JP2005097658A - Method for predicting main raw material component ratio of sintered ore and method for controlling component ratio of sintered ore and program for predicting main raw material component ratio of sintered ore - Google Patents
Method for predicting main raw material component ratio of sintered ore and method for controlling component ratio of sintered ore and program for predicting main raw material component ratio of sintered ore Download PDFInfo
- Publication number
- JP2005097658A JP2005097658A JP2003331104A JP2003331104A JP2005097658A JP 2005097658 A JP2005097658 A JP 2005097658A JP 2003331104 A JP2003331104 A JP 2003331104A JP 2003331104 A JP2003331104 A JP 2003331104A JP 2005097658 A JP2005097658 A JP 2005097658A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- sintered ore
- main raw
- component ratio
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Automatic Analysis And Handling Materials Therefor (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
この発明は、時系列データ予測方法に関し、特に焼結鉱主原料成分割合予測方法および焼結鉱成分割合制御方法に関するものである。 The present invention relates to a time-series data prediction method, and more particularly, to a sintered ore main raw material component proportion prediction method and a sintered ore component proportion control method.
焼結原料は、高炉装入鉱石の予備処理で発生する粉鉱、および粉鉱として存在する鉄鉱石と製鉄所内で発生する含鉄原料(ミルスケール、高炉ダスト、転炉ダストなど)とを主原料とし、副原料として粉石灰石などの造滓材からなっている。また、最近では高炉操業上直接使用するには好ましくない熱割れ鉱石や粘着鉱石などを破砕して焼結原料とすることもある。 The main raw materials for sintering materials are fine ore generated during pretreatment of blast furnace charging ore, iron ore existing as fine ore, and iron-containing raw materials (mill scale, blast furnace dust, converter dust, etc.) generated in steelworks. It is made of ironmaking materials such as powdered limestone as an auxiliary material. In addition, recently, hot cracked ore or adhesive ore, which is not preferred for direct use in blast furnace operation, is sometimes crushed into a sintered raw material.
焼結鉱時系列データの予測方法に関する従来の技術としては、焼結鉱塩基度の予測方法に関して、特開昭59−64718号公報(特許文献1)に開示された技術がある。この焼結鉱塩基度の予測方法は、焼結鉱塩基度の実測値と計算値との差を時系列に測定し、この差の過去の情報を統計処理して偏差を求め、この偏差と計算値で求まる塩基度とから焼結鉱塩基度を予測するものである。 As a conventional technique relating to a method for predicting sinter time series data, there is a technique disclosed in Japanese Patent Application Laid-Open No. 59-64718 (Patent Document 1) relating to a method for predicting sinter basicity. This sinter basicity prediction method measures the difference between the measured value and the calculated value of sinter basicity in time series, statistically processes the past information of this difference to determine the deviation, The basicity of the sinter is predicted from the basicity obtained from the calculated value.
焼結鉱の塩基度の計算値と実測値の偏差が過去の偏差と相関関係があることに着目し、この偏差を時系列に測定し、偏差の予測式を統計的手法を用いて実操業データを基に決定する。塩基度(CaO/SiO2)の計算値は、配合原料の総CaO量と総SiO2量との比により原料切出し時点で計算する。 そして、現時点で数時間以上前に切出された配合原料についての焼結鉱塩基度のデータから偏差を推定することにより、現時点において焼結されようとしている配合原料を焼結した後の塩基度が推定できるとしている。
しかし、特許文献1で開示された技術では、一つの回帰式を用いて予測偏差を求めているため、配合原料の特性がダイナミックに変化する場合には、回帰係数をその都度求め直さなければならず、実操業において常に継続して高精度な予測値を得ることは困難であるという問題点がある。
However, in the technique disclosed in
また、配合原料の特性変化に応じて、予め準備した別の回帰式を用いるとしても、その選定方法は提示されていない。 Even if another regression equation prepared in advance is used according to the change in the characteristics of the blended raw material, no selection method is presented.
この発明は、従来技術の上述のような問題点を解消するためになされたものであり、配合原料の特性がダイナミックに変化する場合においても、高精度に予測することのできる焼結鉱主原料成分割合の予測方法およびこれ用いた焼結鉱成分割合制御方法ならびに焼結鉱主原料成分割合予測プログラムを提供することを目的としている。 The present invention has been made to solve the above-described problems of the prior art, and is a main raw material for sintered ore that can be predicted with high accuracy even when the characteristics of the blended raw material change dynamically. It is an object of the present invention to provide a component ratio prediction method, a sinter component ratio control method, and a sinter main raw material component ratio prediction program.
本発明は、時系列的に変動する焼結鉱の主原料成分割合を予測する方法であって、次の(1)〜(6)の工程を有することを特徴とする焼結鉱主原料成分割合予測方法である。
(1)焼結鉱の成分分析値と焼結鉱の副原料の成分割合の実測値とから求められる、焼結鉱主原料成分割合の同定用時系列データを収集する同定用データ収集工程。
(2)収集された同定用時系列データを、複数の周波数帯の時系列データに分類して、それぞれに対応する自己回帰モデルを作成する周波数対応自己回帰モデル群作成工程。
(3)至近の焼結鉱の成分分析値の時系列データについて、その周波数解析を行い、パワースペクトルの強い周波数帯を判定する周波数帯判定工程。
(4)判定されたパワースペクトルの強い周波数帯に対応する自己回帰モデルを、前記周波数対応自己回帰モデル群の中から選択する自己回帰モデル選択工程。
(5)選択された自己回帰モデルに基づき、副原料を添加する時点での焼結鉱主原料の成分割合を予測する焼結鉱主原料成分割合の予測工程。
The present invention is a method for predicting the ratio of main raw material components of sintered ore that varies in time series, and has the following steps (1) to (6): It is a percentage prediction method.
(1) An identification data collection step for collecting time-series data for identification of the sinter ore main raw material component ratio obtained from the component analysis value of the sinter ore and the actual measured value of the component ratio of the secondary raw material of the sinter ore.
(2) A frequency-corresponding autoregressive model group creation step of classifying the collected time series data for identification into time series data of a plurality of frequency bands and creating an autoregressive model corresponding to each.
(3) A frequency band determination step of performing frequency analysis on the time series data of component analysis values of the nearest sintered ore and determining a frequency band having a strong power spectrum.
(4) An autoregressive model selection step of selecting an autoregressive model corresponding to the determined frequency band having a strong power spectrum from the group of frequency-corresponding autoregressive models.
(5) A step of predicting a sinter ore main material component ratio that predicts a component ratio of the sinter ore main material at the time of adding the auxiliary material based on the selected autoregressive model.
また本発明は、請求項1に記載の焼結鉱主原料成分割合予測方法において、前記周波数帯判定工程での周波数解析に、ウェーブレット変換を用いることを特徴とした焼結鉱主原料成分割合予測方法である。
Moreover, this invention is a sintered ore main raw material component ratio prediction method of
また本発明は、請求項1または請求項2のいずれかに記載の焼結鉱主原料成分割合予測方法において、前記周波数帯判定工程でのパワースペクトルの強い周波数帯の判定は、パワースペクトルがピークとなる周波数の高周波側および低周波側にそれぞれ設定幅を設けて周波数帯とする方法、またはパワースペクトルのピークで正規化した正規化パワースペクトルに対して、予め設定したパワースペクトルの閾値を越えた周波数帯とする方法のいずれかによることを特徴とした焼結鉱主原料成分割合予測方法である。
Further, the present invention provides the sintered ore main raw material component ratio prediction method according to
また本発明は、請求項1ないし請求項3のいずれかに記載の焼結鉱主原料成分割合予測方法を用いて焼結鉱主原料成分割合の変動量を求めて、該変動量に基づいて焼結鉱の副原料の添加割合を制御することを特徴とした焼結鉱成分割合制御方法である。
Moreover, this invention calculates | requires the variation | change_quantity of the sinter main raw material component ratio using the sintered ore main raw material component ratio prediction method in any one of
さらに本発明は、時系列的に変動する焼結鉱の主原料成分割合を予測するプログラムであって、コンピュータに次の(1)〜(6)の機能を実現させるための焼結鉱主原料成分割合予測プログラムである。
(1)焼結鉱の成分分析値と焼結鉱の副原料の成分割合の実測値とから求められる、焼結鉱主原料成分割合の同定用時系列データを収集する同定用データ収集機能。
(2)収集された同定用時系列データを、複数の周波数帯の時系列データに分類して、それぞれに対応する自己回帰モデルを作成する周波数対応自己回帰モデル群作成機能。
(3)至近の焼結鉱の成分分析値の時系列データについて、その周波数解析を行い、パワースペクトルの強い周波数帯を判定する周波数帯判定機能。
(4)判定されたパワースペクトルの強い周波数帯に対応する自己回帰モデルを、前記周波数対応自己回帰モデル群の中から選択する自己回帰モデル選択機能。
(5)選択された自己回帰モデルに基づき、副原料を添加する時点での焼結鉱主原料の成分割合を予測する焼結鉱主原料成分割合の予測機能。
Furthermore, the present invention is a program for predicting the ratio of main raw material components of sintered ore that varies in time series, and the main raw material of sintered ore for realizing the following functions (1) to (6) on a computer: This is a component ratio prediction program.
(1) An identification data collection function for collecting time-series data for identification of the sinter ore main raw material component ratio obtained from the component analysis value of the sinter ore and the measured value of the component ratio of the auxiliary raw material of the sinter ore.
(2) A frequency-corresponding autoregressive model group creation function that classifies collected time series data for identification into time series data of a plurality of frequency bands and creates an autoregressive model corresponding to each.
(3) A frequency band determination function for performing frequency analysis on the time series data of component analysis values of the nearest sintered ore and determining a frequency band with a strong power spectrum.
(4) An autoregressive model selection function for selecting an autoregressive model corresponding to a determined frequency band having a strong power spectrum from the group of frequency-corresponding autoregressive models.
(5) A function for predicting a sinter ore main material component ratio that predicts a component ratio of the sinter ore main material at the time of adding the auxiliary material based on the selected autoregressive model.
本発明によれば、配合原料のダイナミックな特性の変化に応じて、適正なモデルを自動選定することができるため、実操業において常に継続して高精度な予測値を得ることが可能である。さらに、長い無駄時間をもつ制御対象の変動の正確な予測値を用いて制御をおこなうようにしたため、単純なフイードバック制御では除去できなかった短期的な変動を除去できる効果もある。 According to the present invention, an appropriate model can be automatically selected according to a change in dynamic characteristics of a blended raw material, so that a highly accurate predicted value can be obtained continuously in actual operation. Furthermore, since the control is performed using an accurate predicted value of the fluctuation of the controlled object having a long dead time, there is an effect that a short-term fluctuation that cannot be removed by simple feedback control can be removed.
以下、本発明を実施するための最良の形態について図面および数式を用いて説明する。 The best mode for carrying out the present invention will be described below with reference to the drawings and mathematical expressions.
図2は、焼結鉱の製造工程を模式的に示す図である。主原料1には配合部2において、副原料3が加えられる。そして、それらは焼結工程4を経ることによって、焼結鉱5が製造される。焼結工程4により焼結された焼結鉱5は、定期的にサンプリングされて、成分分析工程6において成分分析が行われる。この分析結果すなわち成分分析値7が間欠的な時系列データとして把握されるようになっている。
FIG. 2 is a diagram schematically showing a manufacturing process of sintered ore. The auxiliary
しかし、焼結鉱の成分分析値が判明するのは、副原料3を主原料1に添加した時点から数時間後と大きな時間差がある。例えば、焼結に1時間、冷却に1時間、サンプリングに1時間、分析に1時間、合計して約4時間といった具合である。このため、でてきた焼結鉱の成分分析値は数時間前の配合を反映したものであり、この分析値を直ぐ副原料3の添加量制御にフィードバックしても、すでにその時点では主原料の成分割合が変化している。このように、長いタイムラグを持つ焼結鉱の成分分析値を一定に保つようにすることはとても難しい。
However, the component analysis value of the sintered ore is found to have a large time difference from several hours after the addition of the auxiliary
副原料の成分値は事前に正確に把握されているため、過去の主原料の成分変動値は、焼結鉱の成分分析値から加えられた副原料の成分値を差し引くことで、次の(1)式のようにして求めることができる。 Since the component value of the auxiliary raw material is accurately grasped in advance, the component fluctuation value of the main raw material in the past can be calculated by subtracting the component value of the auxiliary raw material added from the component analysis value of the sintered ore as follows ( 1) It can obtain | require like Formula.
従って、成分分析値判明時点で主原料の数時間後の成分変動値を予測すれば、これは最新(配合時点)の主原料成分変動を表していることになり、この予測値を基に副原料配合量を決めれば、より精度良く焼結鉱の成分制御をすることができる。本発明では、この主原料成分の変動値を予測対象データ8とする。
Therefore, if the component fluctuation value after several hours of the main raw material is predicted when the component analysis value is known, this represents the latest main raw material component fluctuation (at the time of blending). If the raw material blending amount is determined, the components of the sintered ore can be controlled with higher accuracy. In the present invention, the fluctuation value of the main raw material component is set as the
図1は、焼結鉱主原料成分の変動値を予測するための予測フロー図である。先ず、焼結鉱の成分分析値と主原料に添加する副原料の成分割合の実測値とから、(1)式に示すような焼結鉱主原料成分割合の時系列データを成分値同定用データ11として収集する。成分値同定用データ11の一例を、図3に示す
この成分値同定用データ11を、FFTなどのフィルタ12を通して同定13することにより、複数の周波数帯の時系列データに分類して、それぞれの自己回帰モデル群14iを作成しておく。
FIG. 1 is a prediction flow chart for predicting a fluctuation value of a sintered ore main raw material component. First, the time series data of the sinter ore main material component ratio as shown in the equation (1) is used for component value identification from the component analysis value of the sinter ore and the measured value of the component ratio of the auxiliary material added to the main material. Collect as
この図1の左側に示す一連の準備処理を、以下に詳説する。
図3で示した成分値同定用の時系列データを、(2)式で示すフーリエ変換により周波数データ(図4参照)に変換する。
A series of preparation processes shown on the left side of FIG. 1 will be described in detail below.
The time-series data for component value identification shown in FIG. 3 is converted into frequency data (see FIG. 4) by Fourier transform expressed by equation (2).
次に、図4の周波数データの内、特徴的な周波数帯を複数残すようにする。図5は、低周波帯を残すようにしたものであり、高周波帯のパワースペクトルにマスクをかけている。図6は、元の周波数データでパワースペクトルが一番強い中間周波帯を残すようにしたものであり、対象帯域外の低・高周波帯領域にそれぞれマスクをかけている。このような処理を、特徴的な周波数帯を残すべく適宜複数回行う。 Next, a plurality of characteristic frequency bands are left in the frequency data of FIG. FIG. 5 shows that the low frequency band is left, and the power spectrum in the high frequency band is masked. FIG. 6 shows that the intermediate frequency band having the strongest power spectrum is left in the original frequency data, and the low and high frequency band regions outside the target band are respectively masked. Such processing is appropriately performed a plurality of times to leave a characteristic frequency band.
これらマスクをかけた周波数データについて、(3)式で示すフーリエ逆変換を行い、時系列データに戻す。 The frequency data subjected to these masks is subjected to Fourier inverse transform represented by equation (3), and returned to time series data.
図7および図8は、それぞれ図5および図6に示した周波数データを逆変換した時系列データである。図3の元の時系列データに比べると、図7は高周波帯が除かれた低周波帯を強調した時系列データになっていることが見て取れる。同様に、図8は中間周波帯を強調した時系列データになっていることが見て取れる。 7 and 8 are time series data obtained by inversely converting the frequency data shown in FIGS. 5 and 6, respectively. Compared to the original time-series data in FIG. 3, it can be seen that FIG. 7 is time-series data in which the low frequency band excluding the high frequency band is emphasized. Similarly, it can be seen that FIG. 8 is time-series data in which the intermediate frequency band is emphasized.
次に、このように周波帯域毎に分類されたデータそれぞれに、(4)式で示す自己回帰モデル(ARモデル)を当てはめて、モデルの同定を行う。 Next, the model is identified by applying the autoregressive model (AR model) represented by the equation (4) to each of the data thus classified for each frequency band.
以上で、図1の14iとして示すn個の周波数対応ARモデルが、準備できたわけである。 The n frequency-corresponding AR models indicated as 14i in FIG. 1 have been prepared.
次に、図1の右側の処理フローを説明する。焼結鉱の成分分析値の至近時系列データ(成分値至近データ15)を準備する。この成分値至近データ15に、(5)式で示すウェーブレット変換を施す(ウェーブレット変換16)。
Next, the processing flow on the right side of FIG. 1 will be described. Prepare the latest time series data (component value nearest data 15) of the component analysis value of the sintered ore. The component value nearest
このウェーブレット変換されたパワースペクトルの強い周波数帯を判定し、判定された周波数帯に対応する自己回帰モデル18を、複数の周波数対応ARモデル14iの中から選択する(モデル選定17)。 すなわち、至近データの周波数帯を常に監視し、この変化を捕らえ(判定)て、その周波数帯に対応するモデルを選択するというものである。
A frequency band having a strong power spectrum subjected to the wavelet transform is determined, and an
パワースペクトルの強い周波数帯の判定方法としては、例えば、図9または図10に示す方法がある。 図9で示す方法は、パワースペクトルがピークとなる周波数f2の高周波側および低周波側に上下設定幅を設けて、周波数帯(f1〜f3)とするものである。これに対して図10で示す方法は、パワースペクトルのピークで正規化した正規化パワースペクトルに対して、予め設定したパワースペクトルの閾値を越えた周波数帯(f1〜f3)とするものである。 As a method for determining a frequency band with a strong power spectrum, for example, there is a method shown in FIG. 9 or FIG. In the method shown in FIG. 9, the upper and lower set widths are provided on the high frequency side and the low frequency side of the frequency f2 at which the power spectrum reaches a peak, and the frequency band (f1 to f3) is obtained. On the other hand, the method shown in FIG. 10 uses a frequency band (f1 to f3) that exceeds a preset power spectrum threshold with respect to the normalized power spectrum normalized at the peak of the power spectrum.
選択された時系列データの自己回帰モデル(ARモデル18)に基づき、副原料を添加する時点での焼結鉱主原料の成分割合の予測値19を予測する。選択されたARモデル18が複数の場合は、それぞれのARモデルを用いた予測値を加算して最終的な主原料変動量の予測値とする。また、図1の成分値至近データ15からARモデル18への矢印は、最終的な主原料変動量の予測値として、全周波数帯を含む生データ(成分値至近データ15)から同定されたARモデルの予測値を基本として、それに前記の選択されたARモデルの予測値を補償量として加算する、もう一つの最終的な主原料変動量の予測値算出方法を示している。
Based on the autoregressive model (AR model 18) of the selected time series data, the predicted
図11は、焼結鉱成分のSiO2成分割合の変動の実績値と、本発明に基づく予測値とを比較したグラフである。これによると、本発明に基づく予測値は、実績値の時系列変動をよく予測できており、プラントの特性がダイナミックに変化する場合にも、本発明の焼結鉱主原料成分割合の予測方法が有効であることが分かる。 FIG. 11 is a graph comparing the actual value of the fluctuation of the SiO 2 component ratio of the sintered ore component with the predicted value based on the present invention. According to this, the predicted value based on the present invention can predict the time-series fluctuation of the actual value well, and even when the characteristics of the plant change dynamically, the method for predicting the ratio of main raw material components of the sinter according to the present invention It can be seen that is effective.
1 主原料
2 配合部
3 副原料
4 焼結工程
5 焼結鉱
6 成分分析工程
11 焼結鉱主原料の成分値同定用データ
12 フィルタ
13 同定
14i 自己回帰モデル群
15 焼結鉱の成分分析値の至近時系列データ
16 ウェーブレット変換
17 モデル選定
18 ARモデル
19 副原料を添加する時点での焼結鉱主原料の成分割合の予測値
DESCRIPTION OF
Claims (5)
(1)焼結鉱の成分分析値と焼結鉱の副原料の成分割合の実測値とから求められる、焼結鉱主原料成分割合の同定用時系列データを収集する同定用データ収集工程。
(2)収集された同定用時系列データを、複数の周波数帯の時系列データに分類して、それぞれに対応する自己回帰モデルを作成する周波数対応自己回帰モデル群作成工程。
(3)至近の焼結鉱の成分分析値の時系列データについて、その周波数解析を行い、パワースペクトルの強い周波数帯を判定する周波数帯判定工程。
(4)判定されたパワースペクトルの強い周波数帯に対応する自己回帰モデルを、前記周波数対応自己回帰モデル群の中から選択する自己回帰モデル選択工程。
(5)選択された自己回帰モデルに基づき、副原料を添加する時点での焼結鉱主原料の成分割合を予測する焼結鉱主原料成分割合の予測工程。 A method for predicting a main raw material component ratio of a sintered ore that varies in a time series, the method comprising the following steps (1) to (6):
(1) An identification data collection step for collecting time-series data for identification of the sinter ore main raw material component ratio obtained from the component analysis value of the sinter ore and the actual measured value of the component ratio of the secondary raw material of the sinter ore.
(2) A frequency-corresponding autoregressive model group creation step of classifying the collected time series data for identification into time series data of a plurality of frequency bands and creating an autoregressive model corresponding to each.
(3) A frequency band determination step of performing frequency analysis on the time series data of component analysis values of the nearest sintered ore and determining a frequency band having a strong power spectrum.
(4) An autoregressive model selection step of selecting an autoregressive model corresponding to the determined frequency band having a strong power spectrum from the group of frequency-corresponding autoregressive models.
(5) A step of predicting a sinter ore main material component ratio that predicts a component ratio of the sinter ore main material at the time of adding the auxiliary material based on the selected autoregressive model.
(1)焼結鉱の成分分析値と焼結鉱の副原料の成分割合の実測値とから求められる、焼結鉱主原料成分割合の同定用時系列データを収集する同定用データ収集機能。
(2)収集された同定用時系列データを、複数の周波数帯の時系列データに分類して、それぞれに対応する自己回帰モデルを作成する周波数対応自己回帰モデル群作成機能。
(3)至近の焼結鉱の成分分析値の時系列データについて、その周波数解析を行い、パワースペクトルの強い周波数帯を判定する周波数帯判定機能。
(4)判定されたパワースペクトルの強い周波数帯に対応する自己回帰モデルを、前記周波数対応自己回帰モデル群の中から選択する自己回帰モデル選択機能。
(5)選択された自己回帰モデルに基づき、副原料を添加する時点での焼結鉱主原料の成分割合を予測する焼結鉱主原料成分割合の予測機能。 A program for predicting a ratio of main raw material components of a sintered ore that varies in time series, and a program for predicting a ratio of main raw material components of a sintered ore for causing a computer to realize the following functions (1) to (6).
(1) An identification data collection function for collecting time-series data for identification of the sinter ore main raw material component ratio obtained from the component analysis value of the sinter ore and the measured value of the component ratio of the auxiliary raw material of the sinter ore.
(2) A frequency-corresponding autoregressive model group creation function that classifies collected time series data for identification into time series data of a plurality of frequency bands and creates an autoregressive model corresponding to each.
(3) A frequency band determination function for performing frequency analysis on the time series data of component analysis values of the nearest sintered ore and determining a frequency band with a strong power spectrum.
(4) An autoregressive model selection function for selecting an autoregressive model corresponding to a determined frequency band having a strong power spectrum from the group of frequency-corresponding autoregressive models.
(5) A function for predicting a sinter ore main material component ratio that predicts a component ratio of the sinter ore main material at the time of adding the auxiliary material based on the selected autoregressive model.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003331104A JP2005097658A (en) | 2003-09-24 | 2003-09-24 | Method for predicting main raw material component ratio of sintered ore and method for controlling component ratio of sintered ore and program for predicting main raw material component ratio of sintered ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003331104A JP2005097658A (en) | 2003-09-24 | 2003-09-24 | Method for predicting main raw material component ratio of sintered ore and method for controlling component ratio of sintered ore and program for predicting main raw material component ratio of sintered ore |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005097658A true JP2005097658A (en) | 2005-04-14 |
Family
ID=34459851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003331104A Pending JP2005097658A (en) | 2003-09-24 | 2003-09-24 | Method for predicting main raw material component ratio of sintered ore and method for controlling component ratio of sintered ore and program for predicting main raw material component ratio of sintered ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005097658A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102156405A (en) * | 2011-01-24 | 2011-08-17 | 王爱民 | Sintered ore chemical component prediction and intelligent control system under small sample poor information |
KR20190036024A (en) * | 2017-09-27 | 2019-04-04 | 현대제철 주식회사 | Apparatus and method for manufacturing sintered ore |
CN109943711A (en) * | 2019-03-14 | 2019-06-28 | 冶金工业规划研究院 | A kind of matching method and system of sinter material |
CN110073006A (en) * | 2016-12-16 | 2019-07-30 | 杰富意钢铁株式会社 | Method for operating blast furnace |
CN112099460A (en) * | 2020-11-02 | 2020-12-18 | 常州微亿智造科技有限公司 | Quality characteristic processing method suitable for deep learning metal injection molding sintering product |
KR102360397B1 (en) * | 2020-10-26 | 2022-02-08 | 현대제철 주식회사 | Apparatus and method for guidance of sintered ore |
WO2023189335A1 (en) * | 2022-03-28 | 2023-10-05 | Jfeスチール株式会社 | Method for managing operation of sintering machine, method for manufacturing sintered ore, and control device |
WO2023189336A1 (en) * | 2022-03-28 | 2023-10-05 | Jfeスチール株式会社 | Method for managing operation of sintering machine, method for manufacturing sintered ore, and control device |
WO2023189251A1 (en) * | 2022-03-28 | 2023-10-05 | Jfeスチール株式会社 | Granulated particle prediction method, granulated particle production method, granulated particle production device, and sintered ore production method |
-
2003
- 2003-09-24 JP JP2003331104A patent/JP2005097658A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102156405A (en) * | 2011-01-24 | 2011-08-17 | 王爱民 | Sintered ore chemical component prediction and intelligent control system under small sample poor information |
CN110073006A (en) * | 2016-12-16 | 2019-07-30 | 杰富意钢铁株式会社 | Method for operating blast furnace |
KR20190036024A (en) * | 2017-09-27 | 2019-04-04 | 현대제철 주식회사 | Apparatus and method for manufacturing sintered ore |
KR101978053B1 (en) | 2017-09-27 | 2019-05-13 | 현대제철 주식회사 | Apparatus and method for manufacturing sintered ore |
CN109943711A (en) * | 2019-03-14 | 2019-06-28 | 冶金工业规划研究院 | A kind of matching method and system of sinter material |
KR102360397B1 (en) * | 2020-10-26 | 2022-02-08 | 현대제철 주식회사 | Apparatus and method for guidance of sintered ore |
CN112099460A (en) * | 2020-11-02 | 2020-12-18 | 常州微亿智造科技有限公司 | Quality characteristic processing method suitable for deep learning metal injection molding sintering product |
WO2023189335A1 (en) * | 2022-03-28 | 2023-10-05 | Jfeスチール株式会社 | Method for managing operation of sintering machine, method for manufacturing sintered ore, and control device |
WO2023189336A1 (en) * | 2022-03-28 | 2023-10-05 | Jfeスチール株式会社 | Method for managing operation of sintering machine, method for manufacturing sintered ore, and control device |
WO2023189251A1 (en) * | 2022-03-28 | 2023-10-05 | Jfeスチール株式会社 | Granulated particle prediction method, granulated particle production method, granulated particle production device, and sintered ore production method |
TWI848627B (en) * | 2022-03-28 | 2024-07-11 | 日商杰富意鋼鐵股份有限公司 | Sintering machine operation management method, sintered ore production method and control device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101598979B1 (en) | Method and apparatus for estimating power consumption based on temperature | |
CN102804353B (en) | Methods for constructing an optimal endpoint algorithm | |
JP2005097658A (en) | Method for predicting main raw material component ratio of sintered ore and method for controlling component ratio of sintered ore and program for predicting main raw material component ratio of sintered ore | |
JP5853723B2 (en) | Phosphorus concentration prediction device and blowing control method | |
JP2017070134A (en) | Power prediction method | |
CN114117884B (en) | Intelligent ore blending system for sintering based on pre-iron big data | |
JP2005242818A (en) | Quality effect factor analyzing method, quality forecasting method, quality control method, quality effect factor analyzing device, quality forecasting device, quality control device, quality effect factor analyzing system, quality forecasting system, quality control system, and computer program | |
CN103632014B (en) | A kind of technological parameter Forecasting Methodology of hot steel rolling production production procedure | |
RU2567330C2 (en) | Method of automatic control over flotation process | |
JP5821656B2 (en) | Quick lime concentration prediction device and blowing control method | |
JP2003268428A (en) | Apparatus for controlling quality of steel product | |
CN116050664B (en) | Garbage yield prediction method, system, electronic equipment and readable storage medium | |
CN117407735A (en) | Tool wear modeling method based on evolution cluster analysis | |
CN111258866A (en) | Computer performance prediction method, device, equipment and readable storage medium | |
JPH03195849A (en) | Load estimating device for air-conditioner | |
CN114819417A (en) | Aero-engine overhaul cost prediction method and system based on correlation between costs | |
AU2010202088C1 (en) | System and method for identifying energy overconsumption | |
JP5522060B2 (en) | Quality prediction apparatus, operation condition determination method, quality prediction method, computer program, and computer-readable storage medium | |
Nikolaevich et al. | Optimal energy-efficient combustion process control in heating furnaces of rolling mills | |
Perzyk et al. | Application of time-series analysis in control of chemical composition of grey cast iron | |
Toktassynova et al. | Application of grey system theory to phosphorite sinter process: From modeling to control | |
JP2001075611A (en) | Method and device for automatically structuring setup model | |
JP2005328673A (en) | Power demand prediction device, power demand prediction system, power demand prediction program, recording medium and power demand prediction method | |
WO2020222145A1 (en) | System and method for evaluation of foundry sand | |
León-Munizaga et al. | Prediction of energy consumption in an electric arc furnace using Weka |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Effective date: 20060921 Free format text: JAPANESE INTERMEDIATE CODE: A7421 |