JP2007231326A - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP2007231326A
JP2007231326A JP2006052311A JP2006052311A JP2007231326A JP 2007231326 A JP2007231326 A JP 2007231326A JP 2006052311 A JP2006052311 A JP 2006052311A JP 2006052311 A JP2006052311 A JP 2006052311A JP 2007231326 A JP2007231326 A JP 2007231326A
Authority
JP
Japan
Prior art keywords
coke
ore
blast furnace
layer
reactivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006052311A
Other languages
Japanese (ja)
Other versions
JP4807103B2 (en
Inventor
Michitaka Sato
道貴 佐藤
Yasuhei Nouchi
泰平 野内
Takeshi Sato
健 佐藤
Shiro Watakabe
史朗 渡壁
Tatsuro Ariyama
達郎 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006052311A priority Critical patent/JP4807103B2/en
Publication of JP2007231326A publication Critical patent/JP2007231326A/en
Application granted granted Critical
Publication of JP4807103B2 publication Critical patent/JP4807103B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blast furnace operation method where, when an operation is performed using highly reactive coke in a blast furnace, a reduction material ratio in the blast furnace can be reduced while deterioration in the gas permeability of the blast furnace is prevented. <P>SOLUTION: In the blast furnace operation method, in blast furnace operation where ore and coke are charged from a furnace top so as to alternatively form an ore layer and a coke layer, the coke layer is composed of coke in which CRI (coke reactivity index) value is ≤32, and the average particle diameter is ≥45 mm, and the ore layer is mixed with coke having a CRI value of ≥31 and the average particle diameter of ≤35 mm by ≥120 kg/t. As the coke mixed into the ore layer, ferrocoke produced by mixing ore and coal and carbonizing the mixture is preferably used. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は還元材比を安定して低減させる高炉操業方法に関する。   The present invention relates to a blast furnace operating method for stably reducing a reducing material ratio.

高価なコークス使用量の削減のため、また、製銑工程からのCO2発生を抑制して、地球環境保全に資する観点からも、高炉の還元材比低減が重要な課題となっている。 Reducing the ratio of reducing material in the blast furnace has become an important issue in order to reduce the amount of expensive coke used, and from the viewpoint of contributing to global environmental conservation by suppressing the generation of CO 2 from the ironmaking process.

高炉の還元材比を低減させるには、還元効率(シャフト効率)の向上と、熱損失の低減による方法とがあり、還元効率と熱損失とが最も基本的な操作因子である。この2つの操作因子は、高炉の装入物分布制御を高精度に行うことにより、ある程度制御することができる。装入物分布制御により原料近傍の高炉内のガス流れを制御し、還元ガスの利用率(ガス利用率ηCO=CO2/(CO+CO2))を向上させることで還元効率を向上させるとともに、炉壁近傍のガス流れを適正化することにより、炉壁からの熱損失を低減させるものである。但し、還元効率(シャフト効率)や熱損失の制御が可能な範囲は、高炉で使用する装入物の性状(焼結鉱強度、還元性RI、還元粉化性RDI、コークス強度、反応性等)に大きく依存する。すなわち、高強度原燃料の使用下では通気性の制約条件が緩和されるため、還元材比(コークス比)の低減を図りやすく、結果的に還元効率(シャフト効率)向上、熱損失低減に結び付き易い。 In order to reduce the reducing material ratio of the blast furnace, there are methods of improving reduction efficiency (shaft efficiency) and reducing heat loss, and reduction efficiency and heat loss are the most basic operating factors. These two operating factors can be controlled to some extent by performing the blast furnace charge distribution control with high accuracy. By controlling the gas flow in the blast furnace near the raw material by controlling the distribution of charges, the reduction efficiency is improved by improving the utilization rate of the reducing gas (gas utilization rate η CO = CO 2 / (CO + CO 2 )) By optimizing the gas flow in the vicinity of the furnace wall, heat loss from the furnace wall is reduced. However, the range in which reduction efficiency (shaft efficiency) and heat loss can be controlled is the properties of the charge used in the blast furnace (sintered ore strength, reducible RI, reduced dusting RDI, coke strength, reactivity, etc.) ). In other words, since the restrictions on air permeability are relaxed under the use of high-strength raw fuel, it is easy to reduce the reducing material ratio (coke ratio), resulting in improved reduction efficiency (shaft efficiency) and reduced heat loss. easy.

上記に加え、還元材比を低下させる方策として、還元平衡を積極的に制御する2つの方法が知られている。   In addition to the above, two methods for actively controlling the reduction equilibrium are known as measures for reducing the reducing material ratio.

第一の方法は、金属鉄を高炉に装入する方法であり、還元負荷が低減できるので、熱源としての還元材比を低下できる。金属鉄としては、スクラップや直接還元鉄(DRI、HBI等)などが使用される。これら鉄源は炉頂から塊状で装入されるか、羽口から粉状物が吹き込まれる(例えば、非特許文献1参照。)。しかし、金属鉄は、通常、金属化率が約90%以上のものであり、入手も困難で、かつ高価であるため、金属鉄の高炉での使用量は拡大していない。   The first method is a method of charging metallic iron into a blast furnace, and the reduction load can be reduced, so that the ratio of reducing material as a heat source can be reduced. As metallic iron, scrap, direct reduced iron (DRI, HBI, etc.), etc. are used. These iron sources are charged in a lump form from the top of the furnace, or powdered material is blown from the tuyere (for example, see Non-Patent Document 1). However, metallic iron usually has a metallization rate of about 90% or more, is difficult to obtain, and is expensive, so the amount of metallic iron used in a blast furnace has not increased.

第二の方法は、還元平衡温度を低温化させる方法である。還元温度の低下によってFeO−Fe平衡におけるガス組成を高ガス利用率側に移行させ、還元ガス(COガス)の利用効率(ηCO)を上昇させることで、結果的に使用する還元材量を低下させるものである。還元平衡温度を低下させる手段として、いわゆる高反応性コークスの使用が知られている(例えば、非特許文献2参照。)。高反応性コークスの使用によって還元ガス利用効率ηCOの上昇、および還元材比の低減を図る技術も開示されている(例えば、非特許文献3、非特許文献4参照。)。非特許文献3では、反応性を促進する触媒成分(Ca)を含むコークスを配合すると、ドラム試験150回転指数DI(15、150)およびコークスの反応性を表すJIS反応性指数RIともに、ベース条件に比較して高いコークスの製造が可能なことを開示している。この結果、非特許文献4では還元材比15〜20kg/tの低減が可能であったとされている。 The second method is a method for lowering the reduction equilibrium temperature. By reducing the reduction temperature, the gas composition in the FeO-Fe equilibrium is shifted to the high gas utilization rate side, and the utilization efficiency (η CO ) of the reducing gas (CO gas) is increased, resulting in a reduction in the amount of reducing material used. It is to reduce. As a means for lowering the reduction equilibrium temperature, the use of so-called highly reactive coke is known (for example, see Non-Patent Document 2). Increase of the reducing gas utilization efficiency eta CO by the use of highly reactive coke, and techniques to reduce the reducing agent ratio has also been disclosed (e.g., Non-Patent Document 3, Non-Patent Document 4 reference.). In Non-Patent Document 3, when coke containing a catalyst component (Ca) that promotes reactivity is blended, both the drum test 150 rotation index DI (15, 150) and the JIS reactivity index RI representing coke reactivity are the base conditions. It is disclosed that high coke can be produced compared to As a result, Non-Patent Document 4 states that reduction of the reducing material ratio of 15 to 20 kg / t was possible.

しかしながら、上記のような高反応性コークスは触媒成分を予め含む炭種を選択するか、触媒成分を事前処理によって添加する必要があるため、資源制約やコストアップの問題がある。また、このような特殊な炭種や製造法によらないコークスは一般的に反応性を高めると強度は低下する傾向にあるため、反応性の高いコークスを用いると、還元平衡温度の低下は図れるが、炉内を降下する過程で多量の粉を発生することとなり、高炉内通気性、特に炉下部(滴下帯〜レースウェイ部)での通気悪化が顕著となる。この結果、還元平衡温度の低下に見合う還元材比低減効果を得ることができない。   However, the highly reactive coke as described above has a problem of resource limitation and cost increase because it is necessary to select a coal type that contains the catalyst component in advance or to add the catalyst component by pretreatment. In addition, since coke that does not depend on such special coal types or production methods generally tends to decrease in strength when reactivity is increased, reduction of the reduction equilibrium temperature can be achieved by using highly reactive coke. However, a large amount of powder is generated in the process of descending the inside of the furnace, and the air permeability in the blast furnace, particularly in the lower part of the furnace (the dripping zone to the raceway part), is markedly deteriorated. As a result, it is not possible to obtain a reducing material ratio reduction effect commensurate with a reduction in the reduction equilibrium temperature.

反応性の高いコークスを使用した場合であっても、コークスの劣化を抑制して高炉内の通気性を確保できる技術として、コークスの反応性指数と焼結鉱の被還元性指数を規定して、スラグ量を所定量以下とする、高炉の操業方法が知られている(例えば、特許文献1参照。)。
特開2005−272968号公報 K.Kunimoto他著 「JJournal of Japan Institute of Energy」2005年、84号、p.126―133 内藤誠章他著 「鉄と鋼」2001年、87号、p.357―364 野村誠治他著 「CAMP−ISIJ」2003年、16号、p.1039 鮎川祐之他著 「CAMP−ISIJ」2003年、16号、p.1040
Even when highly reactive coke is used, the coke reactivity index and the reducibility index of sintered ore are specified as a technology that can prevent coke deterioration and ensure air permeability in the blast furnace. A method of operating a blast furnace in which the amount of slag is set to a predetermined amount or less is known (see, for example, Patent Document 1).
JP 2005-272968 A K. Kunimoto et al. “JJournal of Japan Institute of Energy” 2005, 84, p. 126-133 Naito Masaaki et al. "Iron and Steel" 2001, 87, p. 357-364 Nomura Seiji et al. “CAMP-ISIJ” 2003, No. 16, p. 1039 Yasuyuki Ninagawa et al. “CAMP-ISIJ” 2003, No. 16, p. 1040

前述したように、従来の高反応性コークスは、反応性と強度を両立させることができず、反応性が高いコークスほど低強度である。従って、高反応性コークスの高炉使用時には炉内で粉化が進行し、発生した粉が炉下部に蓄積することにより炉下部通気性が悪化し、これが制約条件となって還元材比(微粉炭などの吹き込み還元材比が同一ならコークス比)を低減させることが困難となる。すなわち、従来の高反応性コークスの使用方法では反応性向上に伴うガス利用率向上に見合う還元材比削減効果を実質的に得ることができない。
よって、高反応性コークス使用時に、還元平衡温度を低下させ、ガス利用率向上の効果を十分に享受するためには、炉下部での粉化を抑制すると同時に、併せて通気性を改善する対策を講じることが重要である。特許文献1に記載の方法では、通気性を確保するため、焼結鉱被還元性指数(RI)が高い焼結鉱の使用が必須条件となっている。しかしながら、RIの高い焼結鉱を製造するためには品位の高い(スラグ比の低い)原料を使用しなくてはならず経済的に不利である。また、高炉内での還元粉化を表す指数(RDI)とRIとは逆の相関があるので、焼結鉱の粉化が進展し、通気性にとってむしろ悪影響を与える可能性もある。
As described above, conventional high-reactivity coke cannot achieve both reactivity and strength, and coke with higher reactivity has lower strength. Therefore, when high-reactive coke is used in a blast furnace, pulverization progresses in the furnace, and the generated powder accumulates in the lower part of the furnace, which deteriorates the lower part air permeability. It is difficult to reduce the coke ratio) if the ratio of the blown reducing material is the same. That is, the conventional method of using highly reactive coke cannot substantially obtain the reducing material ratio reduction effect commensurate with the improvement in gas utilization rate accompanying the improvement in reactivity.
Therefore, when using highly reactive coke, in order to lower the reduction equilibrium temperature and fully enjoy the effect of improving the gas utilization rate, measures to suppress pulverization at the bottom of the furnace and improve air permeability at the same time It is important to take In the method described in Patent Document 1, in order to ensure air permeability, the use of a sintered ore having a high sintered ore reducibility index (RI) is an essential condition. However, in order to produce a sintered ore having a high RI, a high-quality (low slag ratio) material must be used, which is economically disadvantageous. Further, since there is an inverse correlation between RI and the index (RDI) representing reduced powdering in the blast furnace, there is a possibility that the powdering of the sintered ore progresses and rather adversely affects the air permeability.

したがって本発明の目的は、このような従来技術の課題を解決し、高炉において高反応性コークスを用いて操業を行なう際に、高炉の通気性の悪化を防止しながら、高炉の還元材比を低減させることができる、高炉の操業方法を提供することにある。   Therefore, the object of the present invention is to solve such a problem of the prior art, and to reduce the ratio of reducing material of the blast furnace while preventing the deterioration of the air permeability of the blast furnace when operating using highly reactive coke in the blast furnace. It is to provide a method of operating a blast furnace that can be reduced.

上記の課題を解決するため本発明者らは鋭意検討を重ねた結果、高炉に鉱石とコークスとを装入する際に、反応性が低く粒径の大きいコークスでコークス層を形成し、かつ、反応性が高く粒径の小さいコークスを120kg/t以上、鉱石と混合して装入することにより、通常の鉱石層とコークス層とを積層する操業に比較して通気性が顕著に改善し、還元材比480kg/t以下で操業する、安定した低還元材比操業が実現できることを見出し、本発明を完成するに至った。ここで、kg/tとは生成溶銑1トンあたりの使用量を示す原単位である。   In order to solve the above-mentioned problems, the present inventors have made extensive studies, and as a result, when charging ore and coke into a blast furnace, a coke layer is formed with coke that has low reactivity and a large particle size, and By mixing and charging 120 kg / t or more of coke with high reactivity and small particle size, the air permeability is remarkably improved compared to the operation of laminating a normal ore layer and a coke layer, The present inventors have found that stable low-reducing material ratio operation that operates at a reducing material ratio of 480 kg / t or less can be realized, and the present invention has been completed. Here, kg / t is a basic unit indicating the amount used per ton of produced hot metal.

すなわち本発明では、反応性が高いコークスを鉱石と混合することにより、これら粒子間の接触性を改善して還元平衡温度をより低下させ、かつ粒径が小さく、鉱石粒径に近いサイズのコークスを用いることにより、充填層の空隙率の低下を緩和して通気性の悪化を抑制することができる。仮に、コークスが粉化したとしても、反応性が高いため、速やかにガス化消失するものと考えられる。また、反応性が高いコークスとして、フェロコークス等を用いることも可能である。   That is, in the present invention, coke having high reactivity is mixed with ore to improve the contact property between these particles to further reduce the reduction equilibrium temperature, and the coke having a small particle size and a size close to the ore particle size. By using this, it is possible to mitigate the decrease in the porosity of the packed bed and suppress the deterioration of air permeability. Even if coke is pulverized, it is considered that gasification disappears quickly due to high reactivity. Further, ferro-coke or the like can be used as highly reactive coke.

さらに、反応性が低く、かつ粒径の大きいコークスでコークススリットを形成させることにより、ガス化反応による粉化が抑制されるため、通気性の確保をより確実なものにすることができる。   Furthermore, by forming the coke slit with coke having a low reactivity and a large particle size, pulverization due to the gasification reaction is suppressed, so that the air permeability can be ensured more reliably.

本発明はこのような知見に基づきなされたもので、その特徴は以下の通りである。
(1)鉱石とコークスとを炉頂から装入して鉱石層とコークス層とを交互に形成する高炉操業において、前記コークス層を形成するコークスのCRI値が32以下で、かつ平均粒子径が45mm以上であるコークスからなり、前記鉱石層にCRI値が31以上で、かつ平均粒子径が35mm以下のコークスが120kg/t以上混合されていることを特徴とする高炉操業方法。
(2)鉱石層に混合される反応性が高く粒径の小さいコークスとして、鉱石と石炭とを混合して乾留して製造したフェロコークスを用いることを特徴とする(1)に記載の高炉操業方法。
The present invention has been made based on such findings, and the features thereof are as follows.
(1) In blast furnace operation in which ore and coke are charged from the furnace top to form ore layers and coke layers alternately, the CRI value of the coke forming the coke layer is 32 or less and the average particle size is A method for operating a blast furnace, comprising coke of 45 mm or more, and coke having a CRI value of 31 or more and an average particle size of 35 mm or less mixed in the ore layer of 120 kg / t or more.
(2) Blast furnace operation according to (1), characterized in that ferro-coke produced by mixing ore and coal and dry distillation is used as coke having a high reactivity and a small particle size to be mixed in the ore layer. Method.

なお、本発明で言う平均粒子径とは、質量基準の長さ平均径である。   In addition, the average particle diameter referred to in the present invention is a mass-based length average diameter.

本発明によれば、高反応性コークスを用いて高炉操業を行なう際の炉の通気性が改善され、還元材比が低減する。還元材比480kg/t以下の低還元材比操業も、安定して行なうことができる。   According to the present invention, the air permeability of the furnace when performing blast furnace operation using highly reactive coke is improved, and the reducing material ratio is reduced. Low-reducing material ratio operation with a reducing material ratio of 480 kg / t or less can also be performed stably.

反応性が高く、かつ粒径の小さいコークス、反応性が低く、かつ粒径の大きいコークスの条件、ならびに使用方法を最適化するため、以下の操業試験1〜5を実施した。尚、コークスの反応性はCRI値で規定した。CRI値は、20±1mmに整粒したコークス試料を1100℃、CO2雰囲気下で2時間反応させたときの反応率を指数化したものである。CRIが大きいほど反応性が高いことを示す。試験に用いたコークスを表1に示す。 In order to optimize coke with high reactivity and small particle size, coke with low reactivity and large particle size, and the usage method, the following operation tests 1 to 5 were performed. The reactivity of coke was defined by the CRI value. The CRI value is an index of the reaction rate when a coke sample sized to 20 ± 1 mm is reacted at 1100 ° C. in a CO 2 atmosphere for 2 hours. A larger CRI indicates a higher reactivity. Table 1 shows the coke used in the test.

Figure 2007231326
Figure 2007231326

[試験1]実際に稼動している高炉を用い、種々の性状の焼結鉱、コークスの装入試験を実施した。高炉は内容積5153m3の3パラレルバンカーとベルレス式装入装置を有する高炉である。装入原料として、鉱石は焼結鉱(平均粒子径18mm、RI=65、RDI=35)80質量%、塊鉱石20質量%の配合とした。コークスは表1に示すコークスの中から、コークスA、コークスB1、コークスD3を用いた。 [Test 1] Using an actually operating blast furnace, charging tests were conducted on sintered ore and coke having various properties. The blast furnace is a blast furnace having a 3 parallel bunker with an internal volume of 5153 m 3 and a bell-less charging device. As a charging raw material, the ore was blended with sintered ore (average particle diameter 18 mm, RI = 65, RDI = 35) 80% by mass and lump ore 20% by mass. The coke used was coke A, coke B1, and coke D3 shown in Table 1.

原料の使用方法が高炉の還元材比、および炉下部通気性へ及ぼす影響を調査するため、Case1〜Case4までの装入方法を検討した。炉頂から装入したコークスと鉱石とで形成される、Case1〜Case4の炉内の積層構造を模式的に図1に示す。図1は高炉1の断面の概略図であり、炉内上部位置2の積層構造をCase1〜4として右側に示すものである。   In order to investigate the influence of the method of using the raw material on the ratio of reducing material in the blast furnace and the permeability of the lower part of the furnace, the charging methods from Case 1 to Case 4 were examined. The laminated structure in the furnace of Case1-Case4 formed with the coke and ore charged from the furnace top is typically shown in FIG. FIG. 1 is a schematic view of a cross section of a blast furnace 1, and shows a laminated structure at an upper position 2 in the furnace as Cases 1 to 4 on the right side.

Case1はコークス層3と鉱石層4を交互に装入する方式であり、コークス層3として全量、コークスA(平均粒子径40mm、CRI=32)を使用した。コークスAは反応性、粒径が平均的な、標準的なコークスであり、Case1はベースとなる標準的な操業条件である。   Case 1 is a system in which the coke layer 3 and the ore layer 4 are alternately charged. As the coke layer 3, the entire amount of coke A (average particle diameter 40 mm, CRI = 32) was used. Coke A is a standard coke with an average reactivity and particle size, and Case 1 is a standard operating condition as a base.

Case2は装入コークスの一部を粒径が小さく反応性の高いコークスD3とし、コークスD3を120kg/t鉱石層4に混合して鉱石層内コークス5とし、残部のコークスはコークスAとしてコークス層3を形成する方法である。   Case 2 is a coke D3 in which a part of the charged coke has a small particle size and a high reactivity, the coke D3 is mixed with the 120 kg / t ore layer 4 to form coke 5 in the ore layer, and the remaining coke is coke A 3 is formed.

Case3はCase1のコークスAを、反応性が低く粒径が大きいコークスB1に変更した場合である。   Case 3 is a case where the coke A of Case 1 is changed to coke B1 having low reactivity and a large particle size.

Case4はCase2と同様に、粒径が小さく反応性の高いコークスD3を120kg/t鉱石層に混合し、かつコークス層6を反応性が低く粒径が大きいコークスB1に変更した条件である。   Case 4 is a condition in which coke D3 having a small particle size and high reactivity is mixed with a 120 kg / t ore layer, and coke layer 6 is changed to coke B1 having a low reactivity and a large particle size, as in Case 2.

Case1〜4において操業試験を行なった際の、還元材比と炉下部通気抵抗指数(K値:K=(Pblast 2−P2)/V1.7。但し、Pblast:送風圧(kg/cm2)、P:羽口軸上6.7m位置における炉壁部静圧(kg/cm2)、V:ボッシュガス量(Nm3/t))の実績値を図2に示す。Case1では微粉炭吹き込み比120kg/t、コークス比370kg/t(還元材比490kg/t)であった。図2によれば、Case1に比較して、Case2では還元材比はやや低下したが、通気性は悪化した。Case3では通気性は大きく改善されたものの、還元材比はほとんど変化なかった。Case4では還元材比、通気性ともに大きく改善された。 At the time of performing operation tests in Case1~4, reducing agent ratio and the furnace bottom ventilation resistance index (K l values:. K l = (P blast 2 -P 2) / V 1.7 However, P blast: feed air pressure (kg / Cm 2 ), P: actual values of furnace wall static pressure (kg / cm 2 ), V: Bosch gas amount (Nm 3 / t) at a position of 6.7 m on the tuyere axis are shown in FIG. In Case 1, the pulverized coal injection ratio was 120 kg / t, and the coke ratio was 370 kg / t (reducing material ratio 490 kg / t). According to FIG. 2, compared with Case 1, in Case 2, the reducing material ratio was slightly reduced, but the air permeability was deteriorated. In Case 3, the air permeability was greatly improved, but the ratio of reducing materials was hardly changed. In Case 4, both the reducing material ratio and the air permeability were greatly improved.

これらのことから、還元材比低減に効果があるのは、Case2と4であり、鉱石層に反応性の高いコークスを混合することによって還元平衡温度が低下し、還元材比が低下したものと推察される。しかしながら、Case2のようにコークス層がCase1と同じく標準的なコークスを用いている場合には、通気性はむしろ悪化していることから、鉱石とコークスの単なる混合は、粒径差が大きいことに起因する充填層の空隙率低下を招き、通気抵抗を大とする逆効果があるものと推察される。一方、通気性が改善するのはCase3、4のように粒径が大きく、反応性の低いコークスをコークス層として使用した場合である。このようなコークスはCO2との反応性が低いので、ガス化反応(C+CO2=2CO)によるコークスの劣化が抑制され、粉の発生量低減、ひいては充填層内の空隙率が確保されたものと推察される。よって、Case4では鉱石とコークスの混合による通気性悪化の効果よりもコークス層の通気性改善効果が大きかったため、結果的に通気性が改善されたと推定される。 From these facts, it is Cases 2 and 4 that are effective in reducing the reducing material ratio. By mixing highly reactive coke in the ore layer, the reduction equilibrium temperature is lowered and the reducing material ratio is lowered. Inferred. However, when standard coke is used in the coke layer like Case 1 like Case 2, the air permeability is rather deteriorated, so that the simple mixing of ore and coke has a large particle size difference. It is surmised that the resulting void ratio of the packed bed is lowered, and there is an adverse effect of increasing the airflow resistance. On the other hand, the air permeability is improved when coke having a large particle size and low reactivity such as Cases 3 and 4 is used as the coke layer. Because such coke has low reactivity with CO 2, is suppressed deterioration of the coke by the gasification reaction (C + CO 2 = 2CO) , which generation amount of flour reduction, hence the porosity of the packed layer is ensured It is guessed. Therefore, in Case 4, since the air permeability improvement effect of the coke layer was greater than the effect of air permeability deterioration due to the mixing of ore and coke, it is estimated that the air permeability was improved as a result.

[試験2]試験2では、コークス層を形成するコークスの最適粒径範囲を明らかにするため、試験1のCase4のコークス層を形成するコークスを、表1に示す反応性指数CRIが18一定で、粒径を変化させた3種類のコークス(コークスB1〜B3)に変更し、操業試験を行った。   [Test 2] In Test 2, in order to clarify the optimum particle size range of the coke forming the coke layer, the coke forming the coke layer of Case 4 of Test 1 has a reactivity index CRI shown in Table 1 of 18 constant. The operation test was conducted after changing the particle size to three types of coke (coke B1 to B3).

還元材比と炉下部通気抵抗指数を測定した結果を図3に示す。還元材比及び通気抵抗指数はコークス粒径が45mm以上で急激に低下した。これは粒径が大きい場合には原理的に通気抵抗が小さくなること、反応性が低くかつ反応界面積も小さいため、ガス化反応量が顕著に減少し、粉化量が抑制されたためさらに通気性が改善され、この通気余裕のために還元材比も減少させ易くなったものと推定される。よって、コークス層を形成する反応性が低いコークスの粒径は45mm以上であることが必要であり、還元材比と炉下部通気抵抗の低減効果を考慮すると好ましくは50mm以上である。   The results of measuring the reducing material ratio and the lower furnace ventilation resistance index are shown in FIG. The reducing material ratio and the airflow resistance index rapidly decreased when the coke particle size was 45 mm or more. This is because, in principle, when the particle size is large, the gas flow resistance becomes small, the reactivity is low and the reaction interface area is also small, so the gasification reaction amount is remarkably reduced and the powdering amount is suppressed, so that the gas flow is further reduced. It is presumed that the reducibility ratio was easily reduced due to the improved air permeability and this ventilation margin. Therefore, the particle size of the coke having low reactivity for forming the coke layer needs to be 45 mm or more, and is preferably 50 mm or more in consideration of the reducing material ratio and the effect of reducing the furnace bottom ventilation resistance.

[試験3]試験3では、コークス層を形成するコークスの反応性の最適範囲を明らかにするため、試験1のCase4のコークス層を形成するコークスを、表1に示すコークスC1〜C3の3種類のコークスに変更して操業試験を行った。   [Test 3] In test 3, in order to clarify the optimum range of the reactivity of coke forming the coke layer, the coke forming the coke layer of Case 4 of test 1 is classified into three types of cokes C1 to C3 shown in Table 1. The operation test was conducted after changing to coke.

結果を図4に示す。還元材比、通気抵抗指数ともに、コークス層を形成するコークスの反応性が32以下になると急激に低下した。反応性が低いコークスの使用によりガス化反応が抑制され、ベッドの通気性が確保されたためと考えられる。図4によれば、コークス層を形成するコークスの反応性はCRIで32以下とすることが必要であり、還元材比と炉下部通気抵抗の低減効果を考慮すると好ましくはCRIで25以下である。   The results are shown in FIG. Both the reducing material ratio and the airflow resistance index rapidly decreased when the reactivity of the coke forming the coke layer was 32 or less. This is probably because the use of coke with low reactivity suppressed the gasification reaction and secured the air permeability of the bed. According to FIG. 4, the reactivity of the coke forming the coke layer needs to be 32 or less by CRI, and is preferably 25 or less by CRI in consideration of the reducing material ratio and the effect of reducing the furnace bottom ventilation resistance. .

[試験4]試験4では、鉱石層に混合するコークスの反応性の最適範囲を明らかにするため、試験1のCase4の鉱石層中のコークス(鉱石/コークス混合層中のコークス)を、表1に示す平均粒子径が23mm一定で反応性指数CRIを変化させた3種類のコークス(コークスD1〜D3)に変更し同様の操業試験を行った。   [Test 4] In test 4, in order to clarify the optimum range of reactivity of coke mixed with the ore layer, coke in the ore layer of Case 4 of test 1 (coke in the ore / coke mixed layer) is shown in Table 1. The same operation test was conducted by changing the coke index (Coke D1 to D3) to three kinds of cokes having a constant average particle diameter of 23 mm and changing the reactivity index CRI.

結果を図5に示す。還元材比は鉱石層中のコークスの反応性とともに直線的に低下したが、通気抵抗指数はコークス反応性指数CRIが31以上で急激に低下した。還元材比が直線的に低下するのは、反応性と共に熱保存帯温度が直線的に変化していることを示している。通気抵抗指数の変化は、所定の反応性以上になると急激に粉化が抑制されるようになることを示唆している。よって、還元材比、通気性制御の観点から、鉱石層に混合するコークスの反応性はCRI値で31以上であることが必要であり、好ましくは35以上である。   The results are shown in FIG. The reducing material ratio decreased linearly with the coke reactivity in the ore layer, but the aeration resistance index decreased rapidly when the coke reactivity index CRI was 31 or more. The reduction in the reducing material ratio indicates that the thermal preservation zone temperature is linearly changing with the reactivity. The change in the airflow resistance index suggests that the powdering is suddenly suppressed when the predetermined reactivity is exceeded. Therefore, from the viewpoint of reducing agent ratio and air permeability control, the reactivity of coke mixed with the ore layer needs to be 31 or more, preferably 35 or more in terms of CRI value.

[試験5]試験5では、鉱石層に混合するコークスの粒径の最適範囲を明らかにするため、表1に示す、反応性指数CRIが39一定で、粒径を変化させた3種類のコークス(コークスE1〜E3)を用い、試験1のCase4と同様の操業試験を行った。   [Test 5] In test 5, in order to clarify the optimum range of the particle size of the coke mixed with the ore layer, three types of coke shown in Table 1 with a constant reactivity index CRI of 39 and varying the particle size are shown. Using (Coke E1 to E3), an operation test similar to Case 4 of Test 1 was performed.

結果を図6に示す。還元材比及び通気抵抗指数はコークスの粒径が35mm以下となると急激に低下した。これは、所定粒径以下のコークスの装入によって、焼結鉱との接触界面積が増加し、熱保存帯温度の低下が促進されたこと、コークスと焼結鉱との粒径が近づくことにより、空隙率の確保が図られたためと推察される。よって、鉱石層に混合するコークスの粒径は35mm以下とすることが必要であり、好ましくは30mm以下とする。   The results are shown in FIG. The reducing material ratio and the airflow resistance index rapidly decreased when the coke particle size was 35 mm or less. This is because the contact interfacial area with the sintered ore increased due to the introduction of coke with a particle size of less than the predetermined particle size, the decrease in the temperature of the thermal preservation zone was promoted, and the particle size between the coke and the sintered ore approached. Therefore, it is assumed that the porosity was ensured. Therefore, the particle size of the coke mixed with the ore layer needs to be 35 mm or less, preferably 30 mm or less.

以上の試験より、単独で充填層を形成するコークス(反応性が低く、かつ粒径の大きいコークス)、および鉱石と混合して使用するコークス(反応性が高く、かつ粒径の小さいコークス)の具備すべき条件を要約すると、「単独で充填層を形成するコークス」のCRI値は32以下で、かつ平均粒子径が45mm以上のコークスであり、「鉱石層中に混合するコークス」のCRI値は31以上で、かつ平均粒子径が35mm以下のコークスである。   From the above tests, coke that forms a packed bed by itself (coke with low reactivity and large particle size) and coke that is mixed with ore (coke with high reactivity and small particle size) are used. To summarize the conditions to be provided, the CRI value of “coke that forms a packed bed alone” is 32 or less and the average particle diameter is 45 mm or more, and the CRI value of “coke mixed in the ore layer” Is a coke having 31 or more and an average particle diameter of 35 mm or less.

CRI値が32以下であり、かつ平均粒子径が45mm以上のコークスの製造方法は特に限定されるものではない。炭種の選択、コークス炉での乾留時間の制御、あるいは乾留後コークスの篩い分け条件によって、所定の性状のコークスを得る。あるいは、コークス炉から窯出しされたコークスの改質処理を行っても良い。例えばチャンバー内に炭化水素ガスを流しながら熱分解させ、コークス表面に炭素分をコーティングすることで反応性を抑制するような処理を施しても良い。   The method for producing coke having a CRI value of 32 or less and an average particle diameter of 45 mm or more is not particularly limited. Coke having a predetermined property is obtained by selecting a coal type, controlling a carbonization time in a coke oven, or sieving conditions of coke after carbonization. Or you may perform the modification process of the coke taken out from the coke oven. For example, a thermal treatment may be performed while flowing a hydrocarbon gas in the chamber, and a process for suppressing the reactivity may be performed by coating a carbon component on the coke surface.

鉱石とコークスを混合する方法としては、ベルトコンベアー上で同時に切り出し、高炉炉頂部に設置されたバンカーに原料の混合物として装填する。高炉炉頂部に複数個の原燃料切り出しバンカーを有するベルレス高炉の場合は、コークスまたは焼結鉱を別々のバンカーに投入しておき、これら2種類以上を同時に切り出すことによって行っても良い。   As a method of mixing the ore and coke, they are simultaneously cut out on a belt conveyor and loaded into a bunker installed at the top of the blast furnace furnace as a mixture of raw materials. In the case of a bell-less blast furnace having a plurality of raw fuel cut-out bunker at the top of the blast furnace furnace, coke or sintered ore may be put into separate bunker, and two or more of them may be cut out simultaneously.

CRI値31以上、かつ平均粒子径が35mm以下の、鉱石中に混合するコークスの製造方法は特に限定されるものではない。炭種の選択、コストの範囲内での反応性制御のための石炭中へのCaOなどの触媒添加、コークス炉での乾留時間の制御、あるいは乾留後コークスの篩い分け条件によって、所定の性状のコークスを得る。あるいは、石炭を事前にバインダーとともに成型した後に乾留した、いわゆる成型コークスを使用しても良い。石炭と鉱石を混合後、成型して乾留することにより、部分的に還元された鉱石を含む、いわゆるフェロコークスを用いても良い。フェロコークスは金属鉄を含むので、その触媒作用により高い反応性を実現できるため、CRI値31以上、かつ平均粒子径が35mm以下のコークスとして、特に好適に用いることができる。上記成型コークスまたはフェロコークスは鉱石層に混合されるコークスの一部として使用しても良いし、全量として使用しても良い。   A method for producing coke mixed with ore having a CRI value of 31 or more and an average particle diameter of 35 mm or less is not particularly limited. Depending on the choice of coal type, addition of a catalyst such as CaO in the coal for reactivity control within the cost range, control of the carbonization time in the coke oven, or the sieving conditions of the coke after carbonization Get coke. Alternatively, so-called molded coke obtained by dry distillation after coal is previously molded with a binder may be used. After mixing coal and ore, so-called ferro-coke containing ore partially reduced by molding and dry distillation may be used. Ferro-coke contains metallic iron, so that high reactivity can be realized by its catalytic action. Therefore, it can be particularly suitably used as coke having a CRI value of 31 or more and an average particle size of 35 mm or less. The molded coke or ferro-coke may be used as a part of the coke mixed with the ore layer, or may be used as a whole amount.

試験に使用した高炉は内容積5153m3の3パラレルバンカーとベルレス式装入装置を有する高炉であり、装入原料として鉱石とコークスとを使用し、鉱石として焼結鉱(平均粒子径18mm、RI=65、RDI=35)78質量%、塊鉱石22質量%を使用した。コークス性状は平均粒子径40mm、CRI=32である。これら原料をそれぞれ2バッチに分割して、炉頂から鉱石とコークスとを交互に装入した。標準的な操業条件は微粉炭吹き込み比120kg/t、コークス比370kg/t、炉下部通気抵抗指数は1.21であった。 The blast furnace used in the test is a blast furnace having a 3 parallel bunker with an internal volume of 5153 m 3 and a bell-less charging device, using ore and coke as charging materials, and sintered ore (average particle diameter of 18 mm, RI = 65, RDI = 35) 78% by mass and lump ore 22% by mass were used. The coke properties are an average particle size of 40 mm and CRI = 32. Each of these raw materials was divided into two batches, and ore and coke were alternately charged from the top of the furnace. Standard operating conditions were a pulverized coal blowing ratio of 120 kg / t, a coke ratio of 370 kg / t, and a furnace lower portion ventilation resistance index of 1.21.

本発明の効果を確認するため、標準的な操業に引き続き、以下の操業変更を行った。すなわち、CRI値が22の反応性が低いコークスをコークス炉で製造し、篩い目を調整して平均粒子径が52mmの粒径が大きいコークスを製造し、貯蔵ホッパーに輸送した。一方、別のホッパーには平均粒子径40mm、CRI=32の標準的なコークスを輸送した。前者のコークスが質量比で60質量%になるように両方のコークスをホッパーから同時に切り出し、ベルトコンベアー上で混合し、高炉炉頂部の1つ目のバンカーへと移送した。本コークスを所定の装入モードで高炉炉内へと装入した。その結果、コークス層には全体として平均粒子径47mm、CRI=26のコークスが装入されることとなった。   In order to confirm the effects of the present invention, the following operation changes were made following the standard operation. That is, a low-reactivity coke having a CRI value of 22 was produced in a coke oven, a coke having a large average particle size of 52 mm was produced by adjusting the sieve mesh, and transported to a storage hopper. On the other hand, standard coke having an average particle diameter of 40 mm and CRI = 32 was transported to another hopper. Both cokes were cut out from the hopper at the same time so that the former coke was 60% by mass in the mass ratio, mixed on a belt conveyor, and transferred to the first bunker at the top of the blast furnace furnace. The coke was charged into the blast furnace in a predetermined charging mode. As a result, the coke layer was charged with coke having an average particle diameter of 47 mm and CRI = 26 as a whole.

一方、コークスの装入の間に2つ目のバンカーには通常の鉱石原料(焼結鉱78質量%+塊鉱石22質量%)を投入し、同時に3つ目のバンカーにはフェロコークス(鉱石と石炭を事前にブリケット化し、シャフト炉を用いて乾留したもの)を装入した。フェロコークスの平均粒子径は12mm(長軸と短軸の平均値)、反応性指数CRIは52であった。また、フェロコークス中には還元された鉄鉱石が質量比で25%含まれており、鉱石の還元率は化学分析の結果73%であった。コークスの高炉内への装入が終了後、フェロコークスの装入量が125kg/tとなるように、フェロコークスと鉄鉱石をバンカーから同時に切り出し、所定の装入モードで炉内へと堆積させた。   On the other hand, during the charging of coke, the second bunker is charged with the usual ore raw material (78% by mass of sintered ore + 22% by mass of ore), and at the same time the ferrocoke (ore) is supplied to the third bunker. And coal was briquetted in advance and carbonized using a shaft furnace). The average particle size of ferrocoke was 12 mm (average value of major and minor axes), and the reactivity index CRI was 52. The ferro-coke contained 25% of the reduced iron ore in a mass ratio, and the reduction rate of the ore was 73% as a result of chemical analysis. After charging the coke into the blast furnace, ferro-coke and iron ore are simultaneously cut out from the bunker so that the ferro-coke charging amount is 125 kg / t, and is deposited in the furnace in a predetermined charging mode. It was.

上記のコークス単独装入と、鉱石とフェロコークスとの混合装入を交互に繰り返して操業を行なった結果、微粉炭吹き込み比120kg/t一定の条件下で、コークス比は徐々に低下し1日後には350kg/tに達した。よって還元材比は490kg/tから470kg/tへと20kg/tの低減が可能であることが確認できた。また炉下部通気抵抗指数も徐々に低下し、1日後には1.12まで低下した。   As a result of alternately repeating the above-mentioned coke single charge and mixed charge of ore and ferro-coke, the coke ratio gradually decreased under a constant pulverized coal injection ratio of 120 kg / t. Later, it reached 350 kg / t. Therefore, it was confirmed that the reducing material ratio can be reduced by 20 kg / t from 490 kg / t to 470 kg / t. Also, the furnace bottom ventilation resistance index gradually decreased, and decreased to 1.12 after 1 day.

以上のように、炉下部通気性を改善すると共に、高価なコークスの使用量が削減でき、上記の装入方法を用いることが、溶銑コストの低減、ならびにCO2発生量の低減に結び付くことが実証された。 As described above, the furnace bottom air permeability can be improved, the amount of expensive coke used can be reduced, and the use of the above charging method can lead to a reduction in hot metal costs and a reduction in CO 2 generation. Proven.

高炉内の積層構造を模式的に示す図。The figure which shows typically the laminated structure in a blast furnace. 還元材比と炉下部通気抵抗指数を示すグラフ(Case1〜4)。The graph (Case 1-4) which shows a reducing material ratio and a furnace lower part ventilation resistance index. コークス層を形成するコークスの粒径に対する還元材比と炉下部通気抵抗指数の変化を示すグラフ。The graph which shows the change of the reducing material ratio with respect to the particle size of the coke which forms a coke layer, and a furnace lower part ventilation resistance index. コークス層を形成するコークスの反応性に対する還元材比と炉下部通気抵抗指数の変化を示すグラフ。The graph which shows the change of the reducing material ratio with respect to the reactivity of the coke which forms a coke layer, and a furnace lower part ventilation resistance index. 鉱石層中のコークスの反応性に対する還元材比と炉下部通気抵抗指数の変化を示すグラフ。The graph which shows the change of the reducing material ratio with respect to the reactivity of the coke in an ore layer, and the ventilation resistance index of a furnace lower part. 鉱石層中のコークスの粒径に対する還元材比と炉下部通気抵抗指数の変化を示すグラフ。The graph which shows the change of the reducing material ratio with respect to the particle size of the coke in an ore layer, and the ventilation resistance index of a furnace lower part.

符号の説明Explanation of symbols

1 高炉
2 炉内上部位置
3 コークス層(コークスA)
4 鉱石層
5 鉱石層内コークス
6 コークス層(コークスB1)
1 Blast Furnace 2 Upper Position in Furnace 3 Coke Layer (Coke A)
4 Ore layer 5 Coke in the ore layer 6 Coke layer (Coke B1)

Claims (2)

鉱石とコークスとを炉頂から装入して鉱石層とコークス層とを交互に形成する高炉操業において、前記コークス層を形成するコークスのCRI値が32以下で、かつ平均粒子径が45mm以上であるコークスからなり、前記鉱石層にCRI値が31以上で、かつ平均粒子径が35mm以下のコークスが120kg/t以上混合されていることを特徴とする高炉操業方法。   In blast furnace operation in which ore and coke are charged from the top of the furnace and ore layers and coke layers are alternately formed, the CRI value of the coke forming the coke layer is 32 or less and the average particle diameter is 45 mm or more. A method of operating a blast furnace, comprising coke, wherein the ore layer is mixed with 120 kg / t or more of coke having a CRI value of 31 or more and an average particle diameter of 35 mm or less. 鉱石層に混合されるコークスとして、鉱石と石炭とを混合して乾留して製造したフェロコークスを用いることを特徴とする請求項1に記載の高炉操業方法。   The blast furnace operating method according to claim 1, wherein ferro-coke produced by mixing ore and coal and dry distillation is used as coke mixed in the ore layer.
JP2006052311A 2006-02-28 2006-02-28 Blast furnace operation method Active JP4807103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006052311A JP4807103B2 (en) 2006-02-28 2006-02-28 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006052311A JP4807103B2 (en) 2006-02-28 2006-02-28 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2007231326A true JP2007231326A (en) 2007-09-13
JP4807103B2 JP4807103B2 (en) 2011-11-02

Family

ID=38552218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006052311A Active JP4807103B2 (en) 2006-02-28 2006-02-28 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP4807103B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293054A (en) * 2008-06-02 2009-12-17 Pan Pacific Copper Co Ltd Method for smelting copper
JP2010150643A (en) * 2008-12-26 2010-07-08 Jfe Steel Corp Method for charging raw material to blast furnace
JP2010150646A (en) * 2008-12-26 2010-07-08 Jfe Steel Corp Method for charging raw material into blast furnace
JP2010150644A (en) * 2008-12-26 2010-07-08 Jfe Steel Corp Method for charging raw material to blast furnace
JP2010150645A (en) * 2008-12-26 2010-07-08 Jfe Steel Corp Method for charging raw material to blast furnace
JP2010196151A (en) * 2009-02-27 2010-09-09 Nippon Steel Corp Quantitative evaluation method of temperature of thermal reserve zone of blast furnace
WO2011052798A1 (en) * 2009-10-29 2011-05-05 Jfeスチール株式会社 Method for operating blast furnace
JP2014205895A (en) * 2013-04-15 2014-10-30 新日鐵住金株式会社 Blast furnace operation method
JP2015189988A (en) * 2014-03-27 2015-11-02 新日鐵住金株式会社 blast furnace operation method
CN106399608A (en) * 2016-09-13 2017-02-15 北京科技大学 Method for improving blast furnace smelting efficiency of high-aluminum iron ore with high-reactivity coke
EP2450459A4 (en) * 2009-08-10 2017-03-22 JFE Steel Corporation Blast-furnace operation method
JP2017061727A (en) * 2015-09-25 2017-03-30 Jfeスチール株式会社 Blast furnace operation method
WO2023081821A1 (en) * 2021-11-04 2023-05-11 Suncoke Technology And Development Llc Foundry coke products, and associated systems, devices, and methods
US11746296B2 (en) 2013-03-15 2023-09-05 Suncoke Technology And Development Llc Methods and systems for improved quench tower design
US11788012B2 (en) 2015-01-02 2023-10-17 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11807812B2 (en) 2012-12-28 2023-11-07 Suncoke Technology And Development Llc Methods and systems for improved coke quenching
US11819802B2 (en) 2018-12-31 2023-11-21 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11845898B2 (en) 2017-05-23 2023-12-19 Suncoke Technology And Development Llc System and method for repairing a coke oven
US11939526B2 (en) 2012-12-28 2024-03-26 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
US11946108B2 (en) 2021-11-04 2024-04-02 Suncoke Technology And Development Llc Foundry coke products and associated processing methods via cupolas

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103981310B (en) * 2014-05-22 2016-03-02 攀钢集团攀枝花钢铁研究院有限公司 A kind of method of smelting vanadium-titanium magnetite by blast furnace
CN104561530A (en) * 2014-12-26 2015-04-29 河北钢铁股份有限公司承德分公司 Medium-titanium high-strength sintered ore and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436710A (en) * 1987-07-31 1989-02-07 Nippon Steel Corp Blast furnace operating method
JPH02254112A (en) * 1989-03-28 1990-10-12 Nippon Steel Corp Method for operating blast furnace
JP2004263263A (en) * 2003-03-03 2004-09-24 Nippon Steel Corp Method for charging raw material into blast furnace
JP2004307928A (en) * 2003-04-07 2004-11-04 Nippon Steel Corp Method for charging formed coke into blast furnace according to coke property
JP2006028594A (en) * 2004-07-16 2006-02-02 Jfe Steel Kk Method for operating blast furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436710A (en) * 1987-07-31 1989-02-07 Nippon Steel Corp Blast furnace operating method
JPH02254112A (en) * 1989-03-28 1990-10-12 Nippon Steel Corp Method for operating blast furnace
JP2004263263A (en) * 2003-03-03 2004-09-24 Nippon Steel Corp Method for charging raw material into blast furnace
JP2004307928A (en) * 2003-04-07 2004-11-04 Nippon Steel Corp Method for charging formed coke into blast furnace according to coke property
JP2006028594A (en) * 2004-07-16 2006-02-02 Jfe Steel Kk Method for operating blast furnace

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8382879B2 (en) 2008-06-02 2013-02-26 Pan Pacific Copper Co., Ltd. Copper smelting method
JP2009293054A (en) * 2008-06-02 2009-12-17 Pan Pacific Copper Co Ltd Method for smelting copper
JP2010150644A (en) * 2008-12-26 2010-07-08 Jfe Steel Corp Method for charging raw material to blast furnace
JP2010150645A (en) * 2008-12-26 2010-07-08 Jfe Steel Corp Method for charging raw material to blast furnace
JP2010150646A (en) * 2008-12-26 2010-07-08 Jfe Steel Corp Method for charging raw material into blast furnace
JP2010150643A (en) * 2008-12-26 2010-07-08 Jfe Steel Corp Method for charging raw material to blast furnace
JP2010196151A (en) * 2009-02-27 2010-09-09 Nippon Steel Corp Quantitative evaluation method of temperature of thermal reserve zone of blast furnace
EP2450459A4 (en) * 2009-08-10 2017-03-22 JFE Steel Corporation Blast-furnace operation method
WO2011052798A1 (en) * 2009-10-29 2011-05-05 Jfeスチール株式会社 Method for operating blast furnace
JP2011149090A (en) * 2009-10-29 2011-08-04 Jfe Steel Corp Method for operating blast furnace using ferro coke
CN102597275A (en) * 2009-10-29 2012-07-18 杰富意钢铁株式会社 Method for operating blast furnace
KR101337162B1 (en) 2009-10-29 2013-12-05 제이에프이 스틸 가부시키가이샤 Method for operating blast furnace
CN102597275B (en) * 2009-10-29 2014-08-13 杰富意钢铁株式会社 Method for operating blast furnace
US11939526B2 (en) 2012-12-28 2024-03-26 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
US11807812B2 (en) 2012-12-28 2023-11-07 Suncoke Technology And Development Llc Methods and systems for improved coke quenching
US11746296B2 (en) 2013-03-15 2023-09-05 Suncoke Technology And Development Llc Methods and systems for improved quench tower design
JP2014205895A (en) * 2013-04-15 2014-10-30 新日鐵住金株式会社 Blast furnace operation method
JP2015189988A (en) * 2014-03-27 2015-11-02 新日鐵住金株式会社 blast furnace operation method
US11788012B2 (en) 2015-01-02 2023-10-17 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
JP2017061727A (en) * 2015-09-25 2017-03-30 Jfeスチール株式会社 Blast furnace operation method
CN106399608A (en) * 2016-09-13 2017-02-15 北京科技大学 Method for improving blast furnace smelting efficiency of high-aluminum iron ore with high-reactivity coke
US11845898B2 (en) 2017-05-23 2023-12-19 Suncoke Technology And Development Llc System and method for repairing a coke oven
US11819802B2 (en) 2018-12-31 2023-11-21 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
WO2023081821A1 (en) * 2021-11-04 2023-05-11 Suncoke Technology And Development Llc Foundry coke products, and associated systems, devices, and methods
US11851724B2 (en) 2021-11-04 2023-12-26 Suncoke Technology And Development Llc. Foundry coke products, and associated systems, devices, and methods
US11946108B2 (en) 2021-11-04 2024-04-02 Suncoke Technology And Development Llc Foundry coke products and associated processing methods via cupolas

Also Published As

Publication number Publication date
JP4807103B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP4807103B2 (en) Blast furnace operation method
EP2431484B1 (en) Blast furnace operation method
KR101475130B1 (en) Method for producing sintered ore
WO2008059739A1 (en) Briquette iron by hot molding and process for producing the same
JP4910640B2 (en) Blast furnace operation method
JP6119700B2 (en) Blast furnace operation method
JP4899726B2 (en) Blast furnace operation method
JP4998692B2 (en) Blast furnace operation method when using ferro-coke
WO1996015277A1 (en) Method of operating blast furnace
JP4894949B2 (en) Blast furnace operation method
JP3879408B2 (en) Method for producing sintered ore and sintered ore
JP2008240028A (en) Method for operating blast furnace
JP2012188744A (en) Method for operating blast furnace
JP4807099B2 (en) Blast furnace operation method
JP6123723B2 (en) Blast furnace operation method
JP2006206982A (en) Method of operating blast furnace
JP5400600B2 (en) Blast furnace operation method
JP6638764B2 (en) Blast furnace operation method
JP5862514B2 (en) Scrap melting vertical furnace operation method
JP2022054397A (en) Blast furnace operation method
JP2004263263A (en) Method for charging raw material into blast furnace
JP5626072B2 (en) Operation method of vertical melting furnace
JP2022144966A (en) Blast furnace operation method
JP5292884B2 (en) Blast furnace operation method
JP2012012620A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4807103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250