JPWO2017217417A1 - 積層体、建築材料、建築物および保温容器 - Google Patents

積層体、建築材料、建築物および保温容器 Download PDF

Info

Publication number
JPWO2017217417A1
JPWO2017217417A1 JP2018523939A JP2018523939A JPWO2017217417A1 JP WO2017217417 A1 JPWO2017217417 A1 JP WO2017217417A1 JP 2018523939 A JP2018523939 A JP 2018523939A JP 2018523939 A JP2018523939 A JP 2018523939A JP WO2017217417 A1 JPWO2017217417 A1 JP WO2017217417A1
Authority
JP
Japan
Prior art keywords
polymer
structural unit
formula
temperature
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018523939A
Other languages
English (en)
Other versions
JP7045989B2 (ja
Inventor
康司 石渡
康司 石渡
泰 島崎
泰 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of JPWO2017217417A1 publication Critical patent/JPWO2017217417A1/ja
Application granted granted Critical
Publication of JP7045989B2 publication Critical patent/JP7045989B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Building Environments (AREA)

Abstract

断熱性能に優れる積層体を提供する。詳細には、示差走査熱量測定によって10℃以上60℃未満の温度範囲内に観測される融解エンタルピーが30J/g以上である重合体(1)を含む蓄熱層(1)、および熱伝導率が0.1W/(m・K)以下である断熱層(2)を有する積層体を提供する。

Description

本発明は、積層体、建築材料、建築物および保温容器に関するものである。
従来の断熱材の多くは、ポリスチレン発泡体またはポリウレタン発泡体からなるものである。特許文献1には、根太、間柱等にはめ込み易い発泡ポリスチレン断熱材およびその製造方法が記載されている。
特開昭59−11227(1984年1月20日公開)
例えば壁、床もしくは天井などの建築材料、保温容器等に用いる断熱材は、高い断熱性能を有することが求められる。そのため、従来の断熱材の断熱性能のさらなる改良が望まれている。本発明は、前記の課題に鑑みてなされたものであり、断熱性能に優れ、断熱材として用いられる積層体、ならびに該積層体を含む建築材料、建築物および保温容器を提供する。
上記の課題を解決するために、本発明は以下のものを提供する。
1) 示差走査熱量測定によって10℃以上60℃未満の温度範囲内に観測される融解エンタルピーが30J/g以上である重合体(1)を含む蓄熱層(1)、および、 熱伝導率が0.1W/(m・K)以下である断熱層(2)
を有する積層体。
2) 前記蓄熱層(1)が、前記重合体(1)と、示差走査熱量測定によって観測される融解ピーク温度またはガラス転移温度が50℃以上180℃以下である重合体(但し、重合体(1)を除く)である重合体(2)とを含有し、
前記重合体(1)と前記重合体(2)の合計量を100重量%として、前記重合体(1)の含有量が30重量%以上99重量%以下であり、前記重合体(2)の含有量が1重量%以上70重量%以下である1)に記載の積層体。
3) 前記重合体(1)が、下記式(1)で示される構成単位(B)を有する重合体である1)または2)に記載の積層体。
Figure 2017217417
(式(1)中、
Rは、水素原子またはメチル基を表し、
は、単結合、―CO―O―、―O―CO―、または―O―を表し、
は、単結合、―CH―、―CH―CH―、―CH―CH―CH―、―CH―CH(OH)―CH―、または―CH―CH(CHOH)―を表し、
は、単結合、―CO―O―、―O―CO―、―O―、―CO―NH―、―NH―CO―、―CO―NH―CO―、―NH―CO―NH―、―NH―、または―N(CH)―を表し、
は炭素原子数14以上30以下のアルキル基を表し、
、L、及びLの化学構造の説明における横書きの化学式の各々は、その左側が式(1)の上側、その右側が式(1)の下側に対応する。)
4) 前記重合体(1)が、エチレンに由来する構成単位(A)と、下記式(1)で示される構成単位(B)とを有し、さらに下記式(2)で示される構成単位及び下記式(3)で示される構成単位からなる群より選ばれる少なくとも一種の構成単位(C)を有してもよく、前記構成単位(A)と前記構成単位(B)と前記構成単位(C)の合計数を100%として、前記構成単位(A)の数が70%以上99%以下であり、前記構成単位(B)と前記構成単位(C)の合計数が1%以上30%以下であり、
前記構成単位(B)と前記構成単位(C)の合計数を100%として、前記構成単位(B)の数が1%以上100%以下であり、前記構成単位(C)の数が0%以上99%以下である重合体である1)〜3)のいずれかに記載の積層体。
Figure 2017217417
(式(1)中、
Rは、水素原子またはメチル基を表し、
は、単結合、―CO―O―、―O―CO―、または―O―を表し、
は、単結合、―CH―、―CH―CH―、―CH―CH―CH―、―CH―CH(OH)―CH―、または―CH―CH(CHOH)―を表し、
は、単結合、―CO―O―、―O―CO―、―O―、―CO―NH―、―NH―CO―、―CO―NH―CO―、―NH―CO―NH―、―NH―、または―N(CH)―を表し、
は炭素原子数14以上30以下のアルキル基を表し、
、L、及びLの化学構造の説明における横書きの化学式の各々は、その左側が式(1)の上側、その右側が式(1)の下側に対応する。)
Figure 2017217417
(式(2)中、
Rは、水素原子またはメチル基を表し、
は、単結合、―CO―O―、―O―CO―、または―O―を表し、
は、炭素原子数1以上8以下のアルキレン基を表し、
は、水素原子、エポキシ基、―CH(OH)―CHOH、カルボキシ基、ヒドロキシ基、アミノ基、または炭素原子数1以上4以下のアルキルアミノ基を表し、
の化学構造の説明における横書きの化学式の各々は、その左側が式(2)の上側、その右側が式(2)の下側に対応する。)
Figure 2017217417
5) 前記重合体(1)が、前記構成単位(A)と前記構成単位(B)と有し、さらに前記構成単位(C)を有してもよい重合体であって、該重合体に含まれる全ての構成単位の合計数を100%として、前記構成単位(A)と前記構成単位(B)と前記構成単位(C)の合計数が90%以上である重合体である4)に記載の積層体。
6) 前記重合体(1)の下記式(I)で定義される比Aが0.95以下である1)〜5)のいずれかに記載の積層体。
A=α/α (I)
[式(I)中、αは、
光散乱検出器と粘度検出器を備えた装置を用いるゲル・パーミエイション・クロマトグラフィーにより重合体の絶対分子量と固有粘度を測定し、
絶対分子量の対数を横軸、固有粘度の対数を縦軸として、測定したデータをプロットし、絶対分子量の対数と固有粘度の対数を、横軸が前記重合体の重量平均分子量の対数以上z平均分子量の対数以下の範囲において式(I−I)で最小二乗法近似し、式(I−I)を表す直線の傾きの値をαとすることを含む方法により得られた値である。
log[η]=αlogM+logK (I−I)
(式(I−I)中、[η]は重合体の固有粘度(単位:dl/g)を表し、Mは重合体の絶対分子量を表し、Kは定数である。)
式(I)中、αは、
光散乱検出器と粘度検出器を備えた装置を用いるゲル・パーミエイション・クロマトグラフィーによりポリエチレン標準物質1475a(米国国立標準技術研究所製)の絶対分子量と固有粘度を測定し、
絶対分子量の対数を横軸、固有粘度の対数を縦軸として、測定したデータをプロットし、絶対分子量の対数と固有粘度の対数を、横軸が前記ポリエチレン標準物質1475aの重量平均分子量の対数以上z平均分子量の対数以下の範囲において式(I−II)で最小二乗法近似し、式(I−II)を表す直線の傾きの値をαとすることを含む方法により得られた値である。
log[η]=αlogM+logK (I−II)
(式(I−II)中、[η]はポリエチレン標準物質1475aの固有粘度(単位:dl/g)を表し、Mはポリエチレン標準物質1475aの絶対分子量を表し、Kは定数である。)
なお、ゲル・パーミエイション・クロマトグラフィーによる重合体およびポリエチレン標準物質1475aの絶対分子量と固有粘度の測定において、移動相はオルトジクロロベンゼンであり、測定温度は155℃である。)]
7) 前記重合体(1)が、架橋されている重合体である1)〜6)のいずれかに記載の積層体。
8) 前記重合体(1)のゲル分率が20重量%以上である(ただし、重合体(1)の重量を100重量%とする)1)〜7)のいずれかに記載の積層体。
9) 前記蓄熱層(1)が、発泡体からなる発泡層である1)〜8)のいずれかに記載の積層体。
10) 前記断熱層(2)が、前記重合体(2)を含む発泡体からなる発泡層である1)〜9)のいずれかに記載の積層体。
11) 1)〜10)のいずれかに記載の積層体を含む建築材料。
12) 前記積層体に含まれる前記蓄熱層(1)が室内側となり、前記断熱層(2)が屋外側となるように配置するための11)に記載の建築材料。
13) 11)または12)に記載の建築材料を含み、該建築材料に含まれる積層体の前記蓄熱層(1)が室内側となり、前記断熱層(2)が屋外側となるように配置された建築物。
13) 1)〜10)のいずれかに記載の積層体を含み、前記蓄熱層(1)が内側、前記断熱層(2)が外側となるように配置された保温容器。
本発明は断熱性能に優れる積層体、ならびに該積層体を含む建築材料、建築物および保温容器を提供する。
〔1.積層体〕
本発明の積層体は、示差走査熱量測定によって10℃以上60℃未満の温度範囲内に観測される融解エンタルピーが30J/g以上である重合体(1)を含む蓄熱層(1)、および熱伝導率が0.1W/(m・K)以下である断熱層(2)を有する。以下において、融解エンタルピーをΔHと表記することがある。まず、積層体の各材料について、以下に説明する。
<重合体(1)>
本発明における重合体(1)は、示差走査熱量測定によって10℃以上60℃未満の温度範囲内に観測されるΔHが30J/g以上である重合体である。重合体(1)の10℃以上60℃未満の温度範囲内に観測されるΔHは、好ましくは50J/g以上であり、さらに好ましくは70J/g以上である。また、重合体(1)のΔHは、通常200J/g以下である。
本明細書において、「融解エンタルピー」とは、以下の示差走査熱量測定により測定される融解曲線の10℃以上60℃未満の温度範囲内の部分をJIS K7122−1987に準拠した方法により解析して得られる融解熱である。前記重合体(1)中の下記構成単位(B)の数と、下記構成単位(B)の下式(1)中のLの炭素原子数を調整することにより、前記ΔHを上記の範囲内にすることができる。
[示差走査熱量測定方法]
示差走査熱量計により、窒素雰囲気下で、約5mgの試料を封入したアルミニウムパンを、(1)150℃で5分間保持し、次に(2)5℃/分の速度で150℃から−50℃まで降温し、次に(3)−50℃で5分間保持し、次に(4)5℃/分の速度で−50℃から150℃まで昇温する。過程(4)における熱量測定により得られた示差走査熱量測定曲線を融解曲線とする。
前記重合体(1)の融解ピーク温度は、好ましくは10℃以上60℃以下である。
本明細書において、重合体の融解ピーク温度とは、上記示差走査熱量測定により測定される融解曲線を、JIS K7121−1987に準拠した方法により解析して得られる融解ピークの頂点の温度であり、融解吸熱量が最大となる温度である。前記融解曲線にJIS K7121−1987により定義される融解ピークが複数ある場合には、融解吸熱量が最大の融解ピークの頂点の温度を融解ピーク温度とする。
前記重合体(1)中の下記構成単位(B)の数と、下記構成単位(B)の下式(1)中のLの炭素原子数を調整することにより、前記重合体(1)の融解ピーク温度を調整することができる。その結果、前記重合体(1)を含む蓄熱層(1)の蓄熱性能等を調整することができる。
前記重合体(1)の一つの態様として、炭素原子数14以上30以下のアルキル基を有する構成単位を含む重合体が挙げられる。
前記重合体(1)は、下記式(1)で示される構成単位(B)を有する重合体であることが好ましい。
Figure 2017217417
(式(1)中、
Rは水素原子またはメチル基を表し、
は、単結合、―CO―O―、―O―CO―、または―O―を表し、
は、単結合、―CH―、―CH―CH―、―CH―CH―CH―、―CH―CH(OH)―CH―、または―CH―CH(CHOH)―を表し、
は、単結合、―CO―O―、―O―CO―、―O―、―CO―NH―、―NH―CO―、―CO―NH―CO―、―NH―CO―NH―、―NH―、または―N(CH)―を表し、
は炭素原子数14以上30以下のアルキル基を表す。)
(なお、L、L、及びLの化学構造の説明における横書きの化学式の各々は、その左側が式(1)の上側、その右側が式(1)の下側に対応する。)
Rは、好ましくは、水素原子である。
は、好ましくは、―CO―O―、―O―CO―、または―O―であり、より好ましくは―CO―O―または―O―CO―であり、さらに好ましくは、―CO―O―である。
は、好ましくは、単結合、―CH―、―CH―CH―、または―CH―CH―CH―であり、より好ましくは、単結合である。
は、好ましくは、単結合、―O―CO―、―O―、―NH―、または―N(CH)―であり、より好ましくは、単結合である。
式(1)におけるLは、蓄熱層(1)の構成材料である前記重合体(1)の成形加工性が良好であるように、炭素原子数14以上30以下のアルキル基である。炭素原子数14以上30以下のアルキル基としては、炭素原子数14以上30以下の直鎖アルキル基、および炭素原子数14以上30以下の分岐アルキル基が挙げられる。Lは、好ましくは、炭素原子数14以上30以下の直鎖アルキル基であり、より好ましくは炭素原子数14以上24以下の直鎖アルキル基であり、さらに好ましくは炭素原子数16以上22以下の直鎖アルキル基である。
前記炭素原子数14以上30以下の直鎖アルキル基としては、例えばn−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−エイコシル基、n−ヘンエイコシル基、n−ドコシル基、n−トリコシル基、n−テトラコシル基、n−ペンタコシル基、n−ヘキサコシル基、n−ヘプタコシル基、n−オクタコシル基、n−ノナコシル基、およびn−トリアコンチル基が挙げられる。
前記炭素原子数14以上30以下の分岐アルキル基としては、例えばイソテトラデシル基、イソペンタデシル基、イソヘキサデシル基、イソヘプタデシル基、イソオクタデシル基、イソノナデシル基、イソエイコシル基、イソヘンエイコシル基、イソドコシル基、イソトリコシル基、イソテトラコシル基、イソペンタコシル基、イソヘキサコシル基、イソヘプタコシル基、イソオクタコシル基、イソノナコシル基、およびイソトリアコンチル基が挙げられる。
式(1)におけるR、L、L及びLの組み合わせは、例えば、以下のものが挙げられる。
Figure 2017217417
Figure 2017217417
Figure 2017217417
Figure 2017217417
Figure 2017217417
Figure 2017217417
Figure 2017217417
Figure 2017217417
Figure 2017217417
Figure 2017217417
式(1)におけるR、L、L及びLの組み合わせは、好ましくは以下のものである。
Figure 2017217417
Figure 2017217417
Figure 2017217417
式(1)におけるR、L、L及びLの組み合わせとして、以下のものも好ましい。
Rが水素原子であり、L、L、およびLが単結合であり、Lが炭素原子数14以上30以下のアルキル基であるか、
Rが水素原子またはメチル基であり、Lが−CO−O−であり、LおよびLが単結合であり、Lが炭素原子数14以上30以下のアルキル基である。
式(1)におけるR、L、L及びLの組み合わせは、より好ましくは以下のものである。
Figure 2017217417
式(1)におけるR、L、L及びLの組み合わせは、さらに好ましくは以下のものである。
Figure 2017217417
前記構成単位(B)は、好ましくは、n−ヘキサデセンに由来する構成単位、n−オクタデセンに由来する構成単位、n−エイコセンに由来する構成単位、n−ドコセンに由来する構成単位、n−テトラコセンに由来する構成単位、n−ヘキサコセンに由来する構成単位、n−オクタコセンに由来する構成単位、n−トリアコンテンに由来する構成単位、n−ドトリアコンテンに由来する構成単位、n−テトラデシルアクリレートに由来する構成単位、n−ペンタデシルアクリレートに由来する構成単位、n−ヘキサデシルアクリレートに由来する構成単位、n−ヘプタデシルアクリレートに由来する構成単位、n−オクタデシルアクリレートに由来する構成単位、n−ノナデシルアクリレートに由来する構成単位、n−エイコシルアクリレートに由来する構成単位、n−ヘンエイコシルアクリレートに由来する構成単位、n−ドコシルアクリレートに由来する構成単位、n−トリコシルアクリレートに由来する構成単位、n−テトラコシルアクリレートに由来する構成単位、n−ペンタコシルアクリレートに由来する構成単位、n−ヘキサコシルアクリレートに由来する構成単位、n−ヘプタコシルアクリレートに由来する構成単位、n−オクタコシルアクリレートに由来する構成単位、n−ノナコシルアクリレートに由来する構成単位、n−トリアコンチルアクリレートに由来する構成単位、n−テトラデシルメタクリレートに由来する構成単位、n−ペンタデシルメタクリレートに由来する構成単位、n−ヘキサデシルメタクリレートに由来する構成単位、n−ヘプタデシルメタクリレートに由来する構成単位、n−オクタデシルメタクリレートに由来する構成単位、n−ノナデシルメタクリレートに由来する構成単位、n−エイコシルメタクリレートに由来する構成単位、n−ヘンエイコシルメタクリレートに由来する構成単位、n−ドコシルメタクリレートに由来する構成単位、n−トリコシルメタクリレートに由来する構成単位、n−テトラコシルメタクリレートに由来する構成単位、n−ペンタコシルメタクリレートに由来する構成単位、n−ヘキサコシルメタクリレートに由来する構成単位、n−ヘプタコシルメタクリレートに由来する構成単位、n−オクタコシルメタクリレートに由来する構成単位、n−ノナコシルメタクリレートに由来する構成単位、n−トリアコンチルメタクリレートに由来する構成単位、n−ビニルテトラデシレートに由来する構成単位、n−ビニルヘキサデシレートに由来する構成単位、n−ビニルオクタデシレートに由来する構成単位、n−ビニルエイコシレートに由来する構成単位、n−ビニルドコシレートに由来する構成単位、n−テトラデシルビニルエーテルに由来する構成単位、n−ヘキサデシルビニルエーテルに由来する構成単位、n−オクタデシルビニルエーテルに由来する構成単位、n−エイコシルビニルエーテルに由来する構成単位、またはn−ドコシルビニルエーテルに由来する構成単位である。
前記重合体(1)は、2種類以上の前記構成単位(B)を有していてもよく、例えば、n−エイコシルアクリレートに由来する構成単位と、n−オクタデシルアクリレートに由来する構成単位とを有する重合体であってもよい。
前記重合体(1)は、該重合体(1)の融解ピーク温度以上における、積層体の形状保持性と、該重合体(1)の成形加工性が良好であるように、エチレンに由来する構成単位(A)を有する重合体であることが好ましい。前記構成単位(A)は、エチレンを重合することにより形成される構成単位であり、前記構成単位(A)は、重合体中で分岐構造を形成していてもよい。
前記重合体(1)は、好ましくは、式(1)で示される構成単位(B)と、エチレンに由来する構成単位(A)とを有する重合体である。
前記重合体(1)は、下記式(2)で示される構成単位及び下記式(3)で示される構成単位からなる群より選ばれる少なくとも一種の構成単位(C)を有していてもよい。
Figure 2017217417
(式(2)中、
Rは、水素原子またはメチル基を表し、
は、単結合、―CO―O―、―O―CO―、または―O―を表し、
は、炭素原子数1以上8以下のアルキレン基を表し、
は、水素原子、エポキシ基、―CH(OH)―CHOH、カルボキシ基、ヒドロキシ基、アミノ基、または炭素原子数1以上4以下のアルキルアミノ基を表す。)
(なお、Lの化学構造の説明における横書きの化学式の各々は、その左側が式(2)の上側、その右側が式(2)の下側に対応する。)
Figure 2017217417
式(2)において、Rは、好ましくは、水素原子である。
式(2)において、Lは、好ましくは、―CO―O―、―O―CO―、または―O―であり、より好ましくは―CO―O―または―O―CO―であり、さらに好ましくは、―CO―O―である。
式(2)において、Lとしての炭素原子数1以上8以下のアルキレン基としては、例えば、メチレン基、エチレン基、n−プロピレン基、1−メチルエチレン基、n−ブチレン基、1,2−ジメチルエチレン基、1,1−ジメチルエチレン基、2,2−ジメチルエチレン基、n−ペンチレン基、n−へキシレン基、n−ヘプタレン基、n−オクチレン基、および2−エチル−n−へキシレン基が挙げられる。
は、好ましくは、メチレン基、エチレン基、およびn−プロピレン基であり、より好ましくはメチレン基である。
式(2)において、Lとしての炭素原子数1以上4以下のアルキルアミノ基としては、例えば、メチルアミノ基、エチルアミノ基、プロピルアミノ基、ブチルアミノ基、ジメチルアミノ基、およびジエチルアミノ基が挙げられる。
式(2)において、Lは、好ましくは、水素原子、エポキシ基、または―CH(OH)―CHOHであり、より好ましくは水素原子である。
式(2)におけるR、L、L及びLの組み合わせは、例えば、以下のものが挙げられる。
Figure 2017217417
Figure 2017217417
Figure 2017217417
Figure 2017217417
式(2)におけるR、L、L及びLの組み合わせは、好ましくは以下のものである。
Figure 2017217417
Figure 2017217417
Figure 2017217417
式(2)におけるR、L、L及びLの組み合わせは、より好ましくは以下のものである。
Figure 2017217417
式(2)におけるR、L、L及びLの組み合わせは、さらに好ましくは以下のものである。
Figure 2017217417
式(2)で示される構成単位としては、例えば、プロピレンに由来する構成単位、ブテンに由来する構成単位、1−ペンテンに由来する構成単位、1−ヘキセンに由来する構成単位、1−ヘプテンに由来する構成単位、1−オクテンに由来する構成単位、アクリル酸に由来する構成単位、メタクリル酸に由来する構成単位、ビニルアルコールに由来する構成単位、メチルアクリレートに由来する構成単位、エチルアクリレートに由来する構成単位、n−プロピルアクリレートに由来する構成単位、イソプロピルアクリレートに由来する構成単位、n−ブチルアクリレートに由来する構成単位、イソブチルアクリレートに由来する構成単位、sec−ブチルアクリレートに由来する構成単位、tert−ブチルアクリレートに由来する構成単位、メチルメタクリレートに由来する構成単位、エチルメタクリレートに由来する構成単位、n−プロピルメタクリレートに由来する構成単位、イソプロピルメタクリレートに由来する構成単位、n−ブチルメタクリレートに由来する構成単位、イソブチルメタクリレートに由来する構成単位、sec−ブチルメタクリレートに由来する構成単位、tert−ブチルメタクリレートに由来する構成単位、ビニルホルメートに由来する構成単位、ビニルアセテートに由来する構成単位、ビニルプロピオネートに由来する構成単位、ビニル(n−ブチレート)に由来する構成単位、ビニル(イソブチレート)に由来する構成単位、メチルビニルエーテルに由来する構成単位、エチルビニルエーテルに由来する構成単位、n−プロピルビニルエーテルに由来する構成単位、イソプロピルビニルエーテルに由来する構成単位、n−ブチルビニルエーテルに由来する構成単位、イソブチルビニルエーテルに由来する構成単位、sec−ブチルビニルエーテルに由来する構成単位、tert−ブチルビニルエーテルに由来する構成単位、グリシジルアクリレートに由来する構成単位、グリシジルメタクリレートに由来する構成単位、2,3−ジヒドロキシプロピルアクリレートに由来する構成単位、2,3−ジヒドロキシプロピルメタクリレートに由来する構成単位、3−(ジメチルアミノ)プロピルアクリレートに由来する構成単位、および3−(ジメチルアミノ)プロピルメタクリレートに由来する構成単位が挙げられる。
式(3)で示される構成単位は、無水マレイン酸に由来する構成単位である。
前記重合体(1)は、2種類以上の前記構成単位(C)を有していてもよく、例えば、メチルアクリレートに由来する構成単位と、エチルアクリレートに由来する構成単位と、グリシジルメタクリレートに由来する構成単位とを有する重合体であってもよい。
前記重合体(1)は、好ましくは、式(1)で示される構成単位(B)を有する重合体である。
式(1)で示される構成単位(B)を有する重合体としては、
前記構成単位(B)からなる重合体(1)、
前記構成単位(B)と前記構成単位(A)とを有する重合体(1)、
前記構成単位(B)と前記構成単位(C)とを有する重合体(1)、及び
前記構成単位(B)と前記構成単位(A)と前記構成単位(C)とを有する重合体(1)
が挙げられる。
前記構成単位(B)からなる重合体(1)としては、
Rが水素原子であり、L、L、およびLが単結合であり、Lが炭素原子数14以上30以下のアルキル基である式(1)で示される構成単位(B)からなる重合体、及び
Rが水素原子またはメチル基であり、Lが−CO−O−であり、LおよびLが単結合であり、Lが炭素原子数14以上30以下のアルキル基である式(1)で示される構成単位(B)からなる重合体
が挙げられる。
前記構成単位(B)と前記構成単位(A)とを有する重合体(1)としては、
Rが水素原子であり、L、L、およびLが単結合であり、Lが炭素原子数14以上30以下のアルキル基である式(1)で示される構成単位(B)と、前記構成単位(A)とを有し、該重合体に含まれる全ての構成単位の合計数を100%として、前記構成単位(A)と前記構成単位(B)の合計数が90%以上である重合体、及び
Rが水素原子またはメチル基であり、Lが−CO−O−であり、LおよびLが単結合であり、Lが炭素原子数14以上30以下のアルキル基である式(1)で示される構成単位(B)と、構成単位(A)とを有し、さらに前記構成単位(C)を有してもよい重合体であって、該重合体に含まれる全ての構成単位の合計数を100%として、前記構成単位(A)と前記構成単位(B)の合計数が90%以上である重合体
が挙げられる。
ΔHを大きくするという観点からは、重合体(1)は、該重合体に含まれる前記構成単位(B)と前記構成単位(A)の合計数を100%として、前記構成単位(B)の数が50%より多く80%以下である重合体が好ましい。
成形加工性の観点からは、重合体(1)は、該重合体に含まれる前記構成単位(B)と前記構成単位(A)の合計数を100%として、前記構成単位(B)の数が10%以上50%以下である重合体が好ましい。
前記構成単位(B)と前記構成単位(C)とを有する重合体(1)としては、
Rが水素原子またはメチル基であり、Lが−CO−O−であり、LおよびLが単結合であり、Lが炭素原子数14以上30以下のアルキル基である式(1)で示される構成単位(B)と、Rが水素原子またはメチル基であり、Lが−CO−O−であり、Lがメチレン基であり、Lが水素原子である式(2)で示される構成単位(C)とを有する重合体が挙げられる。この場合、該重合体に含まれる前記構成単位(B)と前記構成単位(C)の合計数を100%として、前記構成単位(B)の数が80%以上である重合体が好ましい。
前記重合体(1)において、前記構成単位(A)と前記構成単位(B)と前記構成単位(C)の合計数を100%として、前記構成単位(A)の数が0%以上99%以下であり、前記構成単位(B)と前記構成単位(C)の合計数が1%以上100%以下であり、前記構成単位(B)と前記構成単位(C)の合計数を100%として、前記構成単位(B)の数が1%以上100%以下であり、前記構成単位(C)の数が0%以上99%以下である。
前記重合体(1)における前記構成単位(A)の数は、前記構成単位(A)と前記構成単位(B)と前記構成単位(C)の合計数を100%として、該重合体(1)を含む蓄熱層(1)の形状保持性が良好であるように、好ましくは70%以上99%以下であり、より好ましくは80%以上97.5%以下であり、さらに好ましくは85%以上92.5%以下である。前記重合体(1)における前記構成単位(B)と前記構成単位(C)の合計数は、前記構成単位(A)と前記構成単位(B)と前記構成単位(C)の合計数を100%として、該重合体(1)を含む蓄熱層(1)の形状保持性が良好であるように、好ましくは1%以上30%以下であり、より好ましくは2.5%以上20%以下であり、さらに好ましくは7.5%以上15%以下である。
前記重合体(1)における前記構成単位(B)の数は、前記構成単位(B)と前記構成単位(C)の合計数を100%として、1%以上100%以下であり、該重合体(1)を含む蓄熱層(1)の蓄熱性能が良好であるように、好ましくは60%以上100%以下であり、より好ましくは80%以上100%以下である。前記重合体(1)における前記構成単位(C)の数は、前記構成単位(B)と前記構成単位(C)の合計数を100%として、0%以上99%以下であり、該重合体(1)を含む蓄熱層(1)の蓄熱性能が良好であるように、好ましくは、0%以上40%以下であり、より好ましくは0%以上20%以下である。
前記構成単位(A)の数、前記構成単位(B)の数、および前記構成単位(C)の数は、周知の方法により13C核磁気共鳴スペクトル(以下、13C−NMRスペクトル)またはH核磁気共鳴スペクトル(以下、H−NMRスペクトル)の各構成単位に帰属されるシグナルの積分値から求められる。
前記重合体(1)が、後述のとおり、上記式(2)で示される構成単位及び上記式(3)で示される構成単位からなる群より選ばれる少なくとも一種の構成単位(C)を有し、エチレンに由来する構成単位(A)を有してもよい重合体(以下、前駆重合体(1)と称する)と、後述の少なくとも1種の化合物(α)とを反応させる方法により製造されたものである場合は、前記構成単位(A)の数、前記構成単位(B)の数、および前記構成単位(C)の数は、例えば以下の方法により求められる。
前駆重合体(1)がエチレンに由来する構成単位(A)を含む場合は、まず、前駆重合体(1)に含まれる前記構成単位(A)および前記構成単位(C)の数を求める。13C−NMRスペクトルから求める場合は、例えば該スペクトルから前記構成単位(A)および前記構成単位(C)のダイアッド(AA、AC、CC)の数を求め、下式に代入することにより、前記構成単位(A)および前記構成単位(C)の数を求める。なお、AAは、構成単位(A)−構成単位(A)ダイアッド、ACは、構成単位(A)−構成単位(C)ダイアッド、CCは、構成単位(C)−構成単位(C)ダイアッドである。
構成単位(A)の数=100−構成単位(C)の数
構成単位(C)の数=100×(AC/2+CC)/(AA+AC+CC)
前駆重合体(1)に含まれる前記構成単位(C)と、上記化合物(α)とが反応することにより、前記重合体(1)における前記構成単位(B)が形成されるので、前記反応による前記構成単位(C)の転化率を以下の方法により求める。
前駆重合体(1)の前記構成単位(C)の側鎖に含まれる特定の炭素に帰属されるシグナルの積分値(以下、積分値Y)と、重合体(1)の構成単位(B)の側鎖に含まれる特定の炭素に帰属されるシグナルの積分値(以下、積分値Z)を下式に代入し転化率を求める。
転化率=Z/(Y+Z)
前駆重合体(1)と化合物(α)との反応では、前駆重合体(1)に含まれる前記構成単位(A)は変化しないため、重合体(1)に含まれる構成単位(A)の数と前駆重合体(1)に含まれる前記構成単位(A)の数は同じとする。重合体(1)に含まれる構成単位(B)の数は、前駆重合体(1)に含まれる構成単位(C)の数と前記転化率の積として求められる。重合体(1)に含まれる構成単位(C)の数は、前駆重合体(1)に含まれる構成単位(C)の数と重合体(1)に含まれる構成単位(B)の数の差として求められる。
前駆重合体(1)は、一例において、上記式(2)で示される構成単位および上記式(3)で示される構成単位からなる群より選ばれる少なくとも一種の構成単位(C)を有する重合体(ただし、式(2)中、Lは、―CO―O―、―O―CO―、または―O―である)であり得る。
前記重合体(1)の製造方法としては、例えば、前駆重合体(1)と、少なくとも1種の化合物(α)、すなわち、炭素原子数14以上30以下のアルキル基を有するアルコール、炭素原子数14以上30以下のアルキル基を有するアミン、炭素原子数14以上30以下のアルキル基を有するアルキルハライド、炭素原子数14以上30以下のアルキル基を有するカルボン酸、炭素原子数14以上30以下のアルキル基を有するカルボン酸アミド、炭素原子数14以上30以下のアルキル基を有するカルボン酸ハライド、炭素原子数14以上30以下のアルキル基を有するカルバミン酸、炭素原子数14以上30以下のアルキル基を有するアルキル尿素、及び炭素原子数14以上30以下のアルキル基を有するイソシアネートからなる群より選ばれる少なくとも1種の化合物とを反応させる方法、および前記構成単位(B)の原料となるモノマーを重合する方法、及びエチレンと前記構成単位(B)の原料となるモノマーを共重合する方法が挙げられる。前記化合物(α)のアルキル基は、例えば、直鎖アルキル基または分岐アルキル基であってもよいが、直鎖アルキル基が好ましい。
上記前駆重合体(1)は、前記重合体(1)を製造するための原料であり、前駆重合体(1)は式(1)で示される構成単位(B)を含まない。上記前駆重合体(1)は、前記構成単位(A)、前記構成単位(B)、および前記構成単位(C)のいずれにも該当しない構成単位を含んでもよい。
上記前駆重合体(1)は、好ましくは、前記構成単位(A)と前記構成単位(C)の合計数を100%として、前記構成単位(A)の数が0%以上99%以下であり、前記構成単位(C)の合計数が1%以上100%以下である。より好ましくは、前記構成単位(A)の数が70%以上99%以下であり、前記構成単位(C)の合計数が1%以上30%以下である。
前記重合体(1)における前記構成単位(B)の形成方法としては、例えば前駆重合体(1)に含まれる前記構成単位(C)と、上記化合物(α)とを反応させる方法、および前記構成単位(B)の原料となるモノマーを重合する方法、及びエチレンと前記構成単位(B)の原料となるモノマーを共重合する方法が挙げられる。前記化合物(α)のアルキル基は、直鎖アルキル基が好ましい。なお、モノマーを重合する方法には、アゾ化合物などの重合開始剤を用いてもよい。前記アゾ化合物としてはアゾビスイソブチロニトリルなどが挙げられる。
上記前駆重合体(1)として、例えばアクリル酸重合体、メタクリル酸重合体、ビニルアルコール重合体、メチルアクリレート重合体、エチルアクリレート重合体、n−プロピルアクリレート重合体、n−ブチルアクリレート重合体、メチルメタクリレート重合体、エチルメタクリレート重合体、n−プロピルメタクリレート重合体、n−ブチルメタクリレート重合体、ビニルホルメート重合体、ビニルアセテート重合体、ビニルプロピオネート重合体、ビニル(n−ブチレート)重合体、メチルビニルエーテル重合体、エチルビニルエーテル重合体、n−プロピルビニルエーテル重合体、n−ブチルビニルエーテル重合体、無水マレイン酸重合体、グリシジルアクリレート重合体、グリシジルメタクリレート重合体、3−(ジメチルアミノ)プロピルアクリレート重合体、3−(ジメチルアミノ)プロピルメタクリレート重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−ビニルアルコール共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン−n−プロピルアクリレート共重合体、エチレン−n−ブチルアクリレート共重合体、エチレン−メチルメタクリレート共重合体、エチレン−エチルメタクリレート共重合体、エチレン−n−プロピルメタクリレート共重合体、エチレン−n−ブチルメタクリレート共重合体、エチレン−ビニルホルメート共重合体、エチレン−ビニルアセテート共重合体、エチレン−ビニルプロピオネート共重合体、エチレン−ビニル(n−ブチレート)共重合体、エチレン−メチルビニルエーテル共重合体、エチレン−エチルビニルエーテル共重合体、エチレン−n−プロピルビニルエーテル共重合体、エチレン−n−ブチルビニルエーテル共重合体、エチレン−無水マレイン酸共重合体、エチレン−グリシジルアクリレート共重合体、エチレン−グリシジルメタクリレート共重合体、エチレン−3−(ジメチルアミノ)プロピルアクリレート共重合体、およびエチレン−3−(ジメチルアミノ)プロピルメタクリレート共重合体が挙げられる。
前記炭素原子数14以上30以下の直鎖アルキル基を有するアルコールとして、例えばn−テトラデシルアルコール、n−ペンタデシルアルコール、n−ヘキサデシルアルコール、n−ヘプタデシルアルコール、n−オクタデシルアルコール、n−ノナデシルアルコール、n−エイコシルアルコール、n−ヘンエイコシルアルコール、n−ドコシルアルコール、n−トリコシルアルコール、n−テトラコシルアルコール、n−ペンタコシルアルコール、n−ヘキサコシルアルコール、n−ヘプタコシルアルコール、n−オクタコシルアルコール、n−ノナコシルアルコール、およびn−トリアコンチルアルコールが挙げられる。
前記炭素原子数14以上30以下の分岐アルキル基を有するアルコールとして、例えばイソテトラデシルアルコール、イソペンタデシルアルコール、イソヘキサデシルアルコール、イソヘプタデシルアルコール、イソオクタデシルアルコール、イソノナデシルアルコール、イソエイコシルアルコール、イソヘンエイコシルアルコール、イソドコシルアルコール、イソトリコシルアルコール、イソテトラコシルアルコール、イソペンタコシルアルコール、イソヘキサコシルアルコール、イソヘプタコシルアルコール、イソオクタコシルアルコール、イソノナコシルアルコール、およびイソトリアコンチルアルコールが挙げられる。
前記炭素原子数14以上30以下の直鎖アルキル基を有するアミンとして、例えばn−テトラデシルアミン、n−ペンタデシルアミン、n−ヘキサデシルアミン、n−ヘプタデシルアミン、n−オクタデシルアミン、n−ノナデシルアミン、n−エイコシルアミン、n−ヘンエイコシルアミン、n−ドコシルアミン、n−トリコシルアミン、n−テトラコシルアミン、n−ペンタコシルアミン、n−ヘキサコシルアミン、n−ヘプタコシルアミン、n−オクタコシルアミン、n−ノナコシルアミン、およびn−トリアコンチルアミンが挙げられる。
前記炭素原子数14以上30以下の分岐アルキル基を有するアミンとして、例えばイソテトラデシルアミン、イソペンタデシルアミン、イソヘキサデシルアミン、イソヘプタデシルアミン、イソオクタデシルアミン、イソノナデシルアミン、イソエイコシルアミン、イソヘンエイコシルアミン、イソドコシルアミン、イソトリコシルアミン、イソテトラコシルアミン、イソペンタコシルアミン、イソヘキサコシルアミン、イソヘプタコシルアミン、イソオクタコシルアミン、イソノナコシルアミン、およびイソトリアコンチルアミンが挙げられる。
前記炭素原子数14以上30以下の直鎖アルキル基を有するアルキルハライドとして、例えばn−テトラデシルヨージド、n−ペンタデシルヨージド、n−ヘキサデシルヨージド、n−ヘプタデシルヨージド、n−オクタデシルヨージド、n−ノナデシルヨージド、n−エイコシルヨージド、n−ヘンエイコシルヨージド、n−ドコシルヨージド、n−トリコシルヨージド、n−テトラコシルヨージド、n−ペンタコシルヨージド、n−ヘキサコシルヨージド、n−ヘプタコシルヨージド、n−オクタコシルヨージド、n−ノナコシルヨージド、およびn−トリアコンチルヨージドが挙げられる。
前記炭素原子数14以上30以下の分岐アルキル基を有するアルキルハライドとして、例えばイソテトラデシルヨージド、イソペンタデシルヨージド、イソヘキサデシルヨージド、イソヘプタデシルヨージド、イソオクタデシルヨージド、イソノナデシルヨージド、イソエイコシルヨージド、イソヘンエイコシルヨージド、イソドコシルヨージド、イソトリコシルヨージド、イソテトラコシルヨージド、イソペンタコシルヨージド、イソヘキサコシルヨージド、イソヘプタコシルヨージド、イソオクタコシルヨージド、イソノナコシルヨージド、およびイソトリアコンチルヨージドが挙げられる。
前記炭素原子数14以上30以下の直鎖アルキル基を有するカルボン酸として、例えばn−テトラデカン酸、n−ペンタデカン酸、n−ヘキサデカン酸、n−ヘプタデカン酸、n−オクタデカン酸、n−ノナデカン酸、n−エイコサン酸、n−ヘンエイコサン酸、n−ドコサン酸、n−トリコサン酸、n−テトラコサン酸、n−ペンタコサン酸、n−ヘキサコサン酸、n−ヘプタコサン酸、n−オクタコサン酸、n−ノナコサン酸、およびn−トリアコンタン酸が挙げられる。
前記炭素原子数14以上30以下の分岐アルキル基を有するカルボン酸として、例えばイソテトラデカン酸、イソペンタデカン酸、イソヘキサデカン酸、イソヘプタデカン酸、イソオクタデカン酸、イソノナデカン酸、イソエイコサン酸、イソヘンエイコサン酸、イソドコサン酸、イソトリコサン酸、イソテトラコサン酸、イソペンタコサン酸、イソヘキサコサン酸、イソヘプタコサン酸、イソオクタコサン酸、イソノナコサン酸、およびイソトリアコンタン酸が挙げられる。
前記炭素原子数14以上30以下の直鎖アルキル基を有するカルボン酸アミドとして、例えばn−テトラデカン酸アミド、n−ペンタデカン酸アミド、n−ヘキサデカン酸アミド、n−ヘプタデカン酸アミド、n−オクタデカン酸アミド、n−ノナデカン酸アミド、n−エイコサン酸アミド、n−ヘンエイコサン酸アミド、n−ドコサン酸アミド、n−トリコサン酸アミド、n−テトラコサン酸アミド、n−ペンタコサン酸アミド、n−ヘキサコサン酸アミド、n−ヘプタコサン酸アミド、n−オクタコサン酸アミド、n−ノナコサン酸アミド、およびn−トリアコンタン酸アミドが挙げられる。
前記炭素原子数14以上30以下の分岐アルキル基を有するカルボン酸アミドとして、例えばイソテトラデカン酸アミド、イソペンタデカン酸アミド、イソヘキサデカン酸アミド、イソヘプタデカン酸アミド、イソオクタデカン酸アミド、イソノナデカン酸アミド、イソエイコサン酸アミド、イソヘンエイコサン酸アミド、イソドコサン酸アミド、イソトリコサン酸アミド、イソテトラコサン酸アミド、イソペンタコサン酸アミド、イソヘキサコサン酸アミド、イソヘプタコサン酸アミド、イソオクタコサン酸アミド、イソノナコサン酸アミド、およびイソトリアコンタン酸アミドが挙げられる。
前記炭素原子数14以上30以下の直鎖アルキル基を有するカルボン酸ハライドとして、例えばn−テトラデカン酸クロリド、n−ペンタデカン酸クロリド、n−ヘキサデカン酸クロリド、n−ヘプタデカン酸クロリド、n−オクタデカン酸クロリド、n−ノナデカン酸クロリド、n−エイコサン酸クロリド、n−ヘンエイコサン酸クロリド、n−ドコサン酸クロリド、n−トリコサン酸クロリド、n−テトラコサン酸クロリド、n−ペンタコサン酸クロリド、n−ヘキサコサン酸クロリド、n−ヘプタコサン酸クロリド、n−オクタコサン酸クロリド、n−ノナコサン酸クロリド、およびn−トリアコンタン酸クロリドが挙げられる。
前記炭素原子数14以上30以下の分岐アルキル基を有するカルボン酸ハライドとして、例えばイソテトラデカン酸クロリド、イソペンタデカン酸クロリド、イソヘキサデカン酸クロリド、イソヘプタデカン酸クロリド、イソオクタデカン酸クロリド、イソノナデカン酸クロリド、イソエイコサン酸クロリド、イソヘンエイコサン酸クロリド、イソドコサン酸クロリド、イソトリコサン酸クロリド、イソテトラコサン酸クロリド、イソペンタコサン酸クロリド、イソヘキサコサン酸クロリド、イソヘプタコサン酸クロリド、イソオクタコサン酸クロリド、イソノナコサン酸クロリド、およびイソトリアコンタン酸クロリドが挙げられる。
前記炭素原子数14以上30以下の直鎖アルキル基を有するカルバミン酸として、例えばn−テトラデシルカルバミン酸、n−ペンタデシルカルバミン酸、n−ヘキサデシルカルバミン酸、n−ヘプタデシルカルバミン酸、n−オクタデシルカルバミン酸、n−ノナデシルカルバミン酸、n−エイコシルカルバミン酸、n−ヘンエイコシルカルバミン酸、n−ドコシルカルバミン酸、n−トリコシルカルバミン酸、n−テトラコシルカルバミン酸、n−ペンタコシルカルバミン酸、n−ヘキサコシルカルバミン酸、n−ヘプタコシルカルバミン酸、n−オクタコシルカルバミン酸、n−ノナコシルカルバミン酸、およびn−トリアコンチルカルバミン酸が挙げられる。
前記炭素原子数14以上30以下の分岐アルキル基を有するカルバミン酸として、例えばイソテトラデシルカルバミン酸、イソペンタデシルカルバミン酸、イソヘキサデシルカルバミン酸、イソヘプタデシルカルバミン酸、イソオクタデシルカルバミン酸、イソノナデシルカルバミン酸、イソエイコシルカルバミン酸、イソヘンエイコシルカルバミン酸、イソドコシルカルバミン酸、イソトリコシルカルバミン酸、イソテトラコシルカルバミン酸、イソペンタコシルカルバミン酸、イソヘキサコシルカルバミン酸、イソヘプタコシルカルバミン酸、イソオクタコシルカルバミン酸、イソノナコシルカルバミン酸、およびイソトリアコンチルカルバミン酸が挙げられる。
前記炭素原子数14以上30以下の直鎖アルキル基を有するアルキル尿素として、例えばn−テトラデシル尿素、n−ペンタデシル尿素、n−ヘキサデシル尿素、n−ヘプタデシル尿素、n−オクタデシル尿素、n−ノナデシル尿素、n−エイコシル尿素、n−ヘンエイコシル尿素、n−ドコシル尿素、n−トリコシル尿素、n−テトラコシル尿素、n−ペンタコシル尿素、n−ヘキサコシル尿素、n−ヘプタコシル尿素、n−オクタコシル尿素、n−ノナコシル尿素、およびn−トリアコンチル尿素が挙げられる。
前記炭素原子数14以上30以下の分岐アルキル基を有するアルキル尿素として、例えばイソテトラデシル尿素、イソペンタデシル尿素、イソヘキサデシル尿素、イソヘプタデシル尿素、イソオクタデシル尿素、イソノナデシル尿素、イソエイコシル尿素、イソヘンエイコシル尿素、イソドコシル尿素、イソトリコシル尿素、イソテトラコシル尿素、イソペンタコシル尿素、イソヘキサコシル尿素、イソヘプタコシル尿素、イソオクタコシル尿素、イソノナコシル尿素、およびイソトリアコンチル尿素が挙げられる。
前記炭素原子数14以上30以下の直鎖アルキル基を有するイソシアネートとして、例えばn−テトラデシルイソシアネート、n−ペンタデシルイソシアネート、n−ヘキサデシルイソシアネート、n−ヘプタデシルイソシアネート、n−オクタデシルイソシアネート、n−ノナデシルイソシアネート、n−エイコシルイソシアネート、n−ヘンエイコシルイソシアネート、n−ドコシルイソシアネート、n−トリコシルイソシアネート、n−テトラコシルイソシアネート、n−ペンタコシルイソシアネート、n−ヘキサコシルイソシアネート、n−ヘプタコシルイソシアネート、n−オクタコシルイソシアネート、n−ノナコシルイソシアネート、およびn−トリアコンチルイソシアネートが挙げられる。
前記炭素原子数14以上30以下の分岐アルキル基を有するイソシアネートとして、例えばイソテトラデシルイソシアネート、イソペンタデシルイソシアネート、イソヘキサデシルイソシアネート、イソヘプタデシルイソシアネート、イソオクタデシルイソシアネート、イソノナデシルイソシアネート、イソエイコシルイソシアネート、イソヘンエイコシルイソシアネート、イソドコシルイソシアネート、イソトリコシルイソシアネート、イソテトラコシルイソシアネート、イソペンタコシルイソシアネート、イソヘキサコシルイソシアネート、イソヘプタコシルイソシアネート、イソオクタコシルイソシアネート、イソノナコシルイソシアネート、およびイソトリアコンチルイソシアネートが挙げられる。
前駆重合体(1)がエチレンに由来する構成単位(A)を含む場合は、上記前駆重合体(1)の製造時に原料として用いるエチレンの反応性比をr1、および前記構成単位(C)を形成するモノマーの反応性比をr2とした場合の反応性比の積r1r2は、該前駆重合体(1)を含む蓄熱層(1)の形状保持性が良好であるように、好ましくは0.5以上5.0以下であり、より好ましくは0.5以上3.0以下である。
エチレンの反応性比r1は、エチレンと前記構成単位(C)を形成するモノマーとの共重合時に、末端が構成単位(A)である重合体にエチレンが結合する反応速度をk11、末端が構成単位(A)である重合体に構成単位(C)を形成するモノマーが結合する反応速度をk12として、式r1=k11/k12で定義される値である。前記反応性比r1は、エチレンと前記構成単位(C)を形成するモノマーとの共重合時に、末端が構成単位(A)である重合体がエチレンまたは構成単位(C)を形成するモノマーのどちらとより反応しやすいかを表す指標である。r1が大きいほど、末端が構成単位(A)である重合体はよりエチレンと反応しやすく、構成単位(A)の連鎖が生成しやすい。
構成単位(C)を形成するモノマーの反応性比r2は、エチレンと前記構成単位(C)を形成するモノマーとの共重合時に、末端が構成単位(C)である重合体にエチレンが結合する反応速度をk21、末端が構成単位(C)である重合体に構成単位(C)を形成するモノマーが結合する反応速度をk22として、r2=k22/k21で定義される値である。前記反応性比r2は、エチレンと前記構成単位(C)を形成するモノマーとの共重合時に、末端が構成単位(C)である重合体がエチレンまたは構成単位(C)を形成するモノマーのどちらとより反応しやすいかを表す指標である。r2が大きいほど、末端が構成単位(C)である重合体はより構成単位(C)を形成するモノマーと反応しやすく、構成単位(C)の連鎖が生成しやすい。
反応性比の積r1r2は、文献「Kakugo,M.;Naito,Y.;Mizunuma,K.;Miyatake, T. Macromolecules,1982,15,1150」に記載された方法により算出される。本発明においては、反応性比の積r1r2は、前駆重合体(1)の13C核磁気共鳴スペクトルから算出される前記構成単位(A)と前記構成単位(C)の各二連子AA、AC、CCの数を以下に示す式に代入することにより得られる。
r1r2=AA[CC/(AC/2)]
前記反応性比の積r1r2は、共重合体のモノマー連鎖分布を表す指標である。前記r1r2が1に近いほど、共重合体のモノマー連鎖分布はランダム性が高く、前記r1r2が0に近いほど、共重合体のモノマー連鎖分布は交互共重合体性が高く、前記r1r2が1より大きいほど、共重合体のモノマー連鎖分布はブロック共重合体性が高い。
JIS K7210に準拠して温度190℃、荷重21Nで測定される上記前駆重合体(1)のメルトフローレート(MFR)は、好ましくは、0.1g/10分以上500g/10分以下である。
上記前駆重合体(1)の製造方法としては、配位重合法、カチオン重合法、アニオン重合法、ラジカル重合法が挙げられ、好ましくはラジカル重合法であり、より好ましくは、高圧下でのラジカル重合法である。
上記前駆重合体(1)と、少なくとも1種の上記化合物(α)とを反応させる際の反応温度は、通常40℃以上250℃以下である。本反応は、溶媒存在下で行ってもよく、溶媒としては、例えばヘキサン、ヘプタン、オクタン、ノナン、デカン、トルエン、およびキシレンが挙げられる。また本反応において副生成物が生じる場合には、反応を促進させるために、副生成物を減圧留去しながら反応を行ってもよく、副生成物を溶媒とともに共沸させ、気化された副生成物と溶媒とを冷却し、副生成物と溶媒とを含む留出液を副生成物層と溶媒層とに分液し、回収された溶媒のみを還流液として反応系内に戻しながら反応を行ってもよい。
また、上記前駆重合体(1)と、少なくとも1種の上記化合物(α)との反応は、上記前駆重合体(1)と、上記化合物(α)とを溶融混練しながら行ってもよい。また溶融混練しながら上記前駆重合体(1)と、上記化合物(α)とを反応させた際に副生成物が生じる場合には、反応を促進させるために、副生成物を減圧留去しながら反応を行ってもよい。溶融混練に用いられる溶融混練装置として、単軸押出機、二軸押出機、バンバリーミキサーなどの装置が挙げられる。溶融混練装置の温度は、好ましくは100℃以上250℃以下である。
上記前駆重合体(1)と、少なくとも1種の上記化合物(α)とを反応させる際に、反応を促進させるために触媒を添加してもよい。触媒としては、例えばアルカリ金属塩や4族金属錯体が挙げられる。アルカリ金属塩としては、例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物や、リチウムメトキシド、ナトリウムメトキシドなどのアルカリ金属アルコキシドが挙げられる。4族金属錯体としては、例えばオルトチタン酸テトラ(イソプロピル)、オルトチタン酸テトラ(n−ブチル)、およびオルトチタン酸テトラオクタデシルが挙げられる。触媒の添加量は、反応に用いられる上記前駆重合体(1)と、少なくとも1種の上記化合物(α)との合計量100重量部に対して、0.01重量部以上50重量部以下であることが好ましく、より好ましくは、0.01重量部以上5重量部以下である。
前記重合体(1)は、該重合体(1)の融解ピーク温度以上における積層体の形状保持性と、該重合体(1)の成形加工性が良好であるように、好ましくはエチレンに由来する構成単位(A)を有する。さらに該重合体(1)のブロー成形性や発泡成形性が良好であるように、より好ましくは、エチレンに由来する構成単位(A)が重合体中で分岐構造を形成しており、さらに好ましくは、該分岐構造は該分岐構造による高分子鎖の絡み合いが可能な程度に長い長鎖分岐構造である。
前記重合体(1)の下記式(I)で定義される比Aは、好ましくは0.95以下、より好ましくは0.90以下、さらに好ましくは0.80以下である。
A=α/α (I)
[式(I)中、αは、
光散乱検出器と粘度検出器を備えた装置を用いるゲル・パーミエイション・クロマトグラフィーにより重合体の絶対分子量と固有粘度を測定し、
絶対分子量の対数を横軸、固有粘度の対数を縦軸として、測定したデータをプロットし、絶対分子量の対数と固有粘度の対数を、横軸が前記重合体の重量平均分子量の対数以上z平均分子量の対数以下の範囲において式(I−I)で最小二乗法近似し、式(I−I)を表す直線の傾きの値をαとすることを含む方法により得られた値である。
log[η]=αlogM+logK (I−I)
(式(I−I)中、[η]は重合体の固有粘度(単位:dl/g)を表し、Mは重合体の絶対分子量を表し、Kは定数である。)
式(I)中、αは、
光散乱検出器と粘度検出器を備えた装置を用いるゲル・パーミエイション・クロマトグラフィーによりポリエチレン標準物質1475a(米国国立標準技術研究所製)の絶対分子量と固有粘度を測定し、
絶対分子量の対数を横軸、固有粘度の対数を縦軸として、測定したデータをプロットし、絶対分子量の対数と固有粘度の対数を、横軸が前記ポリエチレン標準物質1475aの重量平均分子量の対数以上z平均分子量の対数以下の範囲において式(I−II)で最小二乗法近似し、式(I−II)を表す直線の傾きの値をαとすることを含む方法により得られた値である。
log[η]=αlogM+logK (I−II)
(式(I−II)中、[η]はポリエチレン標準物質1475aの固有粘度(単位:dl/g)を表し、Mはポリエチレン標準物質1475aの絶対分子量を表し、Kは定数である。なお、ゲル・パーミエイション・クロマトグラフィーによる重合体およびポリエチレン標準物質1475aの絶対分子量と固有粘度の測定において、移動相はオルトジクロロベンゼンであり、測定温度は155℃である。)]
光散乱検出器により得られたデータから絶対分子量を求め、粘度検出器により固有粘度([η])を求めるにあたっては、Malvern社のデータ処理ソフトOmniSEC(version4.7)を利用し、文献「Size Exclusion Chromatography,Springer(1999)」を参考にして計算を行う。
前記ポリエチレン標準物質1475a(米国国立標準技術研究所製)は、分岐を含まない高密度ポリエチレンである。前記式(I−I)および式(I−II)は、重合体の固有粘度と分子量の相関を表すMark−Hauwink−Sakuradaの式と称され、前記αが小さいほど、分岐構造による高分子鎖の絡み合いの数が多い。前記ポリエチレン標準物質1475aは、分岐構造を形成していないため、分岐構造による高分子鎖の絡み合いは生じない。前記ポリエチレン標準物質1475aのαに対するαの比である前記Aが小さいほど、重合体中で前記構成単位(A)が形成している長鎖分岐構造の量が多い。
光散乱検出器を備えた装置を用いるゲル・パーミエイション・クロマトグラフィーにより測定される前記重合体(1)の重量平均分子量は、好ましくは10,000〜1,000,000であり、より好ましくは、50,000〜750,000、さらに好ましくは、100,000〜500,000である。
なお、ゲル・パーミエイション・クロマトグラフィーによる重合体(1)の重量平均分子量の測定において、移動相はオルトジクロロベンゼンであり、測定温度は155℃である。
前記重合体(1)の流動の活性化エネルギー(E)は、成形加工時の押出負荷をより低減する観点から、好ましくは40kJ/mol以上であり、より好ましくは50kJ/mol以上であり、さらに好ましくは60kJ/mol以上である。また、押出成形により得られる成形体の外観が良好であるように、Eは、好ましくは100kJ/mol以下であり、より好ましくは90kJ/mol以下であり、さらに好ましくは80kJ/mol以下である。Eの大きさは、主に重合体中の長鎖分岐数に依存する。長鎖分岐をより多く含む重合体は、Eがより高い。
流動の活性化エネルギー(E)は、以下に示す方法で求められる。まず、90℃、110℃、130℃、150℃、170℃の温度の中から、170℃を含む3つ以上の温度について、それぞれの温度(T、単位:℃)における重合体の溶融複素粘度−角周波数曲線を測定する。前記溶融複素粘度−角周波数曲線は、溶融複素粘度(単位:Pa・秒)の対数を縦軸、角周波数(単位:rad/秒)の対数を横軸とする両対数曲線である。次に、170℃以外の各温度で測定された溶融複素粘度−角周波数曲線について、それぞれ、170℃での溶融複素粘度−角周波数曲線に重なり合うように、角周波数をa倍、溶融複素粘度を1/a倍する。aは、170℃以外の各温度で測定された溶融複素粘度−角周波数曲線が、170℃での溶融複素粘度−角周波数曲線に重なり合うように適宜定められる値である。
前記aは、一般にシフトファクターと称され、溶融複素粘度−角周波数曲線の測定温度により異なる値である。
次に、それぞれの温度(T)において、[ln(a)]と[1/(T+273.16)]とを求め、[ln(a)]と[1/(T+273.16)]とを下記(II)式で最小二乗法近似し、式(II)を表す直線の傾きmを求める。前記mを下記式(III)に代入し、Eを求める。
ln(a)=m(1/(T+273.16))+n・・・(II)
=|0.008314×m|・・・(III)
:シフトファクター
:流動の活性化エネルギー(単位:kJ/mol)
T:温度(単位:℃)
上記計算には、市販の計算ソフトウェアを用いてもよく、該計算ソフトウェアとしては、TAインスツルメント社製 Ochestratorが挙げられる。
上記方法は、以下の原理に基づく。
異なる温度で測定された溶融複素粘度−角周波数曲線(両対数曲線)は、各温度の曲線をそれぞれ所定量、水平移動することによって1本の親曲線(マスターカーブと称する)に重なり合うことが知られており、これは、「温度−時間重ね合わせ原理」と称されている。そして、該水平移動量はシフトファクターと称され、シフトファクターは温度に依存した値であり、シフトファクターの温度依存性は上記式(II)及び(III)で表されることが知られており、式(II)及び(III)はアレニウス型方程式と称されている。
[ln(a)]と[1/(T+273.16)]とを上記(II)式で最小二乗法近似するときの相関係数は、0.9以上となるようにする。
上記の溶融複素粘度−角周波数曲線の測定は、粘弾性測定装置(例えば、TAインスツルメント社製 ARESなど。)を用い、通常、ジオメトリー:パラレルプレート、プレート直径:25mm、プレート間隔:1.2〜2mm、ストレイン:5%、角周波数:0.1〜100rad/秒の条件で行われる。測定は窒素雰囲気下で行われる。また、測定試料には予め酸化防止剤を適量(例えば1000重量ppm)配合することが好ましい。
前記重合体(1)の歪硬化の強さを表す伸張粘度非線形指数kは、例えばTダイフィルム加工時のネックインが小さい、得られるフィルムの厚みむらが小さい、発泡成形時に破泡しにくい、といった優れた成形性という観点から、好ましくは0.85以上であり、より好ましくは0.90以上であり、更に好ましくは0.95以上である。重合体の歪硬化とは、該重合体に歪をかけた際、ある歪量以上で伸張粘度が急激に増大することを意味する。また、指数kは、前記重合体(1)や、当該重合体(1)を含む本発明の樹脂組成物を所望の形状に成形する容易さ、という観点から、2.00以下であることが好ましく、より好ましくは1.50以下であり、更に好ましくは1.40以下であり、更により好ましくは1.30以下であり、特に好ましくは1.20以下である。
伸張粘度非線形指数kは、以下に示す方法で求められる。
110℃の温度および1秒-1の歪速度で重合体を一軸伸張したときの伸長時間tにおける粘度η1(t)と、110℃の温度および0.1秒-1の歪速度で重合体一軸伸張したときの伸長時間tにおける粘度η0.1(t)を求める。任意の同じ伸長時間tにおける前記η1(t)と前記η0.1(t)を下記式に代入し、α(t)を求める。
α(t)=η1(t)/η0.1(t)
α(t)の対数(ln(α(t)))を伸張時間tに対してプロットし、tが2.0秒から2.5秒の範囲において、ln(α(t))とtを下記式で最小二乗法近似する。下記式を表す直線の傾きの値がkである。
ln(α(t))=kt
上記式で最小二乗法近似するのに用いた相関関数r2が0.9以上の場合のkを採用する。
上記の一軸伸張したときの粘度の測定は、粘弾性測定装置(例えば、TAインスツルメント社製ARES)を用い、窒素雰囲気下で行われる。
伸張粘度測定において、長鎖分岐を有する重合体は、高歪み領域で伸張粘度が線形領域からはずれ急激に上昇する性質、いわゆる歪硬化性を有する。歪硬化性を有する重合体の場合には、α(t)の対数(ln(α(t)))は、ln(l/l)に比例して増加することが知られている(ここで、lおよびlはそれぞれ伸張時間0およびtでの試料の長さである)[参考文献:小山清人、石塚修;繊維学会誌,37,T−258(1981)]。歪硬化性のない重合体の場合には、任意の伸張時間に対してα(t)は1となり、α(t)の対数(ln(α(t)))を伸張時間に対してプロットした直線の傾きkは0となる。歪硬化性を有する重合体の場合には、特に高歪領域において、該直線プロットの傾きkが0とはならない。本発明においては、歪硬化性の度合いを表すパラメータとして非線形パラメータα(t)の対数(ln(α(t)))を伸張時間に対してプロットした直線の傾きをkとして定義する。
前記重合体(1)は、未反応の化合物(α)、または反応を促進させるために添加した触媒との混合物を形成していてもよい。該混合物に含まれる未反応の化合物(α)の含有量は、重合体のガラスや金属などの基板への固着を抑えるために、重合体100重量部に対して3重量部未満であることが好ましい。
前記重合体(1)は、架橋されている重合体でもよく、架橋されていない重合体でもよい。
一つの態様において、前記重合体(1)は、架橋されていない重合体(以下、重合体(α)と称する)である。
重合体(α)は、後述する重合体のゲル分率が20重量%未満である。
重合体(α)は、重合体に含まれる全ての構成単位の合計数を100%として、前記構成単位(A)と前記構成単位(B)と前記構成単位(C)の合計数が90%以上であることが好ましく、95%以上であることがより好ましく、100%であることがさらに好ましい。
<架橋されている重合体>
一つの態様において、前記重合体(1)は架橋されている。すなわち、前記重合体(1)の分子の少なくとも一部が分子間で共有結合により連結されている。
重合体(1)を架橋する方法としては、電離性放射線を照射して架橋する方法や有機過酸化物を用いて架橋する方法が挙げられる。
重合体(1)に電離性放射線を照射し、架橋を行う場合には、通常、あらかじめ所望の形状に成形された上記重合体(α)に電離性放射線を照射する。成形には、公知の方法を用いることができ、押出成形、射出成形、プレス成形が好ましい。電離性放射線を照射する成形体は、樹脂成分として前記重合体(1)のみを含む成形体でもよく、前記重合体(1)と、重合体(1)とは異なる重合体とを含む成形体でもよい。後者の場合は、重合体(1)とは異なる重合体としては、後述の重合体(2)が挙げられる。該成形体が重合体(1)と重合体(2)を含有する場合は、重合体(1)と重合体(2)の合計量を100重量%として、重合体(1)の含有量が30重量%以上99重量%以下であることが好ましい。
電離性放射線としては、例えばα線、β線、γ線、電子線、中性子線、およびX線が挙げられ、コバルト−60のγ線、または電子線が好ましい。重合体(1)を含む成形体がシート状である場合には、電離性放射線は該シート状成形体の少なくとも一面から照射すればよい。
電離性放射線の照射は、電離性放射線照射装置を用いて行われ、照射量は、通常5〜300kGyであり、好ましくは10〜150kGyである。前記重合体(1)は、通常と比べて低い照射量で高い架橋度の重合体を得ることができる。
電離性放射線の照射によって架橋されている重合体(1)を得る場合には、電離性放射線を照射する成形体が架橋助剤を含むことにより、より架橋度の高い架橋されている重合体(1)を得ることができる。架橋助剤は、重合体(1)の架橋度を高め、機械的特性を向上するためのものであり、分子内に二重結合を複数持つ化合物が好ましく用いられる。
架橋助剤としては、例えば、N,N’−m−フェニレンビスマレイミド、トルイレンビスマレイミド、トリアリルイソシアヌレート、トリアリルシアヌレート、p−キノンジオキシム、ニトロベンゼン、ジフェニルグアニジン、ジビニルベンゼン、エチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、およびアリルメタクリレートを挙げることができる。また、これらの架橋助剤は、複数を組み合せて使用してもよい。
架橋助剤の添加量は、電離性放射線を照射する成形体に含まれる重合体(1)と、該重合体(1)とは異なる重合体の合計重量を100重量部として、0.01〜4.0重量部であることが好ましく、0.05〜2.0重量部であることがより好ましい。
有機過酸化物を用いて架橋する方法としては、例えば、上記重合体(α)と有機過酸化物を含む樹脂組成物を、加熱を伴う成形方法によって、重合体(α)を架橋する方法が挙げられる。加熱を伴う成形方法としては、押出成形、射出成形、およびプレス成形が挙げられる。重合体(α)と有機過酸化物を含む樹脂組成物は、樹脂成分として重合体(1)のみを含んでもよく、重合体(1)と、該重合体(1)とは異なる重合体とを含んでもよい。
重合体(α)と有機過酸化物を含む樹脂組成物が、重合体(1)とは異なる重合体を含有する場合は、該重合体としては、後述の重合体(2)が挙げられ、重合体(1)と重合体(2)の合計量を100重量%として、重合体(1)の含有量が30重量%以上99重量%以下であることが好ましい。
有機過酸化物によって架橋する場合には、重合体(α)と有機過酸化物を含む組成物に含まれる樹脂成分の流動開始温度以上の分解温度を有する有機過酸化物が好適に用いられ、好ましい有機過酸化物としては、例えば、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ−tert−ブチルパーオキシヘキサン、2,5−ジメチル−2,5−ジ−tert−ブチルパーオキシヘキシン、α,α−ジ−tert−ブチルパーオキシイソプロピルベンゼン、tert−ブチルパーオキシ−2−エチルヘキシルカーボネートなどを挙げることができる。
架橋されている重合体(1)は、必要に応じて、添加剤を含有してもよい。このような添加剤としては、例えば、難燃剤、酸化防止剤、耐候剤、滑剤、抗ブロッキング剤、帯電防止剤、防曇剤、無滴剤、顔料、およびフィラーが挙げられる。これらの添加剤は架橋する前に、重合体(1)と混練することにより添加することができる。
架橋されている重合体(1)は、好ましくはゲル分率が20重量%以上であり、より好ましくは40重量%以上であり、さらに好ましくは60重量%以上であり、最も好ましくは70重量%以上である。ゲル分率は、架橋されている重合体の架橋度を示すものであり、重合体のゲル分率がより高い、ということは、重合体がより多くの架橋構造を有し、より強固なネットワーク構造が形成されていることを意味する。重合体のゲル分率がより高いと、重合体は形状保持性がより高く、より変形しにくい。
なお、ゲル分率は、以下に記す方法で求められる。重合体約500mg、および金網(目開き:400メッシュ)で作製した空の網篭を秤量する。重合体を封入した網篭とキシレン(関東化学株式会社製 鹿特級又はその同等品:o-、m-、p-キシレンおよびエチルベンゼンの混合物、o−、m−、p−キシレンの合計重量が85重量%以上)50mLを100mL試験管に導入し、110℃で6時間加熱抽出を行う。抽出後、抽出残渣入り網篭を試験管から取り出し、真空乾燥機にて80℃で8時間減圧乾燥を行い、乾燥後の抽出残渣入り網篭を秤量する。ゲル重量は、乾燥後の抽出残渣入り網篭と空の網篭の重量差から算出する。ゲル分率(重量%)は以下の式に基づき算出する。
ゲル分率=(ゲル重量/測定試料重量)×100
<蓄熱層(1)>
本発明の積層体は、前記重合体(1)を含む蓄熱層(1)を有する。一実施形態の蓄熱層(1)は、前記重合体(1)と、示差走査熱量測定によって観測される融解ピーク温度またはガラス転移温度が50℃以上180℃以下である重合体(但し、重合体(1)を除く)である重合体(2)とを含有しており、前記重合体(1)と前記重合体(2)の合計量を100重量%として、前記蓄熱層(1)に含まれる重合体(1)の含有量が30重量%以上99重量%以下であり、重合体(2)の含有量が1重量%以上70重量%以下である。なお、前記蓄熱層(1)に含まれる重合体(1)および重合体(2)の含有量は、それぞれ、前記重合体(1)と前記重合体(2)の合計量を100重量%として、重合体(1)の含有量が40重量%以上95重量%以下であり、重合体(2)の含有量が5重量%以上60重量%以下であることが好ましく、重合体(1)の含有量が50重量%以上90重量%以下であり、重合体(2)の含有量が10重量%以上50重量%以下であることがより好ましく、重合体(1)の含有量が60重量%以上85重量%以下であり、重合体(2)の含有量が15重量%以上40重量%以下であることがさらに好ましい。
また、なかでも、前記蓄熱層(1)は、前記重合体(1)と、示差走査熱量測定によって観測される融解ピーク温度またはガラス転移温度が50℃以上180℃以下である重合体(但し、以下に定義される除外重合体を除く)である重合体(2)とを含む層であることが好ましい。この場合、前記重合体(1)と前記重合体(2)の合計量を100重量%として、前記蓄熱層(1)に含まれる重合体(1)の含有量が30重量%以上99重量%以下であり、重合体(2)の含有量が1重量%以上70重量%以下であることが好ましい。
除外重合体:下記式(1)で示される構成単位(B)を有する重合体。
Figure 2017217417
(式(1)中、
Rは、水素原子またはメチル基を表し、
は、単結合、―CO―O―、―O―CO―、または―O―を表し、
は、単結合、―CH―、―CH―CH―、―CH―CH―CH―、―CH―CH(OH)―CH―、または―CH―CH(CHOH)―を表し、
は、単結合、―CO―O―、―O―CO―、―O―、―CO―NH―、―NH―CO―、―CO―NH―CO―、―NH―CO―NH―、―NH―、または―N(CH)―を表し、
は炭素原子数14以上30以下のアルキル基を表す。)
(なお、L、L、およびLの化学構造の説明における横書きの化学式の各々は、その左側が式(1)の上側、その右側が式(1)の下側に対応する。)
以下、前記重合体(1)と前記重合体(2)を含む蓄熱層を構成する樹脂組成物を、以下、樹脂組成物(1)と称することがある。
重合体(1)は2種以上の重合体からなっていてもよく、重合体(2)は2種以上の重合体からなっていてもよい。
重合体(2)の示差走査熱量測定(DSC)によって観測される融解ピーク温度またはガラス転移温度は、50℃以上180℃以下の範囲内にある。重合体(2)の融解ピーク温度は、以下の示差走査熱量測定により測定される融解曲線を、JIS K7121−1987に準拠した方法により解析して得られる融解ピークの頂点の温度であり、融解吸熱量が最大となる温度である。
重合体(2)のガラス転移温度は、以下の示差走査熱量測定により測定される融解曲線を、JIS K7121−1987に準拠した方法により解析して得られる中間点ガラス転移温度である。
[示差走査熱量測定方法]
示差走査熱量計により、窒素雰囲気下で、約5mgの試料を封入したアルミニウムパンを、(1)200℃で5分間保持し、次に(2)5℃/分の速度で200℃から−50℃まで降温し、次に(3)−50℃で5分間保持し、次に(4)5℃/分の速度で−50℃から200℃まで昇温する。過程(4)における熱量測定により得られた示差走査熱量測定曲線を融解曲線とする。
融解ピーク温度が50℃以上180℃以下の範囲内にある重合体(2)としては、例えば、高密度ポリエチレン(HDPE)、高圧法低密度ポリエチレン(LDPE)、エチレン−α−オレフィン共重合体、エチレン−酢酸ビニル共重合体(EVA)、およびポリプロピレン(PP)が挙げられる。
ガラス転移温度が50℃以上180℃以下の範囲内にある重合体(2)としては、例えば、環状オレフィン重合体(COP)、環状オレフィン共重合体(COC)、ポリスチレン(PS)、ポリ塩化ビニル(PVC)、アクリロニトリル−スチレン共重合体(AS)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)、ポリメタクリル酸メチル(PMMA)、ポリビニルアルコール(PVA)、ポリエチレンテレフタラート(PET)、ポリアクリロニトリル(PAN)、ポリアミド6(PA6)、ポリアミド66(PA66)、ポリカーボネート(PC)、ポリフェニレンサルファイド(PPS)、およびポリエーテルエーテルケトン(PEEK)が挙げられる。
重合体(2)としての前記エチレン−α−オレフィン共重合体は、エチレンに由来する構成単位とα−オレフィンに由来する構成単位とを有する共重合体である。該α−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン挙げられ、これらは単独でもよく、2種以上でもよい。α−オレフィンは、好ましくは、炭素原子数4〜8のα−オレフィンであり、より好ましくは、1−ブテン、1−ヘキセン、または1−オクテンである。
重合体(2)としての該高密度ポリエチレン、高圧法低密度ポリエチレン、およびエチレン−α−オレフィン共重合体の密度は、860kg/m以上960kg/m以下である。
重合体(2)としての前記ポリプロピレンは、プロピレン単独重合体、下記のようなプロピレンランダム共重合体、および下記のようなプロピレン重合材料が挙げられる。ポリプロピレンにおけるプロピレンに由来する構成単位の含有量は、50重量%を超え100重量%以下である(但し、ポリプロピレンを構成する構成単位の総量を100重量%とする)。また、ポリプロピレンは、前記融解ピーク温度が100℃以上であることが好ましい。
前記プロピレンランダム共重合体とは、プロピレンに由来する構成単位と、エチレンに由来する構成単位及びα−オレフィンに由来する構成単位からなる群より選ばれる少なくとも一種の構成単位とを有するランダム共重合体である。プロピレンランダム共重合体としては、例えば、プロピレン−エチレンランダム共重合体、プロピレン−エチレン−α−オレフィンランダム共重合体、およびプロピレン−α−オレフィンランダム共重合体が挙げられる。該α−オレフィンは、炭素原子数4〜10のα−オレフィンが好ましく、このようなα−オレフィンとしては、例えば、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン等の直鎖状α−オレフィン、および3−メチル−1−ブテン、3−メチル−1−ペンテン等の分岐状α−オレフィンが挙げられる。プロピレンランダム共重合体に含まれるα−オレフィンは、1種でも、2種以上でもよい。
プロピレン単独重合体およびプロピレンランダム共重合体の製造方法としては、チーグラー・ナッタ系触媒、または、メタロセン系錯体および非メタロセン系錯体等の錯体系触媒を用いた、スラリー重合法、溶液重合法、塊状重合法、および気相重合法等の重合法が挙げられる。
前記プロピレン重合材料は、プロピレン単独重合体成分(I)と、プロピレンに由来する構成単位および炭素原子数4以上のα−オレフィンに由来する構成単位からなる群から選ばれる少なくとも一種の構成単位と、エチレンに由来する構成単位とを有するエチレン共重合体成分(II)とからなる重合材料である。
エチレン共重合体成分(II)における炭素原子数4以上のα−オレフィンとしては、例えば、1−ブテン、1−ペンテン、1−ヘキセン、1−へプテン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセン、1−ノナデセン、1−エイコセン、3−メチル−1−ブテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、2−エチル−1−ヘキセン、および2,2,4−トリメチル−1−ペンテンが挙げられる。炭素原子数4以上のα−オレフィンは、炭素原子数4以上20以下のα−オレフィンが好ましく、炭素原子数4以上10以下のα−オレフィンがより好ましく、1−ブテン、1−ヘキセン、または1−オクテンがさらに好ましい。エチレン共重合体成分(II)に含まれる炭素原子数4以上のα−オレフィンは、1種でもよく、2種以上でもよい。
エチレン共重合体成分(II)として、例えば、プロピレン−エチレン共重合体、エチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−1−オクテン共重合体、プロピレン−エチレン−1−ブテン共重合体、プロピレン−エチレン−1−ヘキセン共重合体、およびプロピレン−エチレン−1−オクテン共重合体が挙げられる。エチレン共重合体成分(II)はランダム共重合体であってもブロック共重合体であってもよい。
プロピレン重合材料は、重合触媒を用いて、多段重合により製造することができる。例えば、前段の重合工程でプロピレン単独重合体成分(I)を製造し、後段の重合工程でエチレン共重合体成分(II)を製造することにより、プロピレン重合材料を製造することができる。
プロピレン重合材料の製造に使用する重合触媒としては、プロピレン単独重合体およびプロピレンランダム共重合体の製造に使用される前記触媒が挙げられる。
プロピレン重合材料の製造の各重合工程における重合方法としては、塊状重合法、溶液重合法、スラリー重合法、および気相重合法が挙げられる。溶液重合法およびスラリー重合法で用いる不活性炭化水素溶媒としては、プロパン、ブタン、イソブタン、ペンタン、ヘキサン、ヘプタン、およびオクタンが挙げられる。これらの重合方法は、2つ以上組み合わせてもよく、バッチ式または連続式のいずれであってもよい。プロピレン重合材料の製造における重合方法は、連続式の気相重合、バルク重合と気相重合を連続的に行うバルク−気相重合が好ましい。
重合体(2)としての前記ポリプロピレンは、好ましくは、プロピレン単独重合体である。
蓄熱層(1)を構成する樹脂組成物(1)を押出成形、射出成形、真空成型、ブロー成形、または圧延成形する場合は、成形加工性の観点から、230℃、2.16kgf荷重下で、JIS K7210に準拠して測定される樹脂組成物(1)のメルトフローレート(MFR)が、0.1g/10分以上30g/10分以下であることが好ましい。
樹脂組成物(1)を、後述の通り、紡糸して繊維とする場合は、230℃、2.16kgf荷重下で、JIS K7210に準拠して測定される樹脂組成物(1)のメルトフローレート(MFR)が、1g/10分以上1000g/10分以下であることが好ましい。
前記蓄熱層(1)は、無機フィラー、有機フィラー、酸化防止剤、耐候安定剤、紫外線吸収剤、熱安定剤、光安定剤、帯電防止剤、結晶造核剤、顔料、吸着剤、金属塩化物、ハイドロタルサイト、アルミン酸塩、滑剤、シリコーン化合物などの添加剤を含んでもよい。
該添加剤の配合量は、蓄熱層(1)を構成する樹脂組成物(1)100重量部に対して、0.001重量部以上10重量部以下であることが好ましく、0.005重量部以上5重量部以下であることがより好ましく、0.01重量部以上1重量部以下であることがさらに好ましい。
前記蓄熱層(1)が添加剤を含む場合には、前記重合体(1)の製造時に使用する1つ以上の原料に該添加剤を予め配合してもよく、前記重合体(1)を製造した後に配合してもよい。また、前記重合体(2)の製造時に使用する1つ以上の原料に該添加剤を予め配合してもよく、前記重合体(2)を製造した後に配合してもよい。さらに前記重合体(1)と前記重合体(2)の何れかに配合してもよく、両方に該添加剤を配合してもよい。前記重合体(1)を製造した後に、該重合体に添加剤を配合する場合には、重合体を溶融混練しながら添加剤を配合することができる。また、前記重合体(2)を製造した後に、該重合体に添加剤を配合する場合には、重合体を溶融混練しながら添加剤を配合することができる。
無機フィラーとしては、例えば、タルク、炭酸カルシウム、および焼成カオリンが挙げられる。
有機フィラーとしては、例えば、繊維、木粉、およびセルロースパウダーが挙げられる。
酸化防止剤としては、例えば、フェノール系酸化防止剤、イオウ系酸化防止剤、燐系酸化防止剤、ラクトン系酸化防止剤、およびビタミン系酸化防止剤が挙げられる。
紫外線吸収剤としては、例えば、ベンゾトリアゾール系紫外線吸収剤、トリジアミン系紫外線吸収剤、アニリド系紫外線吸収剤、およびベンゾフェノン系紫外線吸収剤が挙げられる。
光安定剤としては、例えば、ヒンダードアミン系光安定剤、およびベンゾエート系光安定剤が挙げられる。
顔料としては、例えば、二酸化チタンやカーボンブラックが挙げられる。
吸着剤としては、例えば、酸化亜鉛や酸化マグネシウムのような金属酸化物が挙げられる。
金属塩化物としては、例えば、塩化鉄および塩化カルシウムが挙げられる。
滑剤としては、例えば、脂肪酸、高級アルコール、脂肪族アミド、および脂肪族エステルが挙げられる。
<繊維層である蓄熱層>
前記蓄熱層(1)は、前記重合体(1)を含む樹脂組成物(以下、樹脂組成物(A)と称することがある)を紡糸して得られる繊維、または、該繊維からなる布地・生地、不織布および綿からなる繊維層であってもよい。
樹脂組成物(A)は、重合体成分として前記重合体(1)のみを含むものであってもよく、重合体(1)とは異なる重合体を含んでもよい。樹脂組成物(A)が、重合体(1)とは異なる重合体を含有する場合は、該重合体としては、前記重合体(2)が挙げられる。樹脂組成物(A)が前記重合体(1)と前記重合体(2)を含有する場合は、前記重合体(1)と前記重合体(2)の合計量を100重量%として、重合体(1)の含有量が30重量%以上99重量%以下であり、重合体(2)の含有量が1重量%以上70重量%以下であることが好ましい。
樹脂組成物(A)が、重合体(1)とは異なる重合体を含有し、重合体(1)とは異なる重合体が重合体(1)に対して非相容である場合、重合体(1)からなる相と、重合体(1)とは異なる重合体からなる相は、海島構造、シリンダー構造、ラメラ構造、共連続構造などのモルフォロジーを形成する。
樹脂組成物(A)を含む繊維の断面形状は、円形断面、多角形・多葉形などの異形断面、または中空断面でもよい。
樹脂組成物(A)を含む繊維の単糸繊度は特に限定されないが、繊維化の容易さの観点から1dtex以上が好ましく、繊維の柔軟性の観点から20dtex以下が好ましい。
樹脂組成物(A)を含む繊維の製造方法としては、乾式紡糸法、湿式紡糸法および溶融紡糸法が挙げられ、溶融紡糸法が好ましい。また、一般紡糸法は樹脂組成物を含むチップを原料として、紡糸工程と延伸工程の2工程からなる。樹脂組成物(A)を含む繊維の製造方法に好適に用いられる紡糸法としては、樹脂組成物をチップ化せず樹脂組成物製造工程から連続的に紡糸する連続重合紡糸法、紡糸工程と延伸工程を1工程で実施する直接紡糸延伸法(スピンドロー法)、延伸工程の必要の無い高速紡糸法、半延伸糸(POY)を経て仮撚工程にて延伸糸(DTY)を得るPOY−DTY法、またはスパンボンド法などが挙げられる。これらの方法は、前記一般紡糸法に対して、より合理化された方法である。
樹脂組成物(A)を含む繊維は、複合繊維であり得る。複合繊維とは、互いに異なる成分からなる2種以上の繊維が単糸内で接合されてなる繊維を指す。複合繊維としては、芯鞘型複合繊維、貼り合わせ型複合繊維、分割型複合繊維、海島型複合繊維が挙げられる。
樹脂組成物(A)を含む複合繊維の単糸繊度は特に限定されないが、繊維化の容易さの観点から1dtex以上が好ましく、繊維の柔軟性の観点から20dtex以下が好ましい。
芯鞘型複合繊維の構造としては、樹脂組成物(A)が樹脂組成物(A)とは異なる材料で覆われた芯−鞘構造、または樹脂組成物(A)とは異なる材料が樹脂組成物(A)で覆われた芯−鞘構造などが挙げられ、好ましくは、樹脂組成物(A)が樹脂組成物(A)とは異なる材料で覆われた芯−鞘構造である。樹脂組成物(A)とは異なる材料として好ましくは前記重合体(2)であり、より好ましくはポリプロピレン(PP)、ポリエチレンテレフタラート(PET)、ポリトリメチレンテレフタラート(PTT)、ポリブチレンテレフタラート(PBT)、ポリアミド6(PA6)、ポリアミド66(PA66)である。
樹脂組成物(A)が樹脂組成物(A)とは異なる材料で覆われた芯−鞘構造である複合繊維としては、繊維径方向断面の芯部の面積割合が10%〜90%である複合繊維が好ましい。温度調節機能の観点から、前記芯部の面積割合は10%以上が好ましく、繊維強度の観点から、前記芯部の面積割合は90%以下が好ましい。芯部がポリプロピレンを含む場合、繊維全体の染色性の観点から、前記芯部の面積割合は20%〜50%であることが好ましい。
貼り合わせ型複合繊維は、一般的に収縮率の差等により捲縮するが、該複合繊維が螺旋状に捲縮する場合、樹脂組成物(A)が螺旋の内側であってもよく、樹脂組成物(A)とは異なる材料が螺旋の内側であってもよく、好ましくは、樹脂組成物(A)が螺旋の内側となる貼り合わせ型複合繊維である。樹脂組成物(A)とは異なる材料として好ましくは前記重合体(2)であり、より好ましくはポリプロピレン(PP)、ポリエチレンテレフタラート(PET)、ポリトリメチレンテレフタラート(PTT)、ポリブチレンテレフタラート(PBT)、ポリアミド6(PA6)、ポリアミド66(PA66)である。
分割型複合繊維は、化学処理により分割・開繊され極細繊維が得られる。分割型複合繊維が中心の放射状繊維と周囲の複数のくさび状繊維からなる場合、樹脂組成物(A)が中心の放射状繊維であってもよく、樹脂組成物(A)とは異なる材料が中心の放射状繊維であってもよく、好ましくは、樹脂組成物(A)が中心の放射状繊維である分割型複合繊維である。樹脂組成物(A)とは異なる材料として好ましくは前記重合体(2)であり、より好ましくはポリプロピレン(PP)、ポリエチレンテレフタラート(PET)、ポリトリメチレンテレフタラート(PTT)、ポリブチレンテレフタラート(PBT)、ポリアミド6(PA6)、ポリアミド66(PA66)である。
海島型複合繊維は、化学処理により海部繊維を除去し複数の島部繊維からなる極細繊維が得られる。樹脂組成物(A)が海部繊維であってもよく、樹脂組成物(A)とは異なる材料が海部繊維であってもよく、好ましくは、樹脂組成物(A)が海部繊維である海島型複合繊維である。樹脂組成物(A)とは異なる材料として好ましくは前記重合体(2)であり、より好ましくはポリプロピレン(PP)、ポリエチレンテレフタラート(PET)、ポリトリメチレンテレフタラート(PTT)、ポリブチレンテレフタラート(PBT)、ポリアミド6(PA6)、ポリアミド66(PA66)である。
樹脂組成物(A)を含む繊維の形態としては、長繊維(マルチフィラメント、モノフィラメント)、短繊維(ステープル)などが挙げられる。長繊維(マルチフィラメント、モノフィラメント)はそのままでも、仮撚加工により仮撚加工糸としてもよく、エアー混繊等により混繊糸としてもよい。短繊維(ステープル)はそのままでも、紡績により紡績糸としてもよく、混紡により混紡糸としてもよい。長繊維に短繊維を複合したコアスパンヤーンであってもよく、撚糸加工により合撚糸、交撚糸、カバーリング糸としてもよい。
樹脂組成物(A)を含む繊維は、酸化防止剤、顔料、染料、抗菌剤、消臭剤、制電剤、難燃剤、不活性微粒子、光吸収発熱材、吸湿発熱材、遠赤外線発熱材、その他添加剤を含有してもよい。前記添加剤は、紡糸時または紡糸後に添加することができる。
樹脂組成物(A)と吸光発熱材を含む吸光発熱繊維は、太陽光の特定波長を吸収し、熱エネルギーに変換する効率の高い炭化ジルコニウム等の吸光発熱材を繊維の内部および表面に固着させた繊維である。前記吸光発熱繊維からなる布は、吸光発熱材を含まない繊維からなる布と比較して太陽に当たっている布面の温度を高くすることができる。
樹脂組成物(A)と吸湿発熱材を含む吸湿発熱繊維は、吸湿時に吸着熱を発生させる繊維であり、低湿度環境では水分を放出し、周囲の温度と湿度を制御する効果を有する繊維である。
樹脂組成物(A)と遠赤外線放射材を含む遠赤外線加工繊維は、遠赤外線放射の高いセラミックス等を繊維の内部および表面に固着させた繊維で、遠赤外線による保温の効果を有する繊維である。
樹脂組成物(A)を含む繊維からなる布地・生地は、織物、編物、不織布いずれでもよい。織組織としては、平織(プレーン)、綾織(ツィル)、朱子織(サテン)およびそれらの変化組織、ドビー、ジャカードなどが挙げられる。編組織としては、緯編、経編、およびそれらの変化組織が挙げられる。
樹脂組成物(A)を含む繊維からなる布地・生地は、目付け、ゲージなどは特に限定されない。
樹脂組成物(A)を含む繊維からなる布地・生地は、樹脂組成物(A)を含む繊維のみからなっていてもよく、他の繊維と交織、交編して用いてもよい。他の繊維としては、炭素繊維、無機繊維、金属繊維等の無機繊維、リヨセル等の精製繊維、レーヨン、キュプラ、ポリノジック等の再生繊維、アセテート、トリアセテート、プロミックス等の半合成繊維、アクリル、アクリル系繊維、ビニロン、ビニリデン、ポリ塩化ビニル、ポリエチレン、ポリクラール、アラミド、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリアミド66(PA66)、やウレタン等の合成繊維、コットン、セルロース系繊維、麻(亜麻、苧麻、大麻、黄麻)等の植物繊維やウール、羊毛、獣毛(アンゴラ、カシミア、モヘヤ、アルパカ、キャメルなど)、絹、等の動物繊維である天然繊維、ダウン、フェザーなどの羽毛、などが挙げられる。樹脂組成物(A)を含む繊維の使用割合は、特に規定しないが、20重量%〜100重量%が好ましい。
樹脂組成物(A)を含む繊維からなる不織布は、熱融着バインダー繊維を含有させてもよい。熱融着バインダー繊維は、樹脂組成物(A)と樹脂組成物(A)とは融点の異なる材料からなる芯鞘型、貼り合わせ型等の複合繊維が好ましい。樹脂組成物(A)とは融点の異なる材料として好ましくは前記重合体(2)であり、より好ましくはポリプロピレン(PP)、ポリエチレンテレフタラート(PET)、ポリトリメチレンテレフタラート(PTT)、ポリブチレンテレフタラート(PBT)、ポリアミド6(PA6)、ポリアミド66(PA66)である。
該熱融着バインダー繊維を用いる場合、その含有量は、不織布の繊維全体中、5〜20重量%とすることが好ましい。
樹脂組成物(A)を含む繊維からなる不織布は、軽さ、柔らかい肌触り、衣類のファッション性の観点から、目付が100g/m以下、厚みが5mm以下であることが好ましく、目付が60g/m以下であることがより好ましい。
樹脂組成物(A)を含む繊維からなる不織布の製造方法は、通常ウェブの形成工程とウェブの結合工程を含有する。ウェブの形成工程としては、乾式法、湿式法、スパンボンド法、メルトブローン法、エアレイド法等が挙げられ、ウェブの結合工程としては、ケミカルボンド法、サーマルボンド法、ニードルパンチ法、水流交絡法等が挙げられる。
樹脂組成物(A)を含む繊維からなる布地・生地は、温度調節機能を有するため、布地・生地の目付を小さくし、厚みを薄くすることができるため、軽く柔らかい肌触りであり衣類のファッション性を損なうこともない。また、樹脂組成物(A)を含む繊維からなる布地・生地は、高分子型の潜熱蓄熱材を含むため、マイクロカプセルに封入された低分子型の潜熱蓄熱材を含む繊維からなる布地・生地に比べ、耐久性に優れる。
<発泡層である蓄熱層(1)>
前記蓄熱層(1)は、前記重合体(1)と発泡剤とを含む樹脂組成物(以下、樹脂組成物(B)と称することがある)を発泡させて得られる発泡体からなる発泡層であってもよい。
発泡剤としては、物理発泡剤や熱分解型発泡剤が挙げられる。また複数の発泡剤を併用してもよい。前記樹脂組成物(B)は、重合体(1)とは異なる重合体を含んでもよい。前記樹脂組成物(B)が、重合体(1)とは異なる重合体を含有する場合は、該重合体としては、前記重合体(2)が挙げられる。樹脂組成物(B)が前記重合体(1)と前記重合体(2)を含有する場合は、前記重合体(1)と前記重合体(2)の合計量を100重量%として、重合体(1)の含有量が30重量%以上99重量%以下であることが好ましく、重合体(2)の含有量が1重量%以上70重量%以下であることがより好ましい。
物理発泡剤としては、空気、酸素、チッソ、二酸化炭素、エタン、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、n−ヘキサン、イソヘキサン、シクロヘキサン、ヘプタン、エチレン、プロピレン、水、石油エーテル、塩化メチル、塩化エチル、モノクロルトリフルオルメタン、ジクロルジフルオルメタン、ジクロテトラフルオロエタンが挙げられ、この中でも二酸化炭素、窒素、n−ブタン、イソブタン、n−ペンタンまたはイソペンタンが経済性及び安全性の観点から好ましい。
熱分解型発泡剤としては、炭酸ナトリウム等の無機系発泡剤や、アゾジカルボンアミド、N,N−ジニトロペンタメチレンテトラミン、p,p’−オキシビスベンゼンスルホニルヒドラジド、ヒドラゾジカルボンアミド等の有機系発泡剤が挙げられ、これらの中でもアゾジカルボンアミド、炭酸水素ナトリウム、p,p'−オキシビスベンゼンスルホニルヒドラジドが経済性および安全性の観点から好ましく、成形温度範囲が広いことや、気泡が微細な発泡体が得られることから、アゾジカルボンアミドまたは炭酸水素ナトリウムを含有する発泡剤がより好ましい。
熱分解型発泡剤を用いる場合には、通常は分解温度が120〜240℃である熱分解型発泡剤が用いられる。分解温度が200℃より高い熱分解型発泡剤を使用する場合には、発泡助剤を併用することにより分解温度を200℃以下に下げることが好ましい。発泡助剤としては、酸化亜鉛、酸化鉛などの金属酸化物;炭酸亜鉛等の金属炭酸塩;塩化亜鉛等の金属塩化物;尿素;ステアリン酸亜鉛、ステアリン酸鉛、二塩基性ステアリン酸鉛、ラウリン酸亜鉛、2−エチルヘキソイン酸亜鉛、二塩基性フタル酸鉛等の金属石鹸;ジブチル錫ジラウレート、ジブチル錫ジマレート等の有機錫化合物;三塩基性硫酸鉛、二塩基性亜リン酸鉛、塩基性亜硫酸鉛等の無機塩類を挙げることができる。
熱分解型発泡剤として、熱分解型発泡剤、発泡助剤および樹脂から構成されるマスターバッチを用いることができる。マスターバッチに用いられる樹脂の種類は特に限定はされないが、重合体(1)、重合体(2)、または、重合体(1)および(2)の少なくとも一方を含む樹脂組成物が好ましい。マスターバッチに含有される熱分解型発泡剤および発泡助剤の合計量は、該マスターバッチに含まれる樹脂を100重量%とするとき、通常5〜90重量%である。
より微細な気泡を有する発泡体を得るために、前記樹脂組成物(B)は、さらに発泡核剤を含むことが好ましい。発泡核剤としてはタルク、シリカ、マイカ、ゼオライト、炭酸カルシウム、珪酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、硫酸バリウム、アルミノシリケート、クレー、石英粉、珪藻土類;ポリメチルメタクリレート、ポリスチレンからなる粒径100μm以下の有機ポリマービーズ;ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、安息香酸ナトリウム、安息香酸カルシウム、安息香酸アルミニウム等の金属塩;酸化マグネシウム、酸化亜鉛等の金属酸化物が挙げられ、これらを2種類以上組み合わせてもよい。
前記樹脂組成物(B)において、発泡剤の量は、用いる発泡剤の種類や製造する発泡体の発泡倍率に応じて適宜設定されるが、前記樹脂組成物(B)に含まれる樹脂成分の重量を100重量部として通常1〜100重量部である。
前記樹脂組成物(B)は、必要に応じ、耐熱安定剤、耐候安定剤、顔料、フィラー、滑剤、帯電防止剤、難燃剤などの添加剤を含有してもよい。
前記樹脂組成物(B)は、重合体(1)と発泡剤と、必要に応じ配合される他の成分とを溶融混練したものであることが好ましい。溶融混練する方法としては、例えば、重合体(1)と発泡剤等をタンブラーブレンダー、ヘンシェルミキサーなどの混練装置で混合した後、更に単軸押出機や多軸押出機などにより溶融混練する方法、およびニーダーやバンバリーミキサーなどの混練装置で溶融混練する方法が挙げられる。
重合体(1)を含む発泡体の製造には、公知の方法を用いることができ、押出発泡成形、射出発泡成形、加圧発泡成形などが好適に用いられる。
本発明の発泡体が、架橋されている重合体(1)を含む場合には、該発泡体の製造方法としては、例えば、前記重合体(α)と発泡剤を含む樹脂組成物に電離性放射線を照射して、または架橋されている重合体(1)と発泡剤を溶融混練して、架橋されている重合体(1)と発泡剤を含む樹脂組成物(α)を製造する工程と、前記樹脂組成物(α)を加熱して発泡体を製造する工程とを含む方法(以下、方法(A)と称する)、ならびに、密閉された成形型内で、前記重合体(α)、発泡剤、および有機過酸化物を含む樹脂組成物、または架橋されている重合体(1)と発泡剤とを含む樹脂組成物を加熱しながら加圧して、架橋されている重合体(1)を含む樹脂組成物(β)を製造する工程と、成形型を開けて前記樹脂組成物(β)から発泡体を製造する工程とを含む方法(以下、方法(B)と称する)が挙げられる。
<発泡体の製造方法:方法(A)による製造方法>
前記方法(A)を以下に具体的に説明する。
前記方法(A)は、架橋されている重合体(1)と発泡剤を含む樹脂組成物(α)を製造する工程(以下、樹脂組成物(α)製造工程と称する)と、前記樹脂組成物(α)を加熱して発泡体を製造する工程(以下、発泡体製造工程と称する)とを含む。以下、各工程について説明する。
[樹脂組成物(α)製造工程]
架橋されている重合体(1)と発泡剤を含む樹脂組成物(α)を製造する樹脂組成物(α)製造工程において前記重合体(1)と発泡剤とを含む樹脂組成物に電離性放射線を照射して製造する場合、前記重合体(α)と発泡剤とを含む樹脂組成物に照射する電離性照射線としては、架橋されている重合体(1)の製造に用いられる電離性照射線が挙げられる。電離性放射線の照射方法や照射量は、架橋されている重合体(1)の製造時の照射方法や照射量として記載された方法や照射量と同じものが挙げられる。
前記重合体(α)と発泡剤を含む樹脂組成物は、通常、発泡剤の分解温度未満の温度で所望の形状に成形した後に電離性照射線を照射される。例えば、シートに成形する方法としては、カレンダーロールでシート状に成形する方法、プレス成形機でシート状に成形する方法、およびTダイまたは環状ダイから溶融押出ししてシート状に成形する方法が挙げられる。
架橋されている重合体(1)と発泡剤の溶融混練は、通常、発泡剤の分解温度未満の温度で行われる。
[発泡体製造工程]
前記樹脂組成物(α)を加熱して発泡体を製造する発泡体製造工程において、加熱して発泡体を製造する方法としては、樹脂発泡体の公知の製造方法を適用することができ、縦型熱風発泡法、横型熱風発泡法、横型薬液発泡法等の前記樹脂組成物(α)を連続的に加熱発泡処理できる方法が好ましい。加熱温度は、発泡剤の分解温度以上の温度であり、発泡剤が熱分解型発泡剤である場合、好ましくは熱分解型発泡剤の分解温度から5〜50℃高い温度、より好ましくは熱分解型発泡剤の分解温度から10〜40℃高い温度、さらに好ましくは熱分解型発泡剤の分解温度から15〜30℃高い温度である。また、加熱時間は、発泡剤の種類や量などに応じて適宜選択することができるが、オーブンで加熱する場合には、通常3〜5分である。
<発泡体の製造方法:方法(B)による製造方法>
次に、前記方法(B)を以下に具体的に説明する。
前記方法(B)は、密閉された成形型内で、前記重合体(α)、発泡剤、および有機過酸化物を含む樹脂組成物、または架橋されている重合体(1)と発泡体を含む樹脂組成物を加熱しながら加圧して、架橋されている重合体(1)を含む樹脂組成物(β)を製造する工程(以下、樹脂組成物(β)製造工程と称する)と、成形型を開けて前記樹脂組成物(β)から発泡体を製造する工程(以下、発泡体製造工程と称する)とを含む。以下、各工程について説明する。
[樹脂組成物(β)製造工程]
樹脂組成物(β)製造工程において、成形型内で、前記重合体(α)、発泡剤、および有機過酸化物を含む樹脂組成物を加熱しながら加圧して、架橋されている重合体(1)を含む樹脂組成物(β)を製造する場合、有機過酸化物としては、本発明の架橋されている重合体の製造に用いることができる有機過酸化物が挙げられる。
成形型内で加熱しながら加圧される樹脂組成物は、あらかじめ、前記重合体(α)、発泡剤、および有機過酸化物、または架橋されている重合体(1)と発泡体を含む樹脂組成物を、前記発泡剤の分解温度未満であって、有機過酸化物の1分間半減期温度未満である温度で溶融混練した樹脂組成物であることが好ましい。
成形型内で前記重合体(α)、発泡剤、および有機過酸化物を含む樹脂組成物を加熱する温度は、前記有機過酸化物の1分間半減期温度以上であって、発泡剤の分解温度以上の温度が好ましい。
[発泡体製造工程]
成形型を開けて、前記樹脂組成物(β)から発泡体を製造する発泡体製造工程では、成形型を40℃以上100℃以下に冷却した後に成形型を開けることが好ましい。開けるときの成形型の温度は、前記樹脂組成物(β)の溶融粘度を高め、発泡時の膨張を促進させる観点から、好ましくは40℃以上であり、より好ましくは50℃以上である。また、発泡時のガス抜けを抑制する観点から、好ましくは90℃以下であり、より好ましくは80℃以下である。
ただし、開けるのに適した成形型の温度は前記樹脂組成物(β)の粘度や融点、製造する発泡体のサイズによって異なるため、適宜調整することができる。
また、本発明の架橋されている重合体(1)を含む発泡体の発泡倍率や強度を高めるために、前記重合体(α)と発泡剤とを含む樹脂組成物は、さらに架橋助剤を含むことが好ましい。架橋助剤としては、本発明の架橋されている重合体(1)の製造に用いられる架橋助剤が挙げられる。前記重合体(α)、発泡剤および架橋助剤を含む樹脂組成物に含まれる架橋助剤の量は、樹脂組成物に含まれる樹脂成分の重量を100重量部として、0.01〜4.0重量部であること好ましく、0.05〜2.0重量部であることがより好ましい。
<断熱層(2)>
本発明の積層体は、熱伝導率0.1W/(m・K)以下である断熱層(2)を有する。
本明細書において、熱伝導率とは熱移動の起こり易さを表す係数で、単位厚みあたり1℃の温度差があるとき、単位時間に単位面積を移動する熱量を意味している。熱伝導率は、例えばホットディスク法(ISO/CD22007−2)、プローブ法(JIS R2616)、熱流量法(ASTM E1530)またはレーザーフラッシュ法(JIS R1611)によって測定される。
断熱層(2)の熱伝導率は0.05W/(m・K)以下であることが好ましい。
前記断熱層(2)は、発泡体からなる発泡層であり得る。また、前記断熱層(2)は、前記重合体(2)を含む発泡体からなる発泡層であってもよい。前記蓄熱層(1)に前記重合体(2)が用いられている場合、前記断熱層(2)に用いる重合体(2)は前記蓄熱層(1)に用いているものと同じであっても異なっていてもよい。
前記断熱層(2)の材料としては、例えば、ポリスチレン発泡体、ポリウレタン発泡体、アクリル樹脂発泡体、フェノール樹脂発泡体、ポリエチレン樹脂発泡体、発泡ゴム、グラスウール、ロックウール、発泡セラミック、真空断熱材、およびこれらの複合体が挙げられる。
また、前記重合体(1)のうち、熱伝導率0.1W/(m・K)以下であるものを断熱層(2)の重合体として用いてもよい。その場合には、蓄熱層(1)には、該断熱層(2)として用いている重合体(1)以外の重合体(1)を用いる。
<積層体の形状>
本発明の積層体は、例えば、押出成形、射出成形、真空成型、ブロー成形、または圧延成形により任意の立体形状に成形可能である。
なお、本発明の積層体の断熱性能は、例えば、市販のケント紙等からなる内箱と外箱を作製し、外箱の中心に内箱が設置されるように、積層体を外箱と内箱との間に設置して箱模型とし、この箱模型の温度を変動させる箱模型実験を行うことによって調べることができる。詳細は実施例に記載の通りである。
本発明の積層体は、成形加工性および形状保持性に優れるためその形状は任意であり、例えば、球状、角状(キューブ状)、数珠玉状(ビーズ状)、円柱状(ペレット状)、粉末状、棒状(スティック状)、針状、繊維状(ファイバー状)、ストランド状、糸状、紐状、縄状、綱状、板状、シート状、膜状(フィルム状)、織布状、不織布状、箱状(カプセル状)、および任意の立体形状が挙げられ、使用目的に応じて形状を選択することができる。
また、球状、角状(キューブ状)、数珠玉状(ビーズ状)、円柱状(ペレット状)、または粉末状である前記積層体は、前記蓄熱層(1)が前記断熱層(2)で覆われたコア−シェル構造、または前記断熱層(2)が前記蓄熱層(1)で覆われたコア−シェル構造を形成していてもよい。
また、棒状(スティック状)、針状、繊維状(ファイバー状)、ストランド状、糸状、紐状、縄状、または綱状である前記積層体は、前記蓄熱層(1)が前記断熱層(2)で覆われた芯−鞘構造、または前記断熱層(2)が前記蓄熱層(1)で覆われた芯−鞘構造を形成していてもよい。
また、板状、シート状、膜状(フィルム状)、織布状、不織布状、箱状、またはカプセル状である前記積層体は、前記蓄熱層(1)が前記断熱層(2)により両面または片面を覆われた積層構造、または前記断熱層(2)が前記蓄熱層(1)により両面または片面で覆われた積層構造を形成していてもよい。
ここで、積層構造は、前記蓄熱層(1)および前記断熱層(2)の何れか一方または両方の層として、複数の層を備えていてもよい。複数の層を備えている場合、各層はそれぞれ異なる樹脂組成物から構成されるものであってもよい。
本発明の積層体は、蓄熱性能、成形加工性、形状保持性、および透湿性に優れるため、例えば、保温・保冷性能が直接的または間接的に要求される製品またはその部材として好適に用いることができる。
保温・保冷性能が直接的または間接的に要求される製品またはその部材としては、例えば、建築材料、家具、インテリア用品、寝具、浴室材料、車輌、空調設備、電化製品、保温容器、衣類、日用品、農業資材、発酵システム、熱電変換システム、熱搬送媒体が挙げられる。
本発明の積層体の用途として、具体的には、本発明の積層体を含む建築材料、本発明の積層体を含む保温容器が挙げられる。
建築材料としては、例えば、床材、壁材、壁紙、天井材、屋根材、床暖房システム、畳、扉、襖、雨戸、障子、窓、および窓枠が挙げられる。
本発明の積層体を含む建築材料は、建築物において、該積層体に含まれる前記蓄熱層(1)が室内側となり、前記断熱層(2)が屋外側となるように配置されることが好ましい。
本発明の積層体が、該積層体を含む床材、壁材、天井材、屋根材、床暖房システム、および畳ならびにそれらの部材として建築物において使用される場合は、前記蓄熱層(1)が室内側、前記断熱層(2)が屋外側に向けて配置されていることが好ましい。
前記積層体を含み、前記蓄熱層(1)が室内側、前記断熱層(2)が屋外側に向けて施工された壁、床および天井も本発明の範囲である。
本発明の積層体を含む建築材料を含み、該建築材料に含まれる積層体の前記蓄熱層(1)が室内側となり、前記断熱層(2)が屋外側となるように配置された建築物は、断熱性能に優れる。
床材、壁材、天井材、または屋根材として用いる際には、外部環境温度の変動に対して室内空間温度をより一定に維持するために、積層体がさらに前記重合体(1)とは異なる材料からなる遮熱層を有することが好ましい。
前記遮熱層としては、例えば、アルミニウム板、アルミニウム箔、アルミニウム粉末含有塗料、セラミック粉末塗料、およびこれらの複合体が挙げられる。
壁材、天井材、または屋根材として用いる際には、防火性を付与するために、積層体がさらに前記重合体(1)とは異なる材料からなる難燃性、準不燃性、または不燃性である防火材層を有することが好ましい。
前記防火材層としては、例えば、コンクリート、石膏、木質系セメント、ケイ酸カルシウム、ガラス、金属、発泡性防火材料、難燃材含有材料、およびこれらの複合体が挙げられる。
床暖房システムの部材として用いる際には、ヒーティングケーブル、面状ヒーター、温水配管などの発熱体から発生する熱を効率的に室温の維持に利用するために、例えば、積層体がさらに、前記重合体(1)とは異なる顕熱蓄熱層を有することが好ましい。
前記顕熱蓄熱層としては、例えば、コンクリート、モルタル、コンクリートスラブ、およびこれらの複合体が挙げられる。
畳の部材として用いる際には、外部環境温度の変動に対して室内空間温度をより一定に維持するために、例えば、積層体がさらに、前記重合体(1)とは異なる材料からなる畳ボードおよび前記重合体(1)とは異なる材料からなる畳表を有することが好ましい。また、畳ボード材に用いる際には、前記蓄熱材と木質繊維の混合物からなる蓄熱畳ボードを好適に用いることができ、畳表材に用いる際には、繊維状(ファイバー状)またはストランド状の前記積層体と前記重合体(1)とは異なる材料からなる畳表材との芯−鞘構造を形成した蓄熱繊維からなる蓄熱畳表を有することが好ましい。
扉の部材、襖の部材または雨戸の部材として用いる際には、扉、襖または雨戸で仕切られた部屋の室温をより一定に維持するために、例えば、積層体がさらに前記重合体(1)とは異なる材料からなる表面材を有することが好ましい。
障子の部材として用いる際には、障子で仕切られた部屋の室温をより一定に維持するために、またある程度の光透過性を付与するために、例えば、積層体がさらに前記重合体(1)とは異なる材料からなる障子紙を有することが好ましい。
窓の部材として用いる際には、外部環境温度の変動に対して室内空間温度をより一定に維持するために、またある程度の光透過性を付与するために、例えば、積層体がさらにガラス、ポリカーボネート、またはポリメタクリル酸メチルからなる積層体を有することが好ましい。
窓枠の部材として用いる際には、外部環境温度の変動に対して室内空間温度をより一定に維持するために、また室温との窓枠の温度差を小さくして結露を防止するために、例えば、積層体がさらに金属製窓枠または前記重合体(1)とは異なる重合体製窓枠からなる積層体を有することが好ましい。
家具、インテリア用品、寝具としては、例えば、パーティションボード、ブラインド、カーテン、絨毯、布団、およびマットレスが挙げられる。
パーティションボードの部材として用いる際には、パーティションボードで仕切られた部屋の室温をより一定に維持するために、例えば、積層体がさらに前記重合体(1)とは異なる材料からなる表面層を有することが好ましい。
ブラインドの部材として用いる際には、外部環境温度の変動に対して室内空間温度をより一定に維持するために、また遮光性能を付与するために、例えば、積層体がさらに前記重合体(1)とは異なる材料からなる遮熱層を有することが好ましい。例えば、ブラインドの羽材の構成が前記のように遮熱面と蓄熱面からなる場合には、夏季は遮熱面を外側にして使用し、冬季は日中に蓄熱面を外側、夜間に蓄熱面を内側に反転して使用することにより、季節や時間帯に応じて、建物内への太陽熱の流入量を制御できるため、空調設備の消費電力を削減することができる。
カーテン、絨毯、布団として用いる際には、任意の風合いや触感を付与するために、例えば、積層体がさらに前記重合体(1)とは異なる材料からなる繊維層との芯−鞘構造を形成した蓄熱繊維からなる蓄熱織布または蓄熱不織布を有することが好ましい。
絨毯として用いる際には、任意の風合いや触感を付与するために、例えば、積層体がさらに前記重合体(1)とは異なる材料からなる繊維からなる織布または不織布を有することが好ましい。
マットレスとして用いる際には、柔軟性を付与するために、例えば、発泡体状の前記蓄熱材を好適に用いることができる。
浴室材料としては、例えば、浴槽材、風呂蓋材、浴室床材、浴室壁材、および浴室天井材が挙げられる。
浴槽材、風呂蓋材として用いる際には、浴室内温度の変動に対して浴槽内の湯温をより一定に維持するために、例えば、積層体がさらに前記重合体(1)とは異なる材料からなる表面層を有することが好ましい。
浴室床材、浴室壁材、または浴室天井材として用いる際には、外部環境温度の変動に対して浴室温度をより一定に維持するために、例えば、積層体がさらに前記重合体(1)とは異なる材料からなる遮熱層を有することが好ましい。
車輌の部材としては、例えば、エンジン暖機システム、ガソリン蒸発損失防止装置(キャニスター)、車内空調、内装材、保冷車輌のコンテナの部材、および保温車輌のコンテナの部材が挙げられる。
具体的には、本発明の積層体を含む内装材、本発明の積層体を含む保冷車輌のコンテナの部材、本発明の積層体を含む保温車輌のコンテナの部材が挙げられる。該積層体の構成は、重合体(1)を含む蓄熱層(1)、および熱伝導率0.1W/(m・K)以下である断熱層(2)を有する積層体である。該積層体を含む内装材、保冷車輌のコンテナの部材、および保温車輌のコンテナの部材は、前記蓄熱層(1)が室内側、前記断熱層(2)が屋外側に向けて配置されていることが好ましい。前記積層体を含み、前記蓄熱層(1)が室内側、前記断熱層(2)が屋外側に向けて施工された壁、床および天井も本発明の範囲である。
内装材、保冷車輌のコンテナの部材、および保温車輌のコンテナの部材として用いる際には、外部環境温度の変動に対して室内空間温度をより一定に維持するために、例えば、積層体がさらに前記重合体(1)とは異なる材料からなる断熱材、および前記重合体(1)とは異なる材料からなる遮熱層を有することが好ましい。
空調設備の部材としては、例えば、躯体蓄熱式空調システムの蓄熱材、水蓄熱式空調システムの蓄熱槽の部材、氷蓄熱式空調システムの蓄熱槽の部材、熱媒配管材またその保温材、冷媒配管材またはその保温材、および熱交換型換気システムのダクト材が挙げられる。
電化製品としては、例えば、
テレビ、ブルーレイレコーダープレーヤー、DVDレコーダープレーヤー、モニタ、ディスプレイ、プロジェクタ、リアプロジェクションテレビ、コンポ、ラジカセ、デジタルカメラ、デジタルビデオカメラ、携帯電話、スマートフォン、ノートパソコン、デスクトップパソコン、タブレットPC、PDA、プリンタ、3Dプリンタ、スキャナ、家庭用ゲーム機、携帯ゲーム機、電子機器用蓄電池および電子機器用変圧器などの電子機器、
電気ストーブ、ファンヒーター、除湿機、加湿器、ホットカーペット、こたつ、電気毛布、電気ひざ掛け、電気あんか、暖房便座、温水洗浄便座、アイロン、ズボンプレッサー、布団乾燥機、衣類乾燥機、ヘアドライヤー、ヘアアイロン、温熱マッサージ器、温熱治療器、食器洗浄機、食器乾燥機、乾燥式生ごみ処理機などの加熱式生活家電、
IHクッキングヒーター、ホットプレート、電子レンジ、オーブンレンジ、炊飯器、餅つき機、ホームベーカリー、トースター、電子発酵器、電気ポット、電気ケトル、コーヒーメーカーなどの加熱式調理家電、
ミキサー・フードプロセッサー、精米機などの摩擦熱が発生する調理家電、および
冷蔵・冷凍庫、恒温恒湿保冷庫、牛乳保冷庫、玄米保冷庫、野菜保冷庫、保冷米櫃、冷凍冷蔵ショーケース、プレハブ型保冷庫、プレハブ型冷蔵ショーケース、温冷配膳車、ワインセラー、食品用自動販売機、弁当保温キャビネットなどの電源付保温保冷庫が挙げられる。
電子機器の部材として用いる際には、電子機器を構成する電子部品から発生する熱から電子部品を保護するために、前記積層体を好適に用いることができる。とくに高度に集積化された電子部品など局所的な発熱量が大きい場合には、発熱体から発せられた熱を板状またはシート状の前記蓄熱層(1)へ効率的に吸熱させるために、例えば、積層体がさらに前記重合体(1)とは異なる材料からなる高熱伝導層を有することが好ましい。
前記高熱伝導材としては、例えば、カーボンナノチューブ、窒化ホウ素ナノチューブ、グラファイト、銅、アルミニウム、窒化ホウ素、窒化アルミニウム、酸化アルミニウム、酸化マグネシウム、およびこれらの複合体が挙げられる。
人体へ接触した状態で使用する電子機器の部材として用いる際には、電子機器を構成する電子部品から発生する熱が、電子機器を構成する筐体を通じて人体へ伝導することを抑制するために、例えば、積層体がさらにおよび前記筐体層を有することが好ましい。
加熱式生活家電の部材として用いる際には、加熱式生活家電を構成する加熱装置から発生する熱から加熱式生活家電を構成するその他の部品を保護するために、例えば、板状またはシート状の前記蓄熱材を好適に用いることができる。また保温性能を向上させ消費電力を抑えるために、例えば、積層体がさらに前記重合体(1)とは異なる材料からなる断熱層を有することが好ましい。
加熱式調理家電の部材として用いる際には、加熱式調理家電を構成する加熱装置から発生する熱から加熱式調理家電を構成するその他の部品を保護するために、例えば、板状またはシート状の前記蓄熱材を好適に用いることができる。また保温性能を向上させ消費電力を抑えるために、積層体がさらに前記重合体(1)とは異なる材料からなる断熱層を有することが好ましい。
摩擦熱が発生する調理家電の部材として用いる際には、摩擦熱から食品を保護するために、例えば、積層体がさらに前記重合体(1)とは異なる材料からなる高熱伝導体層を有することが好ましい。
本発明の積層体を含む電源付保温保冷庫の部材は、該積層体に含まれる前記蓄熱層(1)が庫内側、前記断熱層が庫外側に向けて配置されていることが好ましい。該積層体の構成は、重合体(1)を含む蓄熱層(1)、および熱伝導率0.1W/(m・K)以下である断熱層(2)を有する積層体である。
電源付保温保冷庫の部材として用いる際には、外部環境温度の変動に対して内部温度をより一定に維持するために、積層体がさらに前記重合体(1)とは異なる材料からなる断熱層、および前記重合体(1)とは異なる材料からなる遮熱層を有することが好ましい。
保温容器(保温保冷容器)としては、例えば、検体や臓器の輸送・保管時の保温保冷容器、医薬品や化学物質輸送・保管時の保温保冷容器、食品輸送・保管時の保温保冷容器が挙げられる。
本発明の積層体を含む保温容器は、該積層体に含まれる前記蓄熱層(1)が内側、前記断熱層が外側にとなるように配置された保温容器であることが好ましい。該積層体の構成は、重合体(1)を含む蓄熱層(1)、および熱伝導率0.1W/(m・K)以下である断熱層(2)を有する積層体である。
また保温保冷容器の部材へ用いる際には、外部環境温度の変動に対して内部温度をより一定に維持するために、例えば、積層体がさらに前記重合体(1)とは異なる材料からなる断熱材、および前記重合体(1)とは異なる材料からなる遮熱層を有することが好ましい。
衣類としては、例えば、寝間着、防寒着、手袋、靴下、スポーツウェア、ウェットスーツ、ドライスーツ、耐熱保護衣、および耐火保護衣が挙げられる。また衣類へ用いる際には、体温を一定に保ち、任意の触感を付与するために、例えば、繊維状(ファイバー状)またはストランド状の前記積層体および前記重合体(1)とは異なる材料からなる繊維層との芯−鞘構造を形成した蓄熱繊維からなる蓄熱織布または蓄熱不織布を好適に用いることができる。
ウェットスーツやドライスーツに用いる際には、冷水に対して体温をより一定に保つために、例えば、積層体がさらに、前記蓄熱織布または前記蓄熱不織布、および前記重合体(1)とは異なる材料からなる断熱層を有することが好ましい。
耐熱保護衣、耐火保護衣に用いる際には、発熱体や火炎に対して体温をより一定に保つために、例えば、積層体がさらに、前記蓄熱織布または前記蓄熱不織布、前記重合体(1)とは異なる材料からなる断熱層、および前記重合体(1)とは異なる材料からなる遮熱層を有することが好ましい。
日用品としては、例えば、食器、弁当箱、水筒、魔法瓶、懐炉、湯たんぽ、保冷材、および電子レンジ加熱式保温材が挙げられる。
食器や弁当箱の部材として用いる際には、外部環境温度に対し、食品温度をより一定に維持するために、例えば、板状、シート状または発泡体状の前記蓄熱材、および重合体(1)とは異なる材料からなる断熱材を有する積層体として使用してもよい。
業務又は家庭排出生ゴミ、汚泥、家畜等の糞尿、または畜産・水産残渣などの有機性廃棄物や草木などを発酵させ、堆肥やバイオガスを製造する発酵システムとしては、例えば、バイオ式生ごみ処理機、堆肥製造用発酵槽、およびバイオガス製造用発酵槽が挙げられる。前記発酵システムとして用いる際には、外部環境温度の変動に対して槽内温度を発酵に適した温度により一定に維持するために、例えば、積層体がさらに前記重合体(1)とは異なる材料からなる断熱層を有することが好ましい。
農業資材としては、例えば、ビニールハウス用フィルム、農用保温シート、潅水用ホース・パイプ、および育苗用農電マットが挙げられる。農業資材として用いる際には、外部環境温度の変動に対して農作物周囲温度を農作物の成長に適した温度により一定に維持するために、例えば、積層体がさらに前記重合体(1)とは異なる材料からなる断熱層を有することが好ましい。
以下、実施例および比較例によって、本発明をより詳細に説明する。
[I]重合体(1)に含まれるエチレンに由来する構成単位(A)、前記式(1)で示される構成単位(B)、前記式(2)で示される構成単位(C)の数(単位:%)
核磁気共鳴分光器(NMR)を用い、以下に示す測定条件にて核磁気共鳴スペクトル(以下、NMRスペクトル)を測定した。
<炭素核磁気共鳴(13C−NMR)測定条件>
装置:ブルカー・バイオスピン(株)製 AVANCEIII 600HD
測定プローブ:10mmクライオプローブ
測定溶媒:1,2−ジクロロベンゼン/1,1,2,2−テトラクロロエタン−d=85/15(容積比)の混合液
試料濃度:100mg/mL
測定温度:135℃
測定方法:プロトンデカップリング法
積算回数:256回
パルス幅:45度
パルス繰り返し時間:4秒
測定基準:テトラメチルシラン
<エチレン−メチルアクリレート共重合体に含まれる、エチレンに由来する構成単位(A)、およびメチルアクリレートに由来する構成単位(C)の数>(単位:%)
前記の13C−NMR測定条件に従って得られたエチレン−メチルアクリレート共重合体の13C−NMRスペクトルについて、以下のa、b、c、dおよびeの範囲の積分値を求め、以下の式から求められる3種のダイアッド(EE、EA、AA)の含有量(数)から、エチレンに由来する構成単位(A)、およびメチルアクリレートに由来する構成単位(C)の数を算出した。なお、EEは、エチレン−エチレンダイアッド、EAは、エチレン−メチルアクリレートダイアッド、AAは、メチルアクリレート−メチルアクリレートダイアッドである。
:28.1−30.5ppm
:31.9−32.6ppm
:41.7ppm
:43.1−44.2ppm
:45.0−46.5ppm
EE=a/4+b/2
EA=e
AA=c+d
構成単位(A)の数=100−構成単位(C)の数
構成単位(C)の数=100×(EA/2+AA)/(EE+EA+AA)
<メチルアクリレートに由来する構成単位(C)の式(1)で示される構成単位(B)への転化率(X)>(単位:%)
エチレン−メチルアクリレート共重合体と長鎖アルキルアルコールとを反応させて、エチレンに由来する構成単位(A)と式(1)で示される構成単位(B)とメチルアクリレートに由来する構成単位(C)とからなる重合体を得た実施例において、前記の13C NMR測定条件に従って得られた該重合体の13C−NMRスペクトルについて、以下のfおよびgの範囲の積分値を求めた。次に、以下の式から、エチレン−メチルアクリレート共重合体に含まれるメチルアクリレートに由来する構成単位(C)が、重合体(1)の式(1)で示される構成単位(B)に転化した転化率(X)を算出した。
:50.6−51.1ppm
:63.9−64.8ppm
転化率(X)=100×g/(f+g
<重合体(1)に含まれる、エチレンに由来する構成単位(A)、式(1)で示される構成単位(B)、メチルアクリレートに由来する構成単位(C)の数>(単位:%) 重合体(1)に含まれる、エチレンに由来する構成単位(A)、式(1)で示される構成単位(B)、メチルアクリレートに由来する構成単位(C)の数は、それぞれ以下の式より算出した。
重合体(1)に含まれる構成単位(A)の数=エチレン−メチルアクリレート共重合体に含まれる構成単位(A)の数
重合体(1)に含まれる構成単位(B)の数=(エチレン−メチルアクリレート共重合体に含まれる構成単位(C)の数)×転化率(X)/100
重合体(1)に含まれる構成単位(C)の数=(エチレン−メチルアクリレート共重合体に含まれる構成単位(C)の数)−(重合体(1)に含まれる構成単位(B)の数)
このようにして得られた、構成単位(A)の数、構成単位(B)の数、構成単位(C)の数が、それぞれ、重合体に含まれるエチレンに由来する構成単位(A)、上記式(1)で示される構成単位(B)、上記式(2)で示される構成単位(C)の数(単位:%)に相当する。
<エチレン−α−オレフィン共重合体に含まれる、エチレンに由来する構成単位(A)、およびα−オレフィンに由来する構成単位(B)の数>(単位:%)
上記の13C−NMR測定条件に従って得られたエチレン−α−オレフィン共重合体の13C−NMRスペクトルについて、以下のa、b、c、d、d‘、e、f、g、h、iおよびjの範囲の積分値を求め、以下の式から求められる8種のトライアッド(EEE、EEL、LEE、LEL、ELE、ELL、LLE、LLL)の含有量(数)から、エチレンに由来する構成単位(A)、およびα−オレフィンに由来する構成単位(B)の数を算出した。なお、各トライアッドにおけるEはエチレン、Lはα−オレフィンを示している。
:40.6−40.1 ppm
:38.5−38.0 ppm
:36.3−35.8 ppm
:35.8−34.3 ppm
d‘:34.0−33.7 ppm
:32.4−31.8 ppm
:31.4−29.1 ppm
:27.8−26.5 ppm
:24.8−24.2 ppm
:23.0−22.5 ppm
:14.4−13.6 ppm
EEE=f/2−g/4−(n−7)×(b+c+d‘)/4
EEL+LEE=g−e
LEL=h
ELE=b
ELL+LLE=c
LLL=a−c/2(a−c/2<0のとき、LLL=d‘
なお上記nはα−オレフィンの平均炭素原子数を示す。
構成単位(A)の数=100×(EEE+EEL+LEE+LEL)/(EEE+EEL+LEE+LEL+ELE+ELL+LLE+LLL)
構成単位(B)の数=100−構成単位(A)の数
[II]未反応の炭素原子数14以上30以下のアルキル基を有する化合物の含有量(単位:重量%)
各実施例の「重合体(1)の製造」において、得られる生成物は、該重合体(1)と未反応の炭素原子数14以上30以下のアルキル基を有する化合物との混合物である。生成物中に含まれる未反応の炭素原子数14以上30以下のアルキル基を有する化合物の含有量はガスクロマトグラフィー(GC)を用いて以下の方法により測定した。該未反応の化合物の含有量は、得られた重合体(1)と未反応の化合物の合計の重量を100重量%としたときの値である。
[GC測定条件]
GC装置: 島津 GC2014
カラム : DB−5MS(60m、0.25mmφ、1.0μm)
カラム温度: 40℃に保持されたカラムを、10℃/分の速度で300℃まで昇温し、次に300℃で40分間保持する
気化室/検出器温度: 300℃/300℃(FID)
キャリアガス: ヘリウム
圧力: 220kPa
全流量 : 17.0mL/分
カラム流量: 1.99mL/分
パージ流量: 3.0mL/分
線速度 : 31.8cm/秒
注入方式/スプリット比: スプリット注入/6:1
注入量 : 1μL
試料調製方法: 8mg/mL(o−ジクロロベンゼン溶液)
(1) 検量線作成
[溶液調製]
9mLバイアル管に標品を5mg秤量し、そこに内部標準物質としてn−トリデカン100mgを秤量し、更に溶媒としてo−ジクロロベンゼン6mLを加え試料を完全に溶解させ、検量線作成用の標準溶液を得た。標品の量を25mg及び50mgに変更した以外は上記と同様にして、更に2つの標準溶液を調製した。
[GC測定]
検量線作成用の標準溶液を前項のGC測定条件で測定し、縦軸を標品と内部標準物質のGC面積比、横軸を標品重量と内部標準物質の重量比とした検量線を作成し、該検量線の傾きaを求めた。
(2) 試料(生成物)中の測定対象物(未反応の炭素原子数14以上30以下のアルキル基を有する化合物)の含有量測定
[溶液調製]
9mLバイアル管に試料50mg、n−トリデカン100mgを秤量し、o−ジクロロベンゼン6mLを加え80℃にて試料を完全に溶解させ、試料溶液を得た。
[GC測定]
試料溶液を前項のGC測定条件で測定し、試料中の測定対象物の含量Pを下式に従って求めた。
:試料中の測定対象物の含量 (重量%)
:試料の重量 (mg)
IS:内部標準物質(IS)の重量 (mg)
:測定対象物のピーク面積カウント数
IS:内部標準物質(IS)のピーク面積カウント数
a:測定対象物の検量線の傾き
Figure 2017217417
[III]重合体(1)の物性評価方法
(1)融解ピーク温度T(単位:℃)、10℃以上60℃未満の温度範囲内に観測される融解エンタルピーΔH(単位:J/g)
示差走査熱量計(TAインスツルメンツ社製、DSC Q100)により、窒素雰囲気下で、約5mgの試料を封入したアルミニウムパンを、(1)150℃で5分間保持し、次に(2)5℃/分の速度で150℃から−50℃まで降温し、次に(3)−50℃で5分間保持し、次に(4)5℃/分の速度で−50℃から150℃程度まで昇温した。過程(4)における熱量測定により得られた示差走査熱量測定曲線を融解曲線とした。前記融解曲線をJIS K7121−1987に準拠した方法により解析して融解ピーク温度Tを求めた。
融解エンタルピーΔH(J/g)は、前記融解曲線の10℃以上60℃未満の温度範囲内の部分をJIS K7122−1987に準拠した方法により解析して求めた。
(2)式(I)で定義される比A(単位:なし)
光散乱検出器と粘度検出器を備えた装置を用いるゲル・パーミエイション・クロマトグラフィー(GPC法)により、重合体(1)とポリエチレン標準物質1475a(米国国立標準技術研究所製)それぞれの絶対分子量と固有粘度を測定した。
GPC装置: 東ソー HLC−8121GPC/HT
光散乱検出器: Precision Detectors PD2040
差圧粘度計: Viscotek H502
GPCカラム: 東ソー GMHHR−H(S)HT ×3本
試料溶液濃度: 2mg/mL
注入量 : 0.3mL
測定温度: 155℃
溶解条件: 145℃ 2hr
移動相 : オルトジクロロベンゼン(BHT0.5mg/mL添加)
溶出時流速: 1mL/分
測定時間: 約1時間
[GPC装置]
示差屈折計(RI)を装備したGPC装置として、東ソー社のHLC−8121GPC/HTを用いた。また、前記GPC装置に光散乱検出器(LS)として、Precision Detectors社のPD2040を接続した。光散乱検出に用いた散乱角度は90°であった。また、前記GPC装置に粘度検出器(VISC)として、Viscotek社のH502を接続した。LSおよびVISCはGPC装置のカラムオーブン内に設置し、LS、RI、VISCの順で接続した。LS、VISCの較正および検出器間の遅れ容量の補正には、Malvern社のポリスチレン標準物質であるPolycal TDS−PS−N(重量平均分子量Mw104,349、多分散度1.04)を1mg/mLの溶液濃度で用いた。移動相および溶媒には、安定剤としてジブチルヒドロキシトルエンを0.5mg/mLの濃度で添加したオルトジクロロベンゼンを用いた。試料の溶解条件は、145℃、2時間とした。流量は1mL/分とした。カラムは、東ソー社GMHHR−H(S) HTを3本連結して用いた。カラム、試料注入部および各検出器の温度は、155℃とした。試料溶液濃度は2mg/mLとした。試料溶液の注入量(サンプルループ容量)は0.3mLとした。NIST1475aおよびサンプルのオルトジクロロベンゼン中での屈折率増分(dn/dc)は、−0.078mL/gとした。ポリスチレン標準物質のdn/dcは0.079mL/gとした。各検出器のデータから絶対分子量および固有粘度([η])を求めるにあたっては、Malvern社のデータ処理ソフトOmniSEC(version4.7)を利用し、文献「Size Exclusion Chromatography,Springer(1999)」を参考にして計算を行った。なお、屈折率増分とは、濃度変化に対する屈折率の変化率である。
以下の方法により、式(I)のαとαを求め、両者を式(I)に代入してAを求めた。
A=α/α (I)
αは、重合体(1)の絶対分子量の対数を横軸、重合体(1)の固有粘度の対数を縦軸として、測定したデータをプロットし、絶対分子量の対数と固有粘度の対数を、横軸が前記重合体(1)の重量平均分子量の対数以上z平均分子量の対数以下の範囲において式(I−I)で最小二乗法近似し、式(I−I)を表す直線の傾きの値をαとすることを含む方法により得られた値である。
log[η]=αlogM+logK (I−I)
(式(I−I)中、[η]は重合体(1)の固有粘度(単位:dl/g)を表し、Mは重合体(1)の絶対分子量を表し、Kは定数である。)
ポリエチレン標準物質1475aの絶対分子量の対数を横軸、ポリエチレン標準物質1475aの固有粘度の対数を縦軸として、測定したデータをプロットし、絶対分子量の対数と固有粘度の対数を横軸が前記ポリエチレン標準物質1475aの重量平均分子量の対数以上z平均分子量の対数以下の範囲において式(I−II)で最小二乗法近似し、式(I−II)を表す直線の傾きの値をαとすることを含む方法により得られた値である。
log[η]=αlogM+logK (I−II)
(式(I−II)中、[η]はポリエチレン標準物質1475aの固有粘度(単位:dl/g)を表し、Mはポリエチレン標準物質1475aの絶対分子量を表し、Kは定数である。)
[IV]原料
<構成単位(A)と構成単位(C)とを有する前駆重合体>
A−1:エチレン−メチルアクリレート共重合体
エチレン−メチルアクリレート共重合体A−1を以下のとおり製造した。
オートクレーブ式反応器にて、反応温度195℃、反応圧力160MPaで、ラジカル重合開始剤としてtert−ブチルパーオキシピバレートを用いて、エチレンとメチルアクリレートを共重合して、エチレン−メチルアクリレート共重合体A−1を得た。得られた共重合体A−1の組成およびMFRは以下のとおりであった。エチレンに由来する構成単位の数:87.1%(68.8重量%)、メチルアクリレートに由来する構成単位の数:12.9%(31.2重量%)、MFR(190℃、21Nで測定):40.5g/10分
A−2:エチレン−メチルアクリレート共重合体
エチレン−メチルアクリレート共重合体A−2を以下のとおり製造した。
オートクレーブ式反応器にて、反応温度195℃、反応圧力160MPaで、ラジカル重合開始剤としてtert−ブチルパーオキシピバレートを用いて、エチレンとメチルアクリレートを共重合して、エチレン−メチルアクリレート共重合体A−2を得た。得られた共重合体A−2の組成およびMFRは以下のとおりであった。エチレンに由来する構成単位の数:85.3%(65.4重量%)、メチルアクリレートに由来する構成単位の数:14.7%(34.6重量%)、MFR(190℃、21Nで測定):41g/10分
<炭素原子数14以上30以下のアルキル基を有する化合物>
B−1:カルコール6098(n−ヘキサデシルアルコール)[花王株式会社製]
B−2:GINOL−16(n−ヘキサデシルアルコール) [GODREJ製]
B−3:n−オクタデシルメタクリレート [東京化成株式会社製]
<触媒>
C−1:オルトチタン酸テトラ(n−オクタデシル)[マツモトファインケミカル株式会社製]
C−2:オルトチタン酸テトラ(iso−プロピル) [日本曹達株式会社製]
<ポリプロピレン>
D−1:住友ノーブレン D101(プロピレン単独重合体) [住友化学株式会社製]
D−2:住友ノーブレン U501E1(プロピレン単独重合体) [住友化学株式会社製]
<有機過酸化物及びアゾ化合物>
E−1:カヤヘキサAD−40C(2、5−ジメチル−2、5−ジ(tert−ブチルパーオキシ)ヘキサン、炭酸カルシウムおよび非晶質二酸化ケイ素を含む混合物)(1分間半減期温度:180℃) [化薬アクゾ株式会社製]
E−2:YP−50S(2、5−ジメチル−2、5−ジ(tert−ブチルパーオキシ)ヘキシン−3、非晶質二酸化ケイ素、無晶シリカ、および流動パラフィンを含む混合物)(1分間半減期温度:180℃) [化薬アクゾ株式会社製]
E−3:アゾビスイソブチロニトリル(10時間半減期温度:65℃) [東京化成株式会社製]
<架橋助剤>
F−1:ハイクロスMS50(トリメチロールプロパントリメタクリレートおよび非晶質二酸化ケイ素の混合物) [精工化学株式会社製]
<酸化防止剤>
G−1:IRGANOX1010(ペンタエリトリトール=テトラキス[3−(3’、5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオナート]) [BASF社製]
<加工熱安定剤>
H−1:IRGAFOS168(トリス(2、4−ジ−tert−ブチルフェニル)フォスファイト) [BASF社製]
<押出機>
二軸押出機(1)
・バレル径D=75mm
・スクリュー有効長L/バレル径D=40
二軸押出機(2)
・バレル径D=15mm
・スクリュー有効長L/バレル径D=45
<恒湿恒温槽>
恒湿恒温槽(1):エスペック社製、型番:PR−2KTH
<試験条件>
恒湿恒温槽設定温度条件(1):
(i)20℃で3時間等温保持
(ii)10℃/時間の速度で20℃から35℃まで昇温
(iii)10℃/時間の速度で35℃から5℃まで降温
(iv)10℃/時間の速度で5℃から20℃まで昇温
(v)10℃/時間の速度で20℃から35℃まで昇温
(vi)10℃/時間の速度で35℃から5℃まで降温
(vii)10℃/時間の速度で5℃から35℃まで昇温
(viii)10℃/時間の速度で35℃から5℃まで降温
(ix)10℃/時間の速度で5℃から20℃まで昇温
温度測定条件(1):
前記恒湿恒温槽(1)の中段に設置した金網棚の中央部に、下記の実施例および比較例に記載する箱模型を設置し、熱電対と温度記録装置を用い、箱模型内の内箱内の空間の上部中心、中央、下部中心の3点、および恒湿恒温槽(1)内に設置した箱模型の上部空間、下部空間の2点について、1分ごとに各点の温度を測定記録し、以下の各値を求める。
箱内温度T=箱模型内の内箱内の空間の上部中心、中央、下部中心の3点の平均温度
箱外温度T=箱模型の上部空間、下部空間の2点の平均温度
箱内温度最高値T max=(v)〜(ix)における箱内温度Tの最高値
箱内温度最低値T min=(v)〜(ix)における箱内温度Tの最低値
箱内温度振幅ΔT max−min=箱内温度最高値T maxから箱内温度最低値T minを差し引いた値
箱内外温度差ΔTi−o=箱内温度Tから箱内温度Tを差し引いた値
箱内外温度差最高値
ΔTi−o max=(v)〜(ix)における箱内外温度差ΔTi−oの最高値
箱内外温度差最低値
ΔTi−o min=(v)〜(ix)における箱内外温度差ΔTi−oの最低値
〔参考例1〕
(1)構成単位(A)と構成単位(B)と構成単位(C)とからなる重合体(エチレン−n−ヘキサデシルアクリレート−メチルアクリレート共重合体)の製造
攪拌機を備えた反応器の内部を窒素置換した後、A−1:100重量部、B−1:73.6重量部、C−1:0.8重量部加え、ジャケット温度を140℃に設定し12時間1kPa減圧下にて加熱攪拌を行い、重合体(cf1)(エチレン−n−ヘキサデシルアクリレート−メチルアクリレート共重合体)を得た。重合体(cf1)の物性値と評価結果を表1に示す。
〔参考例1’〕
(1)構成単位(A)と構成単位(B)と構成単位(C)とからなる重合体(エチレン−n−ヘキサデシルアクリレート−メチルアクリレート共重合体)の製造
攪拌機を備えた反応器の内部を窒素置換した後、A−2:100重量部、B−2:84.4重量部、C−2:0.2重量部加え、ジャケット温度を140℃に設定し12時間1kPa減圧下にて加熱攪拌を行い、重合体(cf1’)(エチレン−n−ヘキサデシルアクリレート−メチルアクリレート共重合体)を得た。重合体(cf1’)の物性値と評価結果を表1に示す。
〔参考例2〕
(1)架橋されている樹脂組成物(架橋されているエチレン−n−ヘキサデシルアクリレート−メチルアクリレート共重合体とポリプロピレンを含む樹脂組成物)の作製
参考例1’(1)で得られた重合体(cf1’):80重量部と、D−1:20重量部と、E−1:1.0重量部と、F−1:1.0重量部と、G−1:0.1重量部と、H−1:0.1重量部とを二軸押出機(1)を用いて、スクリュー回転数350rpm、吐出量200kg/hr、バレル前半部温度200℃、バレル後半部温度220℃、ダイス温度200℃で押出し、架橋されている樹脂組成物(cf2)を作製した。
〔参考例3〕
(1)構成単位(A)と構成単位(B)とからなる重合体(エチレン−α−オレフィン共重合体)の製造
減圧乾燥後、内部を窒素で置換した内容積5リットルの撹拌機付きオートクレーブに、α−オレフィンC2024(炭素原子数18、20,22,24、26のオレフィン混合物、イネオス社製)を706g含有するトルエン溶液1.4Lを加え、次いで、液量が3Lとなるようにトルエンを加えた。オートクレーブを60℃まで昇温した後、エチレンをその分圧が0.1MPaとなるように加え系内を安定させた。これに、トリイソブチルアルミニウムのヘキサン溶液(0.34mol/L,14.7ml)を投入した。次に、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(1.0mmol/13.4mL)、ジフェニルメチレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロライドのトルエン溶液(0.2mmol/L,7.5mL)を投入することにより重合を開始し、全圧を一定に保つようにエチレンガスをフィードした。
3時間経過後2mlのエタノールを添加し、重合を停止した。重合停止後、重合体を含有するトルエン溶液をアセトン中に添加することにより、エチレン−α−オレフィン共重合体(cf3)を析出させ、濾別した重合体(cf3)をさらにアセトンで2回洗浄した。
得られた重合体(cf3)を80℃で真空乾燥することにより、369gの重合体(cf3)が得られた。重合体(cf3)の物性値と評価結果を表1に示す。
〔参考例4〕
(1)架橋されている樹脂組成物(架橋されているエチレン−α−オレフィン共重合体とポリプロピレン単独重合体を含む樹脂組成物)の作製
参考例3(1)で得られた重合体(cf3):80重量部と、D−1:20重量部と、E−2:0.5重量部と、F−1:0.75重量部と、G−1:0.1重量部とを二軸押出機(2)を用いて、スクリュー回転数150rpm、吐出量1.8kg/hr、バレル前半部温度180℃、バレル後半部温度220℃、ダイス温度200℃で押出し、架橋されている樹脂組成物(cf4)を作製した。
〔参考例5〕
(1)構成単位(B)からなる重合体(n−オクタデシルメタクリレート単独重合体)の製造
減圧乾燥後、内部を窒素で置換した内容積300mLのフラスコに、B−3:126.7gを加え、内温を50℃に設定し加熱攪拌を行いB−3を完全に溶解させた。次いで、E−3:307.3mgを加え、内温を80℃に設定し80分加熱攪拌し、生成物を1000mLのエタノールで洗浄し、120℃で真空乾燥することにより、重合体(cf5)(n−オクタデシルメタクリレート単独重合体)を得た。重合体(cf5)の物性値と評価結果を表1に示す。
〔参考例6〕
(1)樹脂組成物(n−オクタデシルメタクリレート単独重合体とポリプロピレン単独重合体を含む樹脂組成物)の作製
参考例5(1)で得られた樹脂組成物(cf5):80重量部とD−2:20重量部とを、ラボプラストミル(東洋精機製作所製 形式65C150)にて窒素雰囲気下、回転数80rpm、チャンバー温度200℃で5分間混練し、樹脂組成物(cf6)を作製した。
Figure 2017217417
〔実施例1〕
(1)蓄熱層の作製
参考例1で得られた重合体(cf1)をキャビティサイズ160mm×160mm×1mmの金型を用いて、100℃で10分間、圧縮成形、裁断し、以下の重合体(cf1)のシートからなる蓄熱層(1)を得た。
蓄熱層(1):120mm×120mm×1mm ×6枚
(2)断熱層の作製
市販の押出発泡ポリスチレン断熱材として、スタイロフォームIB(ダウ化工株式会社製、比重=26kg/m、熱伝導率=0.04W/mK以下)を適切なサイズに裁断することで以下のポリスチレン発泡体からなる断熱層(1A)(1B)を得た。
断熱層(1A):160mm×160mm×19mm ×2枚
断熱層(1B):141mm×122mm×19mm ×4枚
(3)積層体の作製
前記蓄熱層(1)の120mmx120mmの面の中心と、前記断熱層(1A)の160mmx160mmの面の中心を揃え、かつ、蓄熱層(1)の前記平面の周囲4辺と断熱層(1A)の前記平面の周囲4辺がそれぞれ平行になる位置で重ね、必要最小限のテープで固定し、前記蓄熱層(1)と前記断熱層(1A)とを有する積層体(1A)を得た。同様にして積層体(1A)を計2枚得た。
前記蓄熱層(1)の120mmx120mmの面の中心を、前記断熱層(1B)の141mmx122mmの面から長辺側19mm×短辺側122mmの部分を差し引いた122mmx122mmの部分の中心に揃え、かつ、蓄熱層(1)の前記平面の周囲4辺と断熱層(1B)の前記平面の周囲4辺がそれぞれ平行になる位置で重ね、必要最小限のテープで固定し、前記蓄熱層(1)と前記断熱層(1B)とを有する積層体(1B)を得た。同様にして積層体(1B)を計4枚得た。
積層体(1A):蓄熱層(1)+断熱層(1A) ×2枚
積層体(1B):蓄熱層(1)+断熱層(1B) ×4枚
(4)内箱と外箱の作製
市販のケント紙(厚み:0.5mm)を立方体の展開図を適切なサイズに裁断し組み立てることで以下の紙からなる内箱と外箱を得た。
内箱:120mm×120mm×120mm
外箱:160mm×160mm×160mm
(5)箱模型の作製
前記外箱の中心に前記内箱が配置されるように、外箱と内箱の間の6面の空間に、前記積層体(1A)を上下面に、前記積層体(1B)を側面に、それぞれ1枚ずつ配置することにより箱模型(1)を得た。このとき、蓄熱層(1)が内箱と接し、断熱層(1A)(1B)が外箱と接する向きに配置した。
また各箱模型の下部の4隅には、恒湿恒温槽内の底面と直接接触する部分からの伝熱を軽減するために、スタイロフォームIB製の足(20mm×20mm×20mm)を両面テープで張り付けた。
箱模型(1):上下面に積層体(1A)×2面+側面に積層体(1B)×4面
(蓄熱層(1)を内向き、断熱層(1A)(1B)を外向きに配置)
(6)箱模型実験
前記恒湿恒温槽設定温度条件(1)および温度測定条件(1)に従い、前記箱模型(1)について測定した結果を表2に示す。
〔実施例2〕
(1)蓄熱層の作製
蓄熱層のサイズを以下に変更する以外は実施例1の(1)と同様にして行い、蓄熱層(2)を得た。
蓄熱層(2):158mm×158mm×1mm ×6枚
(2)断熱層の作製
断熱層のサイズを以下に変更する以外は実施例1の(2)と同様にして行い、断熱層(2A)(2B)を得た。
断熱層(2A):158mm×158mm×19mm ×2枚
断熱層(2B):139mm×120mm×19mm ×4枚
(3)積層体の作製
前記蓄熱層(2)の158mmx158mmの面の中心と、前記断熱層(2A)の158mmx158mmの面の中心を揃え、かつ、蓄熱層(2)の前記平面の周囲4辺と断熱層(2A)の前記平面の周囲4辺がそれぞれ平行になる位置で重ね、必要最小限のテープで固定し、前記蓄熱層(2)と前記断熱層(2A)とを有する積層体(2A)を得た。同様にして積層体(2A)を計2枚得た。
前記蓄熱層(2)の158mmx158mmの面の中心を、前記断熱層(2B)の139mmx120mmの面から長辺側19mm×短辺側120mmの部分を差し引いた120mmx120mmの部分の中心に揃え、かつ、蓄熱層(2)の前記平面の周囲4辺と断熱層(2B)の前記平面の周囲4辺がそれぞれ平行になる位置で重ね、必要最小限のテープで固定し、前記蓄熱層(2)と前記断熱層(2B)とを有する積層体(2B)を得た。同様にして積層体(2B)を計4枚得た。
積層体(2A):蓄熱層(2)+断熱層(2A) ×2枚
積層体(2B):蓄熱層(2)+断熱層(2B) ×4枚
(4)内箱と外箱の作製
実施例1の(4)と同様にして内箱と外箱を得た。
内箱:120mm×120mm×120mm
外箱:160mm×160mm×160mm
(5)箱模型の作製
前記外箱の中心に前記内箱が配置されるように、外箱と内箱の間の6面の空間に、前記積層体(2A)を上下面に、前記積層体(2B)を側面に、それぞれ1枚ずつ配置することにより箱模型(2)を得た。このとき、蓄熱層(2)が外箱と接し、断熱層(2A)(2B)が内箱と接する向きに配置した。
また各箱模型の下部の4隅には、恒湿恒温槽内の底面と直接接触する部分からの伝熱を軽減するために、スタイロフォームIB製の足(20mm×20mm×20mm)を両面テープで張り付けた。
箱模型(2):上下面に積層体(2A)×2面+側面に積層体(2B)×4面
(蓄熱層(2)を外向き、断熱層(2A)(2B)を内向きに配置)
(6)箱模型実験
前記恒湿恒温槽設定温度条件(1)および温度測定条件(1)に従い、前記箱模型(2)について測定した結果を表2に示す。
〔実施例3〕
参考例1で得られた重合体(cf1)を参考例2で得られた重合体(cf2)へ変更する以外は実施例1の(1)〜(6)と同様にして行った結果を表2に示す。
〔実施例4〕
参考例1で得られた重合体(cf1)を参考例2で得られた重合体(cf2)へ変更する以外は実施例2の(1)〜(6)と同様にして行った結果を表2に示す。
〔実施例5〕
参考例1で得られた重合体(cf1)を参考例4で得られた重合体(cf4)へ変更する以外は実施例1の(1)〜(6)と同様にして行った結果を表2に示す。
〔実施例6〕
参考例1で得られた重合体(cf1)を参考例4で得られた重合体(cf4)へ変更する以外は実施例2の(1)〜(6)と同様にして行った結果を表2に示す。
〔実施例7〕
参考例1で得られた重合体(cf1)を参考例6で得られた重合体(cf6)へ変更する以外は実施例1の(1)〜(6)と同様にして行った結果を表2に示す。
〔実施例8〕
参考例1で得られた重合体(cf1)を参考例6で得られた重合体(cf6)へ変更する以外は実施例2の(1)〜(6)と同様にして行った結果を表2に示す。
〔比較例1〕
(2)断熱層の作製
断熱層のサイズを以下に変更する以外は実施例1の(2)と同様にして行い、断熱層(refA)(refB)を得た。
断熱層(refA):160mm×160mm×20mm ×2枚
断熱層(refB):140mm×120mm×20mm ×4枚
(4)内箱と外箱の作製
実施例1の(4)と同様にして内箱と外箱を得た。
内箱:120mm×120mm×120mm
外箱:160mm×160mm×160mm
(5)箱模型の作製
前記外箱の中心に前記内箱が配置されるように、外箱と内箱の間の6面の空間に、前記断熱層(refA)を上下面に、前記断熱層(refB)を側面に、それぞれ1枚ずつ配置することにより箱模型(ref)を得た。
また各箱模型の下部の4隅には、恒湿恒温槽内の底面と直接接触する部分からの伝熱を軽減するために、スタイロフォームIB製の足(20mm×20mm×20mm)を両面テープで張り付けた。
箱模型(ref):上下面に断熱層(refA)×2面+側面に断熱層(refB)×4面
(6)箱模型実験
前記恒湿恒温槽設定温度条件(1)および温度測定条件(1)に従い、前記箱模型(ref)について測定した結果を表2に示す。
Figure 2017217417
箱内温度振幅ΔT max−minが小さいほど、箱外の温度変化に対して箱内の温度がより一定に保たれる効果が大きい。
従って、実施例1から8で使用した積層体は比較例1で使用した一般的な断熱材に比べて外部の温度変化に対して内部の温度をより一定に保つ効果が認められる。
〔実施例9〕
<1>蓄熱層の作製
参考例1で得られた重合体(cf1)をキャビティサイズ160mm×160mm×1mmの金型を用いて、100℃で10分間、圧縮成形し、必要に応じて裁断することにより、以下の重合体(cf1)のシートからなる蓄熱層(9A)(9B)を得た。
蓄熱層(9A):120mm×120mm×1mm ×6枚(断熱層内側積層用)
蓄熱層(9B):160mm×160mm×1mm ×6枚(断熱層外側積層用)
<2>断熱層の作製
市販の押出発泡ポリスチレン断熱材として、スタイロフォームIB(ダウ化工株式会社製、比重=26kg/m、熱伝導率=0.04W/mK以下)を適切なサイズに裁断することで以下のポリスチレン発泡体からなる断熱層(9A)(9B)を得た。
断熱層(9A):140mm×140mm×19mm ×6枚(積層体用)
断熱層(9B):140mm×140mm×20mm ×6枚(断熱層単独用)
<3>積層体の作製
実施例9の<1>で得られた蓄熱層(9A)1枚と、実施例9の<2>で得られた断熱層(9A)1枚とを、両者の2つの辺と1つの角が重なる位置にて積層し、必要最小限の長さのテープを用いて固定することにより、蓄熱層(9A)と断熱層(9A)とを有する積層体(9A)を得た。同様にして積層体(9A)を計6枚(計6組)得た。
実施例9の<1>で得られた蓄熱層(9B)1枚と、実施例9の<2>で得られた断熱層(9A)1枚とを、両者の2つの辺と1つの角が重なる位置にて積層し、必要最小限の長さのテープを用いて固定することにより、蓄熱層(9B)と断熱層(9A)とを有する積層体(9B)を得た。同様にして積層体(9B)を計6枚(計6組)得た。
積層体(9A):蓄熱層(9A)+断熱層(9A) ×6枚(蓄熱層内側積層用)
積層体(9B):蓄熱層(9B)+断熱層(9A) ×6枚(蓄熱層外側積層用)
<4>内箱と外箱の作製
市販のケント紙(厚み:0.5mm)を立方体の展開図を適切なサイズに裁断し組み立てることにより、以下の紙からなる内箱と外箱を得た。
内箱:120mm×120mm×120mm
外箱:160mm×160mm×160mm
<5>箱模型の作製
<箱模型(1)>
実施例9の<4>で得られた外箱の中心に内箱が設置されるように、実施例9の<3>で得られた積層体(9A)を、外箱と内箱との間6面に、それぞれ1枚ずつ配置することにより箱模型(1)を得た。このとき、蓄熱層(9A)が内箱と接し、断熱層(9A)が外箱と接するように配置した。
<箱模型(2)>
実施例9の<4>で得られた外箱の中心に内箱が設置されるように、実施例9の<3>で得られた積層体(9B)を、外箱と内箱との間6面に、それぞれ1枚ずつ配置することにより箱模型(2)を得た。このとき、蓄熱層(9B)が外箱と接し、断熱層(9A)が内箱と接するように配置した。
<箱模型(3)>
実施例9の<4>で得られた外箱の中心に内箱が設置されるように、実施例9の<2>で得られた断熱層(9B)を、外箱と内箱との間6面に、それぞれ1枚ずつ配置することにより箱模型(3)を得た。
また各箱模型の下部の4隅には、恒湿恒温槽(1)内の底面と直接接触する部分からの伝熱を軽減するために、スタイロフォームIB製の足(20mm×20mm×20mm)を両面テープで張り付けた。
箱模型(1):積層体(9A)×6面(蓄熱層が内側、断熱層が外側の向きで設置)
箱模型(2):積層体(9B)×6面(蓄熱層が外側、断熱層が内側の向きで設置)
箱模型(3):断熱層(9B)×6面
<6>箱模型実験
実施例9の<5>で得られた箱模型(1)を恒湿恒温槽(1)の内部に設置し、恒湿恒温槽設定温度条件(1)にて内箱中心温度の経時変化を熱電対により測定した。恒湿恒温槽設定温度条件(1)の(iii)〜(viii)において、恒湿恒温槽(1)の内部温度が最高温度の時の、恒湿恒温槽(1)の内部温度と内箱中心温度の差ΔT1と、恒湿恒温槽(1)内部温度が最低温度の時の恒湿恒温槽(1)内部温度と内箱中心温度の差ΔT2を表3に示す。
ΔT1=最高温度時温度差(内箱中心温度−恒湿恒温槽(1)内部温度)
ΔT2=最低温度時温度差(内箱中心温度−恒湿恒温槽(1)内部温度)
〔実施例10〕
<6>箱模型実験
実施例9の<5>で得られた箱模型(2)を恒湿恒温槽(1)の内部に設置し、恒湿恒温槽設定温度条件(1)にて内箱中心温度の経時変化を熱電対により測定した。恒湿恒温槽設定温度条件(1)の(iii)〜(viii)において、恒湿恒温槽(1)内部温度が最高温度の時の、恒湿恒温槽(1)内部温度と内箱中心温度の差ΔT1と、恒湿恒温槽(1)内部温度が最低温度の時の恒湿恒温槽(1)内部温度と内箱中心温度の差ΔT2を表3に示す。(ΔT1とΔT2の定義は、実施例9と同じである)
〔比較例2〕
<6>箱模型実験
実施例9の<5>で得られた箱模型(3)を恒湿恒温槽(1)の内部に設置し、恒湿恒温槽設定温度条件(1)にて内箱中心温度の経時変化を熱電対により測定した。恒湿恒温槽設定温度条件(1)の(iii)〜(viii)において、恒湿恒温槽(1)内部温度が最高温度の時の、恒湿恒温槽(1)内部温度と内箱中心温度の差ΔT1と、恒湿恒温槽(1)内部温度が最低温度の時の恒湿恒温槽(1)内部温度と内箱中心温度の差ΔT2を表3に示す。(ΔT1とΔT2の定義は、実施例9および10と同じである)
Figure 2017217417
最高温度時温度差ΔT1の絶対値および最低温度時温度差ΔT2の絶対値が大きいほど、箱外の温度変化に対して箱内の温度がより一定に保たれる効果が大きい。
従って、実施例9から10で使用した積層体は比較例2で使用した一般的な断熱材に比べて外部の温度変化に対して内部の温度をより一定に保つ効果が認められる。

Claims (14)

  1. 示差走査熱量測定によって10℃以上60℃未満の温度範囲内に観測される融解エンタルピーが30J/g以上である重合体(1)を含む蓄熱層(1)、および、
    熱伝導率が0.1W/(m・K)以下である断熱層(2)
    を有する積層体。
  2. 前記蓄熱層(1)が、前記重合体(1)と、示差走査熱量測定によって観測される融解ピーク温度またはガラス転移温度が50℃以上180℃以下である重合体(但し、重合体(1)を除く)である重合体(2)とを含有し、
    前記重合体(1)と前記重合体(2)の合計量を100重量%として、前記重合体(1)の含有量が30重量%以上99重量%以下であり、前記重合体(2)の含有量が1重量%以上70重量%以下である請求項1に記載の積層体。
  3. 前記重合体(1)が、下記式(1)で示される構成単位(B)を有する重合体である請求項1または2に記載の積層体。
    Figure 2017217417
    (式(1)中、
    Rは、水素原子またはメチル基を表し、
    は、単結合、―CO―O―、―O―CO―、または―O―を表し、
    は、単結合、―CH―、―CH―CH―、―CH―CH―CH―、―CH―CH(OH)―CH―、または―CH―CH(CHOH)―を表し、
    は、単結合、―CO―O―、―O―CO―、―O―、―CO―NH―、―NH―CO―、―CO―NH―CO―、―NH―CO―NH―、―NH―、または―N(CH)―を表し、
    は炭素原子数14以上30以下のアルキル基を表し、
    、L、及びLの化学構造の説明における横書きの化学式の各々は、その左側が式(1)の上側、その右側が式(1)の下側に対応する。)
  4. 前記重合体(1)が、エチレンに由来する構成単位(A)と、下記式(1)で示される構成単位(B)とを有し、さらに下記式(2)で示される構成単位及び下記式(3)で示される構成単位からなる群より選ばれる少なくとも一種の構成単位(C)を有してもよく、
    前記構成単位(A)と前記構成単位(B)と前記構成単位(C)の合計数を100%として、前記構成単位(A)の数が70%以上99%以下であり、前記構成単位(B)と前記構成単位(C)の合計数が1%以上30%以下であり、
    前記構成単位(B)と前記構成単位(C)の合計数を100%として、前記構成単位(B)の数が1%以上100%以下であり、前記構成単位(C)の数が0%以上99%以下である重合体である請求項1〜3のいずれか一項に記載の積層体。
    Figure 2017217417
    (式(1)中、
    Rは、水素原子またはメチル基を表し、
    は、単結合、―CO―O―、―O―CO―、または―O―を表し、
    は、単結合、―CH―、―CH―CH―、―CH―CH―CH―、―CH―CH(OH)―CH―、または―CH―CH(CHOH)―を表し、
    は、単結合、―CO―O―、―O―CO―、―O―、―CO―NH―、―NH―CO―、―CO―NH―CO―、―NH―CO―NH―、―NH―、または―N(CH)―を表し、
    は炭素原子数14以上30以下のアルキル基を表し、
    、L、及びLの化学構造の説明における横書きの化学式の各々は、その左側が式(1)の上側、その右側が式(1)の下側に対応する。)
    Figure 2017217417
    (式(2)中、
    Rは、水素原子またはメチル基を表し、
    は、単結合、―CO―O―、―O―CO―、または―O―を表し、
    は、炭素原子数1以上8以下のアルキレン基を表し、
    は、水素原子、エポキシ基、―CH(OH)―CHOH、カルボキシ基、ヒドロキシ基、アミノ基、または炭素原子数1以上4以下のアルキルアミノ基を表し、
    の化学構造の説明における横書きの化学式の各々は、その左側が式(2)の上側、その右側が式(2)の下側に対応する。)
    Figure 2017217417
  5. 前記重合体(1)が、前記構成単位(A)と前記構成単位(B)と有し、さらに前記構成単位(C)を有してもよい重合体であって、該重合体に含まれる全ての構成単位の合計数を100%として、前記構成単位(A)と前記構成単位(B)と前記構成単位(C)の合計数が90%以上である重合体である請求項4に記載の積層体。
  6. 前記重合体(1)の下記式(I)で定義される比Aが0.95以下である請求項1〜5のいずれか一項に記載の積層体。
    A=α/α (I)
    [式(I)中、αは、
    光散乱検出器と粘度検出器を備えた装置を用いるゲル・パーミエイション・クロマトグラフィーにより重合体の絶対分子量と固有粘度を測定し、
    絶対分子量の対数を横軸、固有粘度の対数を縦軸として、測定したデータをプロットし、絶対分子量の対数と固有粘度の対数を、横軸が前記重合体の重量平均分子量の対数以上z平均分子量の対数以下の範囲において式(I−I)で最小二乗法近似し、式(I−I)を表す直線の傾きの値をαとすることを含む方法により得られた値である。
    log[η]=αlogM+logK (I−I)
    (式(I−I)中、[η]は重合体の固有粘度(単位:dl/g)を表し、Mは重合体の絶対分子量を表し、Kは定数である。)
    式(I)中、αは、
    光散乱検出器と粘度検出器を備えた装置を用いるゲル・パーミエイション・クロマトグラフィーによりポリエチレン標準物質1475a(米国国立標準技術研究所製)の絶対分子量と固有粘度を測定し、
    絶対分子量の対数を横軸、固有粘度の対数を縦軸として、測定したデータをプロットし、絶対分子量の対数と固有粘度の対数を、横軸が前記ポリエチレン標準物質1475aの重量平均分子量の対数以上z平均分子量の対数以下の範囲において式(I−II)で最小二乗法近似し、式(I−II)を表す直線の傾きの値をαとすることを含む方法により得られた値である。
    log[η]=αlogM+logK (I−II)
    (式(I−II)中、[η]はポリエチレン標準物質1475aの固有粘度(単位:dl/g)を表し、Mはポリエチレン標準物質1475aの絶対分子量を表し、Kは定数である。
    なお、ゲル・パーミエイション・クロマトグラフィーによる重合体およびポリエチレン標準物質1475aの絶対分子量と固有粘度の測定において、移動相はオルトジクロロベンゼンであり、測定温度は155℃である。)]
  7. 前記重合体(1)が、架橋されている重合体である請求項1〜6のいずれか一項に記載の積層体。
  8. 前記重合体(1)のゲル分率が20重量%以上である(ただし、重合体(1)の重量を100重量%とする)請求項1〜7のいずれか一項に記載の積層体。
  9. 前記蓄熱層(1)が、発泡体からなる発泡層である請求項1〜8のいずれか一項に記載の積層体。
  10. 前記断熱層(2)が、前記重合体(2)を含む発泡体からなる発泡層である請求項1〜9のいずれか一項に記載の積層体。
  11. 請求項1〜10のいずれか一項に記載の積層体を含む建築材料。
  12. 前記積層体に含まれる前記蓄熱層(1)が室内側となり、前記断熱層(2)が屋外側となるように配置するための請求項11に記載の建築材料。
  13. 請求項11または12に記載の建築材料を含み、該建築材料に含まれる積層体の前記蓄熱層(1)が室内側となり、前記断熱層(2)が屋外側となるように配置された建築物。
  14. 請求項1〜10のいずれか一項に記載の積層体を含み、前記蓄熱層(1)が内側、前記断熱層(2)が外側となるように配置された保温容器。
JP2018523939A 2016-06-15 2017-06-13 積層体、建築材料、建築物および保温容器 Active JP7045989B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016119204 2016-06-15
JP2016119204 2016-06-15
PCT/JP2017/021843 WO2017217417A1 (ja) 2016-06-15 2017-06-13 積層体、建築材料、建築物および保温容器

Publications (2)

Publication Number Publication Date
JPWO2017217417A1 true JPWO2017217417A1 (ja) 2019-04-11
JP7045989B2 JP7045989B2 (ja) 2022-04-01

Family

ID=60663723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018523939A Active JP7045989B2 (ja) 2016-06-15 2017-06-13 積層体、建築材料、建築物および保温容器

Country Status (5)

Country Link
US (1) US20190143639A1 (ja)
EP (1) EP3473432A4 (ja)
JP (1) JP7045989B2 (ja)
CN (1) CN109311270B (ja)
WO (1) WO2017217417A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094711A1 (ja) * 2015-11-30 2017-06-08 住友化学株式会社 樹脂製品および薬効成分徐放デバイス
US20190330508A1 (en) * 2018-04-30 2019-10-31 E I Du Pont De Nemours And Company Composition and methods for coaxial devices including a phase change material
JP2020040265A (ja) * 2018-09-10 2020-03-19 Dic株式会社 保温シート
JP6662996B1 (ja) * 2018-12-27 2020-03-11 日本ペイント・インダストリアルコ−ティングス株式会社 塗料組成物セット、複層塗膜形成方法、路面標示及び路面標示除去方法
CN110333263B (zh) * 2019-07-10 2021-10-29 广东工业大学 一种隔热混凝土热阻性能评价方法
JP7520548B2 (ja) * 2020-03-27 2024-07-23 三菱重工業株式会社 蓄熱材組成物
CN111823618B (zh) * 2020-07-03 2022-03-01 嘉兴市布雷塑胶新材料股份有限公司 高耐寒性冰包保温用tpu复合材料生产工艺
KR102499275B1 (ko) * 2021-01-13 2023-02-15 세진하이텍(주) 난연, 단열 및 결로 방지 기능을 갖는 다기능성 판넬 및 이의 제조방법
TR2021005449A1 (tr) * 2021-03-25 2022-10-21 Ihsan Dogramaci Bilkent Ueniversitesi İyonlaştırıcı radyasyona karşı koruma ve ısıl yalıtım sağlayan ve organik/inorganik materyallerden oluşturulan çok katmanlı kompozit panel.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030822A1 (en) * 1997-12-16 1999-06-24 Exxon Research And Engineering Company Group 11 transition metal amine catalysts for olefin polymerization
JP2003268359A (ja) * 2002-03-12 2003-09-25 Idemitsu Kosan Co Ltd 蓄熱材料
JP2004027189A (ja) * 2002-03-12 2004-01-29 Idemitsu Technofine Co Ltd 蓄熱性フィルム又はシート及びその積層体
JP2006152275A (ja) * 2004-11-02 2006-06-15 Sk Kaken Co Ltd 蓄熱断熱体
JP2009046638A (ja) * 2007-08-22 2009-03-05 Kao Corp 蓄熱材
JP2013525518A (ja) * 2010-04-16 2013-06-20 アウトラスト テクノロジーズ,リミテッド ライアビリティ カンパニー ポリマー相転移材料を有する熱制御建築材料及び他の建設構成材

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5950450A (en) * 1996-06-12 1999-09-14 Vacupanel, Inc. Containment system for transporting and storing temperature-sensitive materials
US6493507B2 (en) * 1997-01-30 2002-12-10 Ival O. Salyer Water heating unit with integral thermal energy storage
US7582716B2 (en) * 2004-03-17 2009-09-01 Dow Global Technologies Inc. Compositions of ethylene/α-olefin multi-block interpolymer for blown films with high hot tack
US9234059B2 (en) * 2008-07-16 2016-01-12 Outlast Technologies, LLC Articles containing functional polymeric phase change materials and methods of manufacturing the same
FR2958120B1 (fr) * 2010-03-31 2013-05-31 Bel Fromageries Nouvelle composition d'enrobage a base de copolymeres, ses utilisations et son procede de preparation
EP2596047B1 (de) * 2010-07-20 2014-06-25 Basf Se Polyamid-formteile enthaltend mikroverkapseltes latentwärmespeichermaterial
BE1019532A5 (nl) * 2010-10-08 2012-08-07 Iplast Holding Nv Structurele plaat.
US8587945B1 (en) * 2012-07-27 2013-11-19 Outlast Technologies Llc Systems structures and materials for electronic device cooling
JP6295586B2 (ja) * 2012-10-10 2018-03-20 住友化学株式会社 オレフィン系重合体、架橋成形体、および架橋発泡体
ITMI20130715A1 (it) * 2013-05-02 2014-11-03 Prs Passive Refrigeration Solutions S A Apparato per la conservazione, il trasporto e la distribuzione di prodotti refrigerati o congelati, particolarmente per vani termicamente isolati di mezzi di trasporto frigoriferi, celle frigorifere o simili.
JP2014233951A (ja) * 2013-06-05 2014-12-15 東レ株式会社 積層シート、太陽電池バックシート、及び太陽電池
RU2670894C9 (ru) * 2014-05-19 2018-12-17 Смартполимер Гмбх Гибкие листовые материалы из рсм
EP3235836B1 (en) * 2014-12-15 2020-10-21 Sumitomo Chemical Company, Limited Polymer
EP3365506B1 (en) * 2015-10-23 2021-05-05 Schmetzer Industries Holdings Pty Ltd Insulation material arrangement and method for forming an insulation material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030822A1 (en) * 1997-12-16 1999-06-24 Exxon Research And Engineering Company Group 11 transition metal amine catalysts for olefin polymerization
JP2003268359A (ja) * 2002-03-12 2003-09-25 Idemitsu Kosan Co Ltd 蓄熱材料
JP2004027189A (ja) * 2002-03-12 2004-01-29 Idemitsu Technofine Co Ltd 蓄熱性フィルム又はシート及びその積層体
JP2006152275A (ja) * 2004-11-02 2006-06-15 Sk Kaken Co Ltd 蓄熱断熱体
JP2009046638A (ja) * 2007-08-22 2009-03-05 Kao Corp 蓄熱材
JP2013525518A (ja) * 2010-04-16 2013-06-20 アウトラスト テクノロジーズ,リミテッド ライアビリティ カンパニー ポリマー相転移材料を有する熱制御建築材料及び他の建設構成材

Also Published As

Publication number Publication date
US20190143639A1 (en) 2019-05-16
CN109311270A (zh) 2019-02-05
EP3473432A1 (en) 2019-04-24
CN109311270B (zh) 2021-05-18
WO2017217417A1 (ja) 2017-12-21
EP3473432A4 (en) 2020-02-26
JP7045989B2 (ja) 2022-04-01

Similar Documents

Publication Publication Date Title
JP7045989B2 (ja) 積層体、建築材料、建築物および保温容器
JP7093873B2 (ja) 樹脂組成物、成形体および発泡体
JP6123938B2 (ja) 重合体
JP7068168B2 (ja) 樹脂組成物およびその利用
JP6875205B2 (ja) 樹脂組成物およびその利用
EP4342958A1 (en) Heat storage composition
JP2018024820A (ja) 樹脂組成物およびその利用
WO2021241432A1 (ja) 蓄熱組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220322

R150 Certificate of patent or registration of utility model

Ref document number: 7045989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150