JPWO2019004167A1 - 自動変速機の制御装置及び自動変速機の制御方法 - Google Patents

自動変速機の制御装置及び自動変速機の制御方法 Download PDF

Info

Publication number
JPWO2019004167A1
JPWO2019004167A1 JP2019526912A JP2019526912A JPWO2019004167A1 JP WO2019004167 A1 JPWO2019004167 A1 JP WO2019004167A1 JP 2019526912 A JP2019526912 A JP 2019526912A JP 2019526912 A JP2019526912 A JP 2019526912A JP WO2019004167 A1 JPWO2019004167 A1 JP WO2019004167A1
Authority
JP
Japan
Prior art keywords
automatic transmission
control device
rotation sensor
cycle
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019526912A
Other languages
English (en)
Inventor
淳基 松井
淳基 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
JATCO Ltd
Original Assignee
Nissan Motor Co Ltd
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, JATCO Ltd filed Critical Nissan Motor Co Ltd
Publication of JPWO2019004167A1 publication Critical patent/JPWO2019004167A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1208Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures with diagnostic check cycles; Monitoring of failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1284Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/40Output shaft speed

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

自動変速機の制御装置は、所定期間内における複数のパルス信号の最大周期と最小周期とに基づいて、回転センサの異常診断を行う診断手段を有する。

Description

本発明は、自動変速機の制御装置及び自動変速機の制御方法に関する。
JP5−180326Aには、2つの回転センサからのパルス信号に基づいて、一方の回転センサの異常診断を行う技術が開示されている。
上記の技術では、回転センサの異常診断を行うには、少なくとも2つの回転センサが必要となる。つまり、回転センサが1つしかない場合は、当該回転センサの異常診断を行うことができない。
本発明は、このような技術的課題に鑑みてなされたもので、回転センサが1つであっても、当該回転センサの異常診断を行うことができるようにすることを目的とする。
本発明のある態様によれば、駆動源から入力される回転を駆動輪に伝達する回転体と、前記回転体に設けられた検出部を検出してパルス信号を出力する回転センサと、を備える自動変速機の制御装置であって、所定期間内における複数の前記パルス信号の最大周期と最小周期とに基づいて、前記回転センサの異常診断を行う診断手段を有する、自動変速機の制御装置が提供される。
また、本発明の別の態様によれば、駆動源から入力される回転を駆動輪に伝達する回転体と、前記回転体に設けられた検出部を検出してパルス信号を出力する回転センサと、を備える自動変速機の制御方法であって、所定期間内における複数の前記パルス信号の最大周期と最小周期とに基づいて、前記回転センサの異常診断を行う、自動変速機の制御方法が提供される。
これらの態様によれば、所定期間内における複数のパルス信号の最大周期と最小周期とに基づいて異常診断が行われる。よって、回転センサが1つであっても、当該回転センサの異常診断を行うことができる。
図1は、本発明の実施形態に係る車両の概略構成図である。 図2は、回転センサについて説明するための図である。 図3は、パルス信号について説明するための図である。 図4は、回転センサの異常診断処理について説明するためのフローチャートである。 図5は、回転センサからの信号が異常である場合について説明するための図である。 図6は、回転体に異常がある場合について説明するための図である。
以下、添付図面を参照しながら本発明の実施形態に係る車両100について説明する。
図1は、車両100の概略構成図である。図1に示すように、車両100は、駆動源としてのエンジン5と、エンジン5の回転を変速して駆動輪50へ伝達する自動変速機1と、を備える。
自動変速機1は、トルクコンバータ6と、無段変速機構20と、前後進切換え機構7と、を備える。
トルクコンバータ6は、ロックアップクラッチ6cを有する。ロックアップクラッチ6cは、油圧制御回路11からロックアップ圧が供給されることで締結される。ロックアップクラッチ6cが締結されると、トルクコンバータ6の入力軸60と出力軸61とが直結し、入力軸60と出力軸61とが同速回転する。
無段変速機構20は、V溝が整列するよう配設されたプライマリプーリ2及びセカンダリプーリ3と、プーリ2、3のV溝に掛け渡されたベルト4と、を有する。
プライマリプーリ2と同軸にエンジン5が配置され、エンジン5とプライマリプーリ2の間に、エンジン5の側から順に、トルクコンバータ6、前後進切換え機構7が設けられている。
前後進切換え機構7は、ダブルピニオン遊星歯車組7aを主たる構成要素とし、そのサンギヤはトルクコンバータ6を介してエンジン5に結合され、キャリアはプライマリプーリ2に結合される。前後進切換え機構7は、さらに、ダブルピニオン遊星歯車組7aのサンギヤおよびキャリア間を直結する前進クラッチ7b、及びリングギヤを固定する後進ブレーキ7cを備える。そして、前進クラッチ7bの締結時には、エンジン5からトルクコンバータ6を経由した入力回転がそのままプライマリプーリ2に伝達され、後進ブレーキ7cの締結時には、エンジン5からトルクコンバータ6を経由した入力回転が逆転されてプライマリプーリ2へと伝達される。
前進クラッチ7bは、自動変速機1の動作モードを選択するセレクトスイッチ(図示せず)により前進走行モードが選択された場合に油圧制御回路11からクラッチ圧が供給されることで締結される。後進ブレーキ7cは、セレクトスイッチにより後進走行モードが選択された場合に油圧制御回路11からブレーキ圧が供給されることで締結される。
プライマリプーリ2の回転はベルト4を介してセカンダリプーリ3に伝達され、セカンダリプーリ3の回転は、出力軸8、歯車組9及びディファレンシャルギヤ装置10を経て駆動輪50へと伝達される。
上記の動力伝達中にプライマリプーリ2及びセカンダリプーリ3間の変速比を変更可能にするために、プライマリプーリ2及びセカンダリプーリ3のV溝を形成する円錐板のうち一方を固定円錐板2a、3aとし、他方を軸線方向へ変位可能な可動円錐板2b、3bとしている。
これら可動円錐板2b、3bは、プライマリプーリ圧及びセカンダリプーリ圧をプライマリプーリ室2c及びセカンダリプーリ室3cに供給することにより固定円錐板2a、3aに向けて付勢され、これによりベルト4を円錐板に摩擦係合させてプライマリプーリ2及びセカンダリプーリ3間での動力伝達を行う。
変速に際しては、目標変速比に対応させて発生させたプライマリプーリ圧及びセカンダリプーリ圧間の差圧により両プーリ2、3のV溝の幅を変化させ、プーリ2、3に対するベルト4の巻き掛け円弧径を連続的に変化させることで目標変速比を実現する。
ロックアップ圧、プライマリプーリ圧、セカンダリプーリ圧、クラッチ圧、及びブレーキ圧は、コントローラ(制御装置、診断手段)12からの制御信号に基づき油圧制御回路11によって制御される。
油圧制御回路11は、複数の油路、複数のソレノイド弁を備える。油圧制御回路11は、コントローラ12からの制御信号に基づいて油圧の供給経路を切り換えるとともに、オイルポンプ21から供給された作動油の圧力を調圧して必要な油圧を生成し、これを自動変速機1の各部位に供給する。
本実施形態のオイルポンプ21は、エンジン5の動力の一部を利用して駆動される。オイルポンプ21は、電動オイルポンプであってもよい。
コントローラ12は、CPU(Central Processing Unit)12a、ROM(Read Only Memory)、RAM(Random Access Memory)、入出インターフェース、これらを接続するバス等を含んで構成され、車両100の各部位の状態を検出する各種センサからの信号に基づきエンジン5の回転速度及びトルク、ロックアップクラッチ6cの締結状態、無段変速機構20の変速比、前進クラッチ7b及び後進ブレーキ7cの締結状態等を統合的に制御する。
コントローラ12には、セレクトスイッチからの選択モード信号、アクセルペダル(図示せず)の操作状態を検出するアクセル開度センサ(図示せず)からの信号、ブレーキペダル(図示せず)の操作状態を検出するブレーキスイッチ(図示せず)からの信号、回転体としての出力軸61の回転を検出する回転センサ14からの信号、回転体としてのプライマリプーリ2の回転を検出する回転センサ15からの信号、回転体としてのセカンダリプーリ3の回転を検出する回転センサ16からの信号、プライマリプーリ圧を検出する圧力センサ17からの信号、セカンダリプーリ圧を検出する圧力センサ18からの信号、等が入力される。
また、コントローラ12は、上記各センサからの信号に基づいて各種異常診断を行い、異常が発生したと判定した場合にはその内容に応じた制御を実行する。
例えば、コントローラ12は、回転センサ14からの信号に基づいて回転センサ14の異常診断を行い、回転センサ15からの信号に基づいて回転センサ15の異常診断を行い、回転センサ16からの信号に基づいて回転センサ16の異常診断を行う。
以下、回転センサ14〜16の異常診断について詳しく説明する。なお、各回転センサ14〜16の構成及び異常診断処理の内容は同様であるので、以下では、回転センサ14の異常診断を例として説明し、回転センサ15及び回転センサ16の異常診断については説明を省略する。
まず、図2を参照して、回転センサ14について説明する。回転センサ14は、いわゆる近接センサであって、エンジン5から入力される回転を駆動輪50に伝達する回転体としての出力軸61に設けられた検出部61aを検出し、パルス信号を出力する。
本実施形態では、出力軸61には、検出部61aが周方向等分8か所に設けられている。よって、出力軸61が1回転すると、回転センサ14からパルス信号が8回出力される。なお、検出部61aの数は、適宜変更可能である。
コントローラ12は、所定期間TP内に回転センサ14から入力されたパルス信号の数に基づいて、出力軸61の回転速度を演算する。例えば、図3では、所定期間TP内の信号の数が6パルスとなっている。
続いて、図4のフローチャートを参照しながら、コントローラ12が実行する異常診断処理について説明する。なお、コントローラ12は、イグニッションスイッチがONの状態で異常診断処理を繰り返し実行する。CPU12aの演算周期は、例えば10msである。
ステップS11では、コントローラ12は、所定期間TP内に回転センサ14から入力された複数のパルス信号について、最大周期及び最小周期を演算する。本実施形態では、所定期間TPは、CPU12aの演算周期と等しく設定される。
ステップS12では、コントローラ12は、ステップS11で演算した最大周期と最小周期とに基づいて、回転センサ14の信号が異常であるか否かを判定する。
具体的には、コントローラ12は、ステップS11で演算した最大周期と最小周期との差が判定時間を超える場合は、回転センサ14の信号が異常であると判定する。判定時間は、例えば、数μs〜数十μsである。
例えば、図3に示す場合では、所定期間TP内における各パルス信号の周期T11〜T16が略等しくなっているので、周期T11〜T16のうち最大周期と最小周期との差が判定時間を超えない。よって、この場合は、コントローラ12は、回転センサ14の信号が正常であると判定し、処理をステップS20に移行する。
ステップS20では、コントローラ12は、タイマ及びカウンタの値をリセットし、ステップS11に処理を移行する。タイマ及びカウンタについては後述する。
一方、例えば、図5に示す場合では、所定期間TP内における各パルス信号の周期T21〜T26のうち最大周期である周期T26と最小周期である周期T25との差が大きく、判定時間を超える。よって、この場合は、コントローラ12は、回転センサ14の信号が異常であると判定し、処理をステップS13に移行する。
上述したように、回転センサ14は、出力軸61が回転することにより近接する検出部61aを検出するセンサである。そして、検出部61aが出力軸61の周方向等分8か所に設けられていることから、所定期間TPのような短い期間内にパルス信号の周期が大きく変動することは、正常な状態では起こり得ない。
よって、所定期間TP内において、最大周期と最小周期との差が判定時間を超える場合、つまり、パルス信号の周期が短い期間内において大きく変動した場合は、コントローラ12は、回転センサ14の信号が異常であると判定する。
なお、コントローラ12は、出力軸61の回転速度が一定の場合は、ステップS12の判定時間を、所定期間TP毎のパルス信号の数の変動が±1となる時間に設定する。出力軸61の回転速度が一定の場合とは、例えば、車速が一定の場合である。
出力軸61の回転速度が一定の場合は、所定期間TPに対するパルス信号のずれやばらつきがあっても、所定期間TP毎のパルス信号の数は±1の範囲に収まる。よって、これを超える場合は、回転センサ14の信号が異常であると判定することで、異常診断の精度を向上できる。
また、ステップS12の判定は、最大周期と最小周期とのいずれか一方を他方で除した値が所定範囲外の場合に、回転センサ14の信号が異常であると判定するようにしてもよい。
ステップS13では、コントローラ12は、タイマの値をインクリメントする。
ステップS14では、コントローラ12は、タイマの値が所定時間以上になったか否かを判定する。所定時間は、例えば100msである。
コントローラ12は、タイマの値が所定時間以上になったと判定すると、処理をステップS15に移行する。また。タイマの値が所定時間以上になっていないと判定すると、処理をステップS11に移行する。
ステップS15では、コントローラ12は、所定期間TP毎の最大周期が、所定のパルス信号の数毎に発生しているか判定する。所定のパルス信号の数は、検出部61aの数よりも1つ少ない数であり、本実施形態では、7パルスである。
例えば、図6では、所定期間TP1におけるパルス信号の最大周期は周期T32であり、次の所定期間TP2におけるパルス信号の最大周期は周期T39である。つまり、最大周期が7パルス毎に発生している。よって、この場合は、コントローラ12は、最大周期が所定のパルス信号の数毎に発生していると判定し、処理をステップS16に移行する。
また、コントローラ12は、最大周期が所定のパルス信号の数毎に発生していないと判定すると、処理をステップS19に移行し、回転センサ14が異常であると判定する。
最大周期が所定のパルス信号の数毎に発生する場合は、回転センサ14に異常があるのではなく、検出部61aが破損していると考えられる。よって、このような場合は、回転センサ14が異常であると判定しないようになっている。これにより、回転センサ14には異常がないにも関わらず異常であると誤判定してしまうことを防止できる。
ステップS16では、コントローラ12は、カウンタの値をインクリメントする。
ステップS17では、コントローラ12は、カウンタの値が所定値以上になったか否かを判定する。所定値は、例えば10である。
コントローラ12は、カウンタの値が所定値以上になったと判定すると、処理をステップS18に移行し、出力軸61が異常であると判定する。また。カウンタの値が所定値以上になっていないと判定すると、処理をステップS11に移行する。
このように、本実施形態では、検出部61aの破損を検知できるので、破損部位のみを交換する対応が可能となり、修理にかかるコストを低減できる。
続いて、上記のように回転センサ14の異常診断を行うことの効果についてまとめて説明する。
回転センサの異常診断を行うには、例えば、2つの回転センサからのパルス信号に基づいて、一方の回転センサの異常診断を行うことが考えられる。しかしながら、この場合は、回転センサの異常診断を行うには、少なくとも2つの回転センサが必要となる。つまり、回転センサが1つしかない場合は、当該回転センサの異常診断を行うことができない。
これに対して、本実施形態のコントローラ12は、所定期間TP内における複数のパルス信号の最大周期と最小周期とに基づいて、回転センサ14の異常診断を行う。
具体的には、コントローラ12は、最大周期と最小周期との差が判定時間を超える場合は、回転センサ14が異常であると判定する。
また、最大周期と最小周期とのいずれか一方を他方で除した値が所定範囲外の場合は、回転センサ14が異常であると判定する。
これによれば、回転センサが1つであっても、当該回転センサの異常診断を行うことができる。
また、コントローラ12は、出力軸61の回転速度が一定の場合は、判定時間を、所定期間毎のパルス信号の数の変動が±1となる時間に設定する。
出力軸61の回転速度が一定の場合は、所定期間TPに対するパルス信号のずれやばらつきがあっても、所定期間TP毎のパルス信号の数は±1の範囲に収まる。よって、これを超える場合は、回転センサ14の信号が異常であると判定することで、異常診断の精度を向上できる。
また、コントローラ12は、最大周期のパルス信号が出力軸61に設けられた検出部61aの数よりも1つ少ないパルス信号の数毎に発生する場合は、出力軸61が異常であると判定する。
最大周期が検出部61aの数よりも1つ少ないパルス信号の数毎に発生する場合は、回転センサ14に異常があるのではなく、検出部61aが破損していると考えられる。よって、このような場合は、回転センサ14ではなく、出力軸61に異常があると判定する。これにより、回転センサ14には異常がないにも関わらず異常であると誤判定してしまうことを防止できる。また、検出部61aの破損を検知できるので、破損部位のみを交換する対応が可能となり、修理にかかるコストを低減できる。
また、所定期間TPは、CPU12aの演算周期である。
これによれば、最小単位で所定期間TPを設定できるので、異常診断の精度が向上する。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
例えば、上記実施形態では、エンジン5、自動変速機1等をコントローラ12が統合的に制御している。しかしながら、コントローラ12を複数のコントローラで構成してもよい。
また、上記実施形態では、自動変速機1を無段自動変速機としている。しかしながら、自動変速機1は有段自動変速機であってもよい。
また、車両100の駆動源として、エンジン5に代えて、又はエンジン5と共に、モータジェネレータを設けてもよい。
また、上記実施形態では、回転センサ14の異常診断を例として説明したが、上述したように、回転センサ15及び回転センサ16についても同様に異常診断を行うことができる。また、回転センサ14〜16以外の回転センサに本発明を適用してもよい。
また、上記実施形態では、パルス信号の周期に基づいて異常診断を行っているが、パルス信号の周期は、パルス信号の幅、或いはパルス信号間の幅に置き換え可能である。つまり、パルス信号の幅、或いはパルス信号間の幅に基づいて異常診断を行うことは、パルス信号の周期に基づいて異常診断を行うことに含まれる。
本願は2017年6月28日に日本国特許庁に出願された特願2017−126478に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (7)

  1. 駆動源から入力される回転を駆動輪に伝達する回転体と、前記回転体に設けられた検出部を検出してパルス信号を出力する回転センサと、を備える自動変速機の制御装置であって、
    所定期間内における複数の前記パルス信号の最大周期と最小周期とに基づいて、前記回転センサの異常診断を行う診断手段を有する、
    自動変速機の制御装置。
  2. 請求項1に記載の自動変速機の制御装置であって、
    前記診断手段は、前記最大周期と前記最小周期との差が判定時間を超える場合は、前記回転センサが異常であると判定する、
    自動変速機の制御装置。
  3. 請求項1に記載の自動変速機の制御装置であって、
    前記診断手段は、前記最大周期と前記最小周期とのいずれか一方を他方で除した値が所定範囲外の場合は、前記回転センサが異常であると判定する、
    自動変速機の制御装置。
  4. 請求項2に記載の自動変速機の制御装置であって、
    前記診断手段は、前記回転体の回転速度が一定の場合は、前記判定時間を、前記所定期間毎の前記パルス信号の数の変動が±1となる時間に設定する、
    自動変速機の制御装置。
  5. 請求項1から3のいずれか1つに記載の自動変速機の制御装置であって、
    前記診断手段は、前記最大周期の前記パルス信号が前記回転体に設けられた前記検出部の数よりも1つ少ない前記パルス信号の数毎に発生する場合は、前記回転体が異常であると判定する、
    自動変速機の制御装置。
  6. 請求項1から5のいずれか1つに記載の自動変速機の制御装置であって、
    前記所定期間は、CPUの演算周期である。
    自動変速機の制御装置。
  7. 駆動源から入力される回転を駆動輪に伝達する回転体と、前記回転体に設けられた検出部を検出してパルス信号を出力する回転センサと、を備える自動変速機の制御方法であって、
    所定期間内における複数の前記パルス信号の最大周期と最小周期とに基づいて、前記回転センサの異常診断を行う、
    自動変速機の制御方法。
JP2019526912A 2017-06-28 2018-06-26 自動変速機の制御装置及び自動変速機の制御方法 Pending JPWO2019004167A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017126478 2017-06-28
JP2017126478 2017-06-28
PCT/JP2018/024112 WO2019004167A1 (ja) 2017-06-28 2018-06-26 自動変速機の制御装置及び自動変速機の制御方法

Publications (1)

Publication Number Publication Date
JPWO2019004167A1 true JPWO2019004167A1 (ja) 2020-04-09

Family

ID=64742148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019526912A Pending JPWO2019004167A1 (ja) 2017-06-28 2018-06-26 自動変速機の制御装置及び自動変速機の制御方法

Country Status (4)

Country Link
US (1) US20200116255A1 (ja)
JP (1) JPWO2019004167A1 (ja)
CN (1) CN110809682A (ja)
WO (1) WO2019004167A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245965A (ja) * 1986-04-18 1987-10-27 Yokogawa Electric Corp モ−タの試験装置
JPS6358167A (ja) * 1986-08-28 1988-03-12 Akebono Brake Ind Co Ltd 回転センサの故障検出装置
JPH11271348A (ja) * 1997-11-11 1999-10-08 Wabco Gmbh 周期的な運動を検出するセンサ装置の出力信号のための評価方法
JP2004132895A (ja) * 2002-10-11 2004-04-30 Fuji Heavy Ind Ltd 車輪速センサのロータ歯欠け検出装置
JP2010048586A (ja) * 2008-08-20 2010-03-04 Canon Inc 検査装置
JP2011064578A (ja) * 2009-09-17 2011-03-31 Hitachi Automotive Systems Ltd 車輪速検出装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1776392A (zh) * 2004-11-16 2006-05-24 株式会社万都 用于电子控制系统的车辆速度传感器故障检测装置和方法
US8027771B2 (en) * 2007-09-13 2011-09-27 GM Global Technology Operations LLC Method and apparatus to monitor an output speed sensor during operation of an electro-mechanical transmission
JP5010659B2 (ja) * 2009-09-25 2012-08-29 株式会社デンソー クランク角検出システムの異常診断装置
CN103472263A (zh) * 2013-09-03 2013-12-25 清华大学 一种永磁同步电机霍尔传感器故障诊断方法
DE102013217883A1 (de) * 2013-09-06 2015-03-12 Continental Teves Ag & Co. Ohg Verfahren zum Überwachen eines Drehzahlsensors
CN105162384B (zh) * 2015-10-13 2018-04-10 南京信息工程大学 一种开关磁阻电机转子位置方波信号故障诊断和容错方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245965A (ja) * 1986-04-18 1987-10-27 Yokogawa Electric Corp モ−タの試験装置
JPS6358167A (ja) * 1986-08-28 1988-03-12 Akebono Brake Ind Co Ltd 回転センサの故障検出装置
JPH11271348A (ja) * 1997-11-11 1999-10-08 Wabco Gmbh 周期的な運動を検出するセンサ装置の出力信号のための評価方法
JP2004132895A (ja) * 2002-10-11 2004-04-30 Fuji Heavy Ind Ltd 車輪速センサのロータ歯欠け検出装置
JP2010048586A (ja) * 2008-08-20 2010-03-04 Canon Inc 検査装置
JP2011064578A (ja) * 2009-09-17 2011-03-31 Hitachi Automotive Systems Ltd 車輪速検出装置

Also Published As

Publication number Publication date
US20200116255A1 (en) 2020-04-16
WO2019004167A1 (ja) 2019-01-03
CN110809682A (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
EP2503196B1 (en) Controller for continuously variable transmission and control method thereof
JP6310733B2 (ja) 自動変速機
EP3175149A1 (en) Control apparatus for vehicle
EP3173669B1 (en) A vehicle with a continuously variable transmission, and method for controlling the continuously variable transmission
JPWO2019004167A1 (ja) 自動変速機の制御装置及び自動変速機の制御方法
JP7169252B2 (ja) 回転センサのパルス周期異常検出装置及び回転センサのパルス周期異常検出方法
EP3115650A1 (en) Vehicle control device and method for controlling same
JP5640627B2 (ja) 車両の回転体回転速度算出装置
JP6718022B2 (ja) 車両の制御装置及び車両の制御方法
CN106660550A (zh) 车辆的控制装置及控制方法
JP6307375B2 (ja) 油圧制御装置、及びその制御方法
JP4342403B2 (ja) ベルト式無段変速機用状態検出装置及びベルト式無段変速機の制御装置
CN111033091B (zh) 车辆的控制装置及车辆的控制方法
JP6313909B2 (ja) 自動変速機の制御装置及び自動変速機の制御方法
JP2018132086A (ja) 車両の制御装置及び車両の制御方法
CN108869727B (zh) Cvt变速器整体滑移检测
JP2018054027A (ja) バルブの異常診断装置
JP2019173817A (ja) 車両の制御装置
JP2019168015A (ja) 車両の制御装置
JP2008202677A (ja) 自動変速機の制御装置
JP2016070440A (ja) ロックアップクラッチの制御装置
CN108700193A (zh) 双离合式变速器的控制装置
JP2016098923A (ja) 無段変速機の変速制御装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201201