と、搬送領域102とを備える。載置台101は、複数の載置板111を備える。各載置板111には、複数枚(例えば、25枚)の基板を水平状態で収容するカセットC1,C2,C3がそれぞれ載置される。例えば、カセットC1は第1基板W1を収容するカセットであり、カセットC2は第2基板W2を収容するカセットであり、カセットC3は重合基板Tを収容するカセットである。
搬送領域102は、載置台101のX軸正方向側に隣接して配置される。かかる搬送領域102には、Y軸方向に延在する搬送路121と、この搬送路121に沿って移動可能な搬送装置122とが設けられる。搬送装置122は、Y軸方向だけでなく、X軸方向にも移動可能かつZ軸周りに旋回可能であり、載置板111に載置されたカセットC1〜C3と、後述する処理ステーション300の第3処理ブロックG3との間で、第1基板W1、第2基板W2および重合基板Tの搬送を行う。
処理ステーション300には、各種装置を備えた複数の処理ブロックG1,G2,G3が設けられる。
第1処理ブロックG1には、表面改質装置30が配置される。表面改質装置30は、第1基板W1における第2基板W2との接合面および第2基板W2における第1基板W1との接合面を改質する処理を行う。具体的には、表面改質装置30は、第1基板W1および第2基板W2の接合面におけるSiO2の結合を切断して単結合のSiOとすることで、その後親水化されやすくするように当該接合面を改質する。
表面改質装置30では、例えば減圧雰囲気下において処理ガスである酸素ガスまたは窒素ガスが励起されてプラズマ化され、イオン化される。そして、かかる酸素イオンまたは窒素イオンが、第1基板W1および第2基板W2の接合面に照射されることにより、第1基板W1および第2基板W2の接合面がプラズマ処理されて改質される。
第2処理ブロックG2には、表面親水化装置40と、接合装置41とが配置される。表面親水化装置40は、例えば純水によって第1基板W1および第2基板W2の接合面を親水化するとともに洗浄する。表面親水化装置40では、例えばスピンチャックに保持された第1基板W1または第2基板W2を回転させながら、当該第1基板W1または第2基板W2上に純水を供給する。これにより、第1基板W1または第2基板W2上に供給された純水が第1基板W1または第2基板W2の接合面上を拡散し、第1基板W1または第2基板W2の接合面が親水化される。
接合装置41は、親水化された第1基板W1と第2基板W2とを分子間力により接合する。かかる接合装置41の構成については、後述する。
第3処理ブロックG3には、第1基板W1、第2基板W2および重合基板Tのトランジション装置が多段に設けられる。
上述した測定装置1は、たとえば、かかる第3処理ブロックG3の最上段に配置される。なお、測定装置1は、第3処理ブロックG3以外の処理ブロックに配置されてもよい。
第1処理ブロックG1、第2処理ブロックG2および第3処理ブロックG3に囲まれた領域には、搬送領域60が形成される。搬送領域60には、搬送装置61が配置される。搬送装置61は、例えば鉛直方向、水平方向および鉛直軸周りに移動自在な搬送アームを有する。かかる搬送装置61は、搬送領域60内を移動し、搬送領域60に隣接する第1処理ブロックG1、第2処理ブロックG2および第3処理ブロックG3内の所定の装置に第1基板W1、第2基板W2および重合基板Tを搬送する。
次に、接合装置41の構成について図8および図9を参照して説明する。図8は、接合装置41の構成を示す模式平面図である。また、図9は、接合装置41の構成を示す模式側面図である。
図8に示すように、接合装置41は、内部を密閉可能な処理容器400を有する。処理容器400の搬送領域60側の側面には、第1基板W1、第2基板W2および重合基板Tの搬入出口401が形成され、当該搬入出口401には開閉シャッタ402が設けられている。
処理容器400の内部は、内壁403によって、搬送領域T1と処理領域T2に区画される。上述した搬入出口401は、搬送領域T1における処理容器400の側面に形成される。また、内壁403にも、第1基板W1、第2基板W2および重合基板Tの搬入出口404が形成される。
搬送領域T1には、トランジション410、ウェハ搬送機構411、反転機構430および位置調節機構420が、例えば搬入出口401側からこの順番で並べて配置される。
トランジション410は、第1基板W1、第2基板W2および重合基板Tを一時的に載置する。トランジション410は、例えば2段に形成され、第1基板W1、第2基板W2および重合基板Tのいずれか2つを同時に載置することができる。
ウェハ搬送機構411は、図8および図9に示すように、たとえば鉛直方向(Z軸方向)、水平方向(Y軸方向、X軸方向)および鉛直軸周りに移動自在な搬送アームを有する。ウェハ搬送機構411は、搬送領域T1内、または搬送領域T1と処理領域T2との間で第1基板W1、第2基板W2および重合基板Tを搬送することが可能である。
位置調節機構420は、第1基板W1および第2基板W2の水平方向の向きを調節する。具体的には、位置調節機構420は、第1基板W1および第2基板W2を保持して回転させる図示しない保持部を備えた基台421と、第1基板W1および第2基板W2のノッチ部の位置を検出する検出部422と、を有する。位置調節機構420は、基台421に保持された第1基板W1および第2基板W2を回転させながら検出部422を用いて第1基板W1および第2基板W2のノッチ部の位置を検出することにより、ノッチ部の位置を調節する。これにより、第1基板W1および第2基板W2の水平方向の向きが調節される。
反転機構430は、第1基板W1の表裏面を反転させる。具体的には、反転機構430は、第1基板W1を保持する保持アーム431を有する。保持アーム431は、水平方向(X軸方向)に延伸する。また保持アーム431には、第1基板W1を保持する保持部材432が例えば4箇所に設けられている。
保持アーム431は、例えばモータなどを備えた駆動部433に支持される。保持アーム431は、かかる駆動部433によって水平軸周りに回動自在である。また、保持アーム431は、駆動部433を中心に回動自在であると共に、水平方向(X軸方向)に移動自在である。駆動部433の下方には、例えばモータなどを備えた他の駆動部(図示せず)が設けられる。この他の駆動部によって、駆動部433は、鉛直方向に延伸する支持柱434に沿って鉛直方向に移動することができる。
このように、保持部材432に保持された第1基板W1は、駆動部433によって水平軸周りに回動できると共に鉛直方向および水平方向に移動することができる。また、保持部材432に保持された第1基板W1は、駆動部433を中心に回動して、位置調節機構420と後述する上チャック440との間を移動することができる。
処理領域T2には、第1基板W1の上面(接合面)を上方から吸着保持する上チャック440と、第2基板W2を載置して第2基板W2の下面(非接合面)を下方から吸着保持する下チャック441とが設けられる。下チャック441は、上チャック440の下方に設けられ、上チャック440と対向配置可能に構成される。
図9に示すように、上チャック440は、上チャック440の上方に設けられた上チャック保持部450に保持される。上チャック保持部450は、処理容器400の天井面に設けられた複数の支柱部452に支持される。上チャック440は、上チャック保持部450を介して処理容器400に固定される。
上チャック保持部450の上面には、ストライカー490が配置される。ストライカー490は、押圧ピン491と、アクチュエータ部492と、直動機構493とを備える。押圧ピン491は、鉛直方向に沿って延在する円柱状の部材であり、アクチュエータ部492によって支持される。
アクチュエータ部492は、たとえば電空レギュレータ(図示せず)から供給される空気により一定方向(ここでは鉛直下方)に一定の圧力を発生させる。アクチュエータ部492は、電空レギュレータから供給される空気により、第1基板W1の中心部と当接して当該第1基板W1の中心部にかかる押圧荷重を制御することができる。また、アクチュエータ部492の先端部は、電空レギュレータからの空気によって鉛直方向に昇降自在になっている。
アクチュエータ部492は、直動機構493に支持される。直動機構493は、例えばモータを内蔵した駆動部によってアクチュエータ部492を鉛直方向に移動させる。
ストライカー490は、以上のように構成されており、直動機構493によってアクチュエータ部492の移動を制御し、アクチュエータ部492によって押圧ピン491による第1基板W1の押圧荷重を制御する。
上チャック保持部450には、下チャック441に保持された第2基板W2の上面(接合面)を撮像する上部撮像部451が設けられている。上部撮像部451には、例えばCCDカメラが用いられる。
下チャック441は、下チャック441の下方に設けられた第1の下チャック移動部460に支持される。第1の下チャック移動部460は、後述するように下チャック441を水平方向(X軸方向)に移動させる。また、第1の下チャック移動部460は、下チャック441を鉛直方向に移動自在、且つ鉛直軸回りに回転可能に構成される。
第1の下チャック移動部460には、上チャック440に保持された第1基板W1の下面(接合面)を撮像する下部撮像部461が設けられている(図9参照)。下部撮像部461には、例えばCCDカメラが用いられる。
第1の下チャック移動部460は、第1の下チャック移動部460の下面側に設けられ、水平方向(X軸方向)に延伸する一対のレール462,462に取り付けられている。第1の下チャック移動部460は、一対のレール462,462に沿って移動自在に構成されている。
一対のレール462,462は、第2の下チャック移動部463に配設されている。第2の下チャック移動部463は、当該第2の下チャック移動部463の下面側に設けられ、水平方向(Y軸方向)に延伸する一対のレール464,464に取り付けられている。そして、第2の下チャック移動部463は、一対のレール464,464に沿って水平方向(Y軸方向)に移動自在に構成される。一対のレール464,464は、たとえば処理容器400の底面に設けられた載置台465上に配設される。
次に、接合システム100の具体的な動作について図10を参照して説明する。図10は、接合システム100が実行する処理を示すフローチャートである。なお、図10に示す各種の処理は、制御部4aによる制御に基づいて実行される。
まず、複数枚の第1基板W1を収容したカセットC1、複数枚の第2基板W2を収容したカセットC2、および空のカセットC3が、搬入出ステーション200の所定の載置板111に載置される。その後、搬送装置122によりカセットC1内の第1基板W1が取り出され、処理ステーション300の第3処理ブロックG3のトランジション装置に搬送される。
次に、第1基板W1は、搬送装置61によって第1処理ブロックG1の表面改質装置30に搬送される。表面改質装置30では、所定の減圧雰囲気下において、処理ガスである酸素ガスが励起されてプラズマ化され、イオン化される。この酸素イオンが第1基板W1の接合面に照射されて、当該接合面がプラズマ処理される。これにより、第1基板W1の接合面が改質される(ステップS201)。
次に、第1基板W1は、搬送装置61によって第2処理ブロックG2の表面親水化装置40に搬送される。表面親水化装置40では、スピンチャックに保持された第1基板W1を回転させながら、当該第1基板W1上に純水を供給する。これにより、第1基板W1の接合面が親水化される。また、当該純水によって、第1基板W1の接合面が洗浄される(ステップS202)。
次に、第1基板W1は、搬送装置61によって第2処理ブロックG2の接合装置41に搬送される。接合装置41に搬入された第1基板W1は、トランジション410を介してウェハ搬送機構411により位置調節機構420に搬送される。そして位置調節機構420によって、第1基板W1の水平方向の向きが調節される(ステップS203)。
その後、位置調節機構420から反転機構430の保持アーム431に第1基板W1が受け渡される。続いて搬送領域T1において、保持アーム431を反転させることにより、第1基板W1の表裏面が反転される(ステップS204)。すなわち、第1基板W1の接合面が下方に向けられる。
その後、反転機構430の保持アーム431が回動して上チャック440の下方に移動する。そして、反転機構430から上チャック440に第1基板W1が受け渡される。第1基板W1は、ノッチ部を予め決められた方向に向けた状態で、上チャック440に非接合面が吸着保持される(ステップS205)。
第1基板W1に上述したステップS201〜S205の処理が行われている間、第2基板W2の処理が行われる。まず、搬送装置122によりカセットC2内の第2基板W2が取り出され、処理ステーション300のトランジション装置に搬送される。
次に、第2基板W2は、搬送装置61によって表面改質装置30に搬送され、第2基板W2の接合面が改質される(ステップS206)。
その後、第2基板W2は、搬送装置61によって表面親水化装置40に搬送され、第2基板W2の接合面が親水化されるとともに当該接合面が洗浄される(ステップS207)。
その後、第2基板W2は、搬送装置61によって接合装置41に搬送される。接合装置41に搬入された第2基板W2は、トランジション410を介してウェハ搬送機構411により位置調節機構420に搬送される。そして位置調節機構420によって、第2基板W2の水平方向の向きが調節される(ステップS208)。
その後、第2基板W2は、ウェハ搬送機構411によって下チャック441に搬送され、下チャック441に吸着保持される(ステップS209)。第2基板W2は、ノッチ部を予め決められた方向に向けた状態で、下チャック441にその非接合面が吸着保持される。
つづいて、上チャック440に保持された第1基板W1と下チャック441に保持された第2基板W2との水平方向の位置調節が行われる(ステップS210)。
第1基板W1の接合面には予め定められた複数の基準点が形成される。また、第2基板W2の接合面にも、予め定められた複数の基準点が形成される。これら基準点としては、たとえば第1基板W1および第2基板W2上に形成された所定のパターンPがそれぞれ用いられる。なお、基準点の数は任意に設定可能である。
まず、上部撮像部451および下部撮像部461の水平方向位置の調節を行う。具体的には、下部撮像部461が上部撮像部451の略下方に位置するように、第1の下チャック移動部460と第2の下チャック移動部463によって下チャック441を水平方向に移動させる。そして、上部撮像部451と下部撮像部461とで共通のターゲットを確認し、上部撮像部451と下部撮像部461の水平方向位置が一致するように、下部撮像部461の水平方向位置が微調節される。
つづいて、第1の下チャック移動部460によって下チャック441を鉛直上方に移動させた後、上チャック440と下チャック441の水平方向位置の調節が行われる。
具体的には、第1の下チャック移動部460と第2の下チャック移動部463によって下チャック441を水平方向に移動させながら、上部撮像部451を用いて第2基板W2の接合面に形成された複数の基準点を順次撮像する。同時に、下チャック441を水平方向に移動させながら、下部撮像部461を用いて第1基板W1の接合面に形成された複数の基準点を順次撮像する。
撮像された画像データは、制御装置4の制御部4aに出力される。制御部4aでは、上部撮像部451で撮像された画像データと下部撮像部461で撮像された画像データとに基づいて、第1基板W1の基準点と第2基板W2の基準点とがそれぞれ合致するように、第1の下チャック移動部460および第2の下チャック移動部463によって下チャック441の水平方向位置を調節させる。こうして上チャック440と下チャック441の水平方向位置が調節され、第1基板W1と第2基板W2の水平方向位置が調節される。
つづいて、第1の下チャック移動部460によって下チャック441を鉛直上方に移動させて、上チャック440と下チャック441との鉛直方向位置を調節することにより、当該上チャック440に保持された第1基板W1と下チャック441に保持された第2基板W2との鉛直方向位置が調節される(ステップS211)。
つづいて、上チャック440に保持された第1基板W1と下チャック441に保持された第2基板W2の接合処理が行われる(ステップS212)。接合処理では、ストライカー490の押圧ピン491を下降させることによって、第1基板W1の中心部を押し下げて、第1基板W1の中心部と第2基板W2の中心部とを接触させて押圧する。
これにより、押圧された第1基板W1の中心部と第2基板W2の中心部との間で接合が開始する。具体的には、第1基板W1の接合面と第2基板W2の接合面はそれぞれステップS201,S206において改質されているため、まず、接合面間にファンデルワールス力(分子間力)が生じ、当該接合面同士が接合される。さらに、第1基板W1の接合面と第2基板W2の接合面はそれぞれステップS202,S207において親水化されているため、接合面間の親水基が水素結合し、接合面同士が強固に接合される。
その後、第1基板W1と第2基板W2との接合領域が、第1基板W1および第2基板W2の中心部から外周部へ拡大していくことで、第1基板W1の接合面と第2基板W2の接合面が全面で当接し、第1基板W1と第2基板W2が接合される。
つづいて、ステップS212において形成された重合基板Tは、搬送装置61によって測定装置1に搬送されて、第1基板W1と第2基板W2とが適切に接合されているか否か等が検査される(ステップS213)。
具体的には、測定装置1は、重合基板Tに赤外光を照射し、その反射光を撮像装置3で撮像することによって重合基板Tの内部の画像を得る。そして、制御部4aは、得られた画像に基づいて第1基板W1と第2基板W2とのずれ量を測定する。上述したように、測定装置1は、フィルタ201の温度を制御することで、フィルタ201を透過する赤外光の波長域を最適化しているため、表面反射光L2(図2参照)によって重合基板Tの内部の視認性が低下することを抑制することができる。
その後、制御部4aは、測定結果に基づいて第1基板W1と第2基板W2との接合が適切に行われたか否かを判定する。たとえば、制御部4aは、第1基板W1と第2基板W2とのずれ量が閾値を超えている場合に、第1基板W1と第2基板W2との接合が適切に行われていないと判定する。なお、制御部4aは、撮像装置3によって撮像された画像に基づいて、重合基板Tの内部にボイドやパーティクルが存在するか否かの検査を行ってもよい。
その後、重合基板Tは、搬送装置61によって第3処理ブロックG3のトランジション装置(図示せず)に搬送された後、搬入出ステーション200の搬送装置122によってカセットC3に搬送される。こうして、一連の接合処理が終了する。
このように、第2の実施形態に係る接合システム100では、測定装置1において重合基板Tを検査することで、たとえば、第1基板W1と第2基板W2とがずれた状態で接合された重合基板Tを接合システム100から払い出す前に発見することができることから、接合システム100の信頼性を高めることができる。
(その他の実施形態)
第2の実施形態では、測定装置1を用いて重合基板Tの測定を行うこととしたが、測定装置1は、第1基板W1および第2基板W2の測定にも用いることができる。たとえば、接合システム100は、図10に示すステップS210の処理、すなわち、第1基板W1および第2基板W2の水平方向の位置を調節する処理を測定装置1を用いて行ってもよい。この場合、たとえば、上チャック440および上チャック保持部450に上下に貫通する貫通孔を設け、かかる貫通孔を介して測定装置1からの赤外光を第1基板W1および第2基板W2に照射するようにすればよい。
また、本願の開示する光学装置は、たとえば、基板の厚み測定にも用いることができる。かかる点について図11を参照して説明する。図11は、他の実施形態に係る測定装置の構成を示す図である。
図11に示すように、他の実施形態に係る測定装置1Aは、光学装置2Aと撮像装置3Aとを備える。光学装置2Aは、光発生部21を備え、光発生部21は、筐体21aと光源21bとフィルタ部21cとを備える。光学装置2Aは、基板Wの板面に対して斜めに赤外光L11を照射する。撮像装置3Aは、撮像素子31Aを備える。撮像素子31Aは、たとえばCMOS(Complementary MOS)センサであり、基板Wから反射した赤外光、具体的には、基板W上に形成された膜Fの表面において反射する表面反射光L12と、基板Wの表面(当該表面に形成されたパターン)において反射する内部反射光L14とを受光する位置に配置される。
測定装置1Aは、たとえば基板W上に形成された膜Fの厚みを、表面反射光L12の受光位置と内部反射光L14の受光位置との差に基づいて測定することができる。この際、測定装置1Aでは、フィルタ部21cにおけるフィルタ201の温度を冷却機構202を用いて制御することにより、表面反射光L12および内部反射光L14の比率を調節することで、基板Wの厚みを測定するために最適な画像を得ることができる。すなわち、たとえば、表面反射光L12の比率が高すぎて内部反射光L14の位置を特定することが困難となることを防止することができる。このように、測定装置1Aによれば、基板Wの厚み測定を精度良く行うことができる。
上述した各実施形態では、第1基板W1、第2基板W2および基板Wがシリコンウェハである場合の例について説明したが、測定装置1,1Aにおける対象基板は、シリコンウェハに限らず、ガラス基板等の他の基板であってもよい。この場合、測定装置1,1Aに設けられるフィルタ201は、シリコン以外の材質で形成されてもよい。たとえば、フィルタ201は、対象基板の材質と同じ材質で形成されてもよい。また、シリコンウェハ以外の基板を対象基板とする場合、対象基板に対して照射する光は、必ずしも赤外光であることを要さず、たとえば可視光であってもよい。
また、上述した各実施形態では、筐体21aの内部にフィルタ部21cを配置することで、光源21bから発せられる熱を利用してフィルタ201を加熱することとしたが、フィルタ部21cの配置は、光源21bによって加熱される位置であれば筐体21aの内部に限定されない。たとえば、フィルタ部21cは、光学装置2,2Aの内部、具体的には、導光部21dと反射鏡22bとの間に配置されてもよい。また、測定装置1,1Aは、フィルタ201を加熱する加熱機構を備えてもよい。この場合、フィルタ部21cは、光源21bから発せられる熱が届かない場所に配置されてもよい。
さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
T 重合基板
W1 第1基板
W2 第2基板
1 測定装置
2 光学装置
3 撮像装置
4 制御装置
21 光発生部
21a 筐体
21b 光源
21c フィルタ部
21d 導光部
22c ハーフミラー
31 撮像素子
201 フィルタ
202 冷却機構
203 温度センサ
221 本体部
222 チラー
223 接続部

Claims (10)

  1. 光源と、
    前記光源から発せられた光のうち一部の波長域の光を透過させるフィルタと、
    前記フィルタを冷却する冷却機構と、
    前記冷却機構を制御することにより、前記フィルタが透過させる光の波長域を調節する制御部と
    を備える、光学装置。
  2. 前記光源は、発熱する光源であり、
    前記フィルタは、前記光源によって加熱される位置に配置される、請求項1に記載の光学装置。
  3. 前記光源を収容する筐体
    をさらに備え、
    前記フィルタは、
    前記筐体の内部に配置される、請求項2に記載の光学装置。
  4. 前記冷却機構は、
    前記フィルタに接触し、内部に流路が形成された本体部と、
    前記流路に冷却流体を供給する供給部と、
    前記冷却流体の温度を調節する温度調節部と
    を備え、
    前記制御部は、
    前記温度調節部を制御して、前記フィルタの冷却温度を調節することにより、前記フィルタが透過させる光の波長域を調節する、請求項3に記載の光学装置。
  5. 前記本体部は、前記光源から発せられる光を通過させる開口を有し、
    前記流路は、前記開口の周囲を巡るように形成される、請求項4に記載の光学装置。
  6. 前記フィルタは、
    前記フィルタを透過した光が照射される対象基板の材質と同じ材質で形成される、請求項1〜5のいずれか一つに記載の光学装置。
  7. 前記対象基板は、シリコンウェハであり、
    前記フィルタは、シリコンで形成される、請求項6に記載の光学装置。
  8. 対象基板に光を照射する光学装置と、
    前記対象基板からの反射光を撮像する撮像装置と、
    前記撮像装置によって撮像された画像に基づいて前記対象基板の測定を行う制御部と
    を備え、
    前記光学装置は、
    光源と、
    前記光源から発せられた光のうち一部の波長域の光を透過させるフィルタと、
    前記フィルタを冷却する冷却機構と、
    を備え、
    前記制御部は、
    前記冷却機構を制御することにより、前記フィルタが透過させる光の波長域を調節する、測定装置。
  9. 基板同士を接合する接合装置と、
    前記接合装置によって接合される前の基板または前記接合装置によって接合された後の基板を対象基板として該対象基板を測定する測定装置と
    を備え、
    前記測定装置は、
    前記対象基板に光を照射する光学装置と、
    前記対象基板からの反射光を撮像する撮像装置と、
    前記撮像装置によって撮像された画像に基づいて前記対象基板の測定を行う制御部と
    を備え、
    前記光学装置は、
    光源と、
    前記光源から発せられた光のうち一部の波長域の光を透過させるフィルタと、
    前記フィルタを冷却する冷却機構と、
    を備え、
    前記制御部は、
    前記冷却機構を制御することにより、前記フィルタが透過させる光の波長域を調節する、接合システム。
  10. 光源と、前記光源から発せられた光のうち一部の波長域の光を透過させるフィルタと、前記フィルタを冷却する冷却機構とを備えた光学装置を用いて対象基板に光を照射する照射工程と、
    前記対象基板からの反射光を撮像する撮像工程と、
    前記撮像工程によって撮像された画像に基づいて前記対象基板の測定を行う測定工程と、
    を含み、
    前記照射工程は、
    前記冷却機構を制御することにより、前記フィルタが透過させる光の波長域を調節する、測定方法。
JP2019558134A 2017-12-08 2018-11-26 光学装置、測定装置、接合システムおよび測定方法 Pending JPWO2019111736A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017235763 2017-12-08
JP2017235763 2017-12-08
PCT/JP2018/043308 WO2019111736A1 (ja) 2017-12-08 2018-11-26 光学装置、測定装置、接合システムおよび測定方法

Publications (1)

Publication Number Publication Date
JPWO2019111736A1 true JPWO2019111736A1 (ja) 2021-01-14

Family

ID=66751568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019558134A Pending JPWO2019111736A1 (ja) 2017-12-08 2018-11-26 光学装置、測定装置、接合システムおよび測定方法

Country Status (3)

Country Link
JP (1) JPWO2019111736A1 (ja)
TW (1) TW201929204A (ja)
WO (1) WO2019111736A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038898A1 (ja) * 2019-08-29 2021-03-04 ユアサシステム機器株式会社 変形試験器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079551A (ja) * 1996-07-11 1998-03-24 Nec Corp 半導体レーザ装置
JP2009150777A (ja) * 2007-12-20 2009-07-09 Nikon Corp 表面検査装置
WO2014007044A1 (ja) * 2012-07-06 2014-01-09 日本碍子株式会社 波長制御ヒーター
JP2016090410A (ja) * 2014-11-06 2016-05-23 東レエンジニアリング株式会社 基板検査装置および方法
WO2016190381A1 (ja) * 2015-05-26 2016-12-01 株式会社ブイ・テクノロジー 露光用照明装置、露光装置及び露光方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186182A (ja) * 2010-03-09 2011-09-22 Claro Inc 顕微鏡装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079551A (ja) * 1996-07-11 1998-03-24 Nec Corp 半導体レーザ装置
JP2009150777A (ja) * 2007-12-20 2009-07-09 Nikon Corp 表面検査装置
WO2014007044A1 (ja) * 2012-07-06 2014-01-09 日本碍子株式会社 波長制御ヒーター
JP2016090410A (ja) * 2014-11-06 2016-05-23 東レエンジニアリング株式会社 基板検査装置および方法
WO2016190381A1 (ja) * 2015-05-26 2016-12-01 株式会社ブイ・テクノロジー 露光用照明装置、露光装置及び露光方法

Also Published As

Publication number Publication date
TW201929204A (zh) 2019-07-16
WO2019111736A1 (ja) 2019-06-13

Similar Documents

Publication Publication Date Title
KR101605698B1 (ko) 기판 처리 장치, 기판 처리 방법, 프로그램 및 컴퓨터 기억 매체
TWI679711B (zh) 基板拍攝裝置
TW201740433A (zh) 基板處理方法、基板處理裝置及電腦可讀取記錄媒體
TWI379168B (ja)
TWI671797B (zh) 基板處理裝置、基板處理方法及記憶媒體
JP2008066341A (ja) 搬送装置、露光装置及び方法
TWI820009B (zh) 光處理裝置及基板處理裝置
JP6854696B2 (ja) 接合装置および接合方法
JP6562828B2 (ja) 検査装置、接合装置、接合システムおよび検査方法
JPWO2019111736A1 (ja) 光学装置、測定装置、接合システムおよび測定方法
US9913357B2 (en) Radiation source, metrology apparatus, lithographic system and device manufacturing method
JP5766316B2 (ja) 基板処理装置、基板処理方法、プログラム及びコンピュータ記憶媒体
JP7202828B2 (ja) 基板検査方法、基板検査装置および記録媒体
KR102629523B1 (ko) 측정 방법 및 측정 장치
JP7297074B2 (ja) 検査装置の自己診断方法および検査装置
JP7314237B2 (ja) 基板撮像装置及び基板撮像方法
US11556065B2 (en) Wafer stage and method thereof
JP6596342B2 (ja) 紫外線処理装置、接合システム、紫外線処理方法、プログラム及びコンピュータ記憶媒体
JP6788089B2 (ja) 基板処理方法、基板処理装置及びコンピュータ読み取り可能な記録媒体
JP6653068B2 (ja) 保持装置及び保持方法、露光装置及び露光方法、並びにデバイス製造方法
TWI836658B (zh) 基板處理方法、基板處理裝置及電腦可讀取記錄媒體
JP2019050417A (ja) 基板処理方法、基板処理装置及びコンピュータ読み取り可能な記録媒体
JP2012220896A (ja) 周辺露光方法及び周辺露光装置
JP2006086387A (ja) 基板搬送装置、露光装置及び基板搬送方法
JP2000049090A (ja) 露光システム及びその露光システムにより製造されたデバイス、並びに露光方法及びその露光方法を用いたデバイス製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220705