JPH10324929A - Production of sintered ore - Google Patents

Production of sintered ore

Info

Publication number
JPH10324929A
JPH10324929A JP14986997A JP14986997A JPH10324929A JP H10324929 A JPH10324929 A JP H10324929A JP 14986997 A JP14986997 A JP 14986997A JP 14986997 A JP14986997 A JP 14986997A JP H10324929 A JPH10324929 A JP H10324929A
Authority
JP
Japan
Prior art keywords
sintering
porosity
pore diameter
average pore
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14986997A
Other languages
Japanese (ja)
Inventor
Masanori Nakano
正則 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14986997A priority Critical patent/JPH10324929A/en
Publication of JPH10324929A publication Critical patent/JPH10324929A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To control the sintering to desired reducing powdering or reducibility by quickly estimating the reducing powdering and the reducibility of product sintered ore on the way of sintering in a producing process of the sintered ore. SOLUTION: The cross sectional picture of sintering filled layer 8 is picked up with CT scanners 4, 5, 7 and the range of coke burning in the raw material is discriminated to obtain the porosity and the average pore diameter in this range. Either or both of grain sizes of powdery coke and lime stone blended into the sintering raw material are adjusted so that the porosity and the average pore diameter become the values in the prescribed ranges.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉用原料として
用いられる焼結鉱の製造方法、特にその還元粉化性や被
還元性を制御する焼結鉱の製造方法に関する。
[0001] The present invention relates to a method for producing a sinter used as a raw material for a blast furnace, and more particularly to a method for producing a sinter which controls the reduction pulverizability and reducibility thereof.

【0002】[0002]

【従来の技術】現在の一般的な焼結鉱製造工程は以下の
通りである。先ず、原料槽から切り出された複数銘柄の
鉄鉱石粉に石灰石、珪砂や蛇紋岩等のシリカ源、粉コー
クスおよび返鉱を配合し、配合原料をドラムミキサーで
加水、造粒した後、ドワイトロイド式焼結機で焼成して
シンターケーキとする。焼結機から排出されたシンター
ケーキは、破砕整粒されて、通常5mm以下が返鉱とし
て原料に循環される一方、5mm以上が成品として高炉
工程へ輸送される。
2. Description of the Related Art At present, a general sinter production process is as follows. First, limestone, silica source such as silica sand and serpentine, fine coke and remineralization are blended with iron ore powders of multiple brands cut out from the raw material tank, and the blended raw materials are hydrolyzed and granulated with a drum mixer, and then Dwyroid type. Sintered in a sintering machine to form a sinter cake. The sinter cake discharged from the sintering machine is crushed and sized, and usually 5 mm or less is circulated to the raw material as returned ore, while 5 mm or more is transported as a product to the blast furnace process.

【0003】一方、焼結鉱の品質調整は、輸送途中でサ
ンプリングした一部の成品焼結鉱の諸品質を別工程で測
定した結果をもとに、前記焼結鉱製造工程を種々制御す
ることで実施される。具体的に、被還元性の調整におい
ては、JISで規定された方法により求めたRI指数、
ないしはFeO化学分析値を管理指標として、それが目
標範囲内となるように粉コークス配合量や鉱石銘柄の調
整を行い、還元粉化性の調整においては、製銑部会法に
より求めたRDI指数やAl2 3 化学成分を管理指標
として、それが目標範囲内となるように石灰石やシリカ
源の粒度調整または鉱石銘柄の変更を行い、冷間強度の
調整においては、回転強度指数(TI)ないし落下強度
指数(SI)を測定した後、それが目標範囲内となるよ
うに粉コークス配合量や鉱石銘柄の調整を行うのが一般
的である。
[0003] On the other hand, the quality control of the sinter ore is performed by variously controlling the sinter ore production process on the basis of the results obtained by measuring the various qualities of a part of the product sinter sampled during transportation in a separate process. It is implemented by that. Specifically, in adjusting the reducibility, the RI index obtained by the method specified in JIS,
Or, using the FeO chemical analysis value as a control index, adjust the amount of coke breeze and the ore brand so that it is within the target range. In the adjustment of the reduction pulverizability, the RDI index or the With the Al 2 O 3 chemical component as a control index, the particle size of the limestone or silica source is adjusted or the ore brand is changed so that it falls within the target range. In the adjustment of cold strength, the rotational strength index (TI) or After measuring the drop strength index (SI), it is common to adjust the amount of coke breeze or the ore brand so that it falls within the target range.

【0004】[0004]

【発明が解決しようとする課題】前記通常の品質測定方
法では、多くても化学成分、RDI、冷間強度指数(T
I、SI)で4時間毎、RIでは6時間毎が限界である
ため、迅速な操業調整は難しかった。
In the conventional quality measuring method, at most the chemical components, RDI, and cold strength index (T
I and SI) are every 4 hours and RI is every 6 hours, so it was difficult to quickly adjust the operation.

【0005】それに対し、特開昭61−110726号
公報、特開昭63−101738号公報および特開平3
−101738号公報には、CTスキャナーを利用して
オンラインで得たシンターケーキの断層像から焼結鉱の
焼結度、歩留および生産性を評価する方法が開示されて
いるものの、焼結充填層の断層像から焼結鉱の還元粉化
性および被還元性を評価する方法はまだなかった。
On the other hand, JP-A-61-110726, JP-A-63-10138, and
JP-A-10-1738 discloses a method for evaluating the sintering degree, yield, and productivity of a sinter from a tomographic image of a sinter cake obtained online using a CT scanner. There has not been a method for evaluating the reduced powderability and reducibility of the sintered ore from the tomographic image of the layer.

【0006】本発明は、焼結充填層のCT画像から焼結
鉱の還元粉化性および被還元性を評価する方法を提供
し、これにより迅速な焼結鉱品質の制御を可能とする。
The present invention provides a method for evaluating the reduced powderability and reducibility of a sinter from a CT image of a sinter packed bed, thereby enabling quick control of the sinter quality.

【0007】[0007]

【課題を解決するための手段】本発明は、CTスキャナ
ーで焼結充填層の断面を撮像し、該断面から原料中のコ
ークスが燃焼している領域を判別し、該領域中の気孔率
および平均気孔径を求め、該気孔率および平均気孔径が
所定の範囲内になるように、焼結原料に配合する粉コー
クス、石灰石の一方または両方の粒度を調整することを
特徴とする焼結鉱の製造方法である。
According to the present invention, a cross section of a sintered packed bed is imaged with a CT scanner, a region where coke in the raw material is burning is determined from the cross section, and the porosity and the porosity in the region are determined. Determining a mean pore diameter, and adjusting the particle size of one or both of coke breeze and limestone to be mixed with the sintering raw material so that the porosity and the mean pore diameter fall within predetermined ranges. It is a manufacturing method of.

【0008】本発明は、焼結過程前期の粉コークス燃焼
・消滅にともなう比較的微細な気孔が成品焼結鉱内の微
細気孔として残留し、それが焼結鉱の還元粉化性および
被還元性を強く左右することに着目し、焼結過程でのダ
イナミックなCT測定により微細気孔を検出・定量化し
て品質制御に活用する。
According to the present invention, relatively fine pores associated with the combustion and extinction of coke breeze in the early stage of the sintering process remain as fine pores in the product sinter, which reduce the reducibility of the sinter to powder and reduce Paying attention to the strong influence on the properties, it detects and quantifies fine pores by dynamic CT measurement in the sintering process and uses it for quality control.

【0009】なお、コークスが燃焼している領域として
は、初期の配合原料状態の像が変化を開始した時点より
30〜120秒経過した範囲の領域とするのがRI、R
DIとよい関係が得られる点で好ましい。また、その領
域を設定する際の層高方向の位置は、通常400〜60
0mmの層厚の場合、上層100mmおよび下層100
mmを除いた中間部とするのが良い推定ができる点で好
ましい。気孔率および平均気孔径の所定の範囲とは、個
々の焼結機に課せられている品質管理基準値に対応する
気孔率および平均気孔径の範囲であり、具体的には図
5、6に例示したような関係がある。
It is to be noted that the region where the coke is burning is defined as a region within a range of 30 to 120 seconds after the start of the image of the state of the initial blended raw material, and RI and R.
This is preferable in that a good relationship with DI can be obtained. In addition, the position in the layer height direction when setting the region is usually 400 to 60.
For a layer thickness of 0 mm, the upper layer 100 mm and the lower layer 100
It is preferable to use an intermediate portion excluding mm because a good estimation can be made. The predetermined range of the porosity and the average pore diameter is a range of the porosity and the average pore diameter corresponding to the quality control standard value imposed on each sintering machine. Specifically, FIGS. There is a relationship as illustrated.

【0010】[0010]

【発明の実施の形態】焼結過程の代表的な気孔構造変化
をある層高位置における気孔率、平均気孔径、気孔の形
状係数の時間変化として図4に例示する。これは、CT
スキャナーによる動的な断層観察から明らかとなったも
のであり、全体は4つの段階からなる。第1段階は、焼
結が開始する前の配合原料の状態であり、気孔率40%
程度で2〜3mmの微細な球状の気孔群からなる。第2
段階は、粉コークス燃焼途中の昇温期に相当するもの
で、気孔率が50%程度まで増加しつつ、平均気孔径も
4〜5mmまで増加するが、形状はまだ球に近い状態を
保っている。第3段階は、粉コークスの燃焼が完了した
以降なおも高温に保持されている状態に対応し、気孔率
の変化は少なくなるがさらに気孔径が増加し、その形状
が偏平化する。第4段階は、冷却過程以降焼結の進行が
停止し、最終的なシンターケーキとなった状態である。
FIG. 4 shows a typical change in the pore structure during the sintering process as a time change of the porosity, the average pore diameter, and the shape factor of the pore at a certain layer height position. This is CT
It has been clarified by dynamic tomographic observation by a scanner, and the whole is composed of four stages. The first stage is a state of the compounding raw material before sintering is started, and the porosity is 40%.
It is composed of a group of fine spherical pores of about 2 to 3 mm. Second
The stage corresponds to a heating period during the burning of coke breeze, and while the porosity increases to about 50% and the average pore diameter also increases to 4 to 5 mm, the shape is still in a state close to a sphere. I have. The third stage corresponds to a state where the coke breeze is kept at a high temperature even after the completion of the combustion. The change in the porosity is reduced, but the pore diameter is further increased, and the shape is flattened. The fourth stage is a state in which the progress of sintering is stopped after the cooling process, and a final sinter cake is obtained.

【0011】初期(第1段階および第2段階)に形成さ
れる気孔が焼結鉱品質に影響を及ぼす機構を次に説明す
る。焼結鉱に残留する気孔は2〜5mmを境として、そ
れ以上は開気孔、それ以下は閉気孔と考えられている。
品質面では、5mm以上の開気孔が強度を左右する一
方、0.5mm以下の閉気孔は被還元性を支配する。従
来は、焼結鉱の生産性・強度・歩留に着目していたた
め、第3段階以降に形成される気孔群が重要であると考
えられており、特開昭61−110726号公報、特開
昭63−101738号公報記載の方法はシンターケー
キの開気孔を、特開平3−101738号公報記載の方
法は、第3段階、具体的には10mm以上に限定した開
気孔の変化量を対象としたものである。しかし、焼結鉱
の還元性状に着目する場合はそれでは大きすぎ、第2段
階で形成される気孔が重要となる。本発明者らは、この
第2段階で観測される気孔(第2段階では微細ながら開
気孔と推察される)の一部が引き続く第3段階で成品焼
結鉱に取り込まれて閉気孔化しつつ残留すること、かつ
それが下記のように還元粉化性および被還元性とよい関
係を示すことに着目した。そして、第2段階で観測され
る初期の比較的微細な気孔構造をCTスキャナーによる
断層像を用いて測定し、RIおよびRDIの制御に活用
する。
The mechanism by which the pores formed in the initial stage (first and second stages) affect the quality of the sintered ore will be described below. The pores remaining in the sintered ore are considered to be open pores from the boundary of 2 to 5 mm, and closed pores below it.
In terms of quality, open pores of 5 mm or more determine the strength, while closed pores of 0.5 mm or less govern reducibility. Conventionally, attention has been paid to the productivity, strength, and yield of sintered ore. Therefore, it is considered that pore groups formed after the third stage are important. The method described in Japanese Unexamined Patent Publication No. 63-101738 covers the open pores of the sinter cake, and the method described in Japanese Unexamined Patent Publication No. 3-10138 covers the third stage, specifically, the variation of the open pores limited to 10 mm or more. It is what it was. However, if attention is paid to the reduction properties of the sintered ore, it is too large, and the pores formed in the second stage are important. The present inventors have found that some of the pores observed in the second stage (which are presumed to be fine but open pores in the second stage) are taken into the product sinter in the subsequent third stage to form closed pores. It was noted that it remains and that it has a good relationship with reduced powderability and reducibility as described below. Then, the initial relatively fine pore structure observed in the second stage is measured using a tomographic image by a CT scanner, and is used for controlling RI and RDI.

【0012】第2段階の気孔構造と品質の関係の具体例
を図5、6に示す。図5は、画像変化開始後30〜12
0秒の領域の画像をもとに得られた平均気孔径をパラメ
ータとして気孔率とRIの関係を示したもので、平均気
孔径が同じであれば気孔率が大きいほど、気孔率が同じ
であれば平均気孔径が小さいほどRIは高くなる。ま
た、図6は図5と同様気孔率および平均気孔径とRDI
の関係を示したもので、傾向はRIと同様である。
FIGS. 5 and 6 show specific examples of the relationship between the pore structure and quality in the second stage. FIG. 5 shows 30 to 12 after the start of image change.
The relationship between the porosity and the RI is shown using the average pore diameter obtained based on the image of the region of 0 second as a parameter. If the average pore diameter is the same, the larger the porosity, the more the porosity becomes the same. If there is, the smaller the average pore diameter, the higher the RI. FIG. 6 shows the porosity, the average pore diameter and the RDI as in FIG.
The tendency is the same as that of RI.

【0013】石灰石および/または粉コークスの粒度調
整により、第2段階での気孔率および平均気孔径を制御
できる理由を簡単に説明する。粉コークスは第2段階で
まさに燃焼消滅して気孔を形成する物質であり、その燃
焼前の粒度の大小により気孔制御が可能である。また、
石灰石は900℃付近で熱分解するが、この時幾分収縮
し、微細な気孔を形成すると考えられる。従って、石灰
石の粒度調整によっても、第2段階の気孔率や平均気孔
径を制御できる。
The reason why the porosity and the average pore diameter in the second stage can be controlled by adjusting the particle size of limestone and / or coke breeze will be briefly described. The coke breeze is a substance that just burns and disappears in the second stage to form pores, and the pores can be controlled by the size of the particles before burning. Also,
Limestone is thermally decomposed at around 900 ° C., but it is considered that it shrinks somewhat at this time and forms fine pores. Therefore, the porosity and the average pore diameter in the second stage can be controlled also by adjusting the particle size of the limestone.

【0014】CTスキャナーによる焼結充填層の断面の
撮像方法は、図1に示すように、焼結機パレット1を中
心に回転するX線発生器4とX線検出器5を対峙して設
置して直接的に撮像する方法があるが、設備的に大掛か
りとなる。従って、図2に示すように、造粒後の配合原
料を焼結機に装入される前に採取し、焼結鍋6で実機と
同等条件で焼成しながらCT装置で垂直断面を撮像して
もよい。粉コークスが燃焼している領域は、原料状態の
像の変化開始後30〜120秒にあたる領域をさす。さ
らに、この領域が充填層の上下100mmを除いた中間
部分に存在する複数の垂直断面に対してそれぞれ気孔率
および平均気孔径を求め、その平均値を求めるとなおよ
い。また、図3に示すように水平断面像を撮像する構成
の装置も使用可能である。水平断面を撮像する場合の粉
コークスが燃焼している領域に相当する画像は、ある時
間間隔で連続して撮像した水平断面像の内、初期原料状
態の継続した状態から変化が開始した時点より30〜1
20秒の間に撮像した水平断面画像の1枚、ないしは数
枚の平均画像を使用すればよい。
As shown in FIG. 1, a method of imaging a cross section of a sintered packing layer by a CT scanner is such that an X-ray generator 4 rotating around a pallet 1 of a sintering machine and an X-ray detector 5 are installed facing each other. Although there is a method of directly taking an image, a large facility is required. Therefore, as shown in FIG. 2, the raw material after granulation is sampled before being charged into the sintering machine, and the vertical section is imaged by the CT apparatus while firing in the sintering pot 6 under the same conditions as the actual machine. You may. The area where coke breeze is burning refers to an area corresponding to 30 to 120 seconds after the start of the change of the image of the raw material state. Furthermore, it is more preferable to obtain the porosity and the average pore diameter for each of a plurality of vertical cross sections in which this region exists in an intermediate portion excluding the upper and lower portions of the packed layer by 100 mm, and to obtain the average value. Further, an apparatus having a configuration for capturing a horizontal cross-sectional image as shown in FIG. 3 can also be used. The image corresponding to the area where coke breeze is burning when capturing a horizontal cross section is a horizontal cross-sectional image continuously captured at a certain time interval, from the time when the change starts from the continued state of the initial raw material state. 30-1
It is sufficient to use one or several average images of horizontal cross-sectional images taken during 20 seconds.

【0015】[0015]

【実施例1】RIの管理を粉コークス粒度調整を手段と
して実施した例を示す。実機操業において、RIについ
ては1回/日の頻度の従来法と6回/日の頻度の図3に
示した水平断面を撮像する本発明法とを比較した。RI
の管理目標値は66とした。
[Embodiment 1] An example in which the management of RI is carried out by adjusting the particle size of coke breeze will be described. In the actual machine operation, RI was compared between the conventional method with a frequency of once / day and the method of the present invention for imaging the horizontal cross section shown in FIG. 3 with a frequency of 6 times / day. RI
Was set to 66.

【0016】具体的には、実機より焼結機パレット装入
手前で採取した配合原料を、高さ500mm×直径90
mmの石英製焼結鍋6を用いて風速0.5Nm/sec
で吸引焼結しつつ、20秒間隔で連続的に充填層水平断
面を撮像し、その断層像が初期原料充填状態より変化を
開始してから40〜120秒に撮像した4枚の画像をも
とに平均気孔径および気孔率を求めた。
Specifically, a blended raw material sampled from an actual machine before the pallet of the sintering machine was obtained was collected by using a 500 mm height × 90 mm diameter.
0.5 Nm / sec using a quartz sintering pan 6 mm
While suction sintering is performed, the horizontal section of the packed bed is continuously imaged at intervals of 20 seconds, and four images captured 40 to 120 seconds after the tomographic image starts to change from the initial raw material filling state are also shown. Then, the average pore diameter and porosity were determined.

【0017】従来法では、RIの実測結果と目標値を比
較し、RI値が目標値より高い場合は粉コークスの粒度
を粗くし、逆に低い場合は細かくして調整した。一方、
本発明法では、CTスキャナーにより求めた平均気孔径
と気孔率から図5に従って推定したRI値が目標値より
高い場合は粉コークス粒度を粗くし、逆に低い場合は細
かくして調整した。RI評価時の平均気孔径および気孔
率の実績は、それぞれ2.5±0.3mmおよび35±
3%の範囲で変化した。
In the conventional method, the actual measurement result of RI is compared with a target value, and when the RI value is higher than the target value, the coke breeze is made coarser, and when the RI value is lower, finer coke is adjusted. on the other hand,
In the method of the present invention, when the RI value estimated from the average pore diameter and the porosity obtained by the CT scanner according to FIG. 5 is higher than the target value, the coke breeze particle size is coarsened, and when the RI value is low, it is finely adjusted. The results of the average pore diameter and the porosity at the time of the RI evaluation were 2.5 ± 0.3 mm and 35 ±, respectively.
It changed in the range of 3%.

【0018】図7に示すRIの変動推移比較の結果、測
定頻度が増加して調整アクションが増加したことで、品
質管理工程能力が向上する結果を得た。
As a result of the comparison of the change in the variation of the RI shown in FIG. 7, it was found that the quality control process capability was improved because the measurement frequency was increased and the adjustment action was increased.

【0019】[0019]

【実施例2】RDIの管理を石灰石粒度調整を手段とし
て実施した例を示す。実機操業において、6回/日の頻
度の従来法と6回/日の頻度の図3に示した水平断面を
撮像する本発明の方法を比較した。RDIの管理目標値
はいずれも35とした。
[Second Embodiment] An example in which RDI is managed by means of limestone particle size adjustment will be described. In a real machine operation, the conventional method with a frequency of 6 times / day was compared with the method of the present invention for imaging the horizontal cross section shown in FIG. 3 with a frequency of 6 times / day. The RDI management target value was 35 in each case.

【0020】従来法では、RDIの実績結果と目標値と
を比較し、RDI値が目標値より高い場合は石灰石の粒
度を粗くし、逆に低い場合は細かくして調整した。一
方、本発明法では、CTスキャナーにより求めた平均気
孔径と気孔率から図6に従って推定したRDI値が目標
値より高い場合は石灰石の粒度を粗くし、逆に低い場合
は細かくして調整した。RDI評価時の平均気孔径およ
び気孔率の実績は、それぞれ2.2±0.3mmおよび
33±3%の範囲で変化した。
In the conventional method, the result of the RDI is compared with the target value, and when the RDI value is higher than the target value, the limestone is coarsened, and when the RDI value is lower, the limestone is finely adjusted. On the other hand, in the method of the present invention, when the RDI value estimated according to FIG. 6 from the average pore diameter and the porosity obtained by the CT scanner is higher than the target value, the limestone is coarsened, and when the RDI value is low, it is finely adjusted. . The results of the average pore diameter and the porosity at the time of the RDI evaluation changed in the ranges of 2.2 ± 0.3 mm and 33 ± 3%, respectively.

【0021】図7に示すRDIの変動推移比較の結果、
結果判明時間遅れが従来法では半日ほどあったものが本
発明法では解消したため、品質管理工程能力が向上する
結果を得た。
As a result of the comparison of changes in the RDI shown in FIG.
In the method of the present invention, the time delay of the results was about half a day in the conventional method, but was eliminated in the method of the present invention.

【0022】[0022]

【発明の効果】本発明によれば、焼結鉱の品質を極めて
迅速に予測できることにより、適切な操業アクションが
適時行える結果、品質の工程管理能力が格段に向上す
る。
According to the present invention, since the quality of the sinter can be predicted very quickly, an appropriate operation action can be performed in a timely manner, so that the quality process control ability is remarkably improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の焼結機ストランド上でCTスキャナー
により焼結充填層の垂直断面を撮像する方法を示す図で
ある。
FIG. 1 is a view showing a method of imaging a vertical cross section of a sintering packed layer by a CT scanner on a sintering machine strand of the present invention.

【図2】本発明のオフラインでCTスキャナーにより焼
結充填層の垂直断面を撮像する方法を示す図である。
FIG. 2 is a diagram illustrating a method for imaging a vertical cross section of a sintered filling layer using a CT scanner offline according to the present invention.

【図3】本発明のオフラインでCTスキャナーにより焼
結充填層の水平断面を撮像する方法を示す図である。
FIG. 3 is a diagram illustrating a method for imaging a horizontal section of a sintered filling layer using a CT scanner offline according to the present invention.

【図4】焼結過程における気孔構造変化の概念を示す図
である。
FIG. 4 is a diagram showing a concept of a change in pore structure during a sintering process.

【図5】第2段階における気孔構造とJIS−RIとの
関係を示す図である。
FIG. 5 is a diagram showing the relationship between the pore structure and JIS-RI in the second stage.

【図6】第2段階における気孔構造とRDIとの関係を
示す図である。
FIG. 6 is a diagram showing a relationship between a pore structure and RDI in a second stage.

【図7】従来法と本発明法によるJIS−RIおよびR
DIの変動幅の比較を示す図である。
FIG. 7 shows JIS-RI and R according to the conventional method and the method of the present invention.
It is a figure which shows the comparison of the fluctuation range of DI.

【符号の説明】[Explanation of symbols]

1 焼結機パレット 2 ウインドボックス 3 ウインドレグ 4 X線発生器 5 X線検出器 6 焼結鍋 7 回転ステージ 8 焼結充填層 Reference Signs List 1 sintering machine pallet 2 wind box 3 wind leg 4 X-ray generator 5 X-ray detector 6 sintering pot 7 rotating stage 8 sintering packed layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 CTスキャナーで焼結充填層の断面を撮
像し、該断面から原料中のコークスが燃焼している領域
を判別し、該領域中の気孔率および平均気孔径を求め、
該気孔率および平均気孔径が所定の範囲内になるよう
に、焼結原料に配合する粉コークス、石灰石の一方また
は両方の粒度を調整することを特徴とする焼結鉱の製造
方法。
An image of a cross section of the sintered packed bed is taken by a CT scanner, a region where coke in the raw material is burning is determined from the cross section, and a porosity and an average pore diameter in the region are obtained.
A method for producing a sintered ore, comprising adjusting the particle size of one or both of coke breeze and limestone to be mixed with a sintering raw material such that the porosity and the average pore diameter are within predetermined ranges.
JP14986997A 1997-05-26 1997-05-26 Production of sintered ore Withdrawn JPH10324929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14986997A JPH10324929A (en) 1997-05-26 1997-05-26 Production of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14986997A JPH10324929A (en) 1997-05-26 1997-05-26 Production of sintered ore

Publications (1)

Publication Number Publication Date
JPH10324929A true JPH10324929A (en) 1998-12-08

Family

ID=15484439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14986997A Withdrawn JPH10324929A (en) 1997-05-26 1997-05-26 Production of sintered ore

Country Status (1)

Country Link
JP (1) JPH10324929A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073718A1 (en) * 2008-12-26 2010-07-01 新日本製鐵株式会社 Sintering material granulation method using x-ray ct
JP2013151715A (en) * 2012-01-24 2013-08-08 Nippon Steel & Sumitomo Metal Corp Method of measuring magnetic component
KR101489936B1 (en) * 2013-12-26 2015-02-04 주식회사 포스코 Apparatus for analysing reduction degree of sintered ore using image and method thereof
JP2016060920A (en) * 2014-09-16 2016-04-25 新日鐵住金株式会社 Method for estimating reduction degradation index of pellet for iron manufacturing
KR20190085970A (en) 2016-12-16 2019-07-19 제이에프이 스틸 가부시키가이샤 How to operate blast furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073718A1 (en) * 2008-12-26 2010-07-01 新日本製鐵株式会社 Sintering material granulation method using x-ray ct
CN102264924A (en) * 2008-12-26 2011-11-30 新日本制铁株式会社 sintering material granulation method using X-ray CT
JP4885311B2 (en) * 2008-12-26 2012-02-29 新日本製鐵株式会社 Granulation method of sintering raw material using X-ray CT
JP2013151715A (en) * 2012-01-24 2013-08-08 Nippon Steel & Sumitomo Metal Corp Method of measuring magnetic component
KR101489936B1 (en) * 2013-12-26 2015-02-04 주식회사 포스코 Apparatus for analysing reduction degree of sintered ore using image and method thereof
JP2016060920A (en) * 2014-09-16 2016-04-25 新日鐵住金株式会社 Method for estimating reduction degradation index of pellet for iron manufacturing
KR20190085970A (en) 2016-12-16 2019-07-19 제이에프이 스틸 가부시키가이샤 How to operate blast furnace

Similar Documents

Publication Publication Date Title
Sun et al. Manipulation and characterization of a novel titanium powder precursor for additive manufacturing applications
US5762768A (en) Target for cathodic sputtering and method for producing the target
CN106687234A (en) Method for producing a component from a metal alloy with an amorphous phase
KR20120035946A (en) Process for producing ferro coke
JPH10324929A (en) Production of sintered ore
JP2007169774A (en) Method for producing sintered ore
JP6915700B2 (en) Powder material, powder material for additional manufacturing, and method of manufacturing powder material
CN114012100A (en) Raw material powder preparation process for powder metallurgy
WO2010032466A1 (en) Sintered ore manufacturing method
JP6184476B2 (en) Method for producing solidified slag and method for producing coarse aggregate for concrete
JP2012046828A (en) Method for producing sintered ore
JP3394563B2 (en) Method for producing sintered ore with excellent softening and melting properties
JP7110830B2 (en) Granulation method of mixed raw materials
KR100786499B1 (en) Method for manufacturing the sintering ore
JP7440768B2 (en) Blast furnace fired pellets and method for producing blast furnace fired pellets
JP4438477B2 (en) Method for producing sintered ore for blast furnace
JPH06228664A (en) Method for evaluating sintering degree of powdery particle sintered compact and method for managing sintering operation for its production
JPH0860259A (en) Production of sintered ore
JPH07270344A (en) Method for measuring productivity rate of sintered body
JP4982993B2 (en) Method for producing sintered ore
JP2022090344A (en) Method for manufacturing sintered ore
JPS6148536A (en) Manufacture of sintered ore
JPS60211021A (en) Method for controlling sintering of ore to be sintered
Du et al. Preparation of granulated powders via freeze drying at different levels of slurry solid loading and comparison of their powder bed quality in roller-compaction-assisted binder jetting
CN117144170A (en) Preparation method of high-density vanadium-aluminum alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040803