JP2008066341A - 搬送装置、露光装置及び方法 - Google Patents

搬送装置、露光装置及び方法 Download PDF

Info

Publication number
JP2008066341A
JP2008066341A JP2006239551A JP2006239551A JP2008066341A JP 2008066341 A JP2008066341 A JP 2008066341A JP 2006239551 A JP2006239551 A JP 2006239551A JP 2006239551 A JP2006239551 A JP 2006239551A JP 2008066341 A JP2008066341 A JP 2008066341A
Authority
JP
Japan
Prior art keywords
substrate
wafer
light
exposure apparatus
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006239551A
Other languages
English (en)
Inventor
Takashi Kamono
隆 加茂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006239551A priority Critical patent/JP2008066341A/ja
Priority to US11/845,506 priority patent/US8059257B2/en
Priority to TW96132493A priority patent/TW200830054A/zh
Priority to KR20070089257A priority patent/KR20080021567A/ko
Publication of JP2008066341A publication Critical patent/JP2008066341A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】 液浸法を適用した露光装置等における基板上の液滴を検出する技術を提供すること。
【解決手段】 原版からの光を基板に投影する投影光学系を有し、該投影光学系と該基板との間隙を液体で満たした状態で該基板を露光する露光装置は、露光後の該基板に付着した液滴を検知する検知手段を有し、該検知手段は、該基板に対応した第1の画像データを予め記憶する記憶手段と、該基板の表面に向かって光を照射する照射手段と、該光が照射された該表面からの光を受光する受光手段と、を含み、該受光手段により得られた第2の画像データと、該第1の画像データとの比較に基づいて、該液滴を検知する、ものとする。
【選択図】 図1−b

Description

本発明は、半導体デバイス等のデバイス製造工程において用いられる液浸露光技術に関する。
LSIあるいは超LSIなどの極微細パターンで構成される半導体デバイスの製造工程において、マスクに形成されたパターンを感光剤が塗布された基板上に縮小投影して転写する縮小型投影露光装置が使用されている。半導体デバイスにおける集積密度の向上に伴いパターンの更なる微細化が要求され、レジストプロセスの発展と同時に露光装置の微細化への対応がなされてきた。
露光装置の解像力を向上させる手段としては、露光波長を短くする方法と、投影光学系の開口数(NA)を大きくする方法とが一般的である。
露光波長については、365nmのi線から248nm付近の発振波長を有するKrFエキシマレーザ光に移行しつつあり、更には193nm付近の発振波長を有するArFエキシマレーザの開発が進んでいる。更に、157nm付近の発振波長を有するフッ素(F)エキシマレーザの開発も行なわれている。
一方、これらとは全く別な解像力向上技術として液浸法を用いた投影露光方法が注目されつつある。従来は、投影光学系の最終面と露光対象基板(例えばウエハ)面との間の空間は気体で満たされていたが、液浸法では、この空間を液体で満たして投影露光を実施する。液浸法の利点は、投影光学系とウエハとの間を満たす液体の屈折率をnとすると、同一波長の光源を用いても、従来法のn倍の解像力が得られることである。例えば、投影光学系とウエハとの間を純水(屈折率1.33)で満たした場合、ウエハに結像する光線の最大入射角が液浸法と従来法で等しいと仮定すると、同一波長の光源を用いても、液浸法の解像力は従来法の1.33倍に向上する。これは従来法の投影光学系のNAを1.33倍にすることと等価であり、液浸法によれば、従来法では不可能なNA=1以上の解像力を得ることが可能である。
液浸法を露光装置に適用した従来例には、例えば、特許文献1に開示されている露光装置がある。図9(a)及び(b)は特許文献1に開示されている露光装置の構成を示す。図9(a)の装置は、液槽(チャンバ)109内に液体130を満たすことによって、投影光学系104の最終面(光学素子107)とウエハ102の間の空間が液体130で満たされている。また、液槽109の中には、ウエハカセット110からウエハを搬入しウエハチャック112上にセットするためのウエハ搬送装置及び粗位置決め装置111−1〜111−4の一部または全体が配置されている。液槽109の中には、更に、ウエハチャック112、XYステージ113、及び微動ステージ114が配置されている。図9(a)において、115はレーザ干渉計、116は微動ステージ114上にX及びY方向(Y方向は不図示)に取り付けられ、微動ステージ114の位置を計測するためにレーザ干渉計115の光を反射する参照ミラーである。また、117はレーザ干渉計115の光を通過させるため液槽109に設けられた窓、118は液槽109の外側に設けられ、外部との熱的遮断を保つ断熱材である。
図9(a)の装置において、ウエハ102の全面の露光が完了すると、これと同時に輸送ポンプ122が再び作動し、チャンバ109内の液体130を排出し始める。この時、液面ゲ−ジ119が常時液体130の高さを検知しており、液体130の高さがウエハチャック112面より僅かに低くなった時点で、輸送ポンプ122を停止させる。従って、排出する液体130の量は、僅かである。この後、ウエハチャック112のバキュームを切り、搬出ハンド111−4で、ウエハチャック112上のウエハ102をハンドリングして、ウエハカセット110に収納する。この時、収納直前に、ウエハ102の両面をクリーンなエアでブローして、液体130をウエハ102表面から除去するようにしてもよい。
また、特許文献1には、図9(b)に示すように、ウエハチャック112を含む部分のみを液槽109内に配置した構成も開示されている。更に、液槽109の底面にウエハチャック112を直接構成し、微動ステージ114上に液槽109を配置した構成例も開示されている。すなわち、特許文献1に開示されている露光装置では、投影光学系104の最終面とウエハ102全体を液槽109の中に配置する方法が開示されている。
液浸法を露光装置に適用した他の例には、特許文献2がある。特許文献2に開示された露光装置では、投影光学系とウエハ面とで挟まれた空間だけに液体を流し、投影光学系とウエハ面の間の空間を液体で満たす方法が開示されている。
図10は特許文献3に開示されている露光装置と塗布現像装置とのインライン接続を示す図である。露光装置のウエハ搬送ロボットは塗布現像装置からウエハを受け取ると露光ステージへと搬送し、露光後のウエハも同一のロボットが塗布現像装置へと搬送している。また、塗布現像装置の中でも、レジストを塗布したウエハを露光装置側インターフェイスへ搬送するロボットが露光後のウエハを加熱部へと搬送している。
特開平6−124873号公報 WO99/049504号公報 特開2002−057100号公報
ところで、上記従来の露光装置においては、露光後に投影光学系とウエハ面の間の液体を排出しても投影レンズ最終面には液体が付着している可能性がある。したがって、ウエハをハンドリングする際に投影レンズ最終面に付着した液体がウエハ上に落下する可能性がある。
ウエハ上の液体が搬送時にウエハチャックに落下するとローカルデフォーカスの原因となり歩留まり低下を引き起こす。さらにウエハチャック交換が必要になり長時間装置がダウンするのでデバイス生産に与える影響は大きい。
また、露光後の濡れたウエハを搬送するときハンドに液体が付着し、次に搬送する露光前のウエハに付着することによるクロスコンタミが発生する。これはローカルデフォーカスの原因となり歩留まり低下を引き起こすという問題があった。
さらに、ウエハに液体が付いている状態で塗布現像装置へ搬送し加熱処理を行うと、液体の蒸発時の気化熱で温度ムラが発生してCD均一性が悪化するという問題があった。また、露光後のウエハが全て濡れていると想定して高速スピン乾燥などを行うと露光装置の構造が複雑化し、コストアップするだけでなく、スループットを低下させるという問題があった。
本発明は、上記の課題に鑑みてなされたものであり、液浸法を適用した露光装置における基板上の液滴を検出する技術を提供することを例示的目的とする。
上記の目的を達成するための露光装置は、原版からの光を基板に投影する投影光学系を有し、前記投影光学系と前記基板との間隙を液体で満たした状態で前記基板を露光する露光装置であって、露光後の前記基板に付着した液滴を検知する検知手段を有する。
そして本発明に係る第1の露光装置の検知手段は、前記基板に対応した第1の画像データを予め記憶する記憶手段と、前記基板の表面に向かって光を照射する照射手段と、前記光が照射された前記表面からの光を受光する受光手段とを含むことを特徴とする。さらに、前記受光手段により得られた第2の画像データと、前記第1の画像データとの比較に基づいて、前記液滴を検知することを特徴とする。
本発明に係る第2の露光装置において、前記検知手段は、前記基板の表面に沿って光を照射する照射手段と、前記異物からの光を受光する受光手段と、前記受光手段により得られた画像データを平滑化する平滑化手段とを含むことを特徴とする。さらに、前記平滑化手段により得られた画像データに基づいて、前記液滴を検知することを特徴とする。
本発明に係る第3の露光装置において、前記検知手段は、前記基板の表面に向かって光を照射する照射手段を含む。さらに、前記光が照射された前記表面からの光のうちP偏光を受光する第1の受光手段と、前記光が照射された前記表面からの光のうちS偏光を受光する第2の受光手段とを含む。そして、前記第1の受光手段により得られた画像データと、前記第2の受光手段により得られた画像データとの比較に基づいて、前記液滴を検知することを特徴とする。
本発明に係る第4の露光装置において、前記検知手段は、前記基板の表面に向って赤外光を照射する照射手段と、前記光が照射された前記表面からの光を受光するフーリエ変換赤外分光光度計とを含む。さらに、前記フーリエ変換赤外分光光度計により得られたスペクトルに基づいて、前記液滴を検知することを特徴とする。
前記第1〜第4の露光装置において、前記検知手段は、前記投影光学系の最終面に対向した位置から、前記露光装置内から前記基板を搬出するための位置へ前記基板を搬送する経路の上にある前記基板に付着した前記液滴を検知することが好ましい。
前記第1の露光装置において、前記記憶手段は、例えば、露光前の前記基板に対して前記検知手段により得られた画像データを前記第1の画像データとして記憶する。その場合、前記検知手段は、前記露光装置内へ前記基板を搬入するための位置から、前記投影光学系の最終面に対向した位置へ、前記基板を搬送する経路の上にある前記基板に対し、前記第1の画像データを得ることが好ましい。
上記の各露光装置は、前記液滴を除去する除去手段をさらに有することが好ましい。その場合、前記除去手段は、前記露光装置内から前記基板を搬出するための位置へ前記基板を搬送する経路の上にある前記基板に付着した前記液滴を、前記投影光学系の最終面に対向した位置から、除去することが好ましい。
本発明に係る液滴検知手段を有する搬送装置は、液浸式露光装置で露光された露光済基板を処理するCD装置及びこの露光済基板を検査する検査装置にも好適に適用することができる。
本発明によれば、液浸法を適用した露光装置における基板上の液滴を検出する技術を提供することができる。
本発明は、例えば、露光光として紫外光を用い、投影光学系と基板(例えば、ウエハ)との間隙を液体で満たす液浸法が適用されるあらゆる露光装置に有用である。そのような露光装置には、例えば、基板を静止させた状態で該基板に原版のパターンを投影転写する露光装置や、基板と原版とを同期スキャンしながら該基板に該原版のパターンをスリット光によりスキャン露光する露光装置が含まれ得る。
[第1の実施形態]
以下、本発明の実施形態を例示的に説明する。図1−a及び図1−bは、本発明の第1の実施形態に係る液浸露光装置の構成を概略的に示す図である。図1−aにおいて、ArFエキシマレーザやFレーザなどの露光光源(不図示)から射出された光が照明光学系2に提供される。照明光学系2は、露光光源から提供された光を用いて、レチクル(原版)1の一部をスリット光(スリットを通過したような断面形状を有する光)により照明する。スリット光によってレチクル1を照明している間、レチクル1を保持したレチクルステージ(原版ステージ)3とウエハ(基板)9を保持したウエハステージ(基板ステージ)10とは、一方が他方に同期しながらスキャン移動する。このような同期スキャンを通して、結果としてレチクル1上のパターン全体が投影光学系4を介してウエハ9上に連続的に結像し、ウエハ9表面に塗布されたレジストを感光させる。14および15はそれぞれレチクルステージ3およびウエハステージ10を載置する定盤である。
レチクルステージ3やウエハステージ10の二次元的な位置は、参照ミラー11とレーザ干渉計12によってリアルタイムに計測される。この計測値に基づいて、ステージ制御装置13は、レチクル1(レチクルステージ3)やウエハ9(ウエハステージ10)の位置決めや同期制御を行う。ウエハステージ10には、ウエハ9の上下方向(鉛直方向)の位置や回転方向、傾きを調整、変更或いは制御する駆動装置が内蔵されている。露光時は、この駆動装置により投影光学系4の焦点面にウエハ9上の露光領域が常に高精度に合致するようにウエハステージ10が制御される。ここで、ウエハ9上の面の位置(上下方向位置と傾き)は、不図示の光フォーカスセンサによって計測され、ステージ制御装置13に提供される。
露光装置本体は、環境チャンバ28の中に設置されており、露光装置本体を取り巻く環境が所定の温度に保たれる。レチクルステージ3、ウエハステージ10、干渉計12を取り巻く空間や、投影レンズ4を取り巻く空間には、更に個別に温度制御された空調空気が吹き込まれて、環境温度が更に高精度に維持される。露光装置本体の正面側にはウエハ搬送部27が設置されている。
次に、図1−b及び図1−aを参照しながら、ウエハの搬送工程を説明する。図1−bは図1−aの露光装置をウエハ搬送高さで断面をとった上面図であり、ウエハ搬送工程を模式的に示す図である。
まず、不図示の塗布現像装置のウエハ搬送装置により受け渡し位置24に置かれたウエハを搬送ロボット23がプリアライメント部19に搬送する。プリアライメント部19に搭載されたウエハは水平方向と回転方向の位置決めが行われる。次に供給ロボット20がプリアライメント部19からウエハステージ10へウエハを搬送する。ウエハ9はウエハステージ10に保持された状態で投影光学系4の下の露光開始位置へと移動する。露光開始位置近傍で液体供給ノズル5からウエハ9上に液体が供給される。その後、上述の液浸法による露光が行われる。
露光後、液体回収ノズル6によりウエハ9上の液体は回収され、ウエハはウエハステージ10に保持された状態で液体回収ノズル6の下からウエハ回収位置29へ移動する。このとき、ウエハ9の上に付着しているかもしれない液滴を、液体回収ノズル6の下から回収ステーション22に搬送される搬送経路上で検知するべく液滴検知部30がウエハステージ移動経路上に配置されている。ウエハがウエハ回収位置29に移動完了したときにウエハ9上に液滴が検知されていなければ、ウエハ回収位置29のウエハは回収ロボット21により回収ステーション22に搬送される。ウエハ回収位置29からウエハ回収ステーション22に搬送される搬送経路上にはエアーナイフ40が配置されている。ウエハがウエハ回収位置29に移動完了したときにウエハ9上に液滴が検知されている場合はエアーナイフ40で液滴の除去を行う。搬送ロボット23は回収ステーション22上のウエハを受け渡し位置25に搬送する。不図示の塗布現像装置のウエハ搬送装置がウエハを受け渡し位置25上のウエハを塗布現像装置へと搬送する。
塗布現像装置からウエハの供給を受ける代わりに環境チャンバ28の中にあるウエハキャリアユニット26から搬送ロボット23が露光前のウエハを取り出しプリアライメント部19ヘ搬送し、露光後のウエハを回収ステーション22から搬送ロボット23がウエハキャリアユニット26へ収納しても良い。いずれの場合も搬送ロボット23は露光前のウエハも露光後のウエハも搬送する。
本実施形態においては、投影光学系4とウエハ9との間の空間或いは間隙を液体で満たす液浸法を採用している。この液浸法は、ウエハ9の上方かつ投影光学系4の近傍に配置された液体供給ノズル5と、投影光学系4を挟んで液体供給ノズル5の反対側に配置された液体回収ノズル6によって実現される。
以下、本実施形態において実施される液浸法について詳細に説明する。露光中にウエハ9をスキャンする方向の上流側であって投影光学系4の近傍に液体供給ノズル5が配置されている。ここで、スキャン方向の上流側とは、例えば、ウエハを右から左に向かって左方向(第2方向)に移動させる場合について説明すると、その反対方向(第1方向)である右側である。すなわち、スキャン方向(第2方向)を矢印50で示した場合に、矢印の始点側の方向(第1方向)が上流側である。投影光学系4を挟んで液体供給ノズル5の反対側(すなわち、スキャン方向の下流側)には、液体回収ノズル6が配置されている。
液体供給ノズル5は、供給管16を介して液体供給装置7と接続されており、同様に液体回収ノズル6は、回収管17を介して液体回収装置8と接続されている。液体供給装置7は、例えば、液体を貯めるタンク、液体を送り出す圧送装置、液体の供給流量の制御を行う流量制御装置を含みうる。液体供給装置7には、更に、液体の供給温度を制御するための温度制御装置を含むことが好ましい。液体回収装置8は、例えば、回収した液体を一時的に貯めるタンク、液体を吸い取る吸引装置、液体の回収流量を制御するための流量制御装置を含みうる。液浸制御装置18は、更に、ウエハステージ10の現在位置、速度、加速度、目標位置、移動方向といった情報をステージ制御装置13から受けて、これらの情報に基づいて、液浸の開始や中止、流量等の制御指令を液体供給装置7や液体回収装置8に与える。
投影光学系4とウエハ9の間に液を満たす工程を説明する。まず、ウエハ9が静止した状態または移動している状態で、液体供給ノズル5よりウエハ9上に、例えばほぼ一定流量で液体Fを供給する。そして、液体供給ノズル5の下面とウエハ9の上面に液体を密着させることで、十分な液膜を形成する。次に、供給ノズル5より液体を供給し続けたまま、形成した液膜を途切れさせることなくウエハ9の移動を開始する。ウエハ9が移動して露光開始位置に至るとスリット光によるスキャン露光が開始される。ウエハ9が更に移動して露光終了位置に至るとスリット光による露光が終了する。スリット光による露光が終了すると、液体供給ノズル5からの液体の供給を停止し、ウエハ9をスキャン方向に移動させながら、残った液体を液体回収ノズル6によって回収する。以上のように、ウエハ9の移動に伴って液膜が広がるように、ウエハ9を移動させながらウエハ9の表面上に連続的に液体を供給する。この方法によれば、投影光学系4の最終面とウエハ9との間隙を連続的な液膜(途切れない液膜)で満たすことができる。また、このような方法によれば、液膜はウエハに対する相対速度が遅いので、液体回収ノズル6を通して確実に回収されうる。
上記のような液体の供給・回収方法によると露光後のウエハ上の全ての液滴が回収されることが通常である。しかし、液体回収ノズル6或いは投影光学系最終面4sに付着した雫がウエハ上に落下する可能性がある。これは頻度の低い現象であるが、ウエハ上に落下した雫が搬送時にウエハチャックにさらに落下するとローカルデフォーカスの原因となり歩留まり低下を引き起こす。さらにウエハチャック交換が必要になり長時間装置がダウンするのでデバイスの生産性に与える影響は大きい。また、露光後の濡れたウエハを搬送するとき搬送ロボット23のハンドに液体が付着すると、次に搬送する露光前のウエハに付着することによるクロスコンタミが発生する。これはローカルデフォーカスの原因となり歩留まり低下を引き起こすという問題があった。
更に、ウエハに液体が付いている状態で塗布現像装置へ搬送し加熱処理を行うと、液体の蒸発時の気化熱で温度ムラが発生してCD均一性が悪化するというプロセス上の問題が発生する。また、露光後のウエハが全て濡れていると想定して高速スピン乾燥などを行うと露光装置の構造が複雑化し、コストアップするだけでなく、スループットを低下させるという問題があった。
よってウエハ上の液滴を検知してその液滴に応じてウエハを乾燥させることが必要である。本実施形態の露光装置にはウエハ上の液滴を検知する手段及びウエハ上の液滴を除去する手段を具備している。
図2は本実施形態におけるウエハ上の液滴を検知する手段(液滴検知手段)30を表す概略図である。ウエハ9上の液滴を検知する手段30は、光を照射する照明手段51(以下、照明手段は照射手段ともいう)及び光を検出する受光手段52(以下、受光手段は光検出手段ともいう)を備える。照明手段51には赤外線ライトを使用している。受光手段52にはCCDカメラを使用している。照明手段には赤外線ライト以外にはレーザビーム、レーザシートビーム、レーザスキャンビーム、LED、黄色フィルタ付きの電球等レジストが感光しない波長の光源を使用することが好ましい。受光手段にはCCD,CMOS等の2次元センサ或いはラインセンサ等の1次元センサ或いは光電センサ等前述の照明手段51の光源の波長に感度のある受光素子を用いる。液浸法による露光後、ウエハステージ10に保持された状態で液体回収ノズル6の下からウエハ回収位置29へ移動するウエハ9に対し赤外線ライト51をストロボ発光させることによりウエハ9及びウエハ上の液滴dの画像をCCDカメラに取り込んでいる。本実施形態ではカメラの視野はウエハステージ全面を一括で取り込むことが出来る。しかし、カメラの視野が狭い場合或いは投影レンズ等の影になってウエハ全面が観察出来ない場合でもウエハステージ10の動きに伴い連続して撮影することにより、ウエハ9上を分割して撮影することが可能でありウエハ全面上の液滴を検知することができる。また、カメラの姿勢を変えながらウエハ9上を分割して撮影して、後に画像処理でつなぎ合わせても同様の効果が得られる。また、CCDやCMOS等の2次元受光素子以外にもラインセンサのような1次元センサを受光手段とした場合にもウエハステージ10の動き或いは受光手段の姿勢制御によるウエハとカメラの相対運動によりウエハ全面上の液滴の検知を行うことが可能である。
半導体装置製造プロセスではウエハ表面に異なるレイヤーを積層することでデバイスを形成する。よって露光装置に搬入されるウエハはあるレイヤーのデバイスパターンの上に1μm程度の薄いレジスト膜が塗布される場合が多い。カメラで捕らえたウエハの画像の中には、薄いレジスト膜を透過して見えるデバイスパターンやウエハ上に付着した異物の姿も観察されるので液滴との判別が必要となる。本実施形態ではカメラにより取り込まれた画像は不図示の制御部の中にある液滴の判別手段により処理され液滴とウエハ上の異物或いはデバイスパターンとの判別を行う。
カメラにより取り込まれた画像における液滴とウエハ上のデバイスパターンとの判別手段について説明する。図3は本実施形態における液滴とウエハ上のデバイスパターンとの判別手段を示すブロック図である。画像入力部60としてのカメラ52で取り込まれた画像データはメモリ61aに記憶される。画像処理プロセッサ62は、この画像データと予めメモリ63aに記憶させておいた画像データとを比較することにより、ウエハ上の液滴を判別する。予めメモリ63aに記憶させておく画像データは、ウエハ上に液滴がないときに上記カメラにより得られるべき画像データであり、例えば、そのようなウエハを実際に上記カメラで撮像することにより得た画像データであってもよいし、ウエハ上に形成されているデバイスパターンのデータに基づき生成された画像データであってもよい。また、上記比較は、当業者に知られた種々の手法を適用可能であり、例えば、画像間の差分の計算など、画像間で異なっている領域を抽出する種々の画像間演算が適用可能である。また液滴の判別と同時に、ウエハステージ10の座標情報から液滴の位置、大きさを判断する。得られた液滴の位置、大きさ情報に応じて不図示の制御部において液滴除去手段を制御している。また、ウエハ上に液滴が無いと検知された場合は液滴除去を行わないように不図示の制御部により制御している。
本実施形態における液浸露光用の液浸水は純水を使用している。よって検知すべき液滴及び除去すべき液滴は純水であるが、純水だけに限定されるものではない。例えばフォンブリンなどの液浸露光用液浸液であれば同様の検知、除去が行われ得る。
また、本実施形態ではウエハ上の液滴を検知する手段をウエハステージ移動経路上に配置した。但し、液滴を検知する手段の位置は、好ましくは、ウエハステージ移動経路上から受け渡し位置25までのウエハ搬送経路上にあればよい。例えばウエハ回収位置29の上とか回収ステーション22の上或いは搬送ロボット23の上或いは受け渡し位置25の上に配置しても同様の効果が得られる。
さらに、本実施形態では液滴の除去手段としてエアーナイフ40をウエハ回収位置29から回収ステーション22に搬送される搬送経路上に配置した。但し、液滴の除去手段の位置は、好ましくは、ウエハステージ移動経路上から受け渡し位置25までのウエハ搬送経路上にあればよい。例えばウエハ回収位置29の上とか回収ステーション22の上或いは搬送ロボット23の上或いは受け渡し位置25の上に配置しても同様の効果が得られる。また、液浸ノズル(例えば、液体回収ノズル6)により液滴の除去を行っても良い。
[第2の実施形態]
第2の実施形態における基本的な装置構成は第1の実施形態と同じなので図1−bを参照しながら、ウエハの搬送工程を説明する。まず、不図示の塗布現像装置のウエハ搬送装置により受け渡し位置24に置かれたウエハを搬送ロボット23がプリアライメント部19に搬送する。プリアライメント部19に搭載されたウエハは水平方向と回転方向の位置決めが行われる。次に供給ロボット20がプリアライメント部19からウエハステージ10へウエハを搬送する。ウエハはウエハステージ10に保持された状態で投影光学系4の下の露光開始位置へと移動する。受け渡し位置24またはプリアライメント部19から投影光学系4の下の露光開始位置に搬送される搬送経路上にウエハ上の液滴検知部30が配置されている。このとき露光前(液浸前)のウエハ表面のデバイスパターンをウエハ上の液滴検知部30のカメラで撮影して不図示の第1画像データメモリに記憶する。
次いで、露光開始位置近傍で液体供給ノズル5からウエハ9上に液体が供給される。その後、上述の液浸法による露光が行われる。露光後液体回収ノズル6によりウエハ9上の液体は回収され、ウエハはウエハステージ10に保持された状態で液体回収ノズル6の下からウエハ回収位置29へ移動する。この移動時に露光後のウエハ表面をウエハ上の液滴検知部30のカメラで撮影して第1画像データメモリ63bに記憶する。ウエハ回収位置29のウエハは回収ロボット21により回収ステーション22に搬送される。ウエハ回収位置29からウエハは回収ステーション22に搬送される搬送経路上にはエアーナイフ40が配置されている。搬送ロボット23は回収ステーション22上のウエハを受け渡し位置25に搬送する。不図示の塗布現像装置のウエハ搬送装置がウエハを受け渡し位置25上のウエハを塗布現像装置へと搬送する。
塗布現像装置からウエハの供給を受ける代わりに環境チャンバ28の中にあるウエハキャリアユニット26から搬送ロボット23が露光前のウエハを取り出しプリアライメント部19ヘ搬送し、露光後のウエハを回収ステーション22から搬送ロボット23がウエハキャリアユニット26へ収納しても良い。いずれの場合も搬送ロボット23は露光前のウエハも露光後のウエハも搬送する。
図4は本発明の第2の実施形態における液滴とウエハ上のデバイスパターンとの判別手段を示すブロック図である。画像入力部60としてのカメラによって取り込まれた露光前のウエハの画像データは第1画像データメモリ63bに記憶される。また、同様にして取り込まれた露光後のウエハの画像データは第2画像データメモリ61bに記憶される。画像処理プロセッサ62は、第2画像データメモリ61bに記憶された露光後の画像データと第1画像データメモリ63bに予め記憶させておいた露光前の画像データを比較することにより、ウエハ上の液滴を判別する。また液滴の判別と同時に、ウエハステージ10の座標情報から液滴の位置、大きさを判断する。得られた液滴の位置、大きさ情報に応じて不図示の制御部において液滴除去手段を制御している。また、ウエハ上に液滴が無いと検知された場合は液滴除去を行わないように不図示の制御部により制御している。
[第3の実施形態]
本発明の第3の実施形態として、図5に照明手段にレーザ71を、受光手段にラインセンサ72を使用した液滴検知手段の実施形態を示す。レーザ71からのレーザビームはウエハ9の上面の近傍に平行に照射する。ラインセンサ72の長手方向をウエハ表面及びレーザビームに平行に配置する。ラインセンサ72の長手方向に直行する方向にウエハステージ10を移動することによりウエハ全面をスキャンすることが出来る。ラインセンサ72からの信号を画像処理することによりウエハ全面の検知を行う。ウエハ上に液滴がある場合には液滴に当たって散乱したレーザ光をラインセンサ72で受光することにより液滴の検知が行われる。
ラインセンサ72により取り込まれた画像における液滴とウエハ上の異物或いはデバイスパターンとの判別手段について説明する。本実施形態では画像処理系にローパスフィルタ(平滑化フィルタまたは平滑化手段ともいう)を使用することにより、液滴とウエハ上の異物或いはデバイスパターンとの判別を行っている。通常ウエハの異物検査装置では微細な異物を検出するために帯域の低いローパスフィルタを使用することはない。本実施形態においては、一例として、1mm程度の液滴と数十μmの異物を判別するために周波数帯域が100KHz以下のローパスフィルタを使用している。
図6(a)はラインセンサ72の出力波形における液滴及び異物の信号の波形である。横軸はラインセンサ上の位置を表し縦軸はラインセンサの出力の強度を表している。図6(b)及び(c)は、図6(a)の波形をローパスフィルタを用いて処理した結果の波形を示す。ローパスフィルタが無いときの図6(a)の波形ではウエハ上の異物の信号レベルが高い。しかし、ローパスフィルタの周波数帯域が100KHz以下になると液滴の信号レベルより異物の信号レベルの方がより大きく減衰し、液滴と異物との判別が行われているのがわかる。ローパスフィルタの帯域は100KHz以下が好ましく、さらに10KHz以下がより好ましい。また、ウエハ上の異物の信号レベルを小さくするために受光手段をデフォーカスさせることが好ましい。なお、本実施形態では、ラインセンサ72の出力波形に対する処理のためアナログのローパスフィルタを用いている。しかし、ラインセンサ72の出力をデジタル化した後のデジタル画像データに対する処理を行う場合には、デジタルの空間的ローパスフィルタを用いればよい。その場合、該空間的ローパスフィルタの空間周波数帯域を液滴および異物のサイズに応じて適切に定めればよい。
[第4の実施形態]
図7は、本発明の第4の実施形態に係る液滴検知手段の構成を示す。図7の液滴検知手段において、照明手段の赤外線ランプ81の投光側に拡散板82を配置してウエハ9を略均一に照明している。受光手段ではウエハ9からの反射光を2つに分岐する分岐光学系83を介して2つの受光素子84、85に入射させている。分岐光学系83と受光素子84、85との間には夫々偏光板86、87とウエハの像を受光素子上に結像させる結像光学系88、89とが配置されている。偏光板は一方86がP偏光、もう一方87がS偏光をそれぞれ透過するように配置されている。受光素子84、85はCMOSセンサ、CCDセンサ等の2次元センサ或いはラインセンサ等の1次元センサでも良い。受光素子84、85は不図示の画像処理部と接続されている。
図8は空気中におけるP偏光及びS偏光の水への入射角度と反射率の関係を表す図である。縦軸が反射率、横軸は入射角を表している。P偏光とS偏光では入射角に対する反射率が違うことがわかる。特に入射角40度から85度の間ではP偏光とS偏光の反射率に差が生じるので、照明手段及び受光手段の光軸の角度を40度から85度の間に設定することが好ましい。
本実施形態では、ウエハ9で反射した光は分岐光学系83で2つに分岐され一方がP偏光のみの像として第1の受光素子84に結像し、もう一方はS偏光のみの像として第2の受光素子85に結像する。このように同時に取り込まれたP偏光及びS偏光の画像を比較することにより水を判別している。
図8では入射角53.1度のときにP偏光の反射率がもっとも低くなっている。この角度をブリュースター角度という。この角度ではP偏光のみを受光している第1の受光素子84には水からの反射光はほとんど入射せず、S偏光のみを受光している第2の受光素子85にのみ水からの反射光が受光されるので、第1、第2の受光素子の信号を比較することにより、より明確に水の判定が出来る。よって照明手段及び受光手段の光軸の角度を53.1度のブリュースター角度近傍に設定することがより好ましい。
フォンブリンなど水以外の液浸露光用液(液浸液)を使用する場合にも、偏光方向、入射角度、および反射率の関係を調べ、反射率の差が得られる入射角度、反射角度、及び偏光方向を選定することが好ましい。さらに、ウエハ表面に塗布されたレジスト面についても、図8同様の空気中におけるP偏光及びS偏光の入射角度と反射率との関係を計測して、液浸液との反射率の差が得られる入射角度、反射角度、及び偏光方向を選定することが好ましい。
[第5の実施形態]
本発明の第5の実施形態として、照明手段に赤外線光源を使用し、受光手段には赤外線に感度がある受光素子を使用し、赤外フーリエ変換分光法に基づく分光結果から液滴を判別する液滴検知手段の説明を行う。
分子に波長(エネルギー)の異なる赤外線を照射していくと、分子振動固有のエネルギーに対応した赤外線が吸収され、分子の構造に応じた特有のスペクトルが得られる。この赤外吸収スペクトル(Infrared Spectrum)から化合物の構造推定や定量を行うことができる。さらに既知物質のスペクトルと比較して物質の同定ができる。本実施形態では受光手段において干渉計を使用して光を検出し、データをフーリエ変換してスペクトル化するFT−IRを使用することにより、ウエハ上の液滴を判別している。FT−IRは、Fourier Transform Infrared Spectrometer(フーリエ変換赤外分光光度計)の略である。本実施形態では、予め記憶しておいた液滴のスペクトルデータと比較して液滴の同定を行うことにより、ウエハ上の異物及びデバイスパターンと液滴との判別が明確に行われるメリットがある。
上述の実施形態によれば、液浸法を適用した露光装置及び露光方法の実用性を高めることができる。例えば、液滴を検出できる。また、当該検出時のみ液滴を除去すれば、装置のスループットの低下を抑えつつ、装置ダウンタイムを短縮でき、或いは歩留まりの悪化を低減することができる。さらに、露光装置から搬送されたウエハの処理を行う半導体製造装置或いは検査装置の性能悪化の可能性を低減することができる。また、露光装置の複雑化または大型化を抑えることができる。
上述の実施形態においては、本発明を露光装置に適用した例を示した。しかし、本発明は、液浸露光した基板を検査する検査装置や、露光済基板を処理するレジスト塗布現像装置等の、デバイス製造装置に適用することも可能である。例えば、従来構成の液浸式露光装置とインライン接続されるデバイス製造装置に有効である。その場合、例えば、露光装置内の搬送系が搬入系と搬出系とに分離されていれば、上記実施形態と同様の効果が得られる。
[微小デバイス製造の実施例]
次に、上述の液浸型露光装置を利用した微小デバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造プロセスを説明する。
図11は半導体デバイスの製造のフローを示す。
ステップ1(回路設計)では半導体デバイスの回路設計を行う。ステップ2(マスク製作)では設計したパターンを形成したマスク(原版またはレチクルともいう)を製作する。
一方、ステップ3(ウエハ製造)ではシリコン等の材料を用いてウエハ(基板ともいう)を製造する。ステップ4(ウエハプロセス)は前工程と呼ばれ、上記用意したマスクを設置した露光装置とウエハを用いて、リソグラフィ技術によってウエハ上に実際の回路を形成する。
次のステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作製されたウエハを用いて半導体チップ化する工程である。後工程は、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の組み立て工程を含む。ステップ6(検査)ではステップ5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、ステップ7でこれを出荷する。
上記ステップ4のウエハプロセスは、ウエハの表面を酸化させる酸化ステップ、ウエハ表面に絶縁膜を成膜するCVDステップ、ウエハ上に電極を蒸着によって形成する電極形成ステップステップを有する。また、ウエハにイオンを打ち込むイオン打ち込みステップ、ウエハに感光剤を塗布するレジスト処理ステップ、上記の露光装置を用いて、回路パターンを有するマスクを介しレジスト処理ステップ後のウエハを露光する露光ステップを有する。さらに、露光ステップで露光したウエハを現像する現像ステップ、現像ステップで現像したレジスト像以外の部分を削り取るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト剥離ステップを有する。これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンを形成する。
以下、本発明の好適な実施の態様を列挙する。
1.液浸露光装置において、ウエハ上の液滴を検知する手段を具備し、前記ウエハ上の液滴を検知する手段に液滴の判別手段を具備する。
2.前記ウエハ上の液滴を検知する手段には画像処理プロセッサ、記憶装置、またはCPU等の処理・判断手段が含まれる。
3.前記液滴の判別手段は液滴とウエハ上の異物或いはデバイスパターンとの判別を行う。
4.前記ウエハ上の液滴を検知する手段は、ウエハステージ部及びウエハ搬送部のいずれかに配置される。
5.前記液滴を検知する手段は、露光後のウエハを照明する照明手段及びウエハからの反射光を受光する受光手段を備える。
6.液浸露光装置において、ウエハ上の液滴を除去する手段をウエハステージ部及びウエハ搬送部のいずれかに具備するように構成される。
7.前記液滴の判別手段は、露光後のウエハの画像と予め記憶させたウエハ上のパターン形状とを比較して液滴を判別する。予め記憶させるウエハ上のパターン形状は、例えば、現在までの露光に用いられた原版のパターンに基づき作成することができる。
8.或いは、露光後のウエハの画像と、露光前のウエハロード時に上記受光手段としてのカメラで読み込み、記憶させたウエハの画像とを比較することにより液滴を判別してもよい。
9.前記液滴を検知する手段は、レーザビームを用いた照明手段と、ラインセンサを用いた受光手段と、該受光手段の出力を処理する、ローパスフィルタを用いた信号処理系とを含んでもよい。この場合、受光部はデフォーカスしていることが好ましい。前記ローパスフィルタの帯域は好ましくは100KHz以下、より好ましくは10KHz以下である。
10.前記液滴を検知する手段は、ウエハを照明する照明手段とウエハからの反射光を偏光板を介して受光する複数の受光手段とを具備し、前記受光手段でP偏光、S偏光を同時に取り込むよう構成してもよい。この場合、信号処理系でP偏光、S偏光の信号の差分を取ることによりウエハ上の液滴を検知する。入射角はブリュースター角度近傍であることが好ましい。
11.前記液滴を検知する手段は、前記照明手段に赤外線光源を使用し、受光手段には赤外線に感度がある受光素子を使用し、赤外フーリエ変換分光法に基づく分光結果から液滴を判別するよう構成してもよい。
本発明の一実施形態に係る液浸露光装置の構成を概略的に示す図である。 図1の露光装置をウエハ搬送高さで切断した上面図であり、ウエハ搬送工程を模式的に示す図である。 本発明の第1の実施形態に係るウエハ上の液滴を検知する手段を表す概略図である。 本発明の第1の実施形態に係る液滴とウエハ上のデバイスパターンとの判別手段を示すブロック図である。 本発明の第2の実施形態に係る液滴とウエハ上のデバイスパターンとの判別手段を示すブロック図である。 本発明の第3の実施形態に係るウエハ上の液滴を検知する手段を表す概略図である。 本発明の第3の実施形態における受光手段の出力する液滴及び異物の信号を示す波形図である。 本発明の第4の実施形態に係る受光手段に2次元センサを使用した液滴検知手段を示す図である。 空気中における水への入射角度と反射率との関係を表す図である。 従来の液浸型露光装置の一例を示す図である。 従来の露光装置と塗布現像装置のインライン接続を示す図である。 デバイスの製造プロセスのフローを説明する図である。
符号の説明
1:レチクル
2:照明系
3:レチクルステージ
4:投影光学系
4s:投影光学系最終面
5:液体供給ノズル
6:液体回収ノズル
7:液体供給装置
8:液体回収装置
9:ウエハ
10:ウエハステージ
11:参照ミラー
12:測距用レーザ干渉計
13:ステージ制御装置、
14,15:定盤
16:供給管
17:回収管
18:液浸制御装置
19:プリアライメント部
20:供給ロボット
21:回収ロボット
22:回収部
23:搬送ロボット
24:受け渡し位置A
25:受け渡し位置B
26:ウエハキャリアユニット
27:ウエハ搬送部
28:環境チャンバ
29:ウエハ回収位置
30:ウエハ上の液滴検知部
40:エアーナイフ部
50:ウエハスキャン方向
51:ライト
52:カメラ
60:画像入力部
61a:画像データメモリ
61b:第2画像データメモリ
62:画像処理プロセッサ
63a:記憶メモリ
63b:第1画像データメモリ
71:レーザ
72:ラインセンサ
81:光源
82:拡散板
83:分岐光学系
84:第1受光素子
85:第2受光素子
86:偏光板P
87:偏光板S
88、89:光学系

Claims (10)

  1. 原版からの光を基板に投影する投影光学系を有し、前記投影光学系と前記基板との間隙を液体で満たした状態で前記基板を露光する露光装置において、
    露光後の前記基板に付着した液滴を検知する検知手段を有し、
    前記検知手段は、
    前記基板に対応した第1の画像データを予め記憶する記憶手段と、
    前記基板の表面に向かって光を照射する照射手段と、
    前記光が照射された前記表面からの光を受光する受光手段と、
    を含み、前記受光手段により得られた第2の画像データと、前記第1の画像データとの比較に基づいて、前記液滴を検知する、
    ことを特徴とする露光装置。
  2. 原版からの光を基板に投影する投影光学系を有し、前記投影光学系と前記基板との間隙を液体で満たした状態で前記基板を露光する露光装置において、
    露光後の前記基板に付着した液滴を検知する検知手段を有し、
    前記検知手段は、
    前記基板の表面に沿って光を照射する照射手段と、
    前記異物からの光を受光する受光手段と、
    前記受光手段により得られた画像データを平滑化する平滑化手段と、
    を含み、前記平滑化手段により得られた画像データに基づいて、前記液滴を検知する、
    ことを特徴とする露光装置。
  3. 原版からの光を基板に投影する投影光学系を有し、前記投影光学系と前記基板との間隙を液体で満たした状態で前記基板を露光する露光装置において、
    露光後の前記基板に付着した液滴を検知する検知手段を有し、
    前記検知手段は、
    前記基板の表面に向かって光を照射する照射手段と、
    前記光が照射された前記表面からの光のうちP偏光を受光する第1の受光手段と、
    前記光が照射された前記表面からの光のうちS偏光を受光する第2の受光手段と、
    を含み、前記第1の受光手段により得られた画像データと、前記第2の受光手段により得られた画像データとの比較に基づいて、前記液滴を検知する、
    ことを特徴とする露光装置。
  4. 原版からの光を基板に投影する投影光学系を有し、前記投影光学系と前記基板との間隙を液体で満たした状態で前記基板を露光する露光装置において、
    露光後の前記基板に付着した液滴を検知する検知手段を有し、
    前記検知手段は、
    前記基板の表面に向って赤外光を照射する照射手段と、
    前記光が照射された前記表面からの光を受光するフーリエ変換赤外分光光度計と、
    を含み、前記フーリエ変換赤外分光光度計により得られたスペクトルに基づいて、前記液滴を検知する、
    ことを特徴とする露光装置。
  5. 前記検知手段は、前記投影光学系の最終面に対向した位置から、前記露光装置内から前記基板を搬出するための位置へ前記基板を搬送する経路の上にある前記基板に付着した前記液滴を検知することを特徴とする請求項1乃至4のいずれかに記載の露光装置。
  6. 前記記憶手段は、露光前の前記基板に対して前記検知手段により得られた画像データを前記第1の画像データとして記憶することを特徴とする請求項1に記載の露光装置。
  7. 前記検知手段は、前記露光装置内へ前記基板を搬入するための位置から、前記投影光学系の最終面に対向した位置へ、前記基板を搬送する経路の上にある前記基板に対し、前記第1の画像データを得ることを特徴とする請求項6に記載の露光装置。
  8. 前記液滴を除去する除去手段をさらに有することを特徴とする請求項1乃至7のいずれかに記載の露光装置。
  9. 前記除去手段は、前記投影光学系の最終面に対向した位置から、前記露光装置内から前記基板を搬出するための位置へ、前記基板を搬送する経路の上にある前記基板に付着した前記液滴を除去することを特徴とする請求項8に記載の露光装置。
  10. 請求項1乃至9のいずれかに記載の露光装置を用いて基板を露光するステップを有することを特徴とするデバイス製造方法。
JP2006239551A 2006-09-04 2006-09-04 搬送装置、露光装置及び方法 Withdrawn JP2008066341A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006239551A JP2008066341A (ja) 2006-09-04 2006-09-04 搬送装置、露光装置及び方法
US11/845,506 US8059257B2 (en) 2006-09-04 2007-08-27 Exposure apparatus and device manufacturing method
TW96132493A TW200830054A (en) 2006-09-04 2007-08-31 Exposure apparatus and device manufacturing method
KR20070089257A KR20080021567A (ko) 2006-09-04 2007-09-04 노광장치 및 디바이스 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239551A JP2008066341A (ja) 2006-09-04 2006-09-04 搬送装置、露光装置及び方法

Publications (1)

Publication Number Publication Date
JP2008066341A true JP2008066341A (ja) 2008-03-21

Family

ID=39151012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239551A Withdrawn JP2008066341A (ja) 2006-09-04 2006-09-04 搬送装置、露光装置及び方法

Country Status (4)

Country Link
US (1) US8059257B2 (ja)
JP (1) JP2008066341A (ja)
KR (1) KR20080021567A (ja)
TW (1) TW200830054A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034427A (ja) * 2008-07-31 2010-02-12 Canon Inc 処理装置及びデバイス製造方法
JP2010093075A (ja) * 2008-10-08 2010-04-22 Nikon Corp 露光装置、メンテナンス方法、露光方法、及びデバイス製造方法
JP2010147335A (ja) * 2008-12-19 2010-07-01 Canon Inc 残留液体除去方法、それを用いた露光装置及びデバイスの製造方法
WO2012132311A1 (ja) * 2011-03-28 2012-10-04 富士フイルム株式会社 結露検出方法および装置
WO2013100114A1 (ja) * 2011-12-28 2013-07-04 株式会社ニコン 露光装置、露光方法、デバイス製造方法、液体回収方法、プログラム、及び記録媒体
JP2018032047A (ja) * 2014-06-16 2018-03-01 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114021B2 (ja) * 2006-01-23 2013-01-09 富士フイルム株式会社 パターン形成方法
TWI391309B (zh) * 2008-08-07 2013-04-01 King Yuan Electronics Co Ltd Automatic feeding set device
TWI438577B (zh) * 2008-12-08 2014-05-21 Asml Netherlands Bv 微影裝置及器件製造方法
DE102009015717B4 (de) * 2009-03-31 2012-12-13 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Verfahren und System zum Erkennen einer Teilchenkontamination in einer Immersionslithographieanlage
US10460998B2 (en) * 2010-11-09 2019-10-29 Nikon Corporation Method for inspecting substrate, substrate inspection apparatus, exposure system, and method for producing semiconductor device
KR101636055B1 (ko) * 2014-04-30 2016-07-05 주식회사 나노프로텍 편광을 이용한 투명기판 상면 이물 검출 방법
US9811000B2 (en) * 2015-10-30 2017-11-07 Taiwan Semiconductor Manufacturing Co., Ltd. Photolithography tool and method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
JP2002057100A (ja) 2000-05-31 2002-02-22 Canon Inc 露光装置、コートデベロップ装置、デバイス製造システム、デバイス製造方法、半導体製造工場および露光装置の保守方法
KR101111364B1 (ko) * 2003-10-08 2012-02-27 가부시키가이샤 자오 니콘 기판 반송 장치 및 기판 반송 방법, 노광 장치 및 노광방법, 디바이스 제조 방법
JP4506674B2 (ja) * 2004-02-03 2010-07-21 株式会社ニコン 露光装置及びデバイス製造方法
US7463330B2 (en) * 2004-07-07 2008-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2007109741A (ja) * 2005-10-11 2007-04-26 Canon Inc 露光装置及び露光方法
US8144305B2 (en) * 2006-05-18 2012-03-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034427A (ja) * 2008-07-31 2010-02-12 Canon Inc 処理装置及びデバイス製造方法
US8441614B2 (en) 2008-07-31 2013-05-14 Canon Kabushiki Kaisha Processing apparatus and device manufacturing method
JP2010093075A (ja) * 2008-10-08 2010-04-22 Nikon Corp 露光装置、メンテナンス方法、露光方法、及びデバイス製造方法
JP2010147335A (ja) * 2008-12-19 2010-07-01 Canon Inc 残留液体除去方法、それを用いた露光装置及びデバイスの製造方法
WO2012132311A1 (ja) * 2011-03-28 2012-10-04 富士フイルム株式会社 結露検出方法および装置
JP2012202930A (ja) * 2011-03-28 2012-10-22 Fujifilm Corp 結露検出方法および装置
WO2013100114A1 (ja) * 2011-12-28 2013-07-04 株式会社ニコン 露光装置、露光方法、デバイス製造方法、液体回収方法、プログラム、及び記録媒体
JP2018032047A (ja) * 2014-06-16 2018-03-01 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
US10409174B2 (en) 2014-06-16 2019-09-10 Asml Netherlands B.V. Lithographic apparatus, method of transferring a substrate and device manufacturing method
CN110941151A (zh) * 2014-06-16 2020-03-31 Asml荷兰有限公司 光刻设备、转移衬底的方法和器件制造方法
US10916453B2 (en) 2014-06-16 2021-02-09 Asml Netherlands B.V. Lithographic apparatus, method of transferring a substrate and device manufacturing method

Also Published As

Publication number Publication date
US8059257B2 (en) 2011-11-15
US20080055574A1 (en) 2008-03-06
KR20080021567A (ko) 2008-03-07
TW200830054A (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP2008066341A (ja) 搬送装置、露光装置及び方法
US7342640B2 (en) Exposure apparatus and method
US20150109595A1 (en) Optical arrangement of autofocus elements for use with immersion lithography
US8068211B2 (en) Exposure apparatus and method for manufacturing device
TWI383269B (zh) 一光學聚焦感應器、一檢視裝置及一微影裝置
US8264662B2 (en) In-line particle detection for immersion lithography
US20040156052A1 (en) Optical apparatus, measurement method, and semiconductor device manufacturing method
US7630055B2 (en) Exposure apparatus and method
US6521889B1 (en) Dust particle inspection apparatus, and device manufacturing method using the same
JP2001143991A (ja) 面位置検出装置およびデバイス製造方法
KR102611765B1 (ko) 오버레이 에러 감소를 위한 시스템 및 방법
JP7170491B2 (ja) 異物検出装置、露光装置及び物品の製造方法
JP2002340524A (ja) パターン検出方法及びパターン検出装置
JP2007027545A (ja) 半導体露光装置
JPH0777188B2 (ja) 加工装置
US10877382B2 (en) Method for handling mask and lithography apparatus
US20240203796A1 (en) Method for manufacturing semiconductor device
US6770408B2 (en) Dust particle inspection method for X-ray mask
JP2947916B2 (ja) 面状態検査装置
JPH088161A (ja) 転写シミュレータ装置
KR20050086155A (ko) 웨이퍼의 에지 노광 영역 검사 방법 및 장치
JP2004200495A (ja) 反射防止膜改質装置および反射防止膜改質方法
JP2000021741A (ja) 露光装置、デバイス製造方法、および異物検査装置
JP2002237452A (ja) 投影露光方法及び装置、デバイス製造方法、並びに該方法により製造されたデバイス
JP2010147448A (ja) 露光装置およびデバイス製造方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090406

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110