JPWO2018008703A1 - 圧延線材 - Google Patents

圧延線材 Download PDF

Info

Publication number
JPWO2018008703A1
JPWO2018008703A1 JP2018526425A JP2018526425A JPWO2018008703A1 JP WO2018008703 A1 JPWO2018008703 A1 JP WO2018008703A1 JP 2018526425 A JP2018526425 A JP 2018526425A JP 2018526425 A JP2018526425 A JP 2018526425A JP WO2018008703 A1 JPWO2018008703 A1 JP WO2018008703A1
Authority
JP
Japan
Prior art keywords
less
rolled wire
rolling
content
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018526425A
Other languages
English (en)
Other versions
JP6614349B2 (ja
Inventor
直樹 松井
直樹 松井
根石 豊
豊 根石
誠 小坂
誠 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JPWO2018008703A1 publication Critical patent/JPWO2018008703A1/ja
Application granted granted Critical
Publication of JP6614349B2 publication Critical patent/JP6614349B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

冷間鍛造前に球状化焼鈍を施さなくても、或いは、球状化焼鈍を短時間化しても、冷間鍛造時の割れ発生を効果的に抑制し、球状化焼鈍に続く焼入れ・焼戻し後の耐水素脆化特性に優れた圧延線材を提供すること。
所定の組成を有し、Ti、N、及びSの各含有量(質量%)をそれぞれ[Ti]、[N]、[S]とすると、[S]≦0.0010の場合は、[Ti]が(4.5×[S]+3.4×[N])以上、かつ、(0.008+3.4×[N])以下である一方、[S]≧0.0010の場合は、[Ti]が(4.5×[S]+3.4×[N])以上、かつ、(8.0×[S]+3.4×[N])以下であり、内部組織が、面積率でフェライト分率40%以上である、フェライトとパーライトとの混合組織であり、軸方向を含む平面での断面において、直径をD(mm)とした場合に最表層からD/8位置までの範囲に存在する硫化物の平均面積が6μm2以下であり、上記硫化物の平均アスペクト比が5以下である。

Description

本発明は、冷間鍛造部品の素材として使用できる、棒状や線状の圧延鋼材(以下、「圧延線材」と称する)に関する。
冷間鍛造によって製造された部品(冷間鍛造部品)は、表面肌や寸法精度に優れ、熱間鍛造によって製造された部品(熱間鍛造部品)と比べて製造コストが低く、さらには歩留まりも良好である。このため、冷間鍛造部品は、自動車や各種産業機械等に用いられる機械構造用の部品(ギア、シャフト、ボルト等)や、建築構造物用の部品として広く使用されている。
近年、機械構造用の部品においては小型・軽量化が進み、建築構造物用の部品においては大型化が進んでいるため、冷間鍛造部品にはその大きさによらず、より一層の高強度化が望まれている。
これらの冷間鍛造部品には、JIS G 4051の機械構造用炭素鋼鋼材や、JIS G 4053の機械構造用合金鋼鋼材などがある。これらの鋼材は、熱間で棒状や線状に圧延し、次いで球状化焼鈍し、さらに引抜加工や冷間伸線加工を繰り返した後、冷間鍛造によって部品形状に成形し、焼入れ・焼戻しなどの熱処理によって所定の強度や硬さに調整されるのが一般的である。
機械構造用鋼材等は、炭素を比較的多く(0.20〜0.40質量%程度)含むため、調質処理によって高強度部品として使用できる。しかしながら、機械構造用鋼材等は、鍛造素材としての強度が高いため、球状化焼鈍及び冷間伸線加工により鋼材を軟質化しなければ、部品成形の冷間鍛造時に金型の摩耗や割れが生じやすく、また、部品に割れが発生する。よって、このような製造上の問題が懸念されることから、機械構造用鋼材等は、鋼材を軟質化させて、強度等の調整を行っている。
特に近年、部品が高強度化する傾向にあるとともに、部品形状が複雑化する傾向にある。このため、焼入れ・焼戻しによって高強度が得られる鋼材を冷間鍛造前に軟質化させる目的で、球状化焼鈍の長時間化や、球状化焼鈍と冷間伸線加工の繰り返しなど、の対策が採られている。
しかしながら、これらの対策を採用した場合には、人件費や設備費などのコストが嵩むだけでなく、エネルギーロスも大きくなる。このため、球状化焼鈍(及び冷間伸線加工)を省略し、或いはこれらを短時間化することで得られる鋼材の開発が要請されている。
このような背景の下、球状化焼鈍を省略、或いは、短時間化することを目的に、C、Cr、Mnなどの合金元素の含有量を低減して鍛造素材となる圧延線材の強度を低減し、合金元素の低減による焼入れ性の低下をB(ボロン)添加で補ったボロン添加鋼が提案されており、数々の改良が加えられてきた。
ボロン添加鋼は高い焼入れ性を示し、CrやMo等の合金元素を添加しなくても十分な焼入れ性が確保でき、さらにコストも低く抑えられる。このため、ボロン添加鋼は、近年広く普及してきたが、冷間鍛造によって部品形状に成形し、焼入れ・焼戻し後に引張り強度が1000MPa以上となる高強度部品を得るためには、水素脆化の問題も克服する必要がある。
例えば、特許第3443285号公報、特許第5486634号公報、及び特開平9−104945号公報には、それぞれ、「結晶粒粗大化防止特性と冷間鍛造性に優れた冷間鍛造用熱間圧延鋼材とその製造方法」、「冷間加工用機械構造用鋼及びその製造方法」、及び「冷間加工性および耐遅れ破壊性に優れた高強度ボルト用鋼、高強度ボルトの製造方法および高強度ボルト」が開示されている。
即ち、特許第3443285号公報には、C:0.10〜0.60%、Si:0.50%以下、Mn:0.30〜2.00%、P:0.025%以下、S:0.025%以下、Cr:0.25%以下、B:0.0003〜0.0050%、N:0.0050%以下、Ti:0.020〜0.100%を含み、残部はFe、及び不可避的不純物よりなり、かつ鋼のマトリックス中に直径0.2μm以下のTiC又はTi(CN)を20個/100μm2以上を有することを特徴とする結晶粒粗大化防止特性と冷間鍛造性に優れた冷間鍛造用熱間圧延鋼材とその製造方法が開示されている。
また、特許第5486634号公報には、質量%で、C:0.2〜0.6%、Si:0.01〜0.5%、Mn:0.2〜1.5%、P:0.03%以下、S:0.01〜0.05%、Al:0.01〜0.1%、N:0.015%以下、及びCr:0.5%超、2.0%以下を含有し、残部が鉄および不可避不純物であり、金属組織が、パーライトと初析フェライトを有し、全組織に対するパーライトと初析フェライトの合計面積率が90%以上であるとともに、初析フェライトの面積率Aが、Ae=(0.8−Ceq)×96.75(但し、Ceq=[C]+0.1×[Si]+0.06×[Mn]+0.11×[Cr]であり、[(元素名)]は各元素の含有量(質量%)を意味する)で表されるAeと、A>Aeの関係を有し、初析フェライト及びパーライト中のフェライトの平均粒径が15〜25μmであることを特徴とし、通常の球状化処理を施すことによって、十分な軟質化を実現できる冷間加工用機械構造用鋼と、その製造方法が開示されている。
さらに、特開平9−104945号公報には、質量%で、C:0.15〜0.35%、Si:0.1%以下、Mn:0.3〜1.3%、P:0.01%以下、S:0.01%以下、Cr:0.5%未満、Ti:0.01〜0.10%、Al:0.01〜0.05%、B:0.0005〜0.003%、並びに残部:Feおよび不可避不純物からなると共に、次式 0.50≦[C]+0.15[Si]+0.2[Mn]+0.11[Cr]≦0.60 を満足することを特徴とする冷間加工性および耐遅れ破壊性に優れた高強度ボルト用鋼、が開示されている。
特許第3443285号公報に開示されている技術によれば、圧延鋼材の硬さが低減できるため、低コストで冷間鍛造が可能であり、また、焼入れ加熱時の結晶粒粗大化防止特性を具備することができる。しかしながら、鋼中のCr含有量が低いため、焼入れ性が低く、部品の強度を高めることには限界があり、1000MPaを超える高強度部品としては、耐水素脆化特性に課題がある。
また、特許第5486634号公報に開示されている冷間加工用機械構造用鋼は、通常の球状化焼鈍を施すことで、軟質化が可能であり、高強度部品に適用可能である。しかしながら、鋼の化学成分の添加量バランスが最適化されておらず、また圧延鋼材の組織のフェライト分率が実質的に小さい。このため、製品圧延したままや、短時間の球状化焼鈍を施した状態の鋼材を、部品の冷間鍛造時に使用すると、割れが生じ、低コストで部品を製造することができないおそれがある。
さらに、特開平9−104945号公報に開示されている技術では、C、Si、Mn、およびCrの総量の下限と上限を規定して、冷間加工性に悪影響を及ぼさない圧延材の強度と、調質処理をした後に所望の強度が得られる圧延材の強度を得ている。しかしながら、Cr量が低く焼入れ性が低いために、1000MPaを超える高強度部品としては耐水素脆化特性に課題がある。
本発明は、上記事情に鑑みてなされたものであって、冷間鍛造前に球状化焼鈍を施さなくても、或いは、球状化焼鈍を短時間化しても、冷間鍛造時の割れ発生を効果的に抑制し、球状化焼鈍に続く焼入れ・焼戻し後の耐水素脆化特性に優れた圧延線材を提供することを目的とする。
本発明者らは、前記した課題を解決するために種々の検討を行った。その結果、本発明者らは、下記(a)〜(e)の知見を得た。
(a)球状化焼鈍を省略、或いは、短時間化しても、部品の成形が可能な程度に冷間鍛造性を確保できるよう、脱炭層を生成する可能性のある表層部分を除いた内部組織については、面積率で95%以上がフェライトとパーライトとの混合組織であり、さらにはフェライト分率が40%を超える必要がある。
(b)同じフェライトとパーライトとの混合組織であっても、圧延線材の表面近傍に存在する介在物を微細とし、かつ伸長した介在物を少なくすることで、冷間鍛造性を向上させることが可能であり、これによって、より複雑な部品の成形が可能となる。また、介在物の微細化や減少によって、焼入れ・焼戻し後の耐水素脆化特性が向上する。
(c)C、Si、Mn、Cr等の添加元素は、主に圧延線材の強度に影響を及ぼす。また、Mn、Ti、N、S等の添加元素は、圧延線材に不可避的に含有される介在物の組成や形態に影響を及ぼす。優れた冷間鍛造性と、冷間鍛造部品として使用するために必要な焼入れ性や耐水素脆化特性を具備するためには、これら2つのタイプの添加元素のバランスを十分に考慮しなければならない。そして、上記の冷間鍛造性等を具備するには、さらに、製品圧延前の高温加熱後に圧延比6以上の一次圧延を行うことや、その後の仕上げ圧延の温度などの、鋼材の製造条件を制御する必要がある。これにより、冷間鍛造部品として使用可能なレベルでの焼入れ性を確保することを前提に、球状化焼鈍を省略、或いは、短時間化しても優れた冷間鍛造性を実現できる圧延線材を得ることができる。
(d)具体的には、化学成分を所定のバランスとした溶鋼から鋼塊や鋳片を製造した後、製品圧延するよりも前の段階で1280℃以上に高温加熱し、少なくとも30min以上の均熱時間を確保した直後に、圧延比6以上の一次圧延を行って、冷却する。これにより、凝固時に生成したTiを含む粗大な炭窒化物や炭化物、及びTiやMnを含む粗大な硫化物の一部が、一旦鋼に固溶するとともに、高温での一次圧延によって粗大な硫化物が分断され、その後の冷却過程で微細に再析出する。従って、冷間鍛造性に悪影響を与える粗大な硫化物が抑制されるとともに、再析出した微細な炭窒化物や炭化物が、その後に行う熱間での製品圧延時の加熱の際にピンニング粒子として作用し、オーステナイト粒の粗大成長防止に寄与する。その結果、製品圧延後の冷却の際に析出するフェライトが微細化してフェライト分率が高くなり、ひいては(a)に記載した組織を得ることが可能となる。
(e)上記のように高温加熱後に一次圧延した鋼片は再加熱され、所定の径の線材に熱間で製品圧延される。しかしながら、製品圧延における最終の仕上げ圧延は5〜15/secの加工速度で750〜850℃の温度範囲で行うことが望ましい。仕上げ圧延の加工速度及び温度範囲を管理することで、フェライト変態前のオーステナイト粒がより微細となり、フェライト分率が高くなるので、(a)に記載の組織を得ることができる。仕上げ圧延温度が750℃未満であれば、フェライト粒が微細になりすぎて圧延線材の強度を高め、冷間鍛造性が悪化する一方、仕上げ圧延温度が850℃超であれば、(a)に記載の組織を得ることができない。なお、製品圧延時の加熱温度は1050℃以下とすることが望ましい。
上記(a)〜(e)の知見によって得られる圧延線材は、フェライトとパーライトの合計が面積率で95%以上であってフェライト分率が40%を超える内部組織を有する。また、この圧延線材においては、その最表層からD/8(Dは圧延線材の直径(mm)を表す。)の範囲に存在する硫化物の平均面積が6μm2以下である。さらに、この圧延線材においては、当該硫化物の平均アスペクト比が5以下である。このため、この圧延線材は、粗大で伸長した硫化物の存在率が少ない線材である。
その結果、上記圧延線材は球状化焼鈍処理を省略、或いは、短時間化しても十分な冷間鍛造性を有しており、かつ焼入れ性を確保できるので冷間鍛造部品として好適に使用することができ、焼入れ・焼戻し後の耐水素脆化特性にも優れた線材とすることができる。
なお、冷間鍛造後に焼入れのためにAc3点を超える温度に加熱すると、オーステナイト結晶粒の一部が異常に大きく成長する異常粒成長が発生することがあり、部品強度がばらつく要因となる。しかしながら、本発明における圧延線材は耐粗粒化特性に優れており、冷間鍛造後にAc3点を超える温度に加熱した場合にも、結晶粒の異常粒成長を抑えることができる。
本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)〜(3)に示す圧延線材にある。
(1) 質量%で、
C :0.20%以上0.40%未満、
Mn:0.10%以上0.40%未満、
S :0.020%未満、
P :0.020%未満、
Cr:0.70%以上1.60%以下、
Al:0.005%以上0.060%以下、
Ti:0.010%以上0.080%以下
B :0.0003%以上0.0040%以下、及び
N :0.0020%以上0.0080%以下
を含有し、残部がFe及び不純物であり、
Ti、N、及びSの各含有量(質量%)をそれぞれ[Ti]、[N]、[S]とすると、
[S]≦0.0010の場合は、[Ti]が(4.5×[S]+3.4×[N])以上、かつ、(0.008+3.4×[N])以下である一方
[S]≧0.0010の場合は、[Ti]が(4.5×[S]+3.4×[N])以上、かつ、(8.0×[S]+3.4×[N])以下であり、
内部組織が、面積率でフェライト分率40%以上である、フェライトとパーライトとの混合組織であり、軸方向を含む平面での断面において、直径をD(mm)とした場合に最表層からD/8位置までの範囲に存在する硫化物の平均面積が6μm2以下であり、上記硫化物の平均アスペクト比が5以下である、ことを特徴とする、圧延線材。
(2)上記Feの一部に代えて、質量%で、Si:0%以上0.40%未満及びNb:0%以上0.050%以下の少なくとも1種を含有する、上記(1)に記載の圧延線材。
(3)上記Feの一部に代えて、質量%で、Cu:0.50%以下、Ni:0.30%以下、Mo:0.05%以下、及びV:0.05%以下の少なくとも1種を含有する、上記(1)又は(2)のいずれか1つに記載の圧延線材。
(4)上記Feの一部に代えて、質量%で、Zr:0.05%以下、Ca:0.005%以下及びMg:0.005%以下の少なくとも1種を含有する、上記(1)から(3)のいずれか1つに記載の圧延線材。
本発明の圧延線材を素材として用いることにより、球状化焼鈍処理を省略、或いは、短時間化しても、冷間鍛造によって部品に成形することができ、焼入れ時にオーステナイト域へ加熱しても結晶粒の異常粒成長が抑制され、焼入れ・焼戻し後の耐水素脆化特性にも優れた冷間鍛造部品として使用することができる。
本実施形態の[Ti]と[S]との関係を満たす領域を示す図である。 環状Vノッチ試験片を示す図である。
以下、本実施形態の圧延線材について詳しく説明する。なお、本実施形態の圧延線材とは、棒状や線状の圧延鋼材であって、その径が5〜25mm程度のものを意味する。また、以下に示す各元素の含有量の「%」表示は「質量%」を意味する。
(A)化学成分について
C:0.20%以上0.40%未満
Cは、鋼を強化する元素であり、0.20%以上含有させなくてはならない。一方、Cの含有量が0.40%以上であると、冷間鍛造性が低下する。従って、Cの含有量は0.20%以上0.40%未満とした。さらに冷間鍛造部品の焼入れ硬さを高めたい場合は、Cの含有量を0.24%以上とすることが好ましく、さらに冷間鍛造性を高めたい場合は、0.35%以下とすることが好ましい。
Mn:0.10%以上0.40%未満
Mnは、焼入れ性を高めるのに必要な元素であるため、その下限値を0.10%とした。しかしながら、Mnの含有量が0.40%以上になると、仕上げ圧延後の冷却時にフェライト変態の開始温度が低下してフェライト分率が低下し、さらにはベイナイトが生成するため、冷間鍛造性が低下する。従って、Mnの含有量は0.40%未満とする必要がある。なお、焼入れ性を高めるために、Mnは0.20%以上含有することが好ましい。
S:0.020%未満
Sは、不純物として含有される。但し、Sの含有量が0.020%以上になると、鋼に含有される硫化物が粗大で伸長した形態となり、冷間鍛造性を低下させる。Sの含有量は、0.010%未満であることが好ましい。また、冷間鍛造性に優れた硫化物の形態や大きさを得るため、Sは同じ含有量範囲であっても、TiやNとのバランスを考慮して含有しなければならない。
P:0.020%未満
Pは、不純物として含有される。但し、Pの含有量が0.020%以上になると、冷間鍛造性が低下するだけでなく、オーステナイトへの加熱時にPが粒界に偏析して焼入れ時の割れ発生の要因となり、しかも焼入れ・焼戻した後の耐水素脆化特性を低下させる。このため、Pの含有量は0.020%未満でなければならない。Pの含有量は、0.010%未満とすることが好ましい。
Cr:0.70%以上1.60%以下
Crは、Mnと同様に、焼入れ性を高めるのに必要な元素であり、本発明では0.70%以上含有させなければならない。しかしながら、Crの含有量が1.60%を超えると、焼入れ性は高まるが、仕上げ圧延後の冷却時にフェライト変態の開始温度が低下してフェライト分率が低下し、さらにはベイナイトが生成するため、冷間鍛造性が低下する。高い焼入れ性を安定して得るためには、Crの含有量を0.80%以上とすることが好ましく、0.90%以上含有させるのがさらに好ましい。一方、冷間鍛造性を一層高めたい場合には、Crの含有量を1.50%以下とするのが好ましく、1.40%以下とすることがさらに好ましい。
Al:0.005%以上0.060%以下
Alは脱酸作用を有するだけでなく、Nと結合してAlNを形成し、そのピンニング効果により、熱間圧延時のオーステナイト粒を微細化し、ベイナイトの生成を抑制する作用を有する。このため、Alは0.005%以上含有させなくてはならない。一方、Alの含有量が0.060%を超えると、その効果が飽和するだけでなく、粗大なAlNが生成するので冷間鍛造性が低下する。ベイナイトの生成をさらに抑制したい場合には、Alの含有量を0.015%以上であることが好ましく、0.020%以上であることがさらに好ましい。また、冷間鍛造性を高める観点から、Alの含有量は0.050%以下であることが好ましく、0.045%以下であることがさらに好ましい。
Ti:0.010%以上0.080%以下
Tiは、NやCと結合して、炭化物、窒化物又は炭窒化物を形成し、それらのピンニング効果によって、熱間圧延時にオーステナイト粒を微細化して、仕上げ圧延後の冷却過程でのベイナイトの生成を抑制し、フェライト分率を向上させる作用を有する。また、Tiは、冷間鍛造後に焼入れのためにAc3点を超える温度に加熱した際の、異常粒成長を抑制する作用も有する。さらに、Tiは、鋼中に固溶するNを低減してBNの生成を抑制するため、Bによる焼入れ性向上の効果を高める作用も有する。加えて、Tiは、Sと反応して硫化物の組成を変えて硫化物を微細化し、冷間鍛造性や耐水素脆化特性を高める効果も有するため、NやSとのバランスを考慮して添加しなければならない。
これらの効果を得るためには、Tiは0.010%以上含有させなければならない。これらの効果をさらに得るには、Tiの含有量は0.030%以上であることが好ましく、0.060%以上とすることがさらに好ましい。一方、0.080%を超えて含有させた場合には、仕上げ圧延時に微細なTi炭化物が析出してしまい、フェライト相を強化して冷間鍛造性を悪化させるので、Tiの含有量は0.070%以下である。なお、Tiは炭化物、窒化物又は炭窒化物を形成するとともに、硫化物に固溶し、硫化物の形態や大きさに影響を与える。このため、焼入れ時における異常粒成長の抑制や冷間鍛造性、耐水素脆化特性の向上に寄与する。従って、Tiの含有量は上記範囲であっても、SやNとのバランスを考慮して含有しなければならない。
B:0.0003%以上0.0040%以下
Bは、微量添加することで鋼の焼入れ性を高めるのに有効であり、0.0003%以上含有させなければならない。しかしながら、0.0040%を超えて含有させても効果が飽和するだけでなく、冷間鍛造性が劣化する。焼入れ性をさらに高めたい場合には、Bの含有量は、0.0005%以上とすることが好ましく、0.0010%以上とすることがさらに好ましい。一方、冷間鍛造性をさらに向上させる場合には、Bの含有量は、0.0030%以下とするのが好ましく、0.0025%以下とすることがさらに好ましい。
N:0.0020%以上0.0080%以下
NはTiやAlと結合して窒化物や炭窒化物を生成し、熱間圧延時のオーステナイト粒を微細化する効果や、冷間鍛造部品を焼入れする際の加熱時の異常粒成長を抑制する効果を有する。但し、N含有量は、硫化物の組成や形態に影響を与えるTiとのバランスを考慮して決定しなければならない。これらの効果を得るために、Nは0.0020%以上含有させなければならず、0.0030%以上含有させることが好ましい。しかしながら、Nを過剰に含有させてもこれらの効果が飽和するばかりではなく、Bと結合して窒化物を生成し、Bによる焼入れ性向上の効果を弱めてしまうため、Nの含有量は0.0080%以下とする必要がある。安定して焼入れ性を向上するにはN含有量は0.0070%未満とすることが好ましく、0.0060%以下とするのがさらに好ましい。なお、NはTiと結合して窒化物又は炭窒化物を生成する。このため、Nは、硫化物の形態や大きさに影響を与えるTi量に影響を与える。従って、NはTiやSとのバランスを考慮して含有しなければならない。
本願発明においては、ここまで述べたとおり、Ti、N、Sの各元素のバランスが重要である。特に、([Ti]−3.4×[N])が[S]との比において過度に小さい場合、Tiが硫化物に固溶して硫化物を微細化する効果が得られず、粗大な硫化物が存在しやすくなる。これは、本発明では冷間鍛造性に適したフェライト・パーライト組織を得るためにMnの含有量が低く、硫化物中にFeが固溶して硫化物が粗大化しやすいことが背景にある。
一方、([Ti]−3.4×[N])が[S]との比において過度に大きい場合、微細なTi炭化物がフェライト中に析出し、フェライトの強度を高め、冷間鍛造性を低下させる。
([Ti]−3.4×[N])が[S]との比において適切な量であることで、含有される硫化物はTiが固溶した組成となる。その結果、硫化物が微細化し、母材の冷間鍛造性が改善される。また、焼入れ時にオーステナイト域へ加熱しても結晶粒の異常粒成長が抑制され、焼入れ・焼戻し後の耐水素脆化特性にも優れた冷間鍛造部品として使用することができる。
これを踏まえ、本実施形態の圧延線材におけるTi、N、及びSの各含有量(質量%)をそれぞれ[Ti]、[N]、[S]とすると、これらが、
[S]≦0.0010の場合は、[Ti]が(4.5×[S]+3.4×[N])以上、かつ、(0.008+3.4×[N])以下である一方
[S]≧0.0010の場合は、[Ti]が(4.5×[S]+3.4×[N])以上、かつ、(8.0×[S]+3.4×[N])以下である、
との条件を満たす。この定義では、[Ti]の上限を規定する数式が、[S]=0.0010を境界に変わっている。この理由については後述する。
図1の斜線部分は、上記の[Ti]と[S]と[N]との関係を満たす領域を示すものである。図1中、縦軸で示す値Aは、上記[N]に依存する値([N]の3.4倍の値)であり、具体的には0.0068(質量%)から0.0272(質量%)までの範囲で変動する値である。なお、本願発明では[N]は0.0020%以上0.0080%以下と規定されているため、値Aは0.0068以上、0.0272以下となる。
[S]≧0.0010の場合は、[Ti]が(4.5×[S]+3.4×[N])以上であることで、含有される硫化物はTiが固溶した組成となり、微細化するため冷間鍛造性を改善される。
また、[S]≧0.0010の場合は、[Ti]が(8.0×[S]+3.4×[N])以下であることで、微細なTi炭化物の析出量を抑え、フェライトの強度が過剰に高くなり過ぎず、冷間鍛造性の低下を防止できる。
[S]≦0.0010の場合についても、[S]≧0.0010の場合と同様に、[Ti]が(4.5×[S]+3.4×[N])以上であることで、含有される硫化物はTiが固溶した組成となり、微細化するため冷間鍛造性を改善される。
これに対し、[S]≦0.0010の場合における[Ti]の上限は、(0.008+3.4×[N])と規定される。[Ti]がこの範囲にある場合、線材内部に析出する微細なTi炭化物の量が少なく、フェライトの強度が過剰に高くならず、冷間鍛造性の低下を防止できる。
ここで、[Ti]の上限値について、 [S]=0.0010の前後で数式を分けた理由を説明する。上述の通り、[Ti]の上限値は、微細なTi炭化物の析出量を抑制し、線材の強度を適正なものとするために制限されている。[Ti]が少ない領域、特に[Ti]が(0.008+3.4×[N])以下の領域においては、([S]含有量によらず)生成される微細なTi炭化物が微量であり、線材硬さに与える影響が小さい。[S] が比較的多い領域で[Ti]の上限を規定する式(8.0×[S]+3.4×[N])と、(0.008+3.4×[N])との交点では、[S]=0.0010である。
すなわち、[S]≦0.0010の範囲では、[Ti]が(8.0×[S]+3.4×[N])以上であっても、(0.008+3.4×[N])以下であれば、本願発明の目的を達成できる圧延線材を製造可能である。そのため、[S]≦0.0010の領域には、[S]≧0.0010の領域とは異なる規定を導入した。
また、本実施形態に係る圧延線材は、主に冷間鍛造後、焼入れ・焼戻しによって強度を付与する部品に用いられることが多い。このことから、部品としての焼入れ性を確保するために、当該圧延線材に含有されるC、Mn、Crは下記<1>式を満たすことが好ましい。
[Mn]×[Cr]>0.134×(D/25.4−(0.50×√[C]))/(0.50×√[C]) ・・・・<1>
ここで、上記式中、[Mn]、[Cr]、[C]は、それぞれの元素の質量%での含有量を表し、Dは圧延線材の直径(mm)を表す。
ここで、式<1>の左辺は、鋼に含有されるMn、Crの質量%の積で表される値であり、高強度冷間鍛造部品として求められる焼入れ性を確保するために必要なパラメータである。
これに対し、式<1>の右辺は、直径がD(mm)である圧延線材をAc点以上の温度まで加熱し、油冷による焼入れ処理をした場合における、圧延線材の中心部である表面からD/2(mm)位置において得られるマルテンサイトの分率に影響する、Dと[C]との関係を表すパラメータである。
そして、高強度冷間鍛造部品として充分な焼入れ性を確保するためには、式<1>において左辺の値が右辺の値よりも大きいことが好ましい。
なお、本実施形態に係る圧延線材における残部は「Fe及び不純物」である。ここで、「不純物」とは、意図せずに圧延線材中に含有される成分であり、鉄鋼材料を工業的に製造する際に、原料としての鉱石及びスクラップから混入されるもの、或いは製造環境に依存して混入されるものを指す。例えば、酸素は不純物であり、粗大な酸化物の生成を抑制し、冷間鍛造性が悪くなることを避けるため、0.0030%以下に抑えることが好ましく、0.0020%以下に抑えることがさらに好ましく、0.0015%以下に抑えることが極めて好ましい。
次に、本実施形態に係る線材には、残部としてのFeの一部に代えて、必要に応じて、Si、Nb、Cu、Ni、Mo、V、Zr、Ca及びMgから選択される少なくとも1種以上の元素を含有させてもよい。以下に、任意添加元素であるNb、Cu、Ni、Mo、V、Zr、Ca及びMgの含有量と、当該含有量の設定理由について詳述する。
Si:0%以上0.40%未満
Siは、熱間圧延状態の圧延線材の引張り強度を下げるため、その含有量は低いほど好ましい。但し、Siは固溶強化によってフェライトを強化するため、冷間鍛造部品の焼戻し硬さを高めたい場合には、含有させてもよい。この場合、Siの含有量は0.40%未満とする必要がある。Siの含有量が0.40%以上では冷間鍛造性が低下する。冷間鍛造性を高めたい場合には、Siの含有量は0.30%未満とすることが好ましく、0.20%未満とすることがさらに好ましい。
Nb:0%以上0.050%以下
Nbは、CやNと結合して、炭化物、窒化物又は炭窒化物を形成して、それらのピンニング効果により、熱間圧延時にオーステナイト粒を微細化するため、仕上げ圧延後の冷却過程でのベイナイト生成を抑制し、フェライト分率を向上させる作用を有する。また、Nbの炭化物、窒化物又は炭窒化物は、冷間鍛造部品を焼入れする際の加熱時の結晶粒の異常粒成長を抑制する。本実施形態では、Nbを添加しなくても、フェライト分率の向上や結晶粒の異常粒成長の抑制を実現することができる。しかしながら、これらの効果を確実に実現した場合には、Nbを添加することが有効である。即ち、これらの効果を確実に得るためには、Nbは0.003%以上含有させることが好ましく、0.005%以上含有させることがさらに好ましく、0.010%以上含有させることが極めて好ましい。一方、Nbを、0.050%を超えて含有させた場合は、これらの効果が飽和するだけでなく、圧延線材の冷間鍛造性を低下させてしまうおそれがある。このため、Nbの含有量は0.040%以下であることが好ましく、0.030%以下であることがより好ましい。
Cu:0.50%以下
Cuは、焼入れ性を高める元素であり、含有させてもよい。しかしながら、Cuの含有量が0.50%を超えると、焼入れ性が高くなりすぎ、仕上げ圧延後にベイナイトが生成してしまい、圧延線材の冷間鍛造性の低下を招く。従って、Cuの含有量は、0.50以下%であることが好ましく、0.30%以下であることがさらに好ましく、0.20%以下であることが極めて好ましい。なお、上述したCuの添加効果を安定して得るためには、Cuの含有量は0.03%以上であることが好ましく、0.05%以上とすることがさらに好ましい。
Ni:0.30%以下
Niは、焼入れ性を高める元素であり、含有させてもよい。しかしながら、Niの含有量が0.30%を超えると、その効果が飽和するばかりか、焼入れ性が高くなりすぎ、仕上げ圧延後にベイナイトが生成してしまい、冷間鍛造性の低下を招く。従って、Niの含有量は、0.30%以下であることが好ましく、0.20%以下であることがさらに好ましく、0.10%以下であることが極めて好ましい。なお、前述したNiの効果を安定して得るためには、Niの含有量は、0.01%以上であることが好ましく、0.03%以上であればさらに好ましい。
Mo:0.05%以下
Moは、固溶強化によって鋼を強化する元素であり、鋼の焼入れ性を大きく向上させる。この目的でMoを含有させてもよい。しかしながら、Moの含有量が0.05%を超えると、仕上げ圧延後にベイナイトやマルテンサイトが生成し、冷間鍛造性の低下を招く。従って、Moの含有量は0.05%以下であることが好ましく、0.03%以下であることがさらに好ましく、0.02%以下であることが極めて好ましい。なお、前述したMoの効果を安定して得るためには、Moの含有量は、0.005%以上であることが好ましい。
V:0.05%以下
VはC及びNと結合して、炭化物、窒化物又は炭窒化物を形成するが、微量に添加することで鋼の焼入れ性を向上する作用もある。このため、Vを含有させてもよい。しかしながら、Vの含有量が0.05%を超えると、析出する炭化物や炭窒化物によって圧延線材の強度が増大し、冷間鍛造性の低下を招く。従って、Vの含有量は0.05%以下であることが好ましい。冷間鍛造性を向上させる観点からVの含有量は、0.03%以下であることがさらに好ましく、0.02%以下であることが極めて好ましい。なお、前述したVの効果を安定して得るためには、Vの含有量は、0.005%以上であることが好ましい。
Zr:0.05%以下
Zrは、微量に添加することで鋼の焼入れ性を向上する作用もある。その目的で微量のZrを添加してもよい。しかしながら、Zrの含有量が0.05%を超えると、粗大な窒化物が生成し、冷間鍛造性を低下させる。従って、Zrの含有量は0.05%以下であることが好ましい。冷間鍛造性を向上させる観点からZrの量は0.03%以下であることがさらに好ましく、0.02%以下であることが極めて好ましい。なお、前述したZrの効果を安定して得るためには、Zrの含有量は、0.003%以上であることが好ましい。
Ca:0.005%以下
Caは、Sと結合して硫化物を形成し、MnSの生成核として作用するため、CaにはMnSを微細に分散させる作用がある。このようにMnSを微細に分散させることで、仕上げ圧延後の冷却時にMnSを生成核としてフェライトが析出するため、Caにはフェライト分率を向上させる効果がある。このため、Caを含有させてもよい。しかしながら、Caの含有量が0.005%を超えると上記効果は飽和し、しかもCaがAlとともに鋼中の酸素と反応して生成する酸化物が粗大となり、冷間鍛造性の低下を招く。従って、Caの含有量は0.005%以下であることが好まく、0.003%以下であることがさらに好ましく、0.002%以下であることが極めて好ましい。なお、前述したCaの効果を安定して得るためには、Caの含有量は、0.0005%以上であることが好ましい。
Mg:0.005%以下
Mgは、Sと結合して硫化物を形成し、MnSの生成核として作用するため、MgにはMnSを微細に分散させる効果がある。このようにMnSを微細に分散させることで、仕上げ圧延後の冷却時にMnSを生成核としてフェライトが析出するため、Mgにはフェライト分率を向上させる効果がある。このため、Mgを含有させてもよい。しかしながら、Mgの含有量が0.005%を超えると上記効果は飽和する。また、Mgは添加歩留まりが悪く、製造コストを悪化させるため、含有させる。従って、Mgの含有量は、0.005%以下であることが好ましく、0.003%以下であることがさらに好ましく、0.002%以下であることが極めて好ましい。なお、前述したMgの効果を安定して得るためには、Mgの含有量は、0.0005%以上であることが好ましい。
(B)圧延線材の内部組織について
本実施形態に係る圧延線材は、冷間鍛造性に優れており、従来20時間程度要していた製品圧延後の球状化焼鈍処理を省略し、或いは当該処理の時間を半分程度としても、冷間鍛造時の金型寿命低下や、成形部品の割れなどが生じることはない。これは、調整された鋼の化学成分だけでなく、圧延線材の製造条件を制御することによって、圧延線材の金属組織を冷間鍛造に適した形態に制御しているためである。
具体的には、本実施形態に係る圧延線材では、脱炭層が生成される可能性のある表層部分を除いた内部組織は、面積率で95%以上がフェライトとパーライトとの混合組織であって、フェライト組織の分率が40%以上の組織である。ここで、本実施形態におけるフェライトには、パーライトに含まれるラメラセメンタイト間のフェライトは含まれない。また、フェライトとパーライトとの混合組織が面積率で全体の95%以上とは、マルテンサイトやベイナイトの合計が5%未満であることを意味する。良好な冷間鍛造性を得るには、上述のように、フェライトとパーライトとの混合組織を、面積率で95%以上とする必要があり、100%とすることがさらに好ましい。
フェライト分率が40%未満の場合には、良好な冷間鍛造性が確保できず、成形時に部品に割れが生じ、また圧延線材の変形抵抗が高いために金型寿命が短くなる、といった問題が生じる。フェライト分率は45%以上であることが好ましく、50%以上であることが極めて好ましい。
また、フェライト分率は60%以下であることが冷間鍛造中の焼きつきによる鍛造不良を抑制できるという理由で好ましい。フェライト分率は、55%以下であることがさらに好ましい。
(C)線材の介在物の形態について
本実施形態に係る圧延線材は、冷間鍛造性に優れており、冷間鍛造時に、金型寿命低下や成形部品の割れなどが生じることはない。また、線材を焼入れする目的でオーステナイト域へ加熱しても、結晶粒の異常粒成長が抑制され、さらに焼戻し後の耐水素脆化特性にも優れている。これは、調整された鋼の化学成分や圧延線材の金属組織を制御しただけではなく、さらに圧延線材表面近傍に含まれる硫化物の形態を微細にし、圧延方向に伸長した硫化物を少なくしているためである。
具体的には、本実施形態に係る線材では、化学成分や圧延条件の適正化によって圧延線材の内部組織を、フェライト分率が40%以上である、フェライトとパーライトとの混合組織とし、冷間鍛造性を向上させている。特に、冷間鍛造性に適したフェライトとパーライトとの混合組織を得るために、Mnの含有量を制限しているが、このような低Mnの成分系では、鋳片に含まれる硫化物はFeを固溶した硫化物となるため、粗大化しやすい。このため、上記のようにTi、N、Sをバランスよく含有させることで、硫化物にTiが固溶し、硫化物の粗大化を抑制することができる。
さらに、それでも鋳片の段階で残った粗大な硫化物については、製品圧延するよりも前の段階で1280℃以上に高温加熱し、少なくとも30min以上の均熱時間を確保した直後に圧延比6以上の一次圧延を行うことで、分断される。そして、さらに高温加熱によって固溶した粗大な硫化物の一部が、その後の冷却過程で微細に再析出する。これらの処理により、冷間鍛造性や耐水素脆化特性に悪影響を与える粗大な硫化物を抑制することができる。特に、圧延線材から冷間鍛造部品に成形する際には、表層からD/8(D:圧延線材の直径)の範囲に存在する硫化物が冷間鍛造による割れや水素脆化を誘発する。このため、本実施形態においては、圧延線材の軸方向を含む断面において、最表層からD/8の範囲に存在する硫化物の平均面積を6μm2以下とし、さらには当該硫化物の平均アスペクト比を5以下としている。
硫化物の平均面積が6μm2より大きくなると、その形態によらず冷間鍛造の際に粗大な硫化物の周辺に応力が集中し、割れ発生の起点となる。また、硫化物の平均面積が6μm2より大きくなると、焼入れ・焼戻し後の耐水素脆化特性も劣化する。このため、本実施形態に係る圧延線材では、最表層からD/8の範囲に存在する硫化物の平均面積を6μm2以下としている。なお、この硫化物の平均面積は、小さければ小さい程好ましい。
また、本実施形態に係る圧延線材では、硫化物の大きさに関わらず、硫化物の最大長さと最大幅の比であるアスペクト比の平均値を5より小さくしている。これにより、伸長した硫化物が割れ発生の起点になることが抑制される。なお、この硫化物の平均アスペクト比は小さければ小さい程好ましい。
(D)線材の製造プロセスについて
本実施形態では、圧延線材の化学成分だけではなく、圧延線材の製造条件を制御することで、製品圧延ままの組織や介在物の形態を制御し、冷間鍛造部品として好適に使用できる圧延線材を提供することができる。以下に、製品圧延後の組織や、介在物の形態を制御するための製造方法を例示する。なお、圧延線材の化学成分や組織の形態及び介在物の形態が、上述した本発明の範囲内であれば本発明の効果を損なうことはない。なお、仮に、化学成分及び組織の形態が本発明の範囲内にある圧延線材が、下記の製造プロセス以外の製造プロセスによって得られた場合であっても、その圧延線材が本発明に含まれる。
具体的には、C、Mn、Cr、Ti、S、N等の化学成分を調整して、転炉や電気炉等によって溶製、鋳造した鋼塊や鋳片を分塊圧延し、鋼片である製品圧延用素材とする。本発明の圧延線材を得るには、鋼塊や鋳片を分塊圧延する段階で、少なくとも1280℃以上に高温加熱し、30min以上均熱状態とした直後に圧延比6以上の一次圧延を行い、次いで冷却する必要がある。これは、鋳片段階で生成していた粗大な硫化物を一次圧延によって分断し、さらに粗大な硫化物の一部を高温加熱によって固溶させ、その後の冷却過程で微細に再析出させるためである。また、凝固により鋳片に生成した粗大なTi炭窒化物、Ti炭化物などの炭窒化物や炭化物を、高温加熱することで一旦鋼に固溶させて、冷却過程で微細に再析出させるためでもある。
その後、分塊圧延によって得られた鋼片を再加熱して、所定の径の線材へ熱間で製品圧延するが、このときの製品圧延時の加熱温度は1050℃以下とする。これは、製品圧延時の加熱温度を高くし過ぎると、前述の高温加熱処理によって再析出した微細な炭窒化物や炭化物が再び固溶し、製品圧延後の冷却時のフェライト変態に併せてこれらの窒化物や炭化物が整合析出するためである。このように整合析出が起こると、製品圧延後の強度を高めてしまい、冷間鍛造性が低下してしまう。なお、製品圧延時の加熱によって固溶しないTi炭窒化物、Ti炭化物などの炭窒化物や炭化物は、製品圧延後の強度に影響を及ぼすことなく、冷間鍛造性を劣化させず、冷間鍛造後の焼入れ時にAc3点以上に加熱しても結晶粒の異常粒成長を抑制する効果がある。
さらに、製品圧延の仕上げ圧延によって、所定の径の線材に最終的に仕上げる。仕上げ圧延は製品圧延の最終工程における仕上げ圧延機列で実施される圧延であり、加工速度Zを5〜15/secとし、750〜850℃の圧延温度範囲で行う。加工速度Zは、仕上げ圧延による線材の断面減少率及び仕上げ圧延時間から下記<2>式によって求められる値である。また、仕上げ圧延温度は、仕上げ圧延機列出側の温度を、赤外線放射温度計などを用いて測定すればよい。
Z=−ln(1−R)/t ・・・・<2>
ここで、Rは仕上げ圧延による線材の断面減少率であり、tは仕上げ圧延時間(sec)を指す。
また、断面減少率Rは圧延線材の仕上げ圧延前の断面積A0と仕上げ圧延後の断面積AからR=(A0−A)/A0によって求められる。
仕上げ圧延時間tは、圧延線材が仕上げ圧延機列を通過する時間であり、仕上げ圧延機列の最初の圧延機から最後の圧延機までの距離を、圧延線材の平均搬送速度で割ることにより求めることができる。
仕上げ圧延の温度が750℃未満である場合や、仕上げ圧延の加工速度が15/sec超である場合は、未再結晶のオーステナイト粒からフェライト変態が始まるため、冷却後の組織が微細になり過ぎて強度が高くなり、冷間鍛造性が劣化する。これに対し、仕上げ圧延の温度が850℃超である場合や、加工速度が5/sec未満である場合は、再結晶後のオーステナイト粒が粗大化し、フェライト変態の開始温度が低くなるため、冷却後の組織のフェライト分率が小さくなり、冷間鍛造性が劣化する。なお、仕上げ圧延が完了した後、圧延線材の表面温度が500℃になるまでの冷却速度の範囲は0.2〜5℃/secとすることが好ましい。
以下に、実施例によって本発明を具体的に説明する。
本発明では、同じ化学成分の鋼でも製造プロセスによっては本発明の要件を満足しない場合もある。このため、まず、化学成分がほぼ同じ鋼を用いて、異なる条件で圧延線材を製造して、本発明の効果を調査した。また、化学成分が異なる鋼を用いて、同じ条件で圧延線材を製造して、本発明の効果を調査した。
まず、化学成分がほぼ同じ鋼を用いた例については、表1に示す成分を採用し、さらに同表に示す条件(一次圧延加熱温度、一次圧延圧下比、線材圧延加熱温度、及び仕上げ圧延温度)に従い、分塊圧延後の鋼片を得て、当該鋼片から所定の径の線材に製品圧延して、圧延線材(発明例A0及び比較例A1〜A6)を得た。なお、表1中の「−」の表記は、当該元素の含有量が不純物レベルであり、実質的に含有されていないと判断できることを意味する。
Figure 2018008703
次に、化学成分が異なる鋼を用いた例については、表2に示す成分を採用し、鋳片から鋼片を得る段階で、一次圧延加熱温度を1280℃以上とし、一次圧延圧下比を6以上で分塊圧延を行った。そして、得られた鋼片を用いて、製品圧延(線材圧延加熱温度:1030〜1050℃、仕上げ圧延温度:750〜850℃)を行って、圧延線材(発明例1〜14及び比較例15〜25)を得た。なお、表2中の「−」の表記は、当該元素の含有量が不純物レベルであり、実質的に含有されていないと判断できることを示す。なお、表2中の「−」の表記は、当該元素の含有量が不純物レベルであり、実質的に含有されていないと判断できることを意味する。
また表2に以下の式で示される指標Y1を併記する。
Y1=([Ti]−3.4×[N])/[S] ・・・<1>
ここで、[Ti]、[N]、[S]は、それぞれの元素の質量%での含有量を表す。
Y1は、鋼に含有されるTi、N、Sの含有量バランスを表す式であり、高強度冷間鍛造用部品として使用可能な焼入れ性や、圧延鋼材の表面近傍に存在する硫化物の形態、大きさを制御し、優れた冷間鍛造性や焼入れ時の異常粒成長の抑制、および焼入れ・焼戻し後に優れた耐水素脆化特性を与えるために必要なパラメータである。
上述した通り、本実施形態の圧延線材では [S]≧0.0010の場合は、[Ti]が(4.5×[S]+3.4×[N])以上、かつ、(8.0×[S]+3.4×[N])以下であることが要件である。この要件は、指標Y1を用いることにより、4.5≦Y1≦8.0と表現される。
[S]≦0.0010の場合も、[Ti]の下限は(4.5×[S]+3.4×[N])である。これは、4.5≦Y1と表現される。一方、[S]≦0.0010の範囲での[Ti]の上限は(0.008+3.4×[N])と表現され、Y1によらない。この領域では、[Ti]は、Y1>8.0となる領域にあることを許容される。
Figure 2018008703
表1に示す化学成分の発明例の試験番号A0、及び比較例A1〜A6については、以下のように圧延線材を作製した。
即ち、表1に示す発明例A0は、鋳片を1290℃の炉内に挿入し、2時間均熱した後、炉外に取り出した直後に分塊して、162mm角の鋼片とした。このとき、圧延比は7.5であった。
一方、比較例A1は、鋳片を1180℃の炉内に挿入し、2時間均熱した後、炉外に取り出した直後に分塊して、162mm角の鋼片とした。このとき、圧延比はA0と同じ7.5であった。
また、比較例A5は、鋳片を1200℃の炉内に挿入し、2時間均熱した後、炉外に取り出した直後に分塊して、162mm角の鋼片とした。このとき、圧延比はA0と同じ7.5であった。
また、比較例A2、A6は、断面積がA0やA1よりも小さい鋳片を1290℃の炉内に挿入し、2時間均熱した後、炉外に取り出した直後に分塊して、162mm角の鋼片とした。このとき、比較例A2の圧延比は2.4であり、比較例A6の圧延比は5.3であった。
次に、これら圧延用素材となる鋼片を、それぞれ1040℃で加熱した後、仕上げ圧延温度が820℃で所定の径となるように製品圧延を行い、圧延線材を作製した。このとき、仕上げ圧延による加工速度は5〜15/secの範囲であり、仕上げ圧延完了後、変態が完了するまでの平均冷却速度を0.4℃/secとして調整冷却を行った。
比較例A3、A4は、発明例A0と同じ化学成分で、A0と同じ条件で分塊圧延して得た162mm角の鋼片を製品圧延用素材とし、製品圧延前の加熱温度や仕上げ圧延の温度を変更して、圧延線材を作製した。具体的には、比較例A3は、製品圧延の加熱温度を1050℃として加熱した後、圧延温度が950℃で所定の径となるように仕上げ圧延を行い、圧延線材を作製した。このとき、仕上げ圧延による加工速度は5〜15/secの範囲であり、仕上げ圧延完了後、変態が完了するまでの平均冷却速度は0.4℃/secであった。
比較例A4は、製品圧延の加熱温度を1150℃として加熱した後、圧延温度が830℃で所定の径となるように仕上げ圧延を行い、圧延線材を作製した。このとき、仕上げ圧延による加工速度は5〜15/secの範囲とし、仕上げ圧延完了後、変態が完了するまでの平均冷却速度は0.4℃/secとした。
比較例A6は、発明例A0と異なる化学成分で、A0と異なる条件で分塊圧延して得た162mm角の鋼片を製品圧延用素材とし、製品圧延前の加熱温度や仕上げ圧延の温度を変更して、圧延線材を作製した。具体的には、比較例A6は、一次圧延温度を1290℃℃とし、一次圧延圧下比を5.3とした例であり、製品圧延の加熱温度を1040℃として加熱した後、圧延温度が820℃で所定の径となるように仕上げ圧延を行い、圧延線材を作製した。このとき、仕上げ圧延による加工速度は5〜15/secの範囲とし、仕上げ圧延完了後、変態が完了するまでの平均冷却速度は0.4℃/secとした。
次に、表2に示す化学成分の発明例の試験番号1〜14、及び比較例15〜25については、以下のように圧延線材を作製した。
即ち、表2に示す各化学成分の鋼を、真空溶解炉で溶製した。溶製した鋳片は1290℃に加熱した炉内に挿入し、2時間均熱した後、炉外に取り出した直後に分塊圧延して140mm角の鋼片とし、これを製品圧延用素材とした。このとき、圧延比は7.4であった。次いで、製品圧延用素材を1030〜1050℃で加熱した後、仕上げ圧延温度を750〜850℃の間となるよう調整して、製品圧延を実施し、直径14mmの線材とした。このとき、仕上げ圧延による加工速度はいずれも5〜15/secの範囲であり、仕上げ圧延完了後、変態が完了するまでの平均冷却速度は0.4〜2℃/secあった。
以上のように作製した圧延線材(発明例A0及び比較例A1〜A6、並びに発明例1〜14及び比較例15〜25)について、フェライト分率(面積%)、介在物の形態(硫化物平均面積(μm)及び硫化物平均アスペクト比)、冷間鍛造性(変形抵抗及び割れ)、耐水素脆化特性、及び異常粗大粒発生の有無について調査した。
(圧延線材のミクロ組織(フェライト分率)の調査)
圧延線材を長さ10mmに切断した後、横断面(圧延線材の軸と直交する断面)が被検面になるように樹脂埋めし、鏡面研磨を行った。次いで、3%硝酸アルコール(ナイタル腐食液)で表面を腐食してミクロ組織を現出させた。その後、圧延線材の表面からD/4(D:圧延線材の直径)の位置で、光学顕微鏡を用い、倍率200倍で5視野のミクロ組織写真を撮影して「相」を同定した。その結果、実施例および比較例のいずれの検体においても、面積率で95%以上がフェライト・パーライトであることを確認した。さらに、画像解析ソフトを用いて各視野におけるフェライト面積率を測定し、これらの平均値を求めて各例におけるフェライト分率とした。
(介在物の形態(硫化物平均面積(μm)及び硫化物平均アスペクト比)の調査)
圧延線材を長さ12mmに切断した後、圧延線材の縦断面(線材の軸を含む平面)が被検面になるように樹脂埋めし、鏡面研磨を行った。被検面は圧延線材の長手方向と平行とし、圧延線材の表面からD/8(D:圧延線材の直径)の位置までの範囲に存在する硫化物と推測される介在物を走査型電子顕微鏡(SEM)により特定した。より具体的には、圧延線材の表面からD/8の範囲において、被検面内の任意の観察領域を、500倍の倍率で100箇所特定した。各観察領域の面積は、254μm×190μmであり、観察領域の総面積は4.8mm2であった。そして、各観察領域の反射電子像によって判別されるコントラストに基づいて、介在物を特定し、特定された各介在物の面積およびアスペクト比を測定した。最後に、これらの平均値を求めて各例における硫化物平均面積(面積%)、及び硫化物平均アスペクト比とした。なお、特定された介在物はエネルギー分散X線分光法(EDS)によって硫化物であることが確認された。
(冷間鍛造性(変形抵抗、割れ)の調査)
冷間鍛造性は、冷間加工した際の変形抵抗と、圧延線材についての割れ発生の有無と、によって評価した。具体的には、圧延線材の中心部に相当する位置から、φ10×15mmLの丸棒を機械加工して切り出し、冷間圧縮試験によって変形抵抗を測定し、また加工時の割れ発生の有無について調査した。試験片をひずみ(ε=2.2)になるまで段階的に圧縮し、圧縮時の最大荷重を測定し、変形抵抗を算出した。また、試験片表面に割れが生じたかどうかを目視によって判断した。
変形抵抗については、最大荷重から算出した変形抵抗が100kgf/mm2(980MPa)未満であった場合を「good」とする一方、当該変形抵抗が100kgf/mm2(980MPa)以上であった場合を「not good」とした。割れについては、試験片のどの部分にも割れが生じなかった場合を「good」とする一方、試験片表面の少なくともいずれかに割れが生じた場合を「not good」とした。そして、変形抵抗と割れのいずれの評価も「good」であった場合を「good」として総合評価とする一方、変形抵抗と割れの少なくともいずれかの不合格の場合を「not good」として総合評価した。
(耐水素脆化特性の調査)
圧延線材に焼入れ・焼戻しを施して、圧延線材の引張強度を約1200MPaに調整した。次に、引張強度が調整された線材に対して機械加工を施して、図2に示す環状Vノッチ付き試験片を得た。図2中、単位が示されていない数値は、試験片の対応する部位の寸法(単位はmm)を示す。また、同図中、「φ数値」は指定された部位の直径(mm)を示し、「60°」はVノッチ角度を示し、「0.175R」はVノッチ底半径を示す。なお、試験片は各発明例及び各比較例について、それぞれ、10本準備した。
次に、各発明例及び各比較例のそれぞれについて、電解チャージ法を用いて、複数の環状Vノッチ付き試験片中に、様々な濃度の水素を導入した。なお、電解チャージ法は以下のとおりに実施した。即ち、チオシアン酸アンモニウム水溶液中に試験片を浸漬した状態で、試験片の表面にアノード電位を発生させて、水素を試験片内に取り込んだ。その後、試験片の表面に亜鉛めっき被膜を形成することで、試験片中の水素の散逸を防止した。
続いて、試験片のVノッチ断面に対して公称応力1080MPaの引張応力が負荷されるように、一定荷重を負荷する定荷重試験を実施した。試験中に破断した試験片、及び破断しなかった試験片の双方に対して、ガスクロマトグラフ装置を用いた昇温分析法を実施し、試験片中の水素量を測定した。測定後、各発明例及び各比較例のそれぞれについて、破断しなかった試験片の最大水素量を限界拡散性水素量Hcと定義した。
さらに、JIS G4053(2008)のSCM435に相当する化学組成を有する鋼の限界拡散性水素量(0.40ppm)を基準として、各発明例及び各比較例のそれぞれについて、限界拡散性水素量が0.40ppm以上の場合を「good」と評価し、0.40ppm未満の場合を「not good」と評価した。
(異常粗大粒発生の有無の調査)
冷間鍛造性(変形抵抗、割れ)の調査で加工した試験片を再加熱し、異常粗大粒発生の有無を確認した。具体的には、冷間加工した試験片を、不活性ガス雰囲気、880℃の炉内で30分加熱した後、60℃の油槽に浸漬する焼入れを行い、試験片のミクロ組織を観察して、異常粗大粒の発生の有無を観察した。試験片の内部組織が観察できるように、焼入れした試験片を軸方向と平行に切断し、樹脂埋めした。次いで、旧オーステナイト粒界が現出できるよう表面を腐食して、ミクロ組織を光学顕微鏡によって観察した。倍率は500倍とし、冷間加工する前の試験片のD1/4(D1:試験片の直径)に相当する位置を観察し、整粒のみが観察された場合を「good」、異常粗大粒が観察された場合を「not good」と判定した。なお、整粒のみが観察された組織は、5〜30μm程度の旧オーステナイト粒を呈しており、異常粗大粒が観察された組織には、100μmを超えて成長した結晶粒が混在していた。
以上に説明した、フェライト分率(面積%)、介在物の形態(硫化物平均面積(μm)及び硫化物平均アスペクト比)、冷間鍛造性(変形抵抗及び割れ)、耐水素脆化特性、及び異常粗大粒発生の有無、について調査結果を、表3(発明例A0及び比較例A1〜A6について)及び表4(発明例1〜14及び比較例15〜25について)に示す。また、表3、4中には、図1に示す[Ti]と[S]との関係を満たすか、についても併記した。
Figure 2018008703
Figure 2018008703
表3、4によれば、発明例A0及び発明例1〜14は、各元素について本願所定の含有量を有するとともに、Ti含有量とS含有量との関係が図1の斜線領域の範囲を満たしており、さらには、フェライト分率、硫化物の平均面積、及び硫化物の平均アスペクト比が本願所定の範囲内となっている。このため、発明例A0及び発明例1〜14では、冷間鍛造性、耐水素脆化特性、及び異常粗大粒発生の有無、のいずれについても好適な結果が得られていることが判る。
これに対し、比較例A1〜A6及び比較例15〜25は、各元素について本願所定の含有量を有しないか、Ti含有量とS含有量との関係が図1の斜線領域の範囲を満たしていないか、或いは、フェライト分率、硫化物の平均面積、及び硫化物の平均アスペクト比が本願所定の範囲内となっていない。このため、比較例A1〜A6及び比較例15〜25では、冷間鍛造性、耐水素脆化特性、及び異常粗大粒発生の有無、の少なくともいずれについて好適な結果が得られていないことが判る。
本発明によれば、冷間鍛造前に球状化焼鈍を施さなくても、或いは、球状化焼鈍を短時間化しても、冷間鍛造時の割れ発生を効果的に抑制し、球状化焼鈍に続く焼入れ・焼戻し後の耐水素脆化特性に優れた圧延線材を提供することができる。従って、本発明は、特に冷間鍛造部品の素材として使用できる点で有望である。

Claims (4)

  1. 質量%で、
    C :0.20%以上0.40%未満、
    Mn:0.10%以上0.40%未満、
    S :0.020%未満、
    P :0.020%未満、
    Cr:0.70%以上1.60%以下、
    Al:0.005%以上0.060%以下、
    Ti:0.010%以上0.080%以下
    B :0.0003%以上0.0040%以下、及び
    N :0.0020%以上0.0080%以下
    を含有し、残部がFe及び不純物であり、
    Ti、N、及びSの各含有量(質量%)をそれぞれ[Ti]、[N]、[S]とすると、
    [S]≦0.0010の場合は、[Ti]が(4.5×[S]+3.4×[N])以上、かつ、(0.008+3.4×[N])以下である一方
    [S]≧0.0010の場合は、[Ti]が(4.5×[S]+3.4×[N])以上、かつ、(8.0×[S]+3.4×[N])以下であり、
    内部組織が、面積率でフェライト分率40%以上である、フェライトとパーライトとの混合組織であり、
    軸方向を含む平面での断面において、直径をD(mm)とした場合に最表層からD/8位置までの範囲に存在する硫化物の平均面積が6μm2以下であり、前記硫化物の平均アスペクト比が5以下である、ことを特徴とする、圧延線材。
  2. 前記Feの一部に代えて、質量%で、Si:0%以上0.40%未満及びNb:0%以上0.050%以下の少なくとも1種を含有する、請求項1に記載の圧延線材。
  3. 前記Feの一部に代えて、質量%で、Cu:0.50%以下、Ni:0.30%以下、Mo:0.05%以下、及びV:0.05%以下の少なくとも1種を含有する、請求項1又は2のいずれかに記載の圧延線材。
  4. 前記Feの一部に代えて、質量%で、Zr:0.05%以下、Ca:0.005%以下及びMg:0.005%以下の少なくとも1種を含有する、請求項1から3のいずれか1項に記載の圧延線材。
JP2018526425A 2016-07-05 2017-07-05 圧延線材 Active JP6614349B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016133379 2016-07-05
JP2016133379 2016-07-05
PCT/JP2017/024715 WO2018008703A1 (ja) 2016-07-05 2017-07-05 圧延線材

Publications (2)

Publication Number Publication Date
JPWO2018008703A1 true JPWO2018008703A1 (ja) 2019-04-04
JP6614349B2 JP6614349B2 (ja) 2019-12-04

Family

ID=60912184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018526425A Active JP6614349B2 (ja) 2016-07-05 2017-07-05 圧延線材

Country Status (6)

Country Link
US (1) US11098394B2 (ja)
EP (1) EP3483293A4 (ja)
JP (1) JP6614349B2 (ja)
KR (1) KR102113076B1 (ja)
CN (1) CN108699650B (ja)
WO (1) WO2018008703A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609738B (zh) * 2018-12-27 2021-07-06 东莞科力线材技术有限公司 手机用大扁头精密螺丝线材及其制备方法
JP7428889B2 (ja) 2020-03-27 2024-02-07 日本製鉄株式会社 鋼材

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582572B2 (ja) * 1979-02-15 1983-01-17 新日本製鐵株式会社 異方性の少ない強靭棒鋼材の製造方法
JPH09104945A (ja) 1995-10-05 1997-04-22 Kobe Steel Ltd 冷間加工性および耐遅れ破壊性に優れた高強度ボルト用鋼、高強度ボルトの製造方法および高強度ボルト
JP3443285B2 (ja) 1997-07-23 2003-09-02 新日本製鐵株式会社 結晶粒粗大化防止特性と冷間鍛造性に優れた冷間鍛造用熱間圧延鋼材とその製造方法
JP3490293B2 (ja) * 1997-07-23 2004-01-26 新日本製鐵株式会社 結晶粒粗大化防止特性と耐遅れ破壊特性に優れた冷間鍛造用鋼とその製造方法
JP2000192148A (ja) * 1998-12-25 2000-07-11 Kobe Steel Ltd 冷間加工性に優れた鋼線材およびその製造方法
JP3554505B2 (ja) * 1999-05-26 2004-08-18 新日本製鐵株式会社 機械構造用熱間圧延線材・棒鋼及びその製造方法
JP4435954B2 (ja) * 1999-12-24 2010-03-24 新日本製鐵株式会社 冷間鍛造用棒線材とその製造方法
DE60130755T2 (de) * 2000-04-04 2008-07-17 Nippon Steel Corp. Warmgewalzter draht oder stahlblock, die wärmebandelbar und verwendbar im maschinenbau sind und herstellungsverfahren dafür
JP4423253B2 (ja) 2005-11-02 2010-03-03 株式会社神戸製鋼所 耐水素脆化特性に優れたばね用鋼、並びに該鋼から得られる鋼線及びばね
JP4268194B2 (ja) * 2006-03-15 2009-05-27 株式会社神戸製鋼所 破断分離性に優れた破断分離型コネクティングロッド用圧延材、破断分離性に優れた破断分離型コネクティングロッド用熱間鍛造部品、及び破断分離型コネクティングロッド
JP5201000B2 (ja) * 2009-03-02 2013-06-05 新日鐵住金株式会社 高強度鋼線用線材、高強度鋼線及びこれらの製造方法
WO2011111872A1 (ja) * 2010-03-11 2011-09-15 新日本製鐵株式会社 耐遅れ破壊特性に優れた高強度鋼材と高強度ボルト、及び、その製造方法
US10287658B2 (en) * 2011-08-26 2019-05-14 Nippon Steel and Sumitomo Metal Corporation Wire material for non-heat treated component, steel wire for non-heat treated component, and non-heat treated component and manufacturing method thereof
JP5375981B2 (ja) * 2012-01-10 2013-12-25 Jfeスチール株式会社 耐溶接割れ性に優れた耐摩耗溶接鋼管およびその製造方法
JP5486634B2 (ja) 2012-04-24 2014-05-07 株式会社神戸製鋼所 冷間加工用機械構造用鋼及びその製造方法
CN104350167B (zh) * 2012-06-08 2016-08-31 新日铁住金株式会社 钢线材或棒钢
JP6058439B2 (ja) * 2013-01-10 2017-01-11 株式会社神戸製鋼所 冷間加工性と加工後の表面硬さに優れる熱延鋼板
EP3222743B1 (en) * 2014-11-18 2019-09-25 Nippon Steel Corporation Rolled steel bar or rolled wire material for cold-forged component
TWI589706B (zh) 2014-11-18 2017-07-01 新日鐵住金股份有限公司 冷鍛造部品用之呈棒鋼或線材之形狀的輥軋鋼材

Also Published As

Publication number Publication date
KR102113076B1 (ko) 2020-05-20
US11098394B2 (en) 2021-08-24
EP3483293A1 (en) 2019-05-15
JP6614349B2 (ja) 2019-12-04
CN108699650B (zh) 2020-01-14
US20190233925A1 (en) 2019-08-01
WO2018008703A1 (ja) 2018-01-11
CN108699650A (zh) 2018-10-23
EP3483293A4 (en) 2019-12-04
KR20180117129A (ko) 2018-10-26

Similar Documents

Publication Publication Date Title
JP4632000B2 (ja) 継目無鋼管の製造方法
US10597760B2 (en) High-strength steel material for oil well and oil well pipes
CN108368575B (zh) 冷锻调质品用轧制线棒
KR101965520B1 (ko) 냉간 단조 부품용 압연 봉강 또는 압연 선재
KR101965521B1 (ko) 냉간 단조 부품용 압연 봉강 또는 압연 선재
JP6103156B2 (ja) 低合金油井用鋼管
JP6819198B2 (ja) 冷間鍛造調質品用圧延棒線
JP6461672B2 (ja) 冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用鋼線、並びにボルト
CN109790602B (zh)
JP6679935B2 (ja) 冷間加工部品用鋼
JP6614349B2 (ja) 圧延線材
US10487372B2 (en) High-strength bolt
JP6465206B2 (ja) 熱間圧延棒線材、部品および熱間圧延棒線材の製造方法
JP6459704B2 (ja) 冷間鍛造部品用鋼
CN112969808B (zh) 螺栓用钢及其制造方法
JP7274062B1 (ja) 高強度ステンレス鋼線およびばね
JP6645638B1 (ja) ボルト用鋼

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R151 Written notification of patent or utility model registration

Ref document number: 6614349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151