JPWO2018110521A1 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JPWO2018110521A1
JPWO2018110521A1 JP2018556672A JP2018556672A JPWO2018110521A1 JP WO2018110521 A1 JPWO2018110521 A1 JP WO2018110521A1 JP 2018556672 A JP2018556672 A JP 2018556672A JP 2018556672 A JP2018556672 A JP 2018556672A JP WO2018110521 A1 JPWO2018110521 A1 JP WO2018110521A1
Authority
JP
Japan
Prior art keywords
blast furnace
raw material
ore
sintered
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018556672A
Other languages
Japanese (ja)
Other versions
JP6519036B2 (en
Inventor
友司 岩見
友司 岩見
俊輔 野中
俊輔 野中
祥和 早坂
祥和 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2018110521A1 publication Critical patent/JPWO2018110521A1/en
Application granted granted Critical
Publication of JP6519036B2 publication Critical patent/JP6519036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/80Interaction of exhaust gases produced during the manufacture of iron or steel with other processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

焼結原料の成分濃度が変動したとしても、高炉原料の成分濃度を目標とする成分濃度に制御できる高炉操業方法を提供する。成品焼結鉱、塊鉄鉱石および副原料を含む高炉原料を高炉に装入する高炉操業方法であって、焼結原料を焼結して焼結ケーキとする焼結工程と、焼結ケーキを破砕して焼結鉱とする破砕工程と、焼結鉱を冷却する冷却工程と、冷却された焼結鉱を、成品焼結鉱と返鉱とに篩分けする篩分け工程と、冷却された焼結鉱、成品焼結鉱および返鉱の少なくとも1つの成分濃度を測定する測定工程と、高炉原料に含まれる成品焼結鉱、塊鉄鉱石および副原料の配合量を調整する調整工程と、を有し、調整工程では、測定工程で測定された成分濃度を用いて高炉原料の配合量を調整する。Provided is a blast furnace operating method capable of controlling the component concentration of a blast furnace raw material to a target component concentration even if the component concentration of the sintered raw material varies. A blast furnace operation method in which a blast furnace raw material including a sintered product ore, lump iron ore and auxiliary materials is charged into a blast furnace, and a sintering process comprising sintering a sintered raw material to form a sintered cake, A crushing step for crushing to sinter, a cooling step for cooling the sinter, a sieving step for sieving the cooled sinter into product sinter and return ore, and cooling A measurement step for measuring the concentration of at least one component of the sintered ore, the product sintered ore, and the return ore; and an adjustment step for adjusting the blending amount of the product sintered ore, the massive iron ore and the auxiliary material contained in the blast furnace raw material; In the adjustment step, the blending amount of the blast furnace raw material is adjusted using the component concentration measured in the measurement step.

Description

本発明は、高炉原料の配合量を調整する高炉操業方法に関するものであり、具体的には、高炉原料である焼結鉱の成分濃度を測定し、当該成分濃度を用いて高炉原料の配合量を調整する高炉操業方法に関する。   The present invention relates to a blast furnace operation method for adjusting the blending amount of a blast furnace raw material, specifically, measuring the component concentration of sintered ore as a blast furnace raw material, and using the component concentration, the blending amount of the blast furnace raw material The present invention relates to a method of operating a blast furnace.

高炉製鉄法では、現在、鉄源として、焼結鉱や塊鉄鉱石、ペレットなどの鉄含有原料を高炉原料として主に用いている。ここで、焼結鉱は、粒径が10mm以下の鉄鉱石の他に、製鉄所内で発生する各種ダストなどの雑鉄源と、石灰石、生石灰、スラグなどのCaO含有原料と、珪石や蛇紋岩、ドロマイトや精錬ニッケルスラグなどからなるSiO源やMgO源としての副原料と、粉コークスや無煙炭などからなる凝結材である固体燃料(炭材)とを、ドラムミキサーで水分を添加しながら混合・造粒し、焼成した塊成鉱の一種である。In the blast furnace iron manufacturing method, iron-containing raw materials such as sintered ore, lump iron ore, and pellets are mainly used as blast furnace raw materials at present. Here, the sintered ore is composed of iron ore having a particle size of 10 mm or less, various iron sources such as various kinds of dust generated in the steel mill, CaO-containing raw materials such as limestone, quicklime, and slag, and quartzite and serpentine. , A secondary material as a SiO 2 source and MgO source made of dolomite, refined nickel slag, etc. and a solid fuel (carbon material) that is a coagulation material made of powdered coke or anthracite while mixing moisture with a drum mixer -It is a kind of agglomerated minerals that have been granulated and fired.

近年、焼結鉱の原料である焼結原料に含まれる鉄分濃度が低下し、代わりにSiOやAlといった脈石成分濃度が増加しており、同種の鉱石内においても、輸入時の船毎に成分濃度が異なる場合もあるほど、産出される鉱石の成分濃度が不安定になっている。In recent years, the concentration of iron contained in sintered raw materials, which are raw materials for sintered ores, has decreased, and the concentration of gangue components such as SiO 2 and Al 2 O 3 has increased. The component concentration of the ore produced becomes more unstable as the concentration of components may differ from ship to ship.

焼結原料における成分濃度のばらつきは、成品である焼結鉱の成分濃度のばらつきに繋がる。一般的に高炉に装入される原料の成分濃度は、スラグの品位の管理等の理由から、その濃度を常に管理している。ある成分濃度が高くなれば、それを薄めるために他の成分を副原料として加える必要があるので、焼結鉱や塊鉄鉱石、ペレットの成分濃度の変化を早急に検知する必要がある。塊鉄鉱石やペレットは、そのものが成品であるため、荷揚げ等の際に成分濃度の分析が行われているが、現在の焼結鉱に関するオンラインでの成分濃度の分析は行われておらず、非常に頻度の低い回数でしか成分濃度の分析が行われていないのが実情である。   The variation in the component concentration in the sintered raw material leads to the variation in the component concentration of the sintered ore that is the product. In general, the component concentration of the raw material charged in the blast furnace is always controlled for reasons such as management of slag quality. If a certain component concentration becomes high, it is necessary to add another component as a secondary raw material in order to dilute it, so it is necessary to quickly detect changes in the component concentration of sintered ore, massive iron ore, and pellets. Since the lump ore and pellets themselves are products, the component concentration is analyzed at the time of unloading, etc., but the online component concentration analysis on the current sintered ore is not performed, The fact is that the component concentration is analyzed only at a very low frequency.

仮に、焼結鉱の成分濃度の変動により高炉原料の成分濃度が変動し目標とする成分濃度から大きく乖離し、これによりスラグの粘性が悪化した場合、スラグの粘度を維持するために溶銑温度を上昇させる必要がある。スラグの粘性の悪化は、高炉炉下部におけるスラグ排出の悪化に繋がり、これにより、ガスの流通を阻害し通気性が悪化することから溶銑温度と通気性を補填するためにコークスの配合量を増加させる必要等が生じる可能性がある。このように、高炉原料の成分濃度が目標とする成分濃度から大きく乖離した場合、高炉操業が不安定になり、種々の対策が必要になる。   If the component concentration of the blast furnace raw material fluctuates due to fluctuations in the component concentration of the sinter and greatly deviates from the target component concentration, and this causes the slag viscosity to deteriorate, the hot metal temperature is set to maintain the slag viscosity. It needs to be raised. The worsening of slag viscosity leads to worsening of slag discharge at the bottom of the blast furnace, which hinders gas flow and deteriorates air permeability, increasing the amount of coke added to compensate for hot metal temperature and air permeability. It may be necessary to make it happen. As described above, when the component concentration of the blast furnace raw material greatly deviates from the target component concentration, the blast furnace operation becomes unstable, and various measures are required.

焼結鉱の品位把握を行なう技術として、例えば、特許文献1には、焼結原料の充填状況から成品焼結鉱の被還元性や還元粉化性を予測し、高炉原料の配合割合を調整するのではなく、焼結原料の配合を調整することで、高炉原料の調整を行なう技術が開示されている。   As a technique for grasping the quality of sintered ore, for example, Patent Document 1 predicts the reducibility and reduced powdering property of the product sintered ore from the filling state of the sintered raw material, and adjusts the blending ratio of the blast furnace raw material Instead, a technique for adjusting the blast furnace raw material by adjusting the composition of the sintered raw material is disclosed.

特許文献2には、成品焼結鉱のFeOを計測し、狙った目標値との差から焼結原料の凝結材や造粒水分、排風量を調整する技術が開示されている。また、特許文献3には、同じく成品焼結鉱のFeOを計測し、狙った目標値との差から焼結機で吹き込む都市ガスの量を調整する技術が開示されている。   Patent Document 2 discloses a technique for measuring the FeO of a product sintered ore and adjusting the coagulation material, granulated moisture, and exhaust air amount of the sintered raw material from the difference from the target value. Patent Document 3 discloses a technique for measuring FeO of a sintered product ore and adjusting the amount of city gas blown by a sintering machine based on a difference from a target value.

特許文献4には、焼結機上に設置されたレーザー式成分計測機により得た焼結原料表層の成分から成品焼結鉱の成分を推測し、焼結原料の配合に反映させる技術が開示されている。   Patent Document 4 discloses a technique for estimating a component of a product sintered ore from components of a surface layer of a sintered raw material obtained by a laser type component measuring machine installed on a sintering machine and reflecting the component in the composition of the sintered raw material. Has been.

特開平10−324929号公報Japanese Patent Laid-Open No. 10-324929 特開昭57−149433号公報JP-A-57-149433 特開2011−038735号公報JP 2011-038735 A 特開昭60−262926号公報JP-A-60-262926

しかしながら、特許文献1から特許文献4に開示されているのは、焼結鉱における何らかの成分濃度を測定し、測定された成分濃度を用いて焼結原料の調整を行なう技術、または、焼結鉱の製造条件の調整を行なう技術である。特許文献1から特許文献4には、測定された焼結鉱の成分濃度を用いて高炉に装入する高炉原料の配合量を調整することは何ら開示されていない。焼結鉱の成分濃度は、焼結反応中の熱レベルによっても変化し得るので、焼結原料の成分濃度の変動を抑制したとしても、必ずしも焼結鉱の成分濃度の変動を抑制できるわけではない。このため、高炉に装入される高炉原料の成分濃度を目標とする成分濃度に制御できない、といった課題があった。本発明は、このような従来技術の課題を鑑みてなされたものであり、その目的は、焼結原料の成分濃度が変動したとしても、高炉原料の成分濃度を目標とする成分濃度に制御できる高炉操業方法を提供することにある。   However, Patent Documents 1 to 4 disclose a technique for measuring a certain component concentration in a sintered ore and adjusting a sintering raw material using the measured component concentration, or a sintered ore. This is a technique for adjusting the manufacturing conditions. Patent Documents 1 to 4 do not disclose any adjustment of the blending amount of the blast furnace raw material charged into the blast furnace using the measured component concentration of the sintered ore. Since the component concentration of the sinter can change depending on the heat level during the sintering reaction, even if the variation of the component concentration of the sintering raw material is suppressed, the variation of the component concentration of the sinter cannot necessarily be suppressed. Absent. For this reason, the subject that the component density | concentration of the blast furnace raw material charged into a blast furnace cannot be controlled to the target component density | concentration occurred. The present invention has been made in view of such problems of the prior art, and the purpose thereof is to control the component concentration of the blast furnace raw material to the target component concentration even if the component concentration of the sintered raw material fluctuates. It is to provide a blast furnace operation method.

このような課題を解決する本発明の特徴は、以下の通りである。
(1)成品焼結鉱、塊鉄鉱石および副原料を含む高炉原料を高炉に装入する高炉操業方法であって、焼結原料を焼結して焼結ケーキとする焼結工程と、前記焼結ケーキを破砕して焼結鉱とする破砕工程と、前記焼結鉱を冷却する冷却工程と、前記冷却された焼結鉱を、成品焼結鉱と返鉱とに篩分けする篩分け工程と、前記冷却された焼結鉱、前記成品焼結鉱および前記返鉱の少なくとも1つの成分濃度を測定する測定工程と、前記高炉原料に含まれる前記成品焼結鉱、前記塊鉄鉱石および前記副原料の配合量を調整する調整工程と、を有し、前記調整工程では、前記測定工程で測定された成分濃度を用いて前記高炉原料の配合量を調整する、高炉操業方法。
(2)前記高炉原料は、さらにペレットを含み、前記調整工程では、前記高炉原料に含まれる前記成品焼結鉱、前記ペレット、前記塊鉄鉱石および前記副原料の配合量を調整する、(1)に記載の高炉操業方法。
(3)前記測定工程ではコンベア上を搬送される、前記冷却された焼結鉱、前記成品焼結鉱および前記返鉱の少なくとも1つの成分濃度を連続測定する、(1)または(2)に記載の高炉操業方法。
(4)前記測定工程では、前記成品焼結鉱および前記返鉱の少なくとも1つの成分濃度を測定する、(1)から(3)の何れか1つに記載の高炉操業方法。
(5)前記測定工程では、前記成品焼結鉱の成分濃度を測定する、(1)から(3)の何れか1つに記載の高炉操業方法。
(6)前記測定工程では、トータルCaO、SiO、MgO、Al、FeOの1種以上の成分濃度を測定する、(1)から(5)の何れか1つに記載の高炉操業方法。
The features of the present invention that solve such problems are as follows.
(1) A blast furnace operating method for charging a blast furnace raw material containing a product sintered ore, massive iron ore and auxiliary raw materials into a blast furnace, and sintering the sintered raw material into a sintered cake; A crushing step for crushing the sintered cake to form a sintered ore, a cooling step for cooling the sintered ore, and sieving the cooled sintered ore into a product sintered ore and return ore A measurement step of measuring at least one component concentration of the cooled sintered ore, the product sintered ore and the return ore, the product sintered ore contained in the blast furnace raw material, the block iron ore, and An adjusting step for adjusting the blending amount of the auxiliary raw material, and in the adjusting step, the blending amount of the blast furnace raw material is adjusted using the component concentration measured in the measuring step.
(2) The blast furnace raw material further includes pellets, and in the adjusting step, the blending amounts of the product sintered ore, the pellets, the massive iron ore and the auxiliary raw materials included in the blast furnace raw material are adjusted. ) Blast furnace operation method.
(3) In the measurement step, at least one component concentration of the cooled sintered ore, the product sintered ore and the returned ore that is conveyed on a conveyor is continuously measured. (1) or (2) The blast furnace operating method described.
(4) The blast furnace operating method according to any one of (1) to (3), wherein in the measurement step, the concentration of at least one component of the product sintered ore and the return ore is measured.
(5) The blast furnace operating method according to any one of (1) to (3), wherein in the measurement step, the component concentration of the product sintered ore is measured.
(6) The blast furnace operation according to any one of (1) to (5), wherein in the measurement step, the concentration of at least one component of total CaO, SiO 2 , MgO, Al 2 O 3 , and FeO is measured. Method.

本発明の高炉操業方法を実施することで、高炉原料の成分濃度を目標とする成分濃度に制御できる。これにより、高炉スラグの粘性の変動等を抑制でき、高炉の安定操業に寄与できる。   By carrying out the blast furnace operating method of the present invention, the component concentration of the blast furnace raw material can be controlled to a target component concentration. Thereby, the fluctuation | variation of the viscosity of a blast furnace slag, etc. can be suppressed, and it can contribute to the stable operation of a blast furnace.

図1は、本実施形態に係る高炉操業方法が実施できる焼結鉱製造装置10の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of a sintered ore manufacturing apparatus 10 that can implement the blast furnace operating method according to the present embodiment. 図2は、高炉スラグの塩基度の変動を示すグラフである。FIG. 2 is a graph showing changes in basicity of blast furnace slag. 図3は、コークス比の変動を示すグラフである。FIG. 3 is a graph showing fluctuations in the coke ratio. 図4は、高炉原料の塩基度の変動と、コークス比の変動を示すグラフである。FIG. 4 is a graph showing fluctuations in basicity of the blast furnace raw material and fluctuations in the coke ratio. 図5は、発明例3、発明例4および比較例3のFeO濃度の測定値の示すグラフである。FIG. 5 is a graph showing measured values of FeO concentration in Invention Example 3, Invention Example 4 and Comparative Example 3. 図6は、発明例3、発明例4および比較例3のコークス比の削減量を示すグラフである。FIG. 6 is a graph showing the reduction amount of the coke ratio in Invention Example 3, Invention Example 4 and Comparative Example 3.

本発明では、焼結鉱の成分濃度を測定する測定工程を設け、当該測定工程で焼結鉱の成分濃度を測定する。この成分濃度を用いて高炉原料である、成品焼結鉱、ペレット、塊鉄鉱石および副原料の配合量を調整する。これにより、高炉原料の成分濃度を目標とする成分濃度になるように制御でき、この結果、高炉操業を安定化できることを見出して本発明を完成させた。以下、本発明の実施形態を通じて、本発明を説明する。   In this invention, the measurement process which measures the component density | concentration of a sintered ore is provided, and the component density | concentration of a sintered ore is measured by the said measurement process. Using this component concentration, the blending amount of the smelter ore, pellets, massive iron ore and auxiliary materials, which are blast furnace raw materials, is adjusted. As a result, it was possible to control the component concentration of the blast furnace raw material to be a target component concentration, and as a result, it was found that blast furnace operation could be stabilized, and the present invention was completed. Hereinafter, the present invention will be described through embodiments of the present invention.

図1は、本実施形態に係る高炉操業方法が実施できる焼結鉱製造装置10の一例を示す模式図である。焼結鉱製造装置10は、焼結機12と、一次破砕機14と、冷却機16と、二次破砕機18と、複数の篩分け装置20、22、24、26と、赤外線分析計28と、成品ライン30と、返鉱ライン32とを備える。   FIG. 1 is a schematic diagram showing an example of a sintered ore manufacturing apparatus 10 that can implement the blast furnace operating method according to the present embodiment. The sintered ore manufacturing apparatus 10 includes a sintering machine 12, a primary crusher 14, a cooler 16, a secondary crusher 18, a plurality of sieving devices 20, 22, 24, and 26, and an infrared analyzer 28. And a product line 30 and a return ore line 32.

焼結機12では焼結工程が実施される。焼結機12は、例えば、下方吸引式のドワイトロイド焼結機である。焼結機12は、焼結原料供給装置と、無端移動式のパレットと、点火炉と、ウインドボックスとを有する。焼結原料供給装置から焼結原料がパレットに装入され、焼結原料の装入層が形成される。装入層は、点火炉で点火されるとともに、ウインドボックスを通じて装入層内の空気を下方へ吸引することで、装入層内の燃焼・溶融帯を装入層の下方へ移動させる。これにより、装入層は焼結されて、焼結ケーキが形成される。ウインドボックスを通じて装入層内の空気を下方へ吸引する際、装入層の上方から気体燃料および/または酸素ガスを富化した空気を供給してもよい。気体燃料は、高炉ガス、コークス炉ガス、高炉・コークス炉混合ガス、転炉ガス、都市ガス、天然ガス、メタンガス、エタンガス、プロパンガスおよびそれらの混合ガスのうちから選ばれるいずれかの可燃性ガスである。   In the sintering machine 12, a sintering process is performed. The sintering machine 12 is, for example, a downward suction type Dwightroid sintering machine. The sintering machine 12 includes a sintering raw material supply device, an endless moving pallet, an ignition furnace, and a wind box. A sintering raw material is charged into the pallet from the sintering raw material supply device, and a charging layer of the sintering raw material is formed. The charging layer is ignited in an ignition furnace, and the air in the charging layer is sucked downward through the windbox, thereby moving the combustion / melting zone in the charging layer below the charging layer. Thereby, the charging layer is sintered and a sintered cake is formed. When the air in the charging layer is sucked downward through the wind box, air enriched with gaseous fuel and / or oxygen gas may be supplied from above the charging layer. The gaseous fuel is any flammable gas selected from blast furnace gas, coke oven gas, blast furnace / coke oven mixed gas, converter gas, city gas, natural gas, methane gas, ethane gas, propane gas and mixed gas thereof. It is.

一次破砕機14では破砕工程が実施され、焼結ケーキは、一次破砕機14によって破砕され焼結鉱にされる。冷却機16では冷却工程が実施され、焼結鉱は、冷却機16によって冷却され、冷却された焼結鉱となる。   In the primary crusher 14, a crushing process is performed, and the sintered cake is crushed by the primary crusher 14 into a sintered ore. In the cooler 16, a cooling process is performed, and the sintered ore is cooled by the cooler 16 and becomes a cooled sintered ore.

篩分け装置20、22、24、26では、篩分け工程が実施される。篩分け装置20では、冷却された焼結鉱が粒径75mm超の焼結鉱と、粒径75mm以下の焼結鉱に篩分けされる。本実施形態において粒径とは、篩によって篩分けられる粒径を意味し、例えば、粒径75mm超の焼結鉱とは、目開き75mmの篩を用いて篩上に篩分けされる粒径であり、粒径75mm以下の焼結鉱とは、目開き75mmの篩を用いて篩下に篩分けされる粒径を意味する。   In the sieving devices 20, 22, 24, and 26, a sieving step is performed. In the sieving device 20, the cooled sintered ore is sieved into a sintered ore having a particle size of more than 75 mm and a sintered ore having a particle size of 75 mm or less. In this embodiment, the particle size means a particle size that is sieved by a sieve. For example, a sintered ore having a particle size of more than 75 mm is a particle size that is sieved on a sieve using a sieve having an opening of 75 mm. The sintered ore having a particle diameter of 75 mm or less means a particle diameter that is sieved under a sieve using a sieve having an opening of 75 mm.

篩分け装置20で篩上に篩分けされた粒径75mm超の焼結鉱は、二次破砕機18によって粒径が50mm以下になるように粉砕される。粉砕された焼結鉱は、篩下に混合され、篩分け装置22にて篩分けされる。これにより、成品焼結鉱の粒径の上限を75mm以下にできる。   The sintered ore having a particle size of more than 75 mm that has been sieved on the sieve by the sieving device 20 is pulverized by the secondary crusher 18 so that the particle size becomes 50 mm or less. The pulverized sintered ore is mixed under a sieve and sieved by a sieving device 22. Thereby, the upper limit of the particle size of the product sintered ore can be made 75 mm or less.

篩分け装置20で篩下に篩分けされた粒径75mm以下の焼結鉱は、その後、篩分け装置22、24、26で、粒径5mm超の成品焼結鉱と、粒径5mm以下の返鉱とに篩分けされる。篩分け装置22、24、26で篩分けされた成品焼結鉱は、成品ライン30であるベルトコンベアで高炉34に搬送される。一方、篩分け装置22、24、26で篩分けされた返鉱は、返鉱ライン32であるベルトコンベアで再び焼結機12の焼結原料供給装置に搬送される。篩分け装置20、22、24、26を用いて篩分けする焼結鉱の粒径、成品焼結鉱の粒径および返鉱の粒径の各値はあくまで一例であり、この値に限定するものではない。   The sintered ore having a particle size of 75 mm or less that has been screened under the sieve by the sieving device 20 is then converted into a product sintered ore having a particle size of more than 5 mm by the sieving devices 22, 24, and 26, Sieve into return ore. The product sintered ore screened by the sieving devices 22, 24 and 26 is conveyed to the blast furnace 34 by a belt conveyor which is a product line 30. On the other hand, the return ore screened by the screening devices 22, 24 and 26 is conveyed again to the sintering material supply device of the sintering machine 12 by the belt conveyor which is the return ore line 32. Each value of the particle size of the sintered ore, the particle size of the product sintered ore and the particle size of the return ore to be screened using the sieving devices 20, 22, 24, and 26 is merely an example, and is limited to this value. It is not a thing.

成品ライン30のベルトコンベアには、赤外線分析計28が設けられている。赤外線分析計28では測定工程が実施される。測定工程では、成品焼結鉱に含まれるトータルCaO、SiO、MgO、Al、FeOの1種以上の成分濃度を測定する。赤外線分析計28は、0.5μm〜50.0μmの範囲内の波長の赤外線を焼結鉱に照射して、焼結鉱からの反射光を受光する。焼結鉱に含まれるトータルCaO、SiO、MgO、Al、FeOのそれぞれの分子振動は、照射された赤外線の固有の波長成分を吸収するので、これらの成分は反射赤外線に固有の波長成分を付与する。このため、照射光と反射光とを分析することで成品焼結鉱におけるトータルCaO、SiO、MgO、Al、FeOの成分濃度を測定できる。トータルCaOとは、CaO、CaCO、Ca(OH)やFeCaO等のCaとOを有する全ての化合物中のCaをCaOに換算したものである。An infrared analyzer 28 is provided on the belt conveyor of the product line 30. In the infrared analyzer 28, a measurement process is performed. In the measurement step, the concentration of one or more components of total CaO, SiO 2 , MgO, Al 2 O 3 and FeO contained in the product sintered ore is measured. The infrared analyzer 28 irradiates the sintered ore with infrared rays having a wavelength in the range of 0.5 μm to 50.0 μm, and receives reflected light from the sintered ore. Each molecular vibration of total CaO, SiO 2 , MgO, Al 2 O 3 , and FeO contained in the sintered ore absorbs the specific wavelength components of the irradiated infrared rays, so these components are unique to the reflected infrared rays. A wavelength component is added. Therefore, it is possible to measure the total CaO, SiO 2, MgO, Al 2 O 3, component concentration of FeO by analyzing the illumination light and the reflected light in the finished product sintered ore. Total CaO is obtained by converting Ca in all compounds having Ca and O such as CaO, CaCO 3 , Ca (OH) 2, and Fe 2 CaO 4 into CaO.

赤外線分析計28は、例えば、1分間に128回の頻度で20以上の波長の赤外線を照射して、成品焼結鉱に反射された反射光を受光する。このように短時間に赤外線を照射することで、赤外線分析計28は、成品ライン30のベルトコンベア上を搬送される成品焼結鉱の成分濃度をオンラインで連続測定できる。赤外線分析計28は、成分分析装置の一例であり、反射光を分光する方式のものに限らず、透過光を分光する方式のものを用いてもよい。さらに、赤外線分析計28に代えて、レーザーを測定対象に照射するレーザー分析計、中性子を測定対象に照射する中性子分析計、または、マイクロ波を測定対象に照射するマイクロ波分析計を用いてもよい。   The infrared analyzer 28 irradiates infrared rays having a wavelength of 20 or more at a frequency of 128 times per minute, for example, and receives reflected light reflected by the product sintered ore. By irradiating infrared rays in such a short time, the infrared analyzer 28 can continuously measure the component concentration of the product sintered ore conveyed on the belt conveyor of the product line 30 online. The infrared analyzer 28 is an example of a component analyzer, and is not limited to a system that divides reflected light but may use a system that scatters transmitted light. Further, instead of the infrared analyzer 28, a laser analyzer that irradiates the measurement target with a laser, a neutron analyzer that irradiates the measurement target with neutrons, or a microwave analyzer that irradiates the measurement target with microwaves may be used. Good.

成分濃度が測定された成品焼結鉱は高炉34に搬送され、成品焼結鉱、ペレット、塊鉄鉱石および副原料とからなる高炉原料の配合量を調整する調整工程が実施される。高炉原料は、上記以外の原料を含んでもよく、ペレットを含まなくてもよい。調整工程では、赤外線分析計28を用いて測定された成品焼結鉱の成分濃度と、予め測定されたペレット、塊鉄鉱石および副原料の成分濃度とを用いて高炉原料の合計成分量を計算し、当該計算値を用いて、目標とする成分濃度になるように高炉原料の配合量をフィードフォワード制御する。例えば、高炉原料の塩基度(CaO/SiO)を目標とする成分濃度に制御するには、高炉原料に含まれる副原料の配合量を調整すればよい。The product sintered ore whose component concentration has been measured is conveyed to the blast furnace 34, and an adjustment step is performed to adjust the blending amount of the blast furnace raw material composed of the product sintered ore, pellets, massive iron ore and auxiliary materials. The blast furnace raw material may include raw materials other than those described above, and may not include pellets. In the adjustment process, the total component amount of the blast furnace raw material is calculated using the component concentration of the sintered product ore measured using the infrared analyzer 28 and the component concentration of pellets, massive iron ore, and auxiliary raw materials measured in advance. Then, using the calculated value, feedforward control is performed on the blending amount of the blast furnace raw material so as to achieve a target component concentration. For example, in order to control the basicity (CaO / SiO 2 ) of the blast furnace raw material to a target component concentration, the amount of the auxiliary raw material contained in the blast furnace raw material may be adjusted.

仮に、成品焼結鉱のFeO濃度が高くなって高炉原料のFeO濃度が高くなると、高炉原料の被還元性が悪化する。高炉原料の被還元性が悪化すると、発熱反応である間接還元が減り、吸熱反応である直接還元が増え、高炉内が熱不足となる。この熱不足を解消させるために還元材をさらに高炉に装入することになり、高炉操業におけるコークス比が増加する。このため、高炉原料のFeO濃度を目標とする成分濃度に制御することで高炉操業のコークス比の増加を抑制でき、高炉の安定操業に寄与できる。例えば、高炉原料のFeOを目標とする成分濃度に制御するには、高炉原料に含まれる塊鉱石の配合量を調整すればよい。   If the FeO concentration of the product sintered ore becomes high and the FeO concentration of the blast furnace raw material becomes high, the reducibility of the blast furnace raw material deteriorates. When the reducibility of the blast furnace raw material deteriorates, indirect reduction, which is an exothermic reaction, decreases, direct reduction, which is an endothermic reaction, increases, and the inside of the blast furnace becomes short of heat. In order to eliminate this heat shortage, the reducing material is further charged into the blast furnace, and the coke ratio in blast furnace operation increases. For this reason, by controlling the FeO concentration of the blast furnace raw material to a target component concentration, an increase in the coke ratio of the blast furnace operation can be suppressed, and it can contribute to the stable operation of the blast furnace. For example, in order to control the target concentration of FeO of the blast furnace raw material, the blending amount of the lump ore contained in the blast furnace raw material may be adjusted.

このようにして、高炉原料の成分濃度が目標とする成分濃度になるように高炉原料の配合量が調整される。本実施形態において、赤外線分析計28による成分濃度の測定頻度は、1分間に128回であり、当該128回の成分濃度の平均値を1分間に1回算出し、算出した成分濃度の平均値を用いて高炉原料の配合量を1分ごとに調整した。   In this way, the blending amount of the blast furnace raw material is adjusted so that the component concentration of the blast furnace raw material becomes a target component concentration. In this embodiment, the measurement frequency of the component concentration by the infrared analyzer 28 is 128 times per minute, the average value of the component concentration of 128 times is calculated once per minute, and the calculated average value of the component concentration Was used to adjust the blending amount of the blast furnace raw material every minute.

このように、本実施形態に係る高炉操業方法は、成品ライン30を搬送される成品焼結鉱の成分濃度を、赤外線分析計28を用いて測定し、当該成分濃度を用いて目標とする成分濃度になるように高炉原料の配合量を調整する。これにより、焼結原料の成分濃度が変動し、成品焼結鉱の成分濃度が変動したとしても、高炉原料の成分濃度を目標とする成分濃度に制御でき、当該高炉原料を高炉に装入することで高炉操業が安定し、高炉操業におけるコークス比の増加を抑制できる。   As described above, the blast furnace operating method according to the present embodiment measures the component concentration of the product sintered ore conveyed through the product line 30 using the infrared analyzer 28, and uses the component concentration as a target component. The blending amount of the blast furnace raw material is adjusted so as to obtain a concentration. Thereby, even if the component concentration of the sintering raw material fluctuates and the component concentration of the product sintered ore fluctuates, the component concentration of the blast furnace raw material can be controlled to the target component concentration, and the blast furnace raw material is charged into the blast furnace. As a result, blast furnace operation is stabilized, and an increase in the coke ratio during blast furnace operation can be suppressed.

本実施形態において、赤外線分析計28を成品ライン30のベルトコンベアに設け、成品焼結鉱の成分濃度を測定する例を示したが、これに限られず、赤外線分析計28を焼結鉱製造装置10のいずれかの位置に設けて、冷却された焼結鉱、成品焼結鉱および返鉱の少なくとも1つ以上の成分濃度を測定してもよい。   In the present embodiment, an example in which the infrared analyzer 28 is provided on the belt conveyor of the product line 30 and the component concentration of the product sintered ore is measured has been shown. It may be provided at any one of the positions 10 and the concentration of at least one component of the cooled sinter, the product sinter and the return ore may be measured.

焼結原料がパレットに装入された装入層では、表層の成分濃度と下層の成分濃度は大きく異なり、且つ、成分濃度は、焼結原料の水分量および/または焼結原料供給装置の状態によって変動する。赤外線による分析は、その性質上、分析対象の表層しか分析することができない。このため、表層の成分濃度と下層の成分濃度が異なり、この成分濃度が変動する装入層を赤外線分析計28で測定しても装入層全体の成分濃度を高い精度で測定できない。一方、冷却工程よりも後においては、焼結原料は焼結され、粉砕され、冷却されて、ある程度混合されているので表層の成分濃度と下層の成分濃度とが大きく異ならない。このため、本実施形態の測定工程では、冷却工程の後の焼結鉱、成品焼結鉱および返鉱の少なくとも1つの成分濃度を測定する。これにより、分析対象の表層しか分析できない赤外線分析計28であっても、高い精度で成分濃度を測定できる。   In the charging layer in which the sintering raw material is charged into the pallet, the component concentration in the surface layer and the component concentration in the lower layer are greatly different, and the component concentration depends on the moisture content of the sintering raw material and / or the state of the sintering raw material supply device. Fluctuates depending on. Infrared analysis can only analyze the surface layer to be analyzed due to its nature. For this reason, the component concentration of the surface layer is different from the component concentration of the lower layer, and even if the charged layer in which the component concentration varies is measured with the infrared analyzer 28, the component concentration of the entire charged layer cannot be measured with high accuracy. On the other hand, after the cooling step, since the sintered raw material is sintered, pulverized, cooled and mixed to some extent, the component concentration in the surface layer and the component concentration in the lower layer do not differ greatly. For this reason, in the measurement process of this embodiment, the concentration of at least one component of the sintered ore, the product sintered ore and the return ore after the cooling process is measured. Thereby, even if it is the infrared analyzer 28 which can analyze only the surface layer of analysis object, a component density | concentration can be measured with high precision.

焼結鉱の粒度分布が広い状態では、例えば、粒径の大きい焼結鉱に隠れた粒径の小さい焼結鉱に赤外線が照射できないといったように、焼結鉱の一部にしか赤外線が照射できず、焼結鉱からの反射光も安定しない。一方、篩分け工程の後では、粒径5mm超の成品焼結鉱と、粒径5mm以下の返鉱に篩分けられているので、焼結鉱の粒度分布が狭い。このため、測定工程では、篩分け工程の後の成品焼結鉱および返鉱の少なくも1つの成分濃度を測定することが好ましい。これにより、赤外線分析計28は、焼結鉱に一様に赤外線を照射でき、焼結鉱からの反射光も安定するので、より高い精度で成分濃度を測定できる。   In a state where the particle size distribution of the sinter is wide, for example, infrared rays are irradiated to only a part of the sinter, such as inability to irradiate the sinter with a small particle size hidden in the sinter with a large particle size. The reflected light from the sintered ore is not stable. On the other hand, after the sieving step, since the sinter is divided into a product sintered ore having a particle size of more than 5 mm and a return ore having a particle size of 5 mm or less, the particle size distribution of the sintered ore is narrow. For this reason, in the measurement process, it is preferable to measure the concentration of at least one component of the product sintered ore and the return ore after the sieving process. Thereby, since the infrared analyzer 28 can irradiate infrared rays uniformly to the sintered ore and the reflected light from the sintered ore is stabilized, the component concentration can be measured with higher accuracy.

篩分け工程の後においては、測定工程で成品焼結鉱または返鉱の成分濃度を測定することになるが、返鉱を測定するよりも成品焼結鉱を測定する方が、高炉原料の1つとして用いられる成品焼結鉱の成分濃度を直接測定できるので、さらに好ましい。   After the sieving step, the component concentration of the product sinter or return ore is measured in the measurement step. However, measuring the product sinter ore is one of the blast furnace raw materials rather than measuring the return ore. This is more preferable because the component concentration of the sintered product ore used as a material can be directly measured.

赤外線分析計28を成品ライン30に設けた焼結鉱製造装置10を用いて、成品焼結鉱に含まれるトータルCaO、SiO、MgO、AlおよびFeOの成分濃度を1分間に1回の頻度で測定した。発明例1は、当該測定結果を用いて高炉原料の副原料の配合量を1分間に1回の頻度で調整した操業例である。比較例1は、高炉原料の副原料の配合量を調整しない操業例である。比較例1および発明例1における高炉スラグの塩基度の変動と、高炉のコークス比とを測定した。Using the sinter production apparatus 10 provided with the infrared analyzer 28 in the product line 30, the component concentration of total CaO, SiO 2 , MgO, Al 2 O 3 and FeO contained in the product sinter is set to 1 per minute. Measured at the frequency of times. Invention Example 1 is an operation example in which the amount of the auxiliary raw material of the blast furnace raw material is adjusted once per minute using the measurement result. Comparative Example 1 is an operation example in which the blending amount of the auxiliary raw material of the blast furnace raw material is not adjusted. The variation in basicity of the blast furnace slag and the coke ratio of the blast furnace in Comparative Example 1 and Invention Example 1 were measured.

図2は、高炉スラグの塩基度の変動を示すグラフである。図2(a)は、比較例1の塩基度の変動を示し、図2(b)は、発明例1の塩基度の変動を示す。図2において、横軸は時間(日)であり、縦軸はトータルCaO/SiO(−)である。図2に示した塩基度の値は、高炉から出銑された溶銑および高炉スラグの成分をオフラインで化学分析を行って測定した値である。FIG. 2 is a graph showing changes in basicity of blast furnace slag. FIG. 2A shows the change in basicity of Comparative Example 1, and FIG. 2B shows the change in basicity of Invention Example 1. In FIG. 2, the horizontal axis represents time (days), and the vertical axis represents total CaO / SiO 2 (−). The basicity values shown in FIG. 2 are values obtained by conducting offline chemical analysis on the components of the hot metal and blast furnace slag discharged from the blast furnace.

図2に示すように、比較例1では塩基度が目標値付近で大きくばらついた。一方、発明例1では、1分間に1回の頻度で成品焼結鉱の成分濃度を測定し、当該成分濃度を用いて高炉原料の成分濃度が目標値になるように高炉原料の配合を調整しているので、塩基度の目標値からのずれが小さくなった。このように、本実施形態に係る高炉操業方法を実施することで、高炉スラグにおける塩基度の目標値からのずれを小さくできることが確認された。   As shown in FIG. 2, in the first comparative example, the basicity greatly fluctuated near the target value. On the other hand, in Invention Example 1, the component concentration of the sintered sinter is measured at a frequency of once per minute, and the composition of the blast furnace raw material is adjusted so that the component concentration of the blast furnace raw material becomes the target value using the component concentration. As a result, the deviation of the basicity from the target value became smaller. Thus, it was confirmed that the deviation from the target value of the basicity in the blast furnace slag can be reduced by carrying out the blast furnace operating method according to the present embodiment.

図3は、コークス比の変動を示すグラフである。図3において、横軸は時間(日)であり、縦軸はコークス比(kg/t−pig)である。0〜19日までが、配合量を調整していない高炉原料を装入して高炉操業を行った比較例1のコークス比であり、20〜39日までが、1分間に1回の頻度で配合量を調整した高炉原料を装入して高炉操業を行った発明例1のコークス比である。   FIG. 3 is a graph showing fluctuations in the coke ratio. In FIG. 3, the horizontal axis represents time (days) and the vertical axis represents the coke ratio (kg / t-pig). From 0 to 19 days is the coke ratio of Comparative Example 1 in which the blast furnace raw material whose blending amount was not adjusted was charged and the blast furnace operation was performed, and until 20 to 39 days, the frequency was once per minute. It is a coke ratio of the invention example 1 which charged the blast furnace raw material which adjusted the compounding quantity, and performed blast furnace operation.

図3に示すように、比較例1と比較して、発明例1の方が高炉操業におけるコークス比が低くなった。このように、本実施形態に係る高炉操業方法を実施することで、高炉操業が安定し、この結果、高炉操業のコークス比の増加を抑制できることが確認された。   As shown in FIG. 3, compared to Comparative Example 1, Invention Example 1 had a lower coke ratio in blast furnace operation. Thus, by implementing the blast furnace operation method according to the present embodiment, it was confirmed that the blast furnace operation was stabilized, and as a result, an increase in the coke ratio of the blast furnace operation could be suppressed.

図4は、高炉原料の塩基度の変動と、コークス比の変動を示すグラフである。図4(a)は、比較例2および発明例2の高炉原料の塩基度の変動を示す。図4(a)において、横軸は時間(時)であり、縦軸は高炉原料のトータルCaO/SiO(−)である。図4(b)は、比較例2および発明例2の高炉操業のコークス比の変動を示す。図4(b)において、横軸は時間(時)であり、縦軸はコークス比(kg/t−pig)である。FIG. 4 is a graph showing fluctuations in basicity of the blast furnace raw material and fluctuations in the coke ratio. FIG. 4A shows the change in basicity of the blast furnace raw materials of Comparative Example 2 and Invention Example 2. FIG. In FIG. 4A, the horizontal axis represents time (hours), and the vertical axis represents total blast furnace raw material total CaO / SiO 2 (−). FIG. 4 (b) shows the variation of the coke ratio in the blast furnace operation of Comparative Example 2 and Invention Example 2. In FIG.4 (b), a horizontal axis is time (hour) and a vertical axis | shaft is coke ratio (kg / t-pig).

図4において、比較例2は、蛍光X線を用いて2時間に1回の頻度で成品焼結鉱のトータルCaO、SiOの測定を行い、当該測定結果を用いて、同じ頻度で高炉原料の副原料の配合量を調整した操業例である。発明例2は、発明例1同様に、成品ライン30に設けられた赤外線分析計28を用いて、1分間に1回の頻度で成品焼結鉱のトータルCaO、SiO成分濃度を求め、当該測定結果を用いて、同じ頻度で高炉原料の副原料の配合量を調整した操業例である。In FIG. 4, in Comparative Example 2, the total CaO and SiO 2 of the sintered product ore is measured at a frequency of once every 2 hours using fluorescent X-rays, and the blast furnace raw material is measured at the same frequency using the measurement results. It is the operation example which adjusted the compounding quantity of the auxiliary material of. Inventive Example 2, as in Inventive Example 1, uses the infrared analyzer 28 provided in the product line 30 to determine the total CaO and SiO 2 component concentrations of the product sintered ore at a frequency of once per minute. It is the operation example which adjusted the compounding quantity of the auxiliary material of a blast furnace raw material with the same frequency using a measurement result.

図4に示した例では、0〜6時まで比較例2の条件で高炉操業を行い、6時から19時まで発明例2の条件で高炉操業を実施した。図4(a)に示すように、比較例2においても2時間に1回の頻度で副原料の配合量を調整しているので、2時間に1回の測定では、高炉原料の塩基度の変動は抑制されているように見える。しかしながら、比較例2から発明例2に変え、1分間に1回の頻度で高炉原料の副原料の配合量を調整した所、図4(b)に示すように、当該配合量が調整された高炉原料が高炉に装入されたと考えられる時間帯から高炉操業のコークス比が低下した。一般的に焼結機から排出された焼結鉱は冷却機で冷却され、整粒された後に高炉の貯鉱槽を経由し、高炉へと装入される。貯鉱槽の大きさにもよるが、本実施例で使用した貯鉱槽における原料の滞留時間は約8時間であり、8時間後から高炉で徐々に効果が表れたものと推察できる。   In the example shown in FIG. 4, the blast furnace operation was performed under the conditions of Comparative Example 2 from 0 to 6 o'clock, and the blast furnace operation was performed under the conditions of Invention Example 2 from 6 o'clock to 19 o'clock. As shown in FIG. 4 (a), in Comparative Example 2, the amount of the auxiliary raw material is adjusted at a frequency of once every two hours. Therefore, in the measurement once every two hours, the basicity of the blast furnace raw material is Variations appear to be suppressed. However, instead of Comparative Example 2 to Invention Example 2, when the blending amount of the auxiliary raw material of the blast furnace raw material was adjusted once per minute, the blending amount was adjusted as shown in FIG. 4B. The coke ratio of blast furnace operation decreased from the time zone when the blast furnace raw material was thought to be charged into the blast furnace. In general, the sinter discharged from the sintering machine is cooled by a cooling machine, sized, and then charged into a blast furnace through a blast furnace storage tank. Although depending on the size of the storage tank, the residence time of the raw material in the storage tank used in this example is about 8 hours, and it can be inferred that the effect gradually appeared in the blast furnace after 8 hours.

このことから、2時間に1回の測定では塩基度の変動が抑制されているように見えるものの、その間では高炉原料の塩基度は変動しており、その影響を受けて比較例2のコークス比が高くなったと考えられる。一方、発明例2では、成品ライン30に赤外線分析計28を設け、1分間に1回の頻度で成品焼結鉱のトータルCaO、SiOの測定を行い、当該測定結果を用いて高炉原料の塩基度が目標値になるように副原料の配合量を調整したので、2時間の間においても高炉原料の塩基度の変動が抑制され、この結果、高炉操業のコークス比の増加が抑制できたと考えられる。From this, the basicity of the blast furnace material fluctuates during the measurement once every 2 hours, but the basicity of the blast furnace raw material fluctuates during that time. It is thought that became higher. On the other hand, in Inventive Example 2, an infrared analyzer 28 is provided in the product line 30 and the total CaO and SiO 2 of the product sintered ore is measured at a frequency of once per minute, and the blast furnace raw material is measured using the measurement result. Since the amount of the auxiliary raw material was adjusted so that the basicity became the target value, the fluctuation of the basicity of the blast furnace raw material was suppressed even during 2 hours, and as a result, the increase in the coke ratio of the blast furnace operation could be suppressed. Conceivable.

図5は、発明例3、発明例4および比較例3のFeO濃度の測定値の示すグラフである。図5において、縦軸は、ある特定の時間におけるFeO濃度の測定値(質量%)である。   FIG. 5 is a graph showing measured values of FeO concentration in Invention Example 3, Invention Example 4 and Comparative Example 3. In FIG. 5, the vertical axis represents the measured value (mass%) of the FeO concentration at a specific time.

発明例3は、赤外線分析計28を成品ライン30に設けて、1分間に1回の頻度で成品焼結鉱のトータルCaO、SiO、MgO、AlおよびFeOの成分濃度を測定し、当該測定結果を用いて1分間に1回の頻度で高炉原料の副原料の配合量を調整した操業例である。発明例4は、赤外線分析計28を返鉱ライン32に設けて、1分間に1回の頻度で成品焼結鉱のトータルCaO、SiO、MgO、AlおよびFeOの成分濃度を測定し、当該測定結果を用いて1分間に1回の頻度で高炉原料の副原料の配合量を調整した操業例である。比較例3は、赤外線分析計28を焼結機12の焼結ケーキ表面を測定できる位置に設けて、1分間に1回の頻度で焼結ケーキ表面のトータルCaO、SiO、MgO、AlおよびFeOの成分濃度を測定し、当該測定結果を用いて1分間に1回の頻度で高炉原料の副原料の配合量を調整した操業例である。Inventive Example 3 provides an infrared analyzer 28 in the product line 30 to measure the total CaO, SiO 2 , MgO, Al 2 O 3 and FeO component concentrations of the product sintered ore at a frequency of once per minute. This is an operation example in which the blending amount of the auxiliary raw material of the blast furnace raw material is adjusted once per minute using the measurement result. Inventive Example 4 provides an infrared analyzer 28 in the return ore line 32 and measures the total CaO, SiO 2 , MgO, Al 2 O 3 and FeO component concentrations of the sintered product ore once per minute. And, it is an operation example in which the blending amount of the auxiliary raw material of the blast furnace raw material is adjusted once per minute using the measurement result. In Comparative Example 3, the infrared analyzer 28 is provided at a position where the sintered cake surface of the sintering machine 12 can be measured, and the total CaO, SiO 2 , MgO, Al 2 on the sintered cake surface is once per minute. This is an operation example in which the component concentrations of O 3 and FeO are measured, and the blending amount of the auxiliary raw material of the blast furnace raw material is adjusted once a minute using the measurement result.

図5に示すように、成品焼結鉱を測定した場合のFeO濃度が7.1質量%であったのに対し、同じ焼結原料から製造された返鉱を測定した場合のFeO濃度は6.9質量%であった。この結果から、赤外線分析計を用いて返鉱のFeO濃度を測定した結果と、成品焼結鉱のFeO濃度を測定した結果に大きな差がなかった。一方、赤外線分析計28を用いて、同じ焼結原料を焼結した焼結ケーキの表面を測定した場合のFeO濃度は5.6質量%であり、成品焼結鉱を測定した場合のFeO濃度と大きく異なっていた。   As shown in FIG. 5, the FeO concentration in the case of measuring the product sintered ore was 7.1% by mass, whereas the FeO concentration in the case of measuring the return ore produced from the same sintered raw material was 6%. It was 9 mass%. From this result, there was no big difference between the result of measuring the FeO concentration of the return ore using an infrared analyzer and the result of measuring the FeO concentration of the product sintered ore. On the other hand, the FeO concentration when measuring the surface of the sintered cake obtained by sintering the same sintering raw material using the infrared analyzer 28 is 5.6% by mass, and the FeO concentration when measuring the product sintered ore. It was very different.

赤外線分析計は、その性質上、赤外線が照射された表面の成分濃度しか測定することができない。成品焼結鉱や返鉱は破砕され、その過程である程度混合されるので、表面への赤外線の照射によって全体の平均成分を求めることができる。一方、パレットに装入される焼結原料の成分濃度が上層と下層とで異なること、および、焼結時の上層と下層との熱レベルが異なることから焼結ケーキの上層と下層とで成分濃度に大きな差が生じる。このため、図5に示すように、赤外線分析計で焼結ケーキの表面を測定した比較例3の成分濃度は、成品焼結鉱の表面を測定した発明例3の成分濃度と大きく異なったと考えられる。   Infrared analyzers, by their nature, can only measure the component concentration of the surface irradiated with infrared rays. Sintered product ore and sinter are crushed and mixed to some extent in the process, so that the average component of the whole can be obtained by irradiating the surface with infrared rays. On the other hand, since the component concentration of the sintering raw material charged in the pallet is different between the upper layer and the lower layer, and the heat level of the upper layer and the lower layer during sintering is different, the component is different between the upper layer and the lower layer of the sintered cake. Large differences in density occur. For this reason, as shown in FIG. 5, the component concentration of Comparative Example 3 in which the surface of the sintered cake was measured with an infrared analyzer was considered to be significantly different from the component concentration of Invention Example 3 in which the surface of the product sintered ore was measured. It is done.

図6は、発明例3、発明例4および比較例3のコークス比の削減量を示すグラフである。図6において、縦軸はコークス比削減量(kg/t−pig)である。図6に示したコークス比の削減量は、高炉原料の配合量の調整する前と、発明例3、発明例4、比較例3によって高炉原料の配合量を調整した後、操業変動の影響が収まり、定常条件での操業となったと推察される120時間経過後のコークス比の削減量である。   FIG. 6 is a graph showing the reduction amount of the coke ratio in Invention Example 3, Invention Example 4 and Comparative Example 3. In FIG. 6, the vertical axis represents the coke ratio reduction amount (kg / t-pig). The amount of coke reduction shown in FIG. 6 is affected by operational fluctuations before adjusting the blending amount of the blast furnace raw material and after adjusting the blending amount of the blast furnace raw material according to Invention Example 3, Invention Example 4, and Comparative Example 3. It is the amount of coke ratio reduction after the elapse of 120 hours, which is estimated to have been settled and operated under steady conditions.

高炉原料として高炉に装入される成品焼結鉱の成分濃度を用いて高炉原料の副原料の配合量を調整した発明例3、および、成品焼結鉱の成分濃度と差のない返鉱の成分濃度を用いて高炉原料の副原料の配合量を調整した発明例4では、120時間経過した後の時点でのコークス比が減少した。一方、高炉に装入される成品焼結鉱と成分濃度の差が大きい焼結ケーキの測定値を用いて高炉原料の副原料の配合量を調整した比較例3では、120時間経過した後の時点でのコークス比が逆に増加した。これは、比較例3では高炉に装入される高炉原料の成分濃度が、目標とする成分濃度に調整できていない結果が反映されたものと考えられる。   Invention Example 3 in which the component amount of the smelting raw material charged into the blast furnace as the blast furnace raw material was used to adjust the blending amount of the auxiliary raw material of the blast furnace raw material, In Invention Example 4 in which the blending amount of the auxiliary raw material of the blast furnace raw material was adjusted using the component concentration, the coke ratio at the time after 120 hours had decreased. On the other hand, in the comparative example 3 which adjusted the compounding quantity of the auxiliary raw material of a blast furnace raw material using the measured value of the sintered cake with a big difference of a component density | concentration with the product sintered ore charged in a blast furnace, after 120 hours passed The coke ratio at the time increased conversely. This is considered to reflect the result that the component concentration of the blast furnace raw material charged into the blast furnace was not adjusted to the target component concentration in Comparative Example 3.

10 焼結鉱製造装置
12 焼結機
14 一次破砕機
16 冷却機
18 二次破砕機
20 篩分け装置
22 篩分け装置
24 篩分け装置
26 篩分け装置
28 赤外線分析計
30 成品ライン
32 返鉱ライン
34 高炉
DESCRIPTION OF SYMBOLS 10 Sinter production apparatus 12 Sintering machine 14 Primary crusher 16 Cooling machine 18 Secondary crusher 20 Sieving equipment 22 Sieving equipment 24 Sieving equipment 26 Sieving equipment 28 Infrared analyzer 30 Product line 32 Return line 34 Blast furnace

Claims (6)

成品焼結鉱、塊鉄鉱石および副原料を含む高炉原料を高炉に装入する高炉操業方法であって、
焼結原料を焼結して焼結ケーキとする焼結工程と、
前記焼結ケーキを破砕して焼結鉱とする破砕工程と、
前記焼結鉱を冷却する冷却工程と、
前記冷却された焼結鉱を、成品焼結鉱と返鉱とに篩分けする篩分け工程と、
前記冷却された焼結鉱、前記成品焼結鉱および前記返鉱の少なくとも1つの成分濃度を測定する測定工程と、
前記高炉原料に含まれる前記成品焼結鉱、前記塊鉄鉱石および前記副原料の配合量を調整する調整工程と、を有し、
前記調整工程では、前記測定工程で測定された成分濃度を用いて前記高炉原料の配合量を調整する、高炉操業方法。
A blast furnace operation method for charging a blast furnace raw material including a sintered product ore, massive iron ore and auxiliary materials into the blast furnace,
A sintering step of sintering the sintering raw material to form a sintered cake;
Crushing step of crushing the sintered cake to form a sintered ore;
A cooling step for cooling the sintered ore;
A sieving step of sieving the cooled sinter into a product sinter and return ore;
A measuring step for measuring a concentration of at least one component of the cooled sinter, the product sinter and the return ore;
An adjustment step of adjusting the amount of the product sintered ore contained in the blast furnace raw material, the massive iron ore and the auxiliary raw material,
In the adjustment step, a blast furnace operation method in which the blending amount of the blast furnace raw material is adjusted using the component concentration measured in the measurement step.
前記高炉原料は、さらにペレットを含み、
前記調整工程では、前記高炉原料に含まれる前記成品焼結鉱、前記ペレット、前記塊鉄鉱石および前記副原料の配合量を調整する、請求項1に記載の高炉操業方法。
The blast furnace raw material further includes pellets,
2. The blast furnace operation method according to claim 1, wherein in the adjustment step, a blending amount of the product sintered ore, the pellets, the block iron ore, and the auxiliary raw materials included in the blast furnace raw material is adjusted.
前記測定工程ではコンベア上を搬送される前記冷却された焼結鉱、前記成品焼結鉱および前記返鉱の少なくとも1つの成分濃度を連続測定する、請求項1または請求項2に記載の高炉操業方法。   The blast furnace operation according to claim 1 or 2, wherein in the measurement step, the concentration of at least one component of the cooled sintered ore, the product sintered ore and the returned ore conveyed on a conveyor is continuously measured. Method. 前記測定工程では、前記成品焼結鉱および前記返鉱の少なくとも1つの成分濃度を測定する、請求項1から請求項3の何れか一項に記載の高炉操業方法。   The blast furnace operating method according to any one of claims 1 to 3, wherein in the measurement step, the concentration of at least one component of the product sintered ore and the return ore is measured. 前記測定工程では、前記成品焼結鉱の成分濃度を測定する、請求項1から請求項3の何れか一項に記載の高炉操業方法。   The blast furnace operating method according to any one of claims 1 to 3, wherein in the measurement step, the component concentration of the product sintered ore is measured. 前記測定工程では、トータルCaO、SiO、MgO、Al、FeOの1種以上の成分濃度を測定する、請求項1から請求項5の何れか一項に記載の高炉操業方法。Wherein the measuring step, the total CaO, SiO 2, MgO, measuring the Al 2 O 3, 1 or more component concentration FeO, blast furnace operation method according to any one of claims 1 to 5.
JP2018556672A 2016-12-16 2017-12-12 Blast furnace operation method Active JP6519036B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016243989 2016-12-16
JP2016243989 2016-12-16
PCT/JP2017/044474 WO2018110521A1 (en) 2016-12-16 2017-12-12 Method for operating blast furnace

Publications (2)

Publication Number Publication Date
JPWO2018110521A1 true JPWO2018110521A1 (en) 2019-03-28
JP6519036B2 JP6519036B2 (en) 2019-05-29

Family

ID=62558564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018556672A Active JP6519036B2 (en) 2016-12-16 2017-12-12 Blast furnace operation method

Country Status (7)

Country Link
EP (1) EP3517632B1 (en)
JP (1) JP6519036B2 (en)
KR (1) KR102303009B1 (en)
CN (1) CN110073006A (en)
PH (1) PH12019501367A1 (en)
TW (1) TWI658147B (en)
WO (1) WO2018110521A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522460B (en) * 2020-11-18 2022-05-17 山东钢铁集团日照有限公司 Method for adjusting airflow distribution by spreading blast furnace burden
CN116297349A (en) * 2022-01-25 2023-06-23 虔东稀土集团股份有限公司 Rare earth metal production on-line measuring system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651507A (en) * 1979-09-28 1981-05-09 Sumitomo Metal Ind Ltd Operating method of blast furnace
JPH06108124A (en) * 1992-09-29 1994-04-19 Nippon Steel Corp Operation of blast furnace
JP2001107115A (en) * 1999-10-06 2001-04-17 Nippon Steel Corp Operation of blast funace using highly reducible sintered ore
JP2008240109A (en) * 2007-03-28 2008-10-09 Sumitomo Metal Ind Ltd Method for operating blast furnace
JP2013147718A (en) * 2012-01-20 2013-08-01 Nippon Steel & Sumitomo Metal Corp Method for producing sintered ore

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751206A (en) * 1980-09-12 1982-03-26 Sumitomo Metal Ind Ltd Operating method for blast furnace
JPS57149433A (en) 1981-03-07 1982-09-16 Nisshin Steel Co Ltd Method and device for preparing sintered ore having preset content of feo
JPS60262926A (en) 1984-06-08 1985-12-26 Kawasaki Steel Corp Method for controlling concentration of component in product sintered ore
JPH10324929A (en) 1997-05-26 1998-12-08 Nippon Steel Corp Production of sintered ore
JP3787237B2 (en) * 1998-01-23 2006-06-21 新日本製鐵株式会社 Method of charging high-pellet iron ore into a blast furnace
KR100374231B1 (en) * 1998-07-31 2003-05-16 주식회사 포스코 Manufacturing method of sintered light using recycled buoyancy
KR100786499B1 (en) * 2001-12-18 2007-12-17 주식회사 포스코 Method for manufacturing the sintering ore
RU2240351C2 (en) * 2002-04-22 2004-11-20 Открытое акционерное общество "Новолипецкий металлургический комбинат" (ОАО "НЛМК") Blast smelting method
JP2005097658A (en) * 2003-09-24 2005-04-14 Jfe Steel Kk Method for predicting main raw material component ratio of sintered ore and method for controlling component ratio of sintered ore and program for predicting main raw material component ratio of sintered ore
JP2005298923A (en) * 2004-04-13 2005-10-27 Nippon Steel Corp High ore/reducing material ratio operation method in blast furnace
JP4802739B2 (en) * 2006-01-31 2011-10-26 Jfeスチール株式会社 Blast furnace raw material mixing degree measuring method and blast furnace raw material mixing degree measuring device
JP5544784B2 (en) 2009-08-17 2014-07-09 Jfeスチール株式会社 Sintering machine
CN102719580B (en) * 2011-03-29 2014-11-05 鞍钢股份有限公司 Blast furnace operation method for improving hearth coke strength
CN102722652B (en) * 2012-06-01 2015-09-16 攀钢集团攀枝花钢钒有限公司 A kind of blast furnace process pricing and optimization method
CN104164558B (en) * 2014-08-27 2016-04-13 攀钢集团成都钢钒有限公司 A kind of sintering circuit sinter quality control method
JP2016130341A (en) * 2015-01-14 2016-07-21 株式会社神戸製鋼所 Method of producing sintered ore raw material using magnetite ore
CN104593532B (en) * 2015-01-19 2017-07-07 河北联合大学 A kind of ironmaking system furnace charge optimization method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651507A (en) * 1979-09-28 1981-05-09 Sumitomo Metal Ind Ltd Operating method of blast furnace
JPH06108124A (en) * 1992-09-29 1994-04-19 Nippon Steel Corp Operation of blast furnace
JP2001107115A (en) * 1999-10-06 2001-04-17 Nippon Steel Corp Operation of blast funace using highly reducible sintered ore
JP2008240109A (en) * 2007-03-28 2008-10-09 Sumitomo Metal Ind Ltd Method for operating blast furnace
JP2013147718A (en) * 2012-01-20 2013-08-01 Nippon Steel & Sumitomo Metal Corp Method for producing sintered ore

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. VAN CRAYELYNGHE,C.HUGUET, PH. LACROIX, R. PAZDEJ: "MEASUREMENT AND IMPROVEMENT OF SINTER QUALITY AND REGULARITY", 46TH IRONMAKING CONFERENCE PROCEEDINGS, vol. 46, JPN6018050729, 31 March 1987 (1987-03-31), pages 393-398 *
S. MANESCHI, M. G. DEL MONTE TAMBA: "Determinazione rapida del contenuto in FeO dgli Agglomerati", LA METALLURGIA ITALIANA, vol. 72, no. 1, JPN6018050731, 1980, pages 1-9 *

Also Published As

Publication number Publication date
KR102303009B1 (en) 2021-09-15
EP3517632B1 (en) 2021-11-24
CN110073006A (en) 2019-07-30
EP3517632A4 (en) 2019-11-06
JP6519036B2 (en) 2019-05-29
EP3517632A1 (en) 2019-07-31
WO2018110521A1 (en) 2018-06-21
TW201829792A (en) 2018-08-16
KR20190085970A (en) 2019-07-19
TWI658147B (en) 2019-05-01
PH12019501367A1 (en) 2020-02-24

Similar Documents

Publication Publication Date Title
KR101475130B1 (en) Method for producing sintered ore
JP2007231326A (en) Blast furnace operation method
JP6680369B2 (en) Sintered ore manufacturing method
WO2018110521A1 (en) Method for operating blast furnace
JP6988712B2 (en) Sintered ore manufacturing method
JP6866856B2 (en) Sintered ore manufacturing method and blast furnace operation method
JP6874780B2 (en) Sintered ore manufacturing method
JP6665972B2 (en) Sinter production method
JP2007277594A (en) Sintered ore production method
JP6763412B2 (en) Sintered ore manufacturing method
JP2018053306A (en) Method of manufacturing sintered ore and manufacturing facility line of sintered ore
JP2006152317A (en) Blast furnace-operation method
JP2023142850A (en) Production method of sintered ores and sintered ores production device
JP2024048561A (en) Sinter manufacturing method
JP2023145326A (en) Manufacturing method of sinter and manufacturing apparatus
JP2022054397A (en) Blast furnace operation method
KR101299385B1 (en) Prediction method of sintering productivity
Shah et al. Production of perfect sinter-Need for blast furnaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181119

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181119

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R150 Certificate of patent or registration of utility model

Ref document number: 6519036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250