JPWO2018163448A1 - 酢酸の製造方法 - Google Patents

酢酸の製造方法 Download PDF

Info

Publication number
JPWO2018163448A1
JPWO2018163448A1 JP2017536032A JP2017536032A JPWO2018163448A1 JP WO2018163448 A1 JPWO2018163448 A1 JP WO2018163448A1 JP 2017536032 A JP2017536032 A JP 2017536032A JP 2017536032 A JP2017536032 A JP 2017536032A JP WO2018163448 A1 JPWO2018163448 A1 JP WO2018163448A1
Authority
JP
Japan
Prior art keywords
acetic acid
less
ppb
mass ppb
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017536032A
Other languages
English (en)
Other versions
JP6663436B2 (ja
Inventor
清水 雅彦
雅彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Publication of JPWO2018163448A1 publication Critical patent/JPWO2018163448A1/ja
Application granted granted Critical
Publication of JP6663436B2 publication Critical patent/JP6663436B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/47Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

酢酸中の有機ヨウ素化合物を除去するための銀置換イオン交換樹脂(IER)の寿命を大幅に向上できる酢酸の製造方法を提供する。
本発明の酢酸の製造方法では、メタノール法カルボニル化プロセスにおいて、脱水工程における蒸留塔の材質をニッケル基合金又はジルコニウムとし、且つ前記脱水工程における蒸留塔の仕込液中の金属イオン濃度を、鉄イオン10000質量ppb未満、クロムイオン5000質量ppb未満、ニッケルイオン3000質量ppb未満、且つモリブデンイオン2000質量ppb未満とする。

Description

本発明は、酢酸を製造する方法に関する。本願は、2017年3月8日に、日本に出願した特願2017−044341号の優先権を主張し、その内容をここに援用する。
酢酸の工業的製造法としてメタノール法カルボニル化プロセス(メタノール法酢酸プロセス)が知られている。このプロセスでは、例えば、反応槽でメタノールと一酸化炭素とを触媒の存在下で反応させて酢酸を生成させ、反応混合物を蒸発槽で蒸発させ、その蒸気相を脱低沸塔、続いて脱水塔で精製して酢酸が製品化されるか、あるいは脱水塔に引き続いて脱高沸塔やさらには製品塔を経由して酢酸が製品化される。
このような酢酸製造プロセスでは、反応系でヨウ化ヘキシル等の有機ヨウ素化合物が副生し、製品酢酸中に微量不純物として含まれる。有機ヨウ素化合物を含んだ酢酸を酢酸ビニル製造の原料に用いると、パラジウム触媒を劣化させるため、酢酸中の有機ヨウ素化合物濃度を数ppbオーダーまで低減させる必要がある。そのため、従来、銀イオンで交換した陽イオン交換樹脂を用いて、酢酸中の有機ヨウ素化合物濃度を極限まで低下させている。しかし、このような銀置換イオン交換樹脂(以下、「IER」と略称する場合がある)を用いた有機ヨウ素化合物の吸着除去方法は、プロセス流中に存在している鉄、ニッケル、クロム、モリブデンなどの装置の腐食に由来する腐食金属(腐食性金属ともいう)等とイオン交換樹脂中の銀とがイオン交換して、有効な銀が酢酸中に溶け込んで系外流出してしまい、イオン交換樹脂の有機ヨウ素化合物除去寿命が低下するという問題がある。また、その結果として、製品酢酸中の腐食金属等の濃度や銀濃度を増加させ、製品酢酸の品質低下を招くという問題もある。
特許文献1は、腐食金属によるイオン交換樹脂の寿命低下を抑制することを目的として、特定量の金属−官能基化活性部位を含む金属−活性化交換樹脂と、非金属−官能基化活性部位を含む非金属−官能基化交換樹脂とを含むイオン交換樹脂組成物を用いた酢酸の精製プロセスを開示している。また、特許文献2は、脱水塔の腐食を抑制するため、脱水塔又は脱水塔供給液に装置腐食の原因となるヨウ化水素を中和するためのアルカリ成分を添加、混合する方法を開示している。
しかしながら、上記のいずれの方法も腐食金属による上記イオン交換樹脂の寿命低下を十分に抑制できるものではなかった。
特表2014−508820号公報 国際公開第2012/086386号パンフレット
したがって、本発明の目的は、酢酸中の有機ヨウ素化合物を除去するための銀置換イオン交換樹脂(IER)の寿命を大幅に向上できる酢酸の製造方法を提供することにある。
本発明者らは、上記目的を達成するため、脱水塔の材質及び脱水塔の仕込液中の不純物に着目して鋭意検討した結果、脱水塔の材質を特定の材質とし、且つ脱水塔仕込液中の特定金属イオンの濃度を制御することにより、脱水塔から得られる酢酸中の金属イオン濃度を低レベルに保持でき、その後に続く吸着除去工程でのIER仕込み酢酸中の金属イオン濃度を低レベルに制御でき、もってIERの寿命を大幅に向上させることができ、ひいては製品酢酸の品質低下を防止できることを見出し、本発明を完成した。
すなわち、本発明は、金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物を蒸発槽において蒸気流と残液流とに分離する蒸発工程と、
前記蒸気流を蒸留に付して、ヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富むオーバーヘッド流と、酢酸に富む第1酢酸流とに分離する脱低沸工程と、
前記第1酢酸流を蒸留に付して、水に富むオーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程と、
前記第2酢酸流、又は前記第2酢酸流をさらに精製したより酢酸に富む酢酸流をイオン交換樹脂で処理する吸着除去工程と、
を備えた酢酸の製造方法であって、
前記脱水工程における蒸留塔の材質をニッケル基合金又はジルコニウムとし、且つ前記脱水工程における蒸留塔の仕込液中の金属イオン濃度を、鉄イオン10000質量ppb未満、クロムイオン5000質量ppb未満、ニッケルイオン3000質量ppb未満、且つモリブデンイオン2000質量ppb未満とすることを特徴とする酢酸の製造方法を提供する。
前記触媒系はさらにイオン性ヨウ化物を含んでいてもよい。
脱水工程における蒸留塔の仕込液中の亜鉛イオン濃度は1000質量ppb未満であることが好ましい。
脱水工程における蒸留塔の操作条件は、塔頂温度165℃未満、塔底温度175℃未満であることが好ましい。
脱水工程で得られる第2酢酸流中の鉄イオン濃度は21000質量ppb未満であることが好ましい。
脱水工程で得られる第2酢酸流中の金属イオン濃度は、鉄イオン21000質量ppb未満、クロムイオン7100質量ppb未満、ニッケルイオン4000質量ppb未満、モリブデンイオン3000質量ppb未満、且つ亜鉛イオン1000質量ppb未満であることが好ましい。
脱水工程における蒸留塔の仕込液供給段と塔頂蒸気抜き取り段との段間隔が、実段数で1段以上であることが好ましい。
脱水工程における蒸留塔への仕込配管の材質は、ニッケル基合金又はジルコニウムであることが好ましい。
本発明は、また、材質がニッケル基合金又はジルコニウムであり、仕込液供給段と塔頂蒸気抜き取り段との段間隔が実段数で1段以上である蒸留塔に、鉄イオン濃度10000質量ppb未満、クロムイオン濃度5000質量ppb未満、ニッケルイオン濃度3000質量ppb未満、モリブデンイオン濃度2000質量ppb未満、亜鉛イオン濃度1000質量ppb未満、ヨウ化ヘキシル濃度510質量ppb未満、酢酸濃度80質量%以上の粗酢酸を、材質がニッケル基合金又はジルコニウムである仕込配管を通じて前記仕込液供給段に仕込み、塔頂温度165℃未満、塔底温度175℃未満で蒸留し、水に富むオーバーヘッドと、鉄イオン濃度21000質量ppb未満、クロムイオン濃度7100質量ppb未満、ニッケルイオン濃度4000質量ppb未満、モリブデンイオン濃度3000質量ppb未満、亜鉛イオン濃度1000質量ppb未満の精製酢酸を得ることを特徴とする酢酸の製造方法を提供する。
本発明によれば、脱水工程における蒸留塔(以下、「脱水塔」と称する場合がある)を特定の材質で構成し、脱水塔への仕込液中の特定の金属イオン濃度を一定値以下に規定するので、脱水塔で得られる精製酢酸中の金属イオン濃度を低減でき、それ故その後の吸着除去工程に供する酢酸中の金属イオン濃度をも低減できる。このため、吸着除去工程で用いる銀置換イオン交換樹脂(IER)の寿命を大幅に向上でき、且つ製品酢酸中の金属イオン濃度をも低減できる。こうして得られる金属イオン濃度の低い酢酸は電子材料用途に用いられる低金属酢酸として利用可能である。
本発明の一実施形態を示す酢酸製造フロー図である。 アセトアルデヒド分離除去システムの一例を示す概略フロー図である。 アセトアルデヒド分離除去システムの他の例を示す概略フロー図である。 アセトアルデヒド分離除去システムのさらに他の例を示す概略フロー図である。 アセトアルデヒド分離除去システムのさらに他の例を示す概略フロー図である。
本発明の酢酸の製造方法では、金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、前記カルボニル化反応工程で得られた反応混合物を蒸発槽において蒸気流と残液流とに分離する蒸発工程と、前記蒸気流を蒸留に付して、ヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富むオーバーヘッド流と、酢酸に富む第1酢酸流とに分離する脱低沸工程と、前記第1酢酸流を蒸留に付して、水に富むオーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程と、前記第2酢酸流、又は前記第2酢酸流をさらに精製したより酢酸に富む酢酸流をイオン交換樹脂で処理する吸着除去工程と、を備えた酢酸の製造方法において、前記脱水工程における蒸留塔(脱水塔)の材質をニッケル基合金又はジルコニウムとし、且つ脱水塔の仕込液中の金属イオン濃度を、鉄イオン10000質量ppb未満、クロムイオン5000質量ppb未満、ニッケルイオン3000質量ppb未満、且つモリブデンイオン2000質量ppb未満に制御する。脱水塔の仕込液中の亜鉛イオン濃度は、1000質量ppb未満であることが好ましい。なお、脱水塔の仕込液とは、脱水塔へ供給される流れ全体を言い、前記第1酢酸流の少なくとも一部を含んでおり、第1酢酸流以外の流れ(例えば下流の工程からのリサイクル流)が加わっていてもよい。前記触媒系はさらにイオン性ヨウ化物を含んでいてもよい。
前記ニッケル基合金はニッケルをベースとした合金であり、ハステロイ(ハステロイB2、ハステロイCなど)、モネル、インコネル、インコロイなどが含まれる。
上記の鉄イオン、クロムイオン、ニッケルイオン、モリブデンイオンは、装置の腐食により生じる金属イオン(腐食金属イオン)である。一方、亜鉛イオンは反応原料として用いられるメタノール中に不純物として含まれている亜鉛イオンに由来するものである。
脱水塔の材質をニッケル基合金又はニッケル基合金よりも耐食性の高いジルコニウムにすることで、反応系で生成し脱水塔の仕込液中に含まれているヨウ化水素や酢酸による装置の腐食とそれに伴う腐食金属イオンの溶出が大幅に抑制される。したがって、脱水塔に流入する特定金属イオンの量の規制と、脱水塔内での特定金属イオンの溶出の抑制とが相まって、脱水塔で得られる精製酢酸中の特定金属イオン濃度を大幅に低減できる。よって、後の吸着除去工程に流入する特定金属イオンの量を低減することができ、当該工程で用いられる銀置換イオン交換樹脂(IER)の寿命を大幅に向上させることができる。また、その結果として、吸着除去工程で得られる精製酢酸中の金属イオン濃度を低減でき、IERを長期間交換することなく長期に亘って高品質の製品酢酸を製造することが可能となる。なお、脱水塔の材質を例えばステンレス鋼にした場合には、ヨウ化水素や酢酸により脱水塔内部が腐食され、鉄、クロム、ニッケル、モリブデン等の腐食金属が精製酢酸中に多量に混入し、後の工程で用いるIERの寿命を低下させる。また、脱水塔の仕込液中の前記特定金属イオンの濃度が上記範囲より多い場合も、上記精製酢酸中の金属濃度が高くなり、やはり後の工程で用いるIERの寿命を短くする。
前記脱水塔の仕込液中の鉄イオン濃度は、好ましくは9000質量ppb未満、より好ましくは5000質量ppb未満、さらに好ましくは3000質量ppb未満、特に好ましくは1500質量ppb未満、とりわけ800質量ppb未満(例えば400質量ppb未満)である。前記仕込液中のクロムイオン濃度は、好ましくは4000質量ppb未満、より好ましくは2500質量ppb未満、さらに好ましくは1500質量ppb未満、特に好ましくは750質量ppb未満、とりわけ400質量ppb未満(例えば200ppb未満)である。前記仕込液中のニッケルイオン濃度は、好ましくは2500質量ppb未満、より好ましくは2000質量ppb未満、さらに好ましくは1000質量ppb未満、特に好ましくは500質量ppb未満、とりわけ250質量ppb未満(例えば150質量ppb未満)である。前記仕込液中のモリブデンイオン濃度は、好ましくは1700質量ppb未満、より好ましくは1200質量ppb未満、さらに好ましくは700質量ppb未満、特に好ましくは350質量ppb未満、とりわけ170質量ppb未満である。また、前記仕込液中の亜鉛イオン濃度は、好ましくは800質量ppb未満、より好ましくは650質量ppb未満、さらに好ましくは500質量ppb未満、特に好ましくは410質量ppb未満、とりわけ200質量ppb未満である。
脱水塔の仕込液中の特定金属イオンの濃度を上記特定の範囲内に制御する方法としては、例えば、(i)脱水塔への仕込配管の材質をニッケル基合金、ジルコニウム等の高耐腐食性金属にする、(ii)反応槽の出口から脱水塔の入口までの適宜な箇所に前記特定の金属イオンを吸着除去するためのイオン交換樹脂(特に陽イオン交換樹脂)塔(又は槽)を設ける、(iii)反応槽に供給するメタノールとして金属イオン含有量(例えば亜鉛イオン含有量)の極めて少ないメタノールを用いるなどの方法が挙げられる。脱水塔の仕込液には水及びヨウ化水素並びに酢酸が存在するので、脱水塔への仕込配管が腐食されやすいが、この仕込配管の材質をニッケル基合金、ジルコニウム等の高耐腐食性金属とすることで、仕込配管内部の腐食及びそれに伴う腐食金属イオンの脱水塔仕込液への溶出を抑制でき、もって脱水塔仕込液中の金属イオン濃度を低減できる。また、反応槽の出口から脱水塔の入口までの適宜な箇所に前記特定の金属イオンを吸着除去するためのイオン交換樹脂処理塔(又は槽)を設けることで、反応系からイオン交換樹脂処理塔(又は槽)の直前までの経路で流入したあるいは生成した金属イオンを取り除くことができ、脱水塔仕込液中の前記特定金属イオンの濃度を上記特定の範囲内にまで低減できる。また、メタノールの輸送及び貯蔵に使用されるタンカー及びタンクの内面には乾燥時に鉄錆が発生するのを防止するため、無機亜鉛系塗料がコーテングされており、この塗料中の亜鉛が長期間の輸送及び貯蔵中にメタノール中に溶出することが知られている。このため、市場に流通しているメタノール中には亜鉛が含まれていることが多い。この亜鉛も吸着除去工程で用いる銀置換イオン交換樹脂(IER)の寿命を低下させる要因となる。従って、反応系において原料として用いるメタノールとしては、亜鉛イオン含有量のできる限り少ないメタノールを使用することが好ましい。亜鉛イオン含有量の多いメタノールについては、例えば陽イオン交換樹脂で処理して、亜鉛イオン濃度を低減した上で反応に供することが望ましい。反応系で用いる原料メタノール中の亜鉛イオン濃度としては、例えば10質量ppm未満、好ましくは1質量ppm未満、さらに好ましくは500質量ppb未満、特に好ましくは100質量ppb未満である。なお、原料メタノールに由来する亜鉛イオンは、上述したように、反応槽の出口から脱水塔の入口までの適宜な箇所にイオン交換樹脂(特に陽イオン交換樹脂)塔(又は槽)を設けることにより取り除くこともできる。
脱水工程における蒸留塔(脱水塔)の操作条件は、塔頂温度165℃未満、塔底温度175℃未満であることが好ましい。塔頂温度及び塔底温度を上記の範囲に制御することにより、前述のヨウ化水素や酢酸による蒸留塔内部の腐食が抑制され、脱水工程で得られる精製酢酸中の腐食金属イオン濃度を抑制できる。脱水塔の塔頂温度は、より好ましくは163℃未満、さらに好ましくは161℃未満、特に好ましくは160℃未満である。脱水塔の塔頂温度の下限は、例えば110℃である。また、脱水塔の塔底温度は、より好ましくは173℃未満、さらに好ましくは171℃未満、特に好ましくは165℃未満である。塔底温度の下限は、例えば120℃である。
脱水塔供給段と塔頂蒸気抜き取り段との段数が少ない場合、飛沫同伴により、仕込液中の腐食金属が塔頂から流出し、例えば反応系にリサイクルされ、精製酢酸中の金属濃度は低減するものの、本来目的とする水の濃縮分離の効率が低下する。そのため、脱水塔の仕込液供給段(仕込段)と塔頂蒸気抜き取り段との段間隔(段数)は、実段数で、1段以上が好ましく、より好ましくは3段以上、さらに好ましくは5段以上、特に好ましくは8段以上(中でも10段以上)である。
上記のように、本発明では、脱水塔の材質を特定の材質とし、脱水塔仕込液中の特定金属イオン濃度を特定値以下に制御するので、脱水塔の側流あるいは缶出流として得られる第2酢酸流中の金属イオン濃度を低減できる。第2酢酸流中の鉄イオン濃度は、例えば21000質量ppb未満、好ましくは16000質量ppb未満、より好ましくは6000質量ppb未満、さらに好ましくは2000質量ppb未満、特に好ましくは200質量ppb未満である。第2酢酸流中のクロムイオン濃度は、例えば7100質量ppb未満、好ましくは5000質量ppb未満、より好ましくは3000質量ppb未満、さらに好ましくは1000質量ppb未満、特に好ましくは100質量ppb未満である。第2酢酸流中のニッケルイオン濃度は、例えば4000質量ppb未満、好ましくは3000質量ppb未満、より好ましくは1800質量ppb未満、さらに好ましくは700質量ppb未満、特に好ましくは70質量ppb未満である。第2酢酸流中のモリブデンイオン濃度は、例えば3000質量ppb未満、好ましくは2500質量ppb未満、より好ましくは1500質量ppb未満、さらに好ましくは500質量ppb未満、特に好ましくは50質量ppb未満である。第2酢酸流中の亜鉛イオン濃度は、例えば1000質量ppb未満、好ましくは850質量ppb未満、より好ましくは710質量ppb未満、さらに好ましくは410質量ppb未満、特に好ましくは150質量ppb未満である。
本発明の好ましい1態様では、材質がニッケル基合金又はジルコニウムであり、仕込液供給段と塔頂蒸気抜き取り段との段間隔が、実段数で1段以上(理論段数では、例えば0.5段以上)である蒸留塔に、鉄イオン濃度10000質量ppb未満、クロムイオン濃度5000質量ppb未満、ニッケルイオン濃度3000質量ppb未満、モリブデンイオン濃度2000質量ppb未満、亜鉛イオン濃度1000質量ppb未満、ヨウ化ヘキシル濃度510質量ppb未満、酢酸濃度80質量%以上の粗酢酸を、材質がニッケル基合金又はジルコニウムである仕込配管を通じて前記仕込液供給段に仕込み、塔頂温度165℃未満、塔底温度175℃未満で蒸留し、水に富むオーバーヘッドと、鉄イオン濃度21000質量ppb未満、クロムイオン濃度7100質量ppb未満、ニッケルイオン濃度4000質量ppb未満、モリブデンイオン濃度3000質量ppb未満、亜鉛イオン濃度1000質量ppb未満の精製酢酸を得る。
以下、本発明の一実施形態について説明する。図1は、本発明の一実施形態を示す酢酸製造フロー図(メタノール法カルボニル化プロセス)の一例である。この酢酸製造フローに係る酢酸製造装置は、反応槽1と、蒸発槽2と、蒸留塔3と、デカンタ4と、蒸留塔5と、蒸留塔6と、イオン交換樹脂塔7と、スクラバーシステム8と、アセトアルデヒド分離除去システム9、コンデンサ1a,2a,3a,5a,6aと、熱交換器2bと、リボイラー3b,5b,6bと、ライン11〜56、ポンプ57とを備え、酢酸を連続的に製造可能に構成されている。本実施形態の酢酸の製造方法では、反応槽1、蒸発槽2、蒸留塔3、蒸留塔5、蒸留塔6、及びイオン交換樹脂塔7において、それぞれ、反応工程、蒸発工程(フラッシュ工程)、第1蒸留工程、第2蒸留工程、第3蒸留工程、及び吸着除去工程が行われる。第1蒸留工程は脱低沸工程、第2蒸留工程は脱水工程、第3蒸留工程は脱高沸工程ともいう。なお、本発明において、工程は上記に限らず、特に、アセトアルデヒド分離除去システム9(脱アセトアルデヒド塔など)の設備は付帯しない場合がある。また、後述するように、イオン交換樹脂塔7の下流に製品塔を設けてもよい。
反応槽1は、反応工程を行うためのユニットである。この反応工程は、下記の化学式(1)で示される反応(メタノールのカルボニル化反応)によって酢酸を連続的に生成させるための工程である。酢酸製造装置の定常稼働状態において、反応槽1内には、例えば撹拌機によって撹拌されている反応混合物が存在する。反応混合物は、原料であるメタノール及び一酸化炭素と、金属触媒と、助触媒と、水と、製造目的である酢酸と、各種の副生成物とを含み、液相と気相とが平衡状態にある。
CH3OH + CO → CH3COOH (1)
反応混合物中の原料は、液体状のメタノール及び気体状の一酸化炭素である。メタノールは、メタノール貯留部(図示略)からライン11を通じて反応槽1に所定の流量で連続的に供給される。前述したように、市場に流通しているメタノールには亜鉛が含まれていることが多い。この亜鉛は後の吸着除去工程で用いる銀置換イオン交換樹脂(IER)の寿命を低下させる要因となる。従って、亜鉛含量の多いメタノールについては、予め陽イオン交換樹脂で処理してメタノール中の亜鉛イオン濃度を低下させた上で反応に用いるのが好ましい。
一酸化炭素は、一酸化炭素貯留部(図示略)からライン12を通じて反応槽1に所定の流量で連続的に供給される。一酸化炭素は必ずしも純粋な一酸化炭素でなくてもよく、例えば窒素、水素、二酸化炭素、酸素等の他のガスが少量(例えば5質量%以下、好ましくは1質量%以下)含まれていてもよい。
反応混合物中の金属触媒は、メタノールのカルボニル化反応を促進するためのものであり、例えばロジウム触媒やイリジウム触媒を使用することができる。ロジウム触媒としては、例えば、化学式[Rh(CO)22]-で表されるロジウム錯体を使用することができる。イリジウム触媒としては、例えば化学式[Ir(CO)22]-で表されるイリジウム錯体を使用することができる。金属触媒としては金属錯体触媒が好ましい。反応混合物中の触媒の濃度(金属換算)は、反応混合物の液相全体に対して、例えば200〜5000質量ppmであり、好ましくは400〜2000質量ppmである。
助触媒は、上述の触媒の作用を補助するためのヨウ化物であり、例えば、ヨウ化メチルやイオン性ヨウ化物が使用される。ヨウ化メチルは、上述の触媒の触媒作用を促進する作用を示し得る。ヨウ化メチルの濃度は、反応混合物の液相全体に対して例えば1〜20質量%である。イオン性ヨウ化物は、反応液中でヨウ化物イオンを生じさせるヨウ化物(特に、イオン性金属ヨウ化物)であり、上述の触媒を安定化させる作用や、副反応を抑制する作用を示し得る。イオン性ヨウ化物としては、例えば、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウムなどのアルカリ金属ヨウ化物などが挙げられる。反応混合物中のイオン性ヨウ化物の濃度は、反応混合物の液相全体に対して、例えば1〜25質量%であり、好ましくは5〜20質量%である。また、例えばイリジウム触媒などを用いる場合は、助触媒として、ルテニウム化合物やオスミウム化合物を用いることもできる。これらの化合物の使用量は総和で、例えばイリジウム1モル(金属換算)に対して、0.1〜30モル(金属換算)、好ましくは0.5〜15モル(金属換算)である。
反応混合物中の水は、メタノールのカルボニル化反応の反応機構上、酢酸を生じさせるのに必要な成分であり、また、反応系の水溶性成分の可溶化のためにも必要な成分である。反応混合物中の水の濃度は、反応混合物の液相全体に対して、例えば0.1〜15質量%であり、好ましくは0.8〜10質量%、さらに好ましくは1〜6質量%、特に好ましくは1.5〜4質量%である。水濃度は、酢酸の精製過程での水の除去に要するエネルギーを抑制して酢酸製造の効率化を進めるうえでは15質量%以下が好ましい。水濃度を制御するために、反応槽1に対して所定流量の水を連続的に供給してもよい。
反応混合物中の酢酸は、酢酸製造装置の稼働前に反応槽1内に予め仕込まれた酢酸、及び、メタノールのカルボニル化反応の主生成物として生じる酢酸を含む。このような酢酸は、反応系では溶媒として機能し得る。反応混合物中の酢酸の濃度は、反応混合物の液相全体に対して、例えば50〜90質量%であり、好ましくは60〜80質量%である。
反応混合物に含まれる主な副生成物としては、例えば酢酸メチルが挙げられる。この酢酸メチルは、酢酸とメタノールとの反応によって生じ得る。反応混合物中の酢酸メチルの濃度は、反応混合物の液相全体に対して、例えば0.1〜30質量%であり、好ましくは1〜10質量%である。反応混合物に含まれる副生成物としては、ヨウ化水素も挙げられる。このヨウ化水素は、上述のような触媒や助触媒が使用される場合、メタノールのカルボニル化反応の反応機構上、不可避的に生じることとなる。反応混合物中のヨウ化水素の濃度は、反応混合物の液相全体に対して、例えば0.01〜2質量%である。また、副生成物としては、例えば、水素、メタン、二酸化炭素、アセトアルデヒド、クロトンアルデヒド、2−エチルクロトンアルデヒド、ジメチルエーテル、アルカン類、ギ酸及びプロピオン酸、並びに、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル及びヨウ化デシルなどのヨウ化アルキル等が挙げられる。なお、ヨウ化ヘキシルの濃度は、反応混合物の液相全体に対して、例えば0.1〜10000質量ppb、通常0.5〜1000質量ppbであり、1〜100質量ppb(例えば2〜50質量ppb)であることが多い。また、反応混合物には、装置の腐食により生じる鉄、ニッケル、クロム、マンガン、モリブデンなどの金属(腐食金属)、及びその他の金属としてコバルトや亜鉛、銅などが含まれ得る。上記腐食金属とその他の金属とを併せて「腐食金属等」と称する場合がある。
以上のような反応混合物が存在する反応槽1内において、反応温度は例えば150〜250℃に設定され、全体圧力としての反応圧力は例えば2.0〜3.5MPa(絶対圧)に設定され、一酸化炭素分圧は、例えば0.4〜1.8MPa(絶対圧)、好ましくは0.6〜1.6MPa(絶対圧)、さらに好ましくは0.9〜1.4MPa(絶対圧)に設定される。
装置稼働時の反応槽1内の気相部の蒸気には、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸及びプロピオン酸などが含まれる。この蒸気は、反応槽1内からライン13を通じて抜き取ることが可能である。蒸気の抜き取り量の調節によって、反応槽1内の圧力を制御することが可能であり、例えば、反応槽1内の圧力は一定に維持される。反応槽1内から抜き取られた蒸気は、コンデンサ1aへと導入される。
コンデンサ1aは、反応槽1からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸及びプロピオン酸などを含み、コンデンサ1aからライン14を通じて反応槽1へと導入され、リサイクルされる。ガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ1aからライン15を通じてスクラバーシステム8へと供給される。スクラバーシステム8では、コンデンサ1aからのガス分から有用成分(例えばヨウ化メチル、水、酢酸メチル、酢酸など)が分離回収される。この分離回収には、本実施形態では、ガス分中の有用成分を捕集するための吸収液を使用して行う湿式法が利用される。吸収液としては、少なくとも酢酸及び/又はメタノールを含む吸収溶媒が好ましい。吸収液には酢酸メチルが含まれていてもよい。例えば、吸収液として後述の蒸留塔6からの蒸気の凝縮分を使用できる。分離回収には、圧力変動吸着法を利用してもよい。分離回収された有用成分(例えばヨウ化メチルなど)は、スクラバーシステム8からリサイクルライン48を通じて反応槽1へと導入され、リサイクルされる。有用成分を捕集した後のガスはライン49を通じて廃棄される。なお、ライン49から排出されるガスは、後述する蒸発槽2の底部あるいは残液流リサイクルライン18,19へ導入するCO源として利用することができる。スクラバーシステム8での処理及びその後の反応槽1へのリサイクル及び廃棄については、他のコンデンサからスクラバーシステム8へと供給される後記のガス分についても同様である。本発明の製造方法においては、プロセスからのオフガスを、少なくとも酢酸を含む吸収溶媒で吸収処理して、一酸化炭素に富むストリームと酢酸に富むストリームとを分離するスクラバー工程を有することが好ましい。
装置稼働時の反応槽1内では、上述のように、酢酸が連続的に生成する。そのような酢酸を含む反応混合物が、連続的に、反応槽1内から所定の流量で抜き取られてライン16を通じて次の蒸発槽2へと導入される。
蒸発槽2は、蒸発工程(フラッシュ工程)を行うためのユニットである。この蒸発工程は、ライン16(反応混合物供給ライン)を通じて蒸発槽2に連続的に導入される反応混合物を、部分的に蒸発させることによって蒸気流(揮発相)と残液流(低揮発相)とに分けるための工程である。反応混合物を加熱することなく圧力を減じることによって蒸発を生じさせてもよいし、反応混合物を加熱しつつ圧力を減じることによって蒸発を生じさせてもよい。蒸発工程において、蒸気流の温度は例えば100〜260℃、好ましくは120〜200℃であり、残液流の温度は例えば80〜200℃、好ましくは100〜180℃であり、槽内圧力は例えば50〜1000kPa(絶対圧)である。また、蒸発工程にて分離される蒸気流及び残液流の割合に関しては、質量比で、例えば10/90〜50/50(蒸気流/残液流)である。本工程で生じる蒸気は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸プロピオン酸、並びに、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル及びヨウ化デシルなどのヨウ化アルキルなどを含み、蒸発槽2内からライン17(蒸気流排出ライン)に連続的に抜き取られる。蒸発槽2内から抜き取られた蒸気流の一部はコンデンサ2aへと連続的に導入され、当該蒸気流の他の一部はライン21を通じて次の蒸留塔3へと連続的に導入される。前記蒸気流の酢酸濃度は、例えば50〜85質量%、好ましくは55〜75質量%であり、ヨウ化メチル濃度は、例えば2〜50質量%(好ましくは5〜30質量%)、水濃度は、例えば0.2〜20質量%(好ましくは1〜15質量%)、酢酸メチル濃度は、例えば0.2〜50質量%(好ましくは2〜30質量%)である。なお、前記蒸気流のヨウ化ヘキシル濃度は、例えば0.1〜10000質量ppb、通常0.5〜1000質量ppbであり、1〜100質量ppb(例えば2〜50質量ppb)であることが多い。本工程で生ずる残液流は、反応混合物に含まれていた触媒及び助触媒(ヨウ化メチル、ヨウ化リチウムなど)や、本工程では揮発せずに残存する水、酢酸メチル、酢酸、ギ酸及びプロピオン酸などを含み、ポンプ57を用い、連続的に蒸発槽2からライン18を通じて熱交換器2bへと導入される。熱交換器2bは、蒸発槽2からの残液流を冷却する。降温した残液流は、連続的に熱交換器2bからライン19を通じて反応槽1へと導入され、リサイクルされる。なお、ライン18とライン19とを併せて残液流リサイクルラインと称する。前記残液流の酢酸濃度は、例えば55〜90質量%、好ましくは60〜85質量%である。
コンデンサ2aは、蒸発槽2からの蒸気流を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸及びプロピオン酸などを含み、コンデンサ2aからライン22,23を通じて反応槽1へと導入され、リサイクルされる。ガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ2aからライン20,15を通じてスクラバーシステム8へと供給される。上述の反応工程での酢酸の生成反応は発熱反応であるところ、反応混合物に蓄積する熱の一部は、蒸発工程(フラッシュ工程)において、反応混合物から生じた蒸気に移行する。この蒸気のコンデンサ2aでの冷却によって生じた凝縮分が反応槽1へとリサイクルされる。すなわち、この酢酸製造装置においては、メタノールのカルボニル化反応で生じる熱がコンデンサ2aにて効率よく除去されることとなる。
蒸留塔3は、第1蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱低沸塔に位置付けられる。第1蒸留工程は、蒸留塔3に連続的に導入される蒸気流を蒸留処理して低沸成分を分離除去する工程である。より具体的には、第1蒸留工程では、前記蒸気流を蒸留して、ヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富むオーバーヘッド流と、酢酸に富む酢酸流とに分離する。蒸留塔3は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔3として棚段塔を採用する場合、その理論段は例えば5〜50段であり、還流比は理論段数に応じて例えば0.5〜3000である。蒸留塔3の内部において、塔頂圧力は例えば80〜160kPa(ゲージ圧)に設定され、塔底圧力は、塔頂圧力より高く、例えば85〜180kPa(ゲージ圧)に設定される。蒸留塔3の内部において、塔頂温度は、例えば、設定塔頂圧力での酢酸の沸点より低い温度であって90〜130℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点以上の温度であって120〜165℃(好ましくは125〜160℃)に設定される。
蒸留塔3に対しては、蒸発槽2からの蒸気流がライン21を通じて連続的に導入され、蒸留塔3の塔頂部からは、オーバーヘッド流としての蒸気がライン24に連続的に抜き取られる。蒸留塔3の塔底部からは、缶出液がライン25に連続的に抜き取られる。3bはリボイラーである。蒸留塔3における塔頂部と塔底部との間の高さ位置からは、側流としての酢酸流(第1酢酸流;液体)がライン27より連続的に抜き取られる。
蒸留塔3の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔3からの上記缶出液及び側流と比較して多く含み、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含む。この蒸気には酢酸も含まれる。このような蒸気は、ライン24を通じてコンデンサ3aへと連続的に導入される。
コンデンサ3aは、蒸留塔3からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ3aからライン28を通じてデカンタ4へと連続的に導入される。デカンタ4に導入された凝縮分は水相(上相)と有機相(ヨウ化メチル相;下相)とに分液される。水相には、水と、例えば、ヨウ化メチル、ヨウ化水素、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などが含まれる。有機相には、例えば、ヨウ化メチルと、例えば、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などが含まれる。本実施形態では、水相の一部はライン29を通じて蒸留塔3に還流され、水相の他の一部は、ライン29,30,23を通じて反応槽1に導入されてリサイクルされる。有機相の一部はライン31,23を通じて反応槽1に導入されてリサイクルされる。有機相の他の一部、及び/又は、水相の他の一部は、ライン31,50、及び/又は、ライン30,51を通じてアセトアルデヒド分離除去システム9に導入される。
アセトアルデヒド分離除去システム9を用いたアセトアルデヒド分離除去工程では、有機相及び/又は水相に含まれるアセトアルデヒドを公知の方法、例えば、蒸留、抽出又はこれらの組み合わせにより分離除去する。分離されたアセトアルデヒドはライン53を通じて装置外へ排出される。また、有機相及び/又は水相に含まれる有用成分(例えばヨウ化メチルなど)は、ライン52,23を通じて反応槽1へとリサイクルされて再利用される。
図2はアセトアルデヒド分離除去システムの一例を示す概略フロー図である。このフローによれば、例えば前記有機相をアセトアルデヒド分離除去工程にて処理する場合は、有機相をライン101を通じて蒸留塔(第1脱アセトアルデヒド塔)91に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン102)と、ヨウ化メチルに富む残液流(ライン103)とに分離する。前記オーバーヘッド流をコンデンサ91aにて凝縮させ、凝縮液の一部を蒸留塔91の塔頂部に還流させ(ライン104)、凝縮液の他の部分を抽出塔92に供給する(ライン105)。前記抽出塔92に供給された凝縮液はライン109から導入された水によって抽出処理される。抽出処理により得られた抽出液はライン107を通じて蒸留塔(第2脱アセトアルデヒド塔)93に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン112)と水に富む残液流(ライン113)とに分離する。そして、アセトアルデヒドに富むオーバーヘッド流をコンデンサ93aにて凝縮させ、凝縮液の一部を蒸留塔93の塔頂部に還流させ(ライン114)、凝縮液の他の部分は系外に排出する(ライン115)。また、第1脱アセトアルデヒド塔91の缶出液であるヨウ化メチルに富む残液流、抽出塔92で得られたヨウ化メチルに富むラフィネート(ライン108)、及び第2脱アセトアルデヒド塔93の缶出液である水に富む残液流は、それぞれ、ライン103,111,113を通じて反応槽1へリサイクルされるか、あるいはプロセスの適宜な箇所にリサイクルされ、再利用される。例えば、抽出塔92で得られたヨウ化メチルに富むラフィネートはライン110を通じて蒸留塔91にリサイクルすることができる。113の液は、通常、排水として外部に排出される。コンデンサ91a、93aで凝縮しなかったガス(ライン106,116)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
また、図2のフローにより前記水相をアセトアルデヒド分離除去工程にて処理する場合は、例えば、水相をライン101を通じて蒸留塔(第1脱アセトアルデヒド塔)91に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン102)と、水に富む残液流(ライン103)とに分離する。前記オーバーヘッド流をコンデンサ91aにて凝縮させ、凝縮液の一部を蒸留塔91の塔頂部に還流させ(ライン104)、凝縮液の他の部分を抽出塔92に供給する(ライン105)。前記抽出塔92に供給された凝縮液はライン109から導入された水によって抽出処理される。抽出処理により得られた抽出液はライン107を通じて蒸留塔(第2脱アセトアルデヒド塔)93に供給して蒸留し、アセトアルデヒドに富むオーバーヘッド流(ライン112)と水に富む残液流(ライン113)とに分離する。そして、アセトアルデヒドに富むオーバーヘッド流をコンデンサ93aにて凝縮させ、凝縮液の一部を蒸留塔93の塔頂部に還流させ(ライン114)、凝縮液の他の部分は系外に排出する(ライン115)。また、第1脱アセトアルデヒド塔91の缶出液である水に富む残液流、抽出塔92で得られたヨウ化メチルに富むラフィネート(ライン108)、及び第2脱アセトアルデヒド塔93の缶出液である水に富む残液流は、それぞれ、ライン103,111,113を通じて反応槽1へリサイクルされるか、あるいはプロセスの適宜な箇所にリサイクルされ、再利用される。例えば、抽出塔92で得られたヨウ化メチルに富むラフィネートはライン110を通じて蒸留塔91にリサイクルすることができる。113の液は、通常、排水として外部に排出される。コンデンサ91a、93aで凝縮しなかったガス(ライン106,116)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
前記の水、酢酸(AC)、ヨウ化メチル(MeI)及びアセトアルデヒド(AD)を少なくとも含むプロセス流に由来するアセトアルデヒドは、上記方法のほか、抽出蒸留を利用して分離除去することもできる。例えば、前記プロセス流を分液させて得られた有機相及び/又は水相(仕込液)を蒸留塔(抽出蒸留塔)に供給するとともに、蒸留塔内のヨウ化メチル及びアセトアルデヒドが濃縮される濃縮域(例えば、塔頂から仕込液供給位置までの空間)に抽出溶媒(通常、水)を導入し、前記濃縮域から降下する液(抽出液)を側流(サイドカット流)として抜き取り、この側流を水相と有機相とに分液させ、前記水相を蒸留することによりアセトアルデヒドを系外に排出することができる。なお、蒸留塔内に比較的多くの水が存在する場合は、前記抽出溶媒を蒸留塔に導入することなく、前記濃縮域から降下する液を側流として抜き取ってもよい。例えば、この蒸留塔に前記濃縮域から降下する液(抽出液)を受けることのできるユニット(チムニートレイなど)を配設し、このユニットで受けた液(抽出液)を側流として抜き取ることができる。抽出溶媒の導入位置は前記仕込液の供給位置よりも上方が好ましく、より好ましくは塔頂付近である。側流の抜き取り位置は、塔の高さ方向において、抽出溶媒の導入位置よりも下方であって、前記仕込液の供給位置よりも上方が好ましい。この方法によれば、抽出溶媒(通常、水)によって、ヨウ化メチルとアセトアルデヒドの濃縮物からアセトアルデヒドを高濃度に抽出できるとともに、抽出溶媒の導入部位とサイドカット部位との間を抽出域として利用するので、少量の抽出溶媒によりアセトアルデヒドを効率よく抽出できる。そのため、例えば、抽出蒸留による抽出液を蒸留塔(抽出蒸留塔)の塔底部から抜き取る方法と比較して蒸留塔の段数を大幅に低減できるとともに、蒸気負荷も低減できる。また、少量の抽出溶媒を用いて、上記図2の脱アルデヒド蒸留と水抽出とを組み合わせる方法よりも、水抽出液中のアセトアルデヒドに対するヨウ化メチルの割合(MeI/AD比)を小さくできるので、ヨウ化メチルの系外へのロスを抑制できる条件でアセトアルデヒドを除去可能である。前記側流中のアセトアルデヒド濃度は、前記仕込液及び缶出液(塔底液)中のアセトアルデヒド濃度よりも格段に高い。また、前記側流中のヨウ化メチルに対するアセトアルデヒドの割合は、仕込液及び缶出液中のヨウ化メチルに対するアセトアルデヒドの割合よりも大きい。なお、前記側流を分液させて得られる有機相(ヨウ化メチル相)をこの蒸留塔にリサイクルしてもよい。この場合、前記側流を分液させて得られる有機相のリサイクル位置は、塔の高さ方向において前記側流抜き取り位置よりも下方が好ましく、前記仕込液の供給位置よりも上方が好ましい。また、前記プロセス流を分液させて得られた有機相を構成する成分(例えば酢酸メチルなど)に対する混和性溶媒をこの蒸留塔(抽出蒸留塔)に導入してもよい。前記混和性溶媒として、例えば、酢酸、酢酸エチルなどが挙げられる。前記混和性溶媒の導入位置は、塔の高さ方向において、前記側流抜き取り位置よりも下方が好ましく、前記仕込液の供給位置よりも上方が好ましい。また、前記混和性溶媒の導入位置は、上記側流を分液させて得られる有機相をこの蒸留塔にリサイクル場合はそのリサイクル位置よりも下方が好ましい。前記側流を分液させて得られる有機相を蒸留塔へリサイクルしたり、前記混和性溶媒を蒸留塔へ導入することにより、側流として抜き取られる抽出液中の酢酸メチル濃度を低下させることができ、前記抽出液を分液させて得られる水相中の酢酸メチル濃度を低減でき、もって水相へのヨウ化メチルの混入を抑制できる。
前記蒸留塔(抽出蒸留塔)の理論段は、例えば1〜100段、好ましくは2〜50段、さらに好ましくは3〜30段、特に好ましくは5〜20段であり、従来の脱アセトアルデヒドに用いる蒸留塔や抽出蒸留塔の80〜100段と比較して、少ない段数で効率よくアセトアルデヒドを分離除去できる。抽出溶媒の流量と仕込液(プロセス流を分液させて得られた有機相及び/又は水相)の流量との質量割合(前者/後者)は、0.0001/100〜100/100の範囲から選択してもよいが、通常、0.0001/100〜20/100、好ましくは0.001/100〜10/100、より好ましくは0.01/100〜8/100、さらに好ましくは0.1/100〜5/100である。前記蒸留塔(抽出蒸留塔)の塔頂温度は、例えば、15〜120℃、好ましくは20〜90℃、より好ましくは20〜80℃、さらに好ましくは25〜70℃である。塔頂圧力は、絶対圧力で、例えば0.1〜0.5MPa程度である。前記蒸留塔(抽出蒸留塔)の他の条件は、従来の脱アセトアルデヒドに用いる蒸留塔や抽出蒸留塔と同様であってもよい。
図3は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムの一例を示す概略フロー図である。この例では、前記プロセス流を分液させて得られた有機相及び/又は水相(仕込液)を供給ライン201を通じて蒸留塔94の中段(塔頂と塔底との間の位置)に供給するとともに、塔頂付近より水をライン202を通じて導入し、蒸留塔94(抽出蒸留塔)内で抽出蒸留を行う。蒸留塔94の前記仕込液の供給位置より上方には、塔内のヨウ化メチル及びアセトアルデヒドが濃縮される濃縮域から降下する液(抽出液)を受けるためのチムニートレイ200が配設されている。この抽出蒸留においては、チムニートレイ200上の液を好ましくは全量抜き取り、ライン208を通じてデカンタ95に導入して分液させる。デカンタ95における水相(アセトアルデヒドを含む)をライン212を通じて冷却クーラー95aに導入して冷却し、水相に溶解していたヨウ化メチルを2相分離させ、デカンタ96にて分液させる。デカンタ96における水相をライン216を通じて蒸留塔97(脱アセトアルデヒド塔)に供給して蒸留し、塔頂の蒸気をライン217を通じてコンデンサ97aに導いて凝縮させ、凝縮液(主にアセトアルデヒド及びヨウ化メチル)の一部は蒸留塔97の塔頂に還流させ、残りは廃棄するか、あるいはライン220を通じて蒸留塔98(抽出蒸留塔)に供給する。蒸留塔98の塔頂付近から水をライン222を通じて導入し、抽出蒸留する。塔頂の蒸気はライン223を通じてコンデンサ98aに導いて凝縮させ、凝縮液(主にヨウ化メチル)の一部は塔頂部に還流させ、残りはライン226を通じて反応系にリサイクルするが、系外除去する場合もある。デカンタ95における有機相(ヨウ化メチル相)は、好ましくは全量をライン209,210を通じて蒸留塔94のチムニートレイ200の位置より下方にリサイクルする。デカンタ95の水相の一部、及びデカンタ96の有機相は、それぞれ、ライン213,210、ライン214,210を通じて蒸留塔94にリサイクルするが、リサイクルしない場合もある。デカンタ95の水相の一部は蒸留塔94における抽出溶媒(水)として利用してもよい。デカンタ96の水相の一部はライン210を通じて蒸留塔94にリサイクルしてもよい。場合により(例えば、前記仕込液中に酢酸メチルが含まれている場合など)、前記プロセス流を分液させて得られた有機相を構成する成分(例えば酢酸メチルなど)に対する混和性溶媒(酢酸、酢酸エチル等)をライン215を通じて蒸留塔94に仕込み、蒸留効率を向上させることもできる。混和性溶媒の蒸留塔94への供給位置は前記仕込液供給部(ライン201の接続部)よりも上方で且つリサイクルライン210の接続部よりも下方である。蒸留塔94の缶出液は反応系にリサイクルする。蒸留塔94の塔頂の蒸気はライン203を通じてコンデンサ94aに導いて凝縮させ、凝縮液をデカンタ99で分液させ、有機相はライン206を通じて蒸留塔94の塔頂部に還流させ、水相はライン207を通じてデカンタ95に導く。蒸留塔97の缶出液(水が主成分)や蒸留塔98(抽出蒸留塔)の缶出液(少量のアセトアルデヒドを含む水)は、それぞれライン218,224を通じて系外除去するか、反応系にリサイクルする。コンデンサ94a、97a,98aで凝縮しなかったガス(ライン211,221,227)はスクラバーシステム8で吸収処理されるか、あるいは廃棄処分される。
図4は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムの他の例を示す概略フロー図である。この例では、蒸留塔94の塔頂の蒸気の凝縮液をホールドタンク100に導き、その全量をライン206を通じて蒸留塔94の塔頂部に還流する。これ以外は図3の例と同様である。
図5は上記の抽出蒸留を利用したアセトアルデヒド分離除去システムのさらに他の例を示す概略フロー図である。この例では、チムニートレイ200上の液を全量抜き取り、ライン208を通じて、デカンタ95を経ることなく、直接冷却クーラー95aに導入して冷却し、デカンタ96に供給する。これ以外は図4の例と同様である。
前記図1において、コンデンサ3aで生じるガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ3aからライン32,15を通じてスクラバーシステム8へと供給される。スクラバーシステム8に至ったガス分中のヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などは、スクラバーシステム8にて吸収液に吸収される。ヨウ化水素は吸収液中のメタノールまたは酢酸メチルとの反応によってヨウ化メチルが生じる。そして、当該ヨウ化メチル等の有用成分を含有する液分がスクラバーシステム8からリサイクルライン48,23を通じて反応槽1へとリサイクルされて再利用される。
蒸留塔3の塔底部から抜き取られる缶出液は、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔3からの上記のオーバーヘッド流及び側流と比較して多く含み、例えば、プロピオン酸、並びに、飛沫同伴の上述の触媒や助触媒を含む。この缶出液には、酢酸、ヨウ化メチル、酢酸メチル及び水なども含まれる。本実施形態では、このような缶出液の一部は、ライン25,26を通じて蒸発槽2へと連続的に導入されてリサイクルされ、缶出液の他の一部は、ライン25,23を通じて反応槽1へと連続的に導入されてリサイクルされる。
蒸留塔3から側流として連続的に抜き取られる第1酢酸流は、蒸留塔3に連続的に導入される蒸気流よりも酢酸が富化されている。すなわち、第1酢酸流の酢酸濃度は前記蒸気流の酢酸濃度よりも高い。第1酢酸流の酢酸濃度は、例えば90〜99.9質量%、好ましくは93〜99質量%である。また、第1酢酸流は、酢酸に加えて、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール、アセトアルデヒド、ギ酸及びプロピオン酸、並びに、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル及びヨウ化デシルなどのヨウ化アルキル等を含む。第1酢酸流において、ヨウ化メチル濃度は、例えば0.1〜8質量%、好ましくは0.2〜5質量%、水濃度は、例えば0.1〜8質量%、好ましくは0.2〜5質量%、酢酸メチル濃度は、例えば0.1〜8質量%、好ましくは0.2〜5質量%である。なお、第1酢酸流中のヨウ化ヘキシル濃度は、例えば0.2〜10000質量ppb、通常1〜1000質量ppbであり、2〜100質量ppb(例えば3〜50質量ppb)であることが多い。なお、蒸留塔3に対するライン27の連結位置は、蒸留塔3の高さ方向において、図示されているように、蒸留塔3に対するライン21の連結位置より上方であってもよいが、蒸留塔3に対するライン21の連結位置より下方であってもよいし、蒸留塔3に対するライン21の連結位置と同じであってもよい。蒸留塔3からの第1酢酸流は、所定の流量で連続的に、ライン27を通じて次の蒸留塔5へと導入される。ライン27の材質蒸留塔5の材質(少なくとも接液、接ガス部の材質)は、ステンレス鋼であってもよいが、ヨウ化水素や酢酸による配管内部の腐食を抑制するため、ニッケル基合金やジルコニウム等の高耐腐食性金属とすることが好ましい。
ライン27を通流する第1酢酸流に、ライン55(水酸化カリウム導入ライン)を通じて、水酸化カリウムを供給ないし添加することができる。水酸化カリウムは、例えば水溶液等の溶液として供給ないし添加できる。第1酢酸流に対する水酸化カリウムの供給ないし添加によって第1酢酸流中のヨウ化水素を減少できる。具体的には、ヨウ化水素は水酸化カリウムと反応してヨウ化カリウムと水が生じる。そのことによって、ヨウ化水素に起因する蒸留塔等の装置の腐食を低減できる。なお、水酸化カリウムは本プロセスにおいてヨウ化水素が存在する適宜な場所に供給ないし添加することができる。なお、プロセス中に添加された水酸化カリウムは酢酸とも反応して酢酸カリウムを生じさせる。
蒸留塔5は、第2蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱水塔に位置付けられる。第2蒸留工程は、蒸留塔5に連続的に導入される第1酢酸流を蒸留処理して酢酸を更に精製するための工程である。本発明では、蒸留塔5の材質(少なくとも接液、接ガス部の材質)をニッケル基合金又はジルコニウムとする。このような材質を用いることにより、ヨウ化水素や酢酸による蒸留塔内部の腐食を抑制でき、腐食金属イオンの溶出を抑制できる。
蒸留塔5の仕込液は、第1酢酸流の少なくとも一部(ライン27)を含んでおり、第1酢酸流以外の流れ[例えば下流工程からのリサイクル流(例えばライン42)]が加わっていてもよい。本発明では、蒸留塔5の仕込液中の金属イオン濃度を、鉄イオン10000質量ppb未満、クロムイオン5000質量ppb未満、ニッケルイオン3000質量ppb未満、且つモリブデンイオン2000質量ppb未満とする。蒸留塔5の材質を上記の特定の材質とし且つ蒸留塔5への仕込液中の金属イオン濃度を上記範囲に制御することにより、この工程で得られる精製酢酸中の腐食金属濃度を著しく低減でき、ひいては後の吸着除去工程に供する酢酸中の金属濃度をも低減でき、銀置換イオン交換樹脂(IER)の寿命を大幅に向上できる。なお、蒸留塔5の仕込液中の鉄イオン濃度は、好ましくは9000質量ppb未満、より好ましくは5000質量ppb未満、さらに好ましくは3000質量ppb未満、特に好ましくは1500質量ppb未満、とりわけ800質量ppb未満(例えば400質量ppb未満)である。前記仕込液中のクロムイオン濃度は、好ましくは4000質量ppb未満、より好ましくは2500質量ppb未満、さらに好ましくは1500質量ppb未満、特に好ましくは750質量ppb未満、とりわけ400質量ppb未満(例えば200ppb未満)である。前記仕込液中のニッケルイオン濃度は、好ましくは2500質量ppb未満、より好ましくは2000質量ppb未満、さらに好ましくは1000質量ppb未満、特に好ましくは500質量ppb未満、とりわけ250質量ppb未満(例えば150質量ppb未満)である。前記仕込液中のモリブデンイオン濃度は、好ましくは1700質量ppb未満、より好ましくは1200質量ppb未満、さらに好ましくは700質量ppb未満、特に好ましくは350質量ppb未満、とりわけ170質量ppb未満である。また、前記仕込液中の亜鉛イオン濃度は、例えば1000質量ppb未満、好ましくは800質量ppb未満、より好ましくは650質量ppb未満、さらに好ましくは500質量ppb未満、特に好ましくは410質量ppb未満、とりわけ200質量ppb未満である。さらに、前記仕込液中のヨウ化ヘキシル濃度は、例えば0.2〜10000質量ppb、通常1〜1000質量ppbであり、2〜100質量ppb(例えば3〜50質量ppb、特に5〜40質量ppb)であることが多い。
蒸留塔5は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔5として棚段塔を採用する場合、その理論段は例えば5〜50段であり、還流比は理論段数に応じて例えば0.2〜3000である。
第2蒸留工程にある蒸留塔5の内部において、塔頂圧力は、例えば0.10〜0.28MPa(ゲージ圧)、好ましくは0.15〜0.23MPa(ゲージ圧)、さらに好ましくは0.17〜0.21MPa(ゲージ圧)である。塔底圧力は、塔頂圧力より高く、例えば0.13〜0.31MPa(ゲージ圧)、好ましくは0.18〜0.26MPa(ゲージ圧)、さらに好ましくは0.20〜0.24MPa(ゲージ圧)である。第2蒸留工程にある蒸留塔5の内部において、塔頂温度165℃未満、塔底温度175℃未満であることが好ましい。脱水塔の塔頂温度及び塔底温度を上記の範囲にすることにより、ヨウ化水素や酢酸による蒸留塔内部の腐食がより抑制され、腐食金属イオンの溶出をより抑制できる。塔頂温度は、より好ましくは163℃未満、さらに好ましくは161℃未満、特に好ましくは160℃未満であり、とりわけ155℃未満が好ましい。塔頂温度の下限は、例えば110℃である。塔底温度は、より好ましくは173℃未満、さらに好ましくは171℃未満、特に好ましくは166℃未満である。塔底温度の下限は、例えば120℃である。
脱水塔における水の濃縮分離効率を確保するため、脱水塔の仕込液供給段(仕込段)と塔頂蒸気抜き取り段との段間隔(段数)は、実段数で、1段以上が好ましく、より好ましくは3段以上、さらに好ましくは5段以上、特に好ましくは8段以上(中でも10段以上)である。
蒸留塔5の塔頂部からは、オーバーヘッド流としての蒸気がライン33に連続的に抜き取られる。蒸留塔5の塔底部からは、缶出液がライン34に連続的に抜き取られる。5bはリボイラーである。蒸留塔5における塔頂部と塔底部との間の高さ位置から、側流(液体または気体)がライン34に連続的に抜き取られてもよい。
蒸留塔5の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔5からの上記の缶出液と比較して多く含み、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含む。このような蒸気は、ライン33を通じてコンデンサ5aへと連続的に導入される。
コンデンサ5aは、蒸留塔5からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、例えば水及び酢酸などを含む。凝縮分の一部は、コンデンサ5aからライン35を通じて蒸留塔5へと連続的に還流される。凝縮分の他の一部は、コンデンサ5aからライン35,36,23を通じて反応槽1へと連続的に導入され、リサイクルされる。また、コンデンサ5aで生じるガス分は、例えば一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ5aからライン37,15を通じてスクラバーシステム8へと供給される。スクラバーシステム8に至ったガス分中のヨウ化水素は、スクラバーシステム8にて吸収液に吸収され、吸収液中のヨウ化水素とメタノールまたは酢酸メチルとの反応によってヨウ化メチルが生じ、そして、当該ヨウ化メチル等の有用成分を含有する液分がスクラバーシステム8からリサイクルライン48,23を通じて反応槽1へとリサイクルされて再利用される。
蒸留塔5の塔底部から抜き取られる缶出液(あるいは側流)は、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔5からの上記のオーバーヘッド流と比較して多く含み、例えば、プロピオン酸、酢酸カリウム(ライン27等に水酸化カリウムを供給した場合)、並びに、飛沫同伴の上述の触媒や助触媒などを含む。この缶出液には酢酸も含まれうる。このような缶出液は、ライン34を通じて、第2酢酸流をなして次の蒸留塔6に連続的に導入されることとなる。
第2酢酸流は、蒸留塔5に連続的に導入される第1酢酸流よりも酢酸が富化されている。すなわち、第2酢酸流の酢酸濃度は第1酢酸流の酢酸濃度よりも高い。第2酢酸流の酢酸濃度は、第1酢酸流の酢酸濃度より高い限りにおいて、例えば99.1〜99.99質量%である。また、第2酢酸流は、上記のように、酢酸に加えて、例えば、プロピオン酸、ヨウ化水素などを含みうる。本実施形態では、側流を抜き取る場合、蒸留塔5からの側流の抜き取り位置は、蒸留塔5の高さ方向において、蒸留塔5への第1酢酸流の導入位置よりも低い。
本発明では、脱水塔の材質を特定の材質とし、脱水塔仕込液中の金属イオン濃度を特定値以下とするので、脱水塔の側流あるいは缶出流として得られる第2酢酸流中の金属イオン濃度を著しく低減できる。前述したように、第2酢酸流中の鉄イオン濃度は、例えば21000質量ppb未満、好ましくは16000質量ppb未満、より好ましくは6000質量ppb未満、さらに好ましくは2000質量ppb未満、特に好ましくは200質量ppb未満である。第2酢酸流中のクロムイオン濃度は、例えば7100質量ppb未満、好ましくは5000質量ppb未満、より好ましくは3000質量ppb未満、さらに好ましくは1000質量ppb未満、特に好ましくは100質量ppb未満である。第2酢酸流中のニッケルイオン濃度は、例えば4000質量ppb未満、好ましくは3000質量ppb未満、より好ましくは1800質量ppb未満、さらに好ましくは700質量ppb未満、特に好ましくは70質量ppb未満である。第2酢酸流中のモリブデンイオン濃度は、例えば3000質量ppb未満、好ましくは2500質量ppb未満、より好ましくは1500質量ppb未満、さらに好ましくは500質量ppb未満、特に好ましくは50質量ppb未満である。第2酢酸流中の亜鉛イオン濃度は、例えば1000質量ppb未満、好ましくは850質量ppb未満、より好ましくは710質量ppb未満、さらに好ましくは410質量ppb未満、特に好ましくは150質量ppb未満である。なお、第2酢酸流中のヨウ化ヘキシル濃度は、例えば0.2〜10000質量ppb、通常1〜1000質量ppbであり、2〜100質量ppb(例えば3〜50質量ppb、特に5〜40質量ppb)であることが多い。
ライン34を通流する第2酢酸流に、ライン56(水酸化カリウム導入ライン)を通じて、水酸化カリウムを供給ないし添加することができる。水酸化カリウムは、例えば水溶液等の溶液として供給ないし添加できる。第2酢酸流に対する水酸化カリウムの供給ないし添加によって第2酢酸流中のヨウ化水素を減少できる。具体的には、ヨウ化水素は水酸化カリウムと反応してヨウ化カリウムと水が生じる。そのことによって、ヨウ化水素に起因する蒸留塔等の装置の腐食を低減できる。
蒸留塔6は、第3蒸留工程を行うためのユニットであり、本実施形態ではいわゆる脱高沸塔に位置付けられる。第3蒸留工程は、蒸留塔6に連続的に導入される第2酢酸流を精製処理して酢酸を更に精製するための工程である。蒸留塔6は、例えば、棚段塔及び充填塔などの精留塔よりなる。蒸留塔6として棚段塔を採用する場合、その理論段は例えば5〜50段であり、還流比は理論段数に応じて例えば0.2〜3000である。第3蒸留工程にある蒸留塔6の内部において、塔頂圧力は例えば−100〜150kPa(ゲージ圧)に設定され、塔底圧力は、塔頂圧力より高く、例えば−90〜180kPa(ゲージ圧)に設定される。第3蒸留工程にある蒸留塔6の内部において、塔頂温度は、例えば、設定塔頂圧力での水の沸点より高く且つ酢酸の沸点より低い温度であって50〜150℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点より高い温度であって70〜160℃に設定される。
蒸留塔6の塔頂部からは、オーバーヘッド流としての蒸気がライン38に連続的に抜き取られる。蒸留塔6の塔底部からは、缶出液がライン39に連続的に抜き取られる。6bはリボイラーである。蒸留塔6における塔頂部と塔底部との間の高さ位置からは、側流(液体又は気体)がライン46に連続的に抜き取られる。蒸留塔6の高さ方向において、蒸留塔6に対するライン46の連結位置は、図示されているように、蒸留塔6に対するライン34の連結位置より上方であってもよいが、蒸留塔6に対するライン34の連結位置より下方であってもよいし、蒸留塔6に対するライン34の連結位置と同じであってもよい。
蒸留塔6の塔頂部から抜き取られる蒸気は、酢酸よりも沸点の低い成分(低沸点成分)を蒸留塔6からの上記の缶出液と比較して多く含み、酢酸のほか、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール及びギ酸などを含む。このような蒸気は、ライン38を通じてコンデンサ6aへと連続的に導入される。
コンデンサ6aは、蒸留塔6からの蒸気を、冷却して部分的に凝縮させることによって凝縮分とガス分とに分ける。凝縮分は、酢酸のほか、例えば、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、ジメチルエーテル、メタノール及びギ酸などを含む。凝縮分の少なくとも一部については、コンデンサ6aからライン40を通じて蒸留塔6へと連続的に還流される。凝縮分の一部(留出分)については、コンデンサ6aからライン40,41,42を通じて、蒸留塔5へと導入される前のライン27中の第1酢酸流へとリサイクルすることが可能である。これと共に或はこれに代えて、凝縮分の一部(留出分)については、コンデンサ6aからライン40,41,43を通じて、蒸留塔3へと導入される前のライン21中の蒸気流へとリサイクルすることが可能である。また、凝縮分の一部(留出分)については、コンデンサ6aからライン40,44,23を通じて、反応槽1へリサイクルしてもよい。さらに、コンデンサ6aからの留出分の一部については、前述したように、スクラバーシステム8へと供給して当該システム内で吸収液として使用することが可能である。スクラバーシステム8では、有用分を吸収した後のガス分は装置外に排出され、そして、有用成分を含む液分がスクラバーシステム8からリサイクルライン48,23を通じて反応槽1へと導入ないしリサイクルされて再利用される。加えて、コンデンサ6aからの留出分の一部については、装置内で稼働する各種ポンプ(図示略)へと図外のラインを通じて導いて当該ポンプのシール液として使用してもよい。更に加えて、コンデンサ6aからの留出分の一部については、ライン40に付設される抜き取りラインを通じて、定常的に装置外へ抜き取ってもよいし、非定常的に必要時において装置外へ抜き取ってもよい。凝縮分の一部(留出分)が蒸留塔6での蒸留処理系から除かれる場合、その留出分の量(留出量)は、コンデンサ6aで生ずる凝縮液の例えば0.01〜30質量%であり、好ましくは0.1〜10質量%、より好ましくは0.3〜5質量%、より好ましくは0.5〜3質量%である。一方、コンデンサ6aで生じるガス分は、例えば、一酸化炭素、水素、メタン、二酸化炭素、窒素、酸素、ヨウ化メチル、ヨウ化水素、水、酢酸メチル、酢酸、ジメチルエーテル、メタノール、アセトアルデヒド及びギ酸などを含み、コンデンサ6aからライン45,15を通じてスクラバーシステム8へと供給される。
蒸留塔6の塔底部からライン39を通じて抜き取られる缶出液は、酢酸よりも沸点の高い成分(高沸点成分)を蒸留塔6からの上記のオーバーヘッド流と比較して多く含み、例えばプロピオン酸、酢酸カリウム等の酢酸塩(ライン34等に水酸化カリウム等のアルカリを供給した場合)などを含む。また、蒸留塔6の塔底部からライン39を通じて抜き取られる缶出液は、この酢酸製造装置の構成部材の内壁で生じて遊離した金属などの腐食金属等、及び腐食性ヨウ素に由来するヨウ素と当該腐食金属等との化合物も含む。このような缶出液は、本実施形態では酢酸製造装置外に排出される。
蒸留塔6からライン46に連続的に抜き取られる側流は、第3酢酸流として、次のイオン交換樹脂塔7に連続的に導入されることとなる。この第3酢酸流は、蒸留塔6に連続的に導入される第2酢酸流よりも酢酸が富化されている。すなわち、第3酢酸流の酢酸濃度は第2酢酸流の酢酸濃度よりも高い。第3酢酸流の酢酸濃度は、第2酢酸流の酢酸濃度より高い限りにおいて、例えば99.8〜99.999質量%である。なお、第3酢酸流中のヨウ化ヘキシル濃度は、例えば0.2〜10000質量ppb、通常1〜1000質量ppbであり、2〜100質量ppb(例えば3〜50質量ppb、特に5〜40質量ppb)であることが多い。本実施形態では、蒸留塔6からの側流の抜き取り位置は、蒸留塔6の高さ方向において、蒸留塔6への第2酢酸流の導入位置よりも高い。他の実施形態では、蒸留塔6からの側流の抜き取り位置は、蒸留塔6の高さ方向において、蒸留塔6への第2酢酸流の導入位置と同じかそれよりも低い。なお、蒸留塔6は、単蒸留器(蒸発器)でも代用可能であり、また、蒸留塔5で不純物除去を十分に行えば、蒸留塔6は省略できる。
イオン交換樹脂塔7は、吸着除去工程を行うための精製ユニットである。この吸着除去工程は、イオン交換樹脂塔7に連続的に導入される第3酢酸流に微量含まれる主にヨウ化アルキル(例えば、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨウ化ヘキシル、ヨウ化デシルなど)を吸着除去して酢酸を更に精製するための工程である。イオン交換樹脂塔7においては、ヨウ化アルキルに対する吸着能を有するイオン交換樹脂が塔内に充填されてイオン交換樹脂床をなす。そのようなイオン交換樹脂としては、例えば、交換基たるスルホン酸基、カルボキシル基、ホスホン酸基等における脱離性のプロトンの一部が銀や銅などの金属で置換された陽イオン交換樹脂を挙げることができる。吸着除去工程では、例えばこのようなイオン交換樹脂が充填されたイオン交換樹脂塔7の内部を第3酢酸流(液体)が通流し、その通流過程において、第3酢酸流中のヨウ化アルキル等の不純物がイオン交換樹脂に吸着されて第3酢酸流から除去される。吸着除去工程にあるイオン交換樹脂塔7において、内部温度は例えば18〜100℃であり、酢酸流の通液速度[樹脂容積1m3当たりの酢酸処理量(m3/h)]は、例えば3〜15m3/h・m3(樹脂容積)である。
イオン交換樹脂塔7の下端部からライン47へと第4酢酸流が連続的に導出される。第4酢酸流の酢酸濃度は第3酢酸流の酢酸濃度よりも高い。すなわち、第4酢酸流は、イオン交換樹脂塔7に連続的に導入される第3酢酸流よりも酢酸が富化されている。第4酢酸流の酢酸濃度は、第3酢酸流の酢酸濃度より高い限りにおいて例えば99.9〜99.999質量%又はそれ以上である。なお、第4酢酸流中のヨウ化ヘキシル濃度は、通常1質量ppb以下であるが、例えば0〜30質量ppb、特に0.01〜10質量ppb(例えば0.1〜5質量ppb)であってもよい。本製造方法においては、この第4酢酸流を図外の製品タンクに貯留することができる。
この酢酸製造装置においては、イオン交換樹脂塔7からの上記の第4酢酸流を更に精製するための精製ユニットとして、蒸留塔であるいわゆる製品塔ないし仕上塔が設けられてもよい。そのような製品塔が設けられる場合、当該製品塔は、例えば、棚段塔及び充填塔などの精留塔よりなる。製品塔として棚段塔を採用する場合、その理論段は例えば5〜50段であり、還流比は理論段数に応じて例えば0.5〜3000である。精製工程にある製品塔の内部において、塔頂圧力は例えば−195〜150kPa(ゲージ圧)に設定され、塔底圧力は、塔頂圧力より高く、例えば−190〜180kPa(ゲージ圧)に設定される。製品塔の内部において、塔頂温度は、例えば、設定塔頂圧力での水の沸点より高く且つ酢酸の沸点より低い温度であって50〜150℃に設定され、塔底温度は、例えば、設定塔底圧力での酢酸の沸点より高い温度であって70〜160℃に設定される。なお、製品塔ないし仕上塔は、単蒸留器(蒸発器)でも代用可能である。
製品塔を設ける場合、イオン交換樹脂塔7からの第4酢酸流(液体)の全部又は一部が、製品塔に対して連続的に導入される。そのような製品塔の塔頂部からは、微量の低沸点成分(例えば、ヨウ化メチル、水、酢酸メチル、ジメチルエーテル、クロトンアルデヒド、アセトアルデヒド及びギ酸など)を含むオーバーヘッド流としての蒸気が連続的に抜き取られる。この蒸気は、所定のコンデンサにて凝縮分とガス分とに分けられる。凝縮分の一部は製品塔へと連続的に還流され、凝縮分の他の一部は反応槽1へとリサイクルされるか、系外に廃棄されるか、あるいはその両方であってもよく、ガス分はスクラバーシステム8へと供給される。製品塔の塔底部からは、微量の高沸点成分を含む缶出液が連続的に抜き取られ、この缶出液は、例えば蒸留塔6へ導入される前のライン34中の第2酢酸流へとリサイクルされる。製品塔における塔頂部と塔底部との間の高さ位置からは、側流(液体)が第5酢酸流として連続的に抜き取られる。製品塔からの側流の抜き取り位置は、製品塔の高さ方向において、例えば、製品塔への第4酢酸流の導入位置よりも低い。第5酢酸流は、製品塔に連続的に導入される第4酢酸流よりも酢酸が富化されている。すなわち、第5酢酸流の酢酸濃度は第4酢酸流の酢酸濃度よりも高い。第5酢酸流の酢酸濃度は、第4酢酸流の酢酸濃度より高い限りにおいて例えば99.9〜99.999質量%又はそれ以上である。なお、第5酢酸流中のヨウ化ヘキシル濃度は、通常1質量ppb以下であるが、例えば0〜30質量ppb、特に0.01〜10質量ppb(例えば0.1〜5質量ppb)であってもよい。この第5酢酸流は、例えば、図外の製品タンクに貯留される。なお、イオン交換樹脂塔7は、蒸留塔6の下流に設置する代わりに(又はそれに加えて)、製品塔の下流に設置し、製品塔出の酢酸流を処理してもよい。
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、%、ppm、ppbはすべて質量基準である。なお、水濃度はカールフィッシャー水分測定法、金属イオン濃度はICP分析(又は原子吸光分析)、その他の成分の濃度はガスクロマトグラフィーにより測定した。
比較例1
酢酸製造における連続反応プロセスにおいて、メタノールと一酸化炭素とをカルボニル化反応器で連続的に反応させ、前記反応器からの反応混合物をフラッシャーに連続的に供給し、フラッシュ蒸留により生成した酢酸、酢酸メチル、ヨウ化メチル、水、及びヨウ化水素を少なくとも含む揮発性成分を第1の蒸留塔(脱低沸塔)に供給し、オーバーヘッドとして第1の低沸点成分を分離し、酢酸より沸点の高い成分を多く含む流れを塔底から缶出液として分離した。オーバーヘッド液(第1の低沸点成分)は直接反応器にリサイクルし、塔底からの缶出液はフラッシャーの缶出液と混合して反応器にリサイクルした。そして前記第1の蒸留塔の側流から第1の液状流分を抜き取り、ステンレス製(SUS316:Mn2%以下、Ni10〜14%、Cr16〜18%、Mo2〜3%、Fe50%以上)の材質からなる配管を通して、SUS316の材質からなる第2の蒸留塔(脱水塔)(実段数:50段、仕込段と塔頂蒸気抜き取り段との段間隔:実段で15段)に連続的に仕込んだ。前記第1の液状流分の組成は、ヨウ化メチル2%、酢酸メチル2%、水1%、鉄イオン9100ppb、クロムイオン4000ppb、ニッケルイオン2500ppb、モリブデンイオン1700ppb、亜鉛イオン410ppb、ヨウ化ヘキシル51ppb、残り酢酸(但し、微量の不純物を含む)である。脱水塔では、塔頂温度165℃、塔底温度175℃の条件で蒸留し、水を含んだ第2の低沸点成分を塔頂に濃縮し、第2の液状流分(精製酢酸)を缶出液として得た。塔頂からの留出液は反応器へリサイクルした。脱水塔への仕込量を1としたとき、缶出液の量は0.7、塔頂からの留出液の量は0.3であった。缶出液の組成は、水500ppm、鉄イオン21000ppb、クロムイオン8300ppb、ニッケルイオン5200ppb、モリブデンイオン2800ppb、亜鉛イオン590ppb、ヨウ化ヘキシル50ppb、残り酢酸(但し、微量の不純物を含む)であった。缶出液を40〜50℃に冷却した後、長さ2mの銀置換イオン交換樹脂(IER)カラムを通して、酢酸中のヨウ化ヘキシルを吸着除去した。缶出液の通液速度[樹脂容積1m3当たりの缶出液処理量(m3/h)]は、3.8m3/h・m3(樹脂容積)であった。銀置換イオン交換樹脂処理後の製品酢酸の銀イオン濃度は41ppb、鉄イオン濃度は100ppb、クロムイオン濃度は15ppb、ニッケルイオン濃度は10ppb、モリブデンイオン濃度は6ppb、亜鉛イオン濃度は7ppb、ヨウ化ヘキシル濃度は5ppb未満(検出限界以下)であった。この操作でIER樹脂寿命(樹脂出口のヨウ化ヘキシル濃度が5ppbを超えるまでの運転時間)は1.2年であった。
比較例2
脱水塔の材質をニッケル基合金[ハステロイB2(HB2):Mo28%、Ni69%、Cr1%以下、Fe2%以下、Co1%以下、Mn1%以下]に変更し、脱水塔の操作条件を、塔頂温度160℃、塔底温度170℃とし、脱水塔へ供給する仕込液の組成を、ヨウ化メチル2%、酢酸メチル2%、水1%、鉄イオン13700ppb、クロムイオン6000ppb、ニッケルイオン3800ppb、モリブデンイオン2600ppb、亜鉛イオン620ppb、ヨウ化ヘキシル51ppb、残り酢酸(但し、微量の不純物を含む)とした以外は比較例1と同様の実験を行った。
脱水塔の缶出液の組成は、水490ppm、鉄イオン19700ppb、クロムイオン8700ppb、ニッケルイオン7000ppb、モリブデンイオン4300ppb、亜鉛イオン890ppb、ヨウ化ヘキシル51ppb、残り酢酸(但し、微量の不純物を含む)であった。また、銀置換イオン交換樹脂処理後の製品酢酸の銀イオン濃度は30ppb、鉄イオン濃度は80ppb、クロムイオン濃度は16ppb、ニッケルイオン濃度は15ppb、モリブデンイオン濃度は9ppb、亜鉛イオン濃度は9ppb、ヨウ化ヘキシル濃度は5ppb未満(検出限界以下)であった。この操作でIER樹脂寿命は1.1年であった。
比較例3
脱水塔の操作条件を、塔頂温度160℃、塔底温度170℃とした以外は比較例1と同様の実験を行った。
脱水塔の缶出液の組成は、水490ppm、鉄イオン19800ppb、クロムイオン7900ppb、ニッケルイオン4900ppb、モリブデンイオン2700ppb、亜鉛イオン590ppb、ヨウ化ヘキシル49ppb、残り酢酸(但し、微量の不純物を含む)であった。また、銀置換イオン交換樹脂処理後の製品酢酸の銀イオン濃度は34ppb、鉄イオン濃度は85ppb、クロムイオン濃度は14ppb、ニッケルイオン濃度は9ppb、モリブデンイオン濃度は7ppb、亜鉛イオン濃度は5ppb、ヨウ化ヘキシル濃度は5ppb未満(検出限界以下)であった。この操作でIER樹脂寿命は1.2年であった。
実施例1
脱水塔の材質をニッケル基合金[ハステロイB2(HB2):Mo28%、Ni69%、Cr1%以下、Fe2%以下、Co1%以下、Mn1%以下]に変更し、脱水塔の操作条件を、塔頂温度160℃、塔底温度170℃とした以外は比較例1と同様の実験を行った。
脱水塔の缶出液の組成は、水490ppm、鉄イオン13200ppb、クロムイオン5800ppb、ニッケルイオン5200ppb、モリブデンイオン3100ppb、亜鉛イオン590ppb、ヨウ化ヘキシル52ppb、残り酢酸(但し、微量の不純物を含む)であった。また、銀置換イオン交換樹脂処理後の製品酢酸の銀イオン濃度は18ppb、鉄イオン濃度は25ppb、クロムイオン濃度は9ppb、ニッケルイオン濃度は8ppb、モリブデンイオン濃度は6ppb、亜鉛イオン濃度は7ppb、ヨウ化ヘキシル濃度は5ppb未満(検出限界以下)であった。この操作でIER樹脂寿命は1.8年であった。
実施例2
第1の蒸留塔(脱低沸塔)の側流から抜き取った第1の液状流分を、ニッケル基合金[ハステロイB2(HB2)]の材質からなる配管を通して得た、ヨウ化メチル2%、酢酸メチル2%、水1%、鉄イオン500ppb、クロムイオン280ppb、ニッケルイオン190ppb、モリブデンイオン110ppb、亜鉛イオン410ppb、ヨウ化ヘキシル51ppb、残り酢酸(但し、微量の不純物を含む)の混合液を脱水塔へ供給する仕込液とした以外は実施例1と同様の実験を行った。
脱水塔の缶出液の組成は、水490ppm、鉄イオン770ppb、クロムイオン420ppb、ニッケルイオン1900ppb、モリブデンイオン800ppb、亜鉛イオン590ppb、ヨウ化ヘキシル50ppb、残り酢酸(但し、微量の不純物を含む)であった。また、銀置換イオン交換樹脂処理後の製品酢酸の銀イオン濃度は5ppb、鉄イオン濃度は6ppb、クロムイオン濃度は6ppb、ニッケルイオン濃度は7ppb、モリブデンイオン濃度は4ppb、亜鉛イオン濃度は4ppb、ヨウ化ヘキシル濃度は5ppb未満(検出限界以下)であった。この操作でIER樹脂寿命は6.1年であった。
実施例3
脱水塔の材質をニッケル基合金[ハステロイC(HC276):Mo16%、Ni57%前後、Cr16%、Fe5%、Co2.5%以下、Mn1%以下]に変更した以外は実施例1と同様の実験を行った。
脱水塔の缶出液の組成は、水520ppm、鉄イオン13300ppb、クロムイオン6400ppb、ニッケルイオン5800ppb、モリブデンイオン3100ppb、亜鉛イオン590ppb、ヨウ化ヘキシル48ppb、残り酢酸(但し、微量の不純物を含む)であった。また、銀置換イオン交換樹脂処理後の製品酢酸の銀イオン濃度は16ppb、鉄イオン濃度は28ppb、クロムイオン濃度は12ppb、ニッケルイオン濃度は13ppb、モリブデンイオン濃度は7ppb、亜鉛イオン濃度は4ppb、ヨウ化ヘキシル濃度は5ppb未満(検出限界以下)であった。この操作でIER樹脂寿命は1.7年であった。
実施例4
脱水塔の操作条件を、塔頂温度155℃、塔底温度165℃とした以外は比較例1と同様の実験を行った。
脱水塔の缶出液の組成は、水490ppm、鉄イオン13100ppb、クロムイオン5800ppb、ニッケルイオン3600ppb、モリブデンイオン2500ppb、亜鉛イオン590ppb、ヨウ化ヘキシル50ppb、残り酢酸(但し、微量の不純物を含む)であった。また、銀置換イオン交換樹脂処理後の製品酢酸の銀イオン濃度は13ppb、鉄イオン濃度は23ppb、クロムイオン濃度は8ppb、ニッケルイオン濃度は7ppb、モリブデンイオン濃度は5ppb、亜鉛イオン濃度は5ppb、ヨウ化ヘキシル濃度は5ppb未満(検出限界以下)であった。この操作でIER樹脂寿命は2.0年であった。
[結果の考察]
実施例1から分かるように、脱水塔への仕込液中の特定金属イオン濃度を一定値以下とし、かつ脱水塔の材質を耐食性の高いニッケル基合金とすることにより、脱水塔に流入する金属イオンの量が少なく、しかも脱水塔からの腐食金属の溶出が抑えられるため、脱水塔から得られる精製酢酸中の金属イオン濃度を大幅に低減できる。これにより、その後の有機ヨウ素化合物の吸着除去工程に流入する金属イオンの量を低減でき、銀置換イオン交換樹脂(IER)の銀イオンと他の金属イオンの交換量が低下して、IERの寿命は1.8年と非常に長いものであった。また、IER処理後の製品酢酸中の金属イオン濃度が低下し、併せて銀イオンの溶出も低減されるので、製品酢酸の品質が大きく向上する。これに対し、比較例2では脱水塔の材質は実施例1と同じニッケル基合金であるが、脱水塔に流入する金属イオンの量が多いため、吸着除去工程に流入する金属イオンが多く、IERの寿命は1.1年と短い。また、比較例3では脱水塔への仕込液中の金属イオン濃度は実施例1と同じであるが、脱水塔の材質がステンレス鋼であるため、脱水塔から腐食金属が溶出して、吸着除去工程に流入する金属イオン量が多く、そのためIERの寿命は1.2年と低い結果となった。
実施例1と実施例2より、脱水塔が同じ材質であっても、脱水塔仕込液中の腐食金属濃度を制御してより低下させると、脱水塔から得られる精製酢酸中の腐食金属濃度も低下し、吸着除去工程で用いる銀置換イオン交換樹脂の樹脂寿命が大きく向上した。また、IER処理後の製品酢酸中の腐食金属イオン濃度及び銀イオン濃度も低下するので、酢酸の品質がより向上する。なお、イオン交換樹脂カラム仕込液中の金属濃度が大きく開いているにもかかわらず、イオン交換樹脂カラム出口の金属イオン濃度があまり変わらないのは、イオン交換樹脂の交換容量が十分に高く、イオン交換樹脂カラムに流入する金属イオンをほとんど全て除去している結果と考える。更に長時間の実験を行えば、イオン交換樹脂カラム仕込液の金属イオン濃度が高い実施例1は金属イオン濃度の低い実施例2と比較して、より早い段階でイオン交換樹脂カラム出口の金属イオン濃度が増加してくると考えられる。
実施例1と実施例3より、脱水塔の材質として、ニッケル基合金でも耐腐食性のより高い「HB2」を使用した方が、腐食金属の溶出を抑制でき、脱水塔から得られる精製酢酸の腐食金属イオン濃度は低下し、IER樹脂寿命及び製品酢酸の品質が向上する。
実施例1と実施例4より、脱水塔の操作温度を低下させると、腐食金属の溶出量が低下し、イオン交換樹脂の樹脂寿命が向上する。
なお、亜鉛は蒸留塔材質に含まれていないため、亜鉛イオンについてはいずれの条件でも脱水塔での濃縮による濃縮倍率に見合った濃度上昇のみであり、脱水塔への仕込みの亜鉛イオンと精製後の酢酸中の亜鉛イオンの絶対量は同じであった。
上記比較例1〜3及び実施例1〜4を総合すると、イオン交換樹脂カラム仕込液の金属イオン濃度の低下にほぼ比例してイオン交換樹脂の樹脂寿命が向上することが分かる。なお、上記樹脂寿命はイオン交換樹脂カラム仕込液の金属イオン濃度と完全には比例しない。これは、イオン交換樹脂カラム仕込液中のヨウ化ヘキシル等の有機ヨウ素化合物の量やイオン交換樹脂から酢酸中に溶出する銀の量も上記樹脂寿命に影響するためである。ただ、イオン交換樹脂カラム仕込液の金属イオン濃度が樹脂寿命低下の主原因の1つであることは分かる。
以上のまとめとして、本発明の構成及びそのバリエーションを以下に付記しておく。
[1]金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
前記カルボニル化反応工程で得られた反応混合物を蒸発槽において蒸気流と残液流とに分離する蒸発工程と、
前記蒸気流を蒸留に付して、ヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富むオーバーヘッド流と、酢酸に富む第1酢酸流とに分離する脱低沸工程と、
前記第1酢酸流を蒸留に付して、水に富むオーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程と、
前記第2酢酸流、又は前記第2酢酸流をさらに精製したより酢酸に富む酢酸流をイオン交換樹脂で処理する吸着除去工程と、
を備えた酢酸の製造方法であって、
前記脱水工程における蒸留塔の材質をニッケル基合金又はジルコニウムとし、且つ前記脱水工程における蒸留塔の仕込液中の金属イオン濃度を、鉄イオン10000質量ppb未満、クロムイオン5000質量ppb未満、ニッケルイオン3000質量ppb未満、且つモリブデンイオン2000質量ppb未満とすることを特徴とする酢酸の製造方法。
[2]触媒系がさらにイオン性ヨウ化物を含む[1]記載の酢酸の製造方法。
[3]脱水工程における蒸留塔の仕込液中の亜鉛イオン濃度が1000質量ppb未満(好ましくは800質量ppb未満、より好ましくは650質量ppb未満、さらに好ましくは500質量ppb未満、特に好ましくは410質量ppb未満、とりわけ200質量ppb未満)である[1]又は[2]記載の酢酸の製造方法。
[4]脱水工程における蒸留塔の操作条件が、塔頂温度165℃未満、塔底温度175℃未満である[1]〜[3]のいずれか1つに記載の酢酸の製造方法。
[5]脱水工程で得られる第2酢酸流中の鉄イオン濃度が21000質量ppb未満(好ましくは16000質量ppb未満、より好ましくは6000質量ppb未満、さらに好ましくは2000質量ppb未満、特に好ましくは200質量ppb未満)である[1]〜[4]のいずれか1つに記載の酢酸の製造方法。
[6]脱水工程で得られる第2酢酸流中の金属イオン濃度が、鉄イオン21000質量ppb未満(好ましくは16000質量ppb未満、より好ましくは6000質量ppb未満、さらに好ましくは2000質量ppb未満、特に好ましくは200質量ppb未満)、クロムイオン7100質量ppb未満(好ましくは5000質量ppb未満、より好ましくは3000質量ppb未満、さらに好ましくは1000質量ppb未満、特に好ましくは100質量ppb未満)、ニッケルイオン4000質量ppb未満(好ましくは3000質量ppb未満、より好ましくは1800質量ppb未満、さらに好ましくは700質量ppb未満、特に好ましくは70質量ppb未満)、モリブデンイオン3000質量ppb未満(好ましくは2500質量ppb未満、より好ましくは1500質量ppb未満、さらに好ましくは500質量ppb未満、特に好ましくは50質量ppb未満)、且つ亜鉛イオン1000質量ppb未満(好ましくは850質量ppb未満、より好ましくは710質量ppb未満、さらに好ましくは410質量ppb未満、特に好ましくは150質量ppb未満)である[1]〜[5]のいずれか1つに記載の酢酸の製造方法。
[7] 脱水工程における蒸留塔の仕込液供給段と塔頂蒸気抜き取り段との段間隔が、実段数で1段以上(好ましくは3段以上、より好ましくは5段以上、さらに好ましくは8段以上、特に好ましくは10段以上)である[1]〜[6]のいずれか1つに記載の酢酸の製造方法。
[8]脱水工程における蒸留塔への仕込配管の材質がニッケル基合金又はジルコニウムである[1]〜[7]のいずれか1つに記載の酢酸の製造方法。
[9]脱水工程における蒸留塔の仕込液中の鉄イオン濃度が9000質量ppb未満(好ましくは5000質量ppb未満、より好ましくは3000質量ppb未満、さらに好ましくは1500質量ppb未満、特に好ましくは800質量ppb未満、とりわけ400質量ppb未満)である[1]〜[8]のいずれか1つに記載の酢酸の製造方法。
[10]脱水工程における蒸留塔の仕込液中のクロムイオン濃度が4000質量ppb未満(好ましくは2500質量ppb未満、より好ましくは1500質量ppb未満、さらに好ましくは750質量ppb未満、特に好ましくは400質量ppb未満、とりわけ200ppb未満)である[1]〜[9]のいずれか1つに記載の酢酸の製造方法。
[11]脱水工程における蒸留塔の仕込液中のニッケルイオン濃度が2500質量ppb未満(好ましくは2000質量ppb未満、より好ましくは1000質量ppb未満、さらに好ましくは500質量ppb未満、特に好ましくは250質量ppb未満、とりわけ150質量ppb未満)である[1]〜[10]のいずれか1つに記載の酢酸の製造方法。
[12]脱水工程における蒸留塔の仕込液中のモリブデンイオン濃度が1700質量ppb未満(好ましくは1200質量ppb未満、より好ましくは700質量ppb未満、さらに好ましくは350質量ppb未満、特に好ましくは170質量ppb未満)である[1]〜[11]のいずれか1つに記載の酢酸の製造方法。
[13]脱水工程における蒸留塔の仕込液中のヨウ化ヘキシル濃度が0.2〜10000質量ppb(好ましくは1〜1000質量ppb、より好ましくは2〜100質量ppb、さらに好ましくは3〜50質量ppb、特に好ましくは5〜40質量ppb)である[1]〜[12]のいずれか1つに記載の酢酸の製造方法。
[14]脱水工程で得られる第2酢酸流中のヨウ化ヘキシル濃度が0.2〜10000質量ppb(好ましくは1〜1000質量ppb、より好ましくは2〜100質量ppb、さらに好ましくは3〜50質量ppb、特に好ましくは5〜40質量ppb)である[1]〜[13]のいずれか1つに記載の酢酸の製造方法。
[15]脱水工程における蒸留塔の仕込液中の金属イオン濃度を、(i)脱水塔への仕込配管の材質を高耐腐食性金属にする、(ii)反応槽の出口から脱水塔の入口までの箇所に前記金属イオンを吸着除去するためのイオン交換樹脂(特に陽イオン交換樹脂)塔を設ける、及び、(iii)反応槽に供給するメタノールとして金属イオン含有量(例えば亜鉛イオン含有量)の極めて少ないメタノールを用いる、からなる群より選択される1以上の方法により制御する[1]〜[14]のいずれか1つに記載の酢酸の製造方法。
[16]前記反応混合物中のヨウ化水素の濃度が、反応混合物の液相全体に対して0.01〜2質量%である[1]〜[15]のいずれか1つに記載の酢酸の製造方法。
[17]前記反応混合物中のヨウ化ヘキシルの濃度が、反応混合物の液相全体に対して0.1〜10000質量ppb(好ましくは0.5〜1000質量ppb、より好ましくは1〜100質量ppb、さらに好ましくは2〜50質量ppb)である[1]〜[16]のいずれか1つに記載の酢酸の製造方法。
[18]前記蒸気流のヨウ化ヘキシル濃度が0.1〜10000質量ppb(好ましくは0.5〜1000質量ppb、より好ましくは1〜100質量ppb、さらに好ましくは2〜50質量ppb)である[1]〜[17]のいずれか1つに記載の酢酸の製造方法。
[19] 材質がニッケル基合金又はジルコニウムであり、仕込液供給段と塔頂蒸気抜き取り段との段間隔が実段数で1段以上である蒸留塔に、鉄イオン濃度10000質量ppb未満、クロムイオン濃度5000質量ppb未満、ニッケルイオン濃度3000質量ppb未満、モリブデンイオン濃度2000質量ppb未満、亜鉛イオン濃度1000質量ppb未満、ヨウ化ヘキシル濃度510質量ppb未満、酢酸濃度80質量%以上の粗酢酸を、材質がニッケル基合金又はジルコニウムである仕込配管を通じて前記仕込液供給段に仕込み、塔頂温度165℃未満、塔底温度175℃未満で蒸留し、水に富むオーバーヘッドと、鉄イオン濃度21000質量ppb未満、クロムイオン濃度7100質量ppb未満、ニッケルイオン濃度4000質量ppb未満、モリブデンイオン濃度3000質量ppb未満、亜鉛イオン濃度1000質量ppb未満の精製酢酸を得ることを特徴とする酢酸の製造方法。
[20]前記粗酢酸中の鉄イオン濃度が9000質量ppb未満(好ましくは5000質量ppb未満、より好ましくは3000質量ppb未満、さらに好ましくは1500質量ppb未満、特に好ましくは800質量ppb未満、とりわけ400質量ppb未満)である[19]記載の酢酸の製造方法。
[21]前記粗酢酸中のクロムイオン濃度が4000質量ppb未満(好ましくは2500質量ppb未満、より好ましくは1500質量ppb未満、さらに好ましくは750質量ppb未満、特に好ましくは400質量ppb未満、とりわけ200質量ppb未満)である[19]又は[20]記載の酢酸の製造方法。
[22]前記粗酢酸中のニッケルイオン濃度が2500質量ppb未満(好ましくは2000質量ppb未満、より好ましくは1000質量ppb未満、さらに好ましくは500質量ppb未満、特に好ましくは250質量ppb未満、とりわけ150質量ppb未満)である[19]〜[21]のいずれか1つに記載の酢酸の製造方法。
[23]前記粗酢酸中のモリブデンイオン濃度が1700質量ppb未満(好ましくは1200質量ppb未満、より好ましくは700質量ppb未満、さらに好ましくは350質量ppb未満、特に好ましくは170質量ppb未満)である[19]〜[22]のいずれか1つに記載の酢酸の製造方法。
[24]前記粗酢酸中のヨウ化ヘキシル濃度が0.2〜10000質量ppb(好ましくは1〜1000質量ppb、より好ましくは2〜100質量ppb、さらに好ましくは3〜50質量ppb、特に好ましくは5〜40質量ppb)である[19]〜[23]のいずれか1つに記載の酢酸の製造方法。
[25]前記粗酢酸中の亜鉛イオン濃度が1000質量ppb未満(好ましくは800質量ppb未満、より好ましくは650質量ppb未満、さらに好ましくは500質量ppb未満、特に好ましくは410質量ppb未満、とりわけ200質量ppb未満)である[19]〜[24]のいずれか1つに記載の酢酸の製造方法。
[26]前記精製酢酸中の鉄イオン濃度が16000質量ppb未満(好ましくは6000質量ppb未満、より好ましくは2000質量ppb未満、さらに好ましくは200質量ppb未満)である[19]〜[25]のいずれか1つに記載の酢酸の製造方法。
[27]前記精製酢酸中のクロムイオン濃度が5000質量ppb未満(好ましくは3000質量ppb未満、より好ましくは1000質量ppb未満、さらに好ましくは100質量ppb未満)である[19]〜[26]のいずれか1つに記載の酢酸の製造方法。
[28]前記精製酢酸中のニッケルイオン濃度が3000質量ppb未満(好ましくは1800質量ppb未満、より好ましくは700質量ppb未満、さらに好ましくは70質量ppb未満)である[19]〜[27]のいずれか1つに記載の酢酸の製造方法。
[29]前記精製酢酸中のモリブデンイオン濃度が2500質量ppb未満(好ましくは1500質量ppb未満、より好ましくは500質量ppb未満、さらに好ましくは50質量ppb未満)である[19]〜[28]のいずれか1つに記載の酢酸の製造方法。
[30]前記精製酢酸中の亜鉛イオン濃度が850質量ppb未満(好ましくは710質量ppb未満、より好ましくは410質量ppb未満、さらに好ましくは150質量ppb未満)である[19]〜[29]のいずれか1つに記載の酢酸の製造方法。
本発明の酢酸の製造方法は、メタノール法カルボニル化プロセス(メタノール法酢酸プロセス)による酢酸の工業的製造法として利用可能である。
1 反応槽
2 蒸発槽
3,5,6 蒸留塔
4 デカンタ
7 イオン交換樹脂塔
8 スクラバーシステム
9 アセトアルデヒド分離除去システム
16 反応混合物供給ライン
17 蒸気流排出ライン
18,19 残液流リサイクルライン
54 一酸化炭素含有ガス導入ライン
55,56 水酸化カリウム導入ライン
57 触媒循環ポンプ
91 蒸留塔(第1脱アセトアルデヒド塔)
92 抽出塔
93 蒸留塔(第2脱アセトアルデヒド塔)
94 蒸留塔(抽出蒸留塔)
95 デカンタ
96 デカンタ
97 蒸留塔(脱アセトアルデヒド塔)
98 蒸留塔(抽出蒸留塔)
99 デカンタ
200 チムニートレイ

Claims (9)

  1. 金属触媒及びヨウ化メチルを含む触媒系、並びに、酢酸、酢酸メチル、水の存在下、メタノールと一酸化炭素とを反応槽で反応させて酢酸を生成させるカルボニル化反応工程と、
    前記カルボニル化反応工程で得られた反応混合物を蒸発槽において蒸気流と残液流とに分離する蒸発工程と、
    前記蒸気流を蒸留に付して、ヨウ化メチル及びアセトアルデヒドから選択された少なくとも一種の低沸成分に富むオーバーヘッド流と、酢酸に富む第1酢酸流とに分離する脱低沸工程と、
    前記第1酢酸流を蒸留に付して、水に富むオーバーヘッド流と第1酢酸流よりも酢酸に富む第2酢酸流とに分離する脱水工程と、
    前記第2酢酸流、又は前記第2酢酸流をさらに精製したより酢酸に富む酢酸流をイオン交換樹脂で処理する吸着除去工程と、
    を備えた酢酸の製造方法であって、
    前記脱水工程における蒸留塔の材質をニッケル基合金又はジルコニウムとし、且つ前記脱水工程における蒸留塔の仕込液中の金属イオン濃度を、鉄イオン10000質量ppb未満、クロムイオン5000質量ppb未満、ニッケルイオン3000質量ppb未満、且つモリブデンイオン2000質量ppb未満とすることを特徴とする酢酸の製造方法。
  2. 触媒系がさらにイオン性ヨウ化物を含む請求項1記載の酢酸の製造方法。
  3. 脱水工程における蒸留塔の仕込液中の亜鉛イオン濃度が1000質量ppb未満である請求項1又は2記載の酢酸の製造方法。
  4. 脱水工程における蒸留塔の操作条件が、塔頂温度165℃未満、塔底温度175℃未満である請求項1〜3のいずれか1項に記載の酢酸の製造方法。
  5. 脱水工程で得られる第2酢酸流中の鉄イオン濃度が21000質量ppb未満である請求項1〜4のいずれか1項に記載の酢酸の製造方法。
  6. 脱水工程で得られる第2酢酸流中の金属イオン濃度が、鉄イオン21000質量ppb未満、クロムイオン7100質量ppb未満、ニッケルイオン4000質量ppb未満、モリブデンイオン3000質量ppb未満、且つ亜鉛イオン1000質量ppb未満である請求項1〜5のいずれか1項に記載の酢酸の製造方法。
  7. 脱水工程における蒸留塔の仕込液供給段と塔頂蒸気抜き取り段との段間隔が、実段数で1段以上である請求項1〜6のいずれか1項に記載の酢酸の製造方法。
  8. 脱水工程における蒸留塔への仕込配管の材質がニッケル基合金又はジルコニウムである請求項1〜7のいずれか1項に記載の酢酸の製造方法。
  9. 材質がニッケル基合金又はジルコニウムであり、仕込液供給段と塔頂蒸気抜き取り段との段間隔が実段数で1段以上である蒸留塔に、鉄イオン濃度10000質量ppb未満、クロムイオン濃度5000質量ppb未満、ニッケルイオン濃度3000質量ppb未満、モリブデンイオン濃度2000質量ppb未満、亜鉛イオン濃度1000質量ppb未満、ヨウ化ヘキシル濃度510質量ppb未満、酢酸濃度80質量%以上の粗酢酸を、材質がニッケル基合金又はジルコニウムである仕込配管を通じて前記仕込液供給段に仕込み、塔頂温度165℃未満、塔底温度175℃未満で蒸留し、水に富むオーバーヘッドと、鉄イオン濃度21000質量ppb未満、クロムイオン濃度7100質量ppb未満、ニッケルイオン濃度4000質量ppb未満、モリブデンイオン濃度3000質量ppb未満、亜鉛イオン濃度1000質量ppb未満の精製酢酸を得ることを特徴とする酢酸の製造方法。
JP2017536032A 2017-03-08 2017-05-25 酢酸の製造方法 Active JP6663436B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017044341 2017-03-08
JP2017044341 2017-03-08
PCT/JP2017/019576 WO2018163448A1 (ja) 2017-03-08 2017-05-25 酢酸の製造方法

Publications (2)

Publication Number Publication Date
JPWO2018163448A1 true JPWO2018163448A1 (ja) 2019-03-14
JP6663436B2 JP6663436B2 (ja) 2020-03-11

Family

ID=60037536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017536032A Active JP6663436B2 (ja) 2017-03-08 2017-05-25 酢酸の製造方法

Country Status (13)

Country Link
EP (1) EP3392233B1 (ja)
JP (1) JP6663436B2 (ja)
KR (1) KR102255684B1 (ja)
CN (1) CN110114331A (ja)
AR (1) AR111228A1 (ja)
BR (1) BR112019017819A2 (ja)
ES (1) ES2817406T3 (ja)
MX (1) MX2019010650A (ja)
MY (1) MY189056A (ja)
PH (1) PH12019550173A1 (ja)
SG (1) SG11201907167PA (ja)
TW (1) TWI720210B (ja)
WO (1) WO2018163448A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH092993A (ja) * 1995-06-21 1997-01-07 Bp Chem Internatl Ltd カルボニル化による酢酸の製造方法
JP2014508820A (ja) * 2010-12-30 2014-04-10 セラニーズ・インターナショナル・コーポレーション 酢酸生成物流の精製
WO2014115826A1 (ja) * 2013-01-25 2014-07-31 株式会社ダイセル カルボン酸の製造方法
JP2014234383A (ja) * 2013-06-05 2014-12-15 千代田化工建設株式会社 カルボニル化合物の製造方法
JP2016164137A (ja) * 2015-01-30 2016-09-08 セラニーズ・インターナショナル・コーポレーション 酢酸の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9122168D0 (en) * 1991-10-18 1991-11-27 Bp Chem Int Ltd Process
US7678940B2 (en) * 2005-07-14 2010-03-16 Daicel Chemical Industries, Ltd. Process for producing carboxylic acid
US7820855B2 (en) * 2008-04-29 2010-10-26 Celanese International Corporation Method and apparatus for carbonylating methanol with acetic acid enriched flash stream
KR101865436B1 (ko) 2010-12-24 2018-06-07 주식회사 다이셀 아세트산의 제조 방법
DK3052462T3 (en) * 2013-10-04 2018-12-17 Basf Se SELECTIVE HYDROLYSIS AND ALCOHOLYSIS OF CHLORED BENZENES
US9260369B1 (en) * 2014-11-14 2016-02-16 Celanese International Corporation Processes for producing acetic acid product having low butyl acetate content
MY181742A (en) * 2015-01-30 2021-01-06 Celanese Int Corp Processes for producing acetic acid
US9540302B2 (en) * 2015-04-01 2017-01-10 Celanese International Corporation Processes for producing acetic acid
US9540303B2 (en) * 2015-04-01 2017-01-10 Celanese International Corporation Processes for producing acetic acid
US9822055B2 (en) * 2015-06-23 2017-11-21 Lyondellbasell Acetyls, Llc Silver loaded halide removal resins for treating halide containing solutions
US9957216B2 (en) * 2015-11-13 2018-05-01 Celanese International Corporation Processes for producing acetic acid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH092993A (ja) * 1995-06-21 1997-01-07 Bp Chem Internatl Ltd カルボニル化による酢酸の製造方法
JP2014508820A (ja) * 2010-12-30 2014-04-10 セラニーズ・インターナショナル・コーポレーション 酢酸生成物流の精製
WO2014115826A1 (ja) * 2013-01-25 2014-07-31 株式会社ダイセル カルボン酸の製造方法
JP2014234383A (ja) * 2013-06-05 2014-12-15 千代田化工建設株式会社 カルボニル化合物の製造方法
JP2016164137A (ja) * 2015-01-30 2016-09-08 セラニーズ・インターナショナル・コーポレーション 酢酸の製造方法

Also Published As

Publication number Publication date
EP3392233A1 (en) 2018-10-24
PH12019550173A1 (en) 2020-06-08
SG11201907167PA (en) 2019-09-27
CN110114331A (zh) 2019-08-09
EP3392233A4 (en) 2018-10-24
BR112019017819A2 (pt) 2020-03-31
EP3392233B1 (en) 2020-07-22
TWI720210B (zh) 2021-03-01
KR20190120814A (ko) 2019-10-24
WO2018163448A1 (ja) 2018-09-13
JP6663436B2 (ja) 2020-03-11
KR102255684B1 (ko) 2021-05-26
TW201835022A (zh) 2018-10-01
MX2019010650A (es) 2019-10-21
AR111228A1 (es) 2019-06-19
MY189056A (en) 2022-01-24
ES2817406T3 (es) 2021-04-07

Similar Documents

Publication Publication Date Title
JP6481041B2 (ja) 酢酸の製造方法
WO2019229859A1 (ja) 酢酸の製造方法
JP6481042B2 (ja) 酢酸の製造方法
US10457622B2 (en) Method for producing acetic acid
JP6693959B2 (ja) 酢酸の製造方法
WO2020008505A1 (ja) 酢酸の製造方法
JP6481040B2 (ja) 酢酸の製造方法
JP6588657B1 (ja) 酢酸の製造方法
WO2018163448A1 (ja) 酢酸の製造方法
JP6481043B1 (ja) 酢酸の製造方法
JP6588658B1 (ja) 酢酸の製造方法
WO2018163449A1 (ja) 酢酸の製造方法
KR102600551B1 (ko) 아세트산의 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200214

R150 Certificate of patent or registration of utility model

Ref document number: 6663436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150