JPWO2017208653A1 - 不揮発性メモリセル、メモリセルユニット及び情報書き込み方法、並びに、電子機器 - Google Patents

不揮発性メモリセル、メモリセルユニット及び情報書き込み方法、並びに、電子機器 Download PDF

Info

Publication number
JPWO2017208653A1
JPWO2017208653A1 JP2018520706A JP2018520706A JPWO2017208653A1 JP WO2017208653 A1 JPWO2017208653 A1 JP WO2017208653A1 JP 2018520706 A JP2018520706 A JP 2018520706A JP 2018520706 A JP2018520706 A JP 2018520706A JP WO2017208653 A1 JPWO2017208653 A1 JP WO2017208653A1
Authority
JP
Japan
Prior art keywords
layer
memory cell
magnetization
heating
fixed layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018520706A
Other languages
English (en)
Other versions
JP6904343B2 (ja
Inventor
肥後 豊
豊 肥後
細見 政功
政功 細見
大森 広之
広之 大森
別所 和宏
和宏 別所
裕行 内田
裕行 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JPWO2017208653A1 publication Critical patent/JPWO2017208653A1/ja
Application granted granted Critical
Publication of JP6904343B2 publication Critical patent/JP6904343B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1655Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/303Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation
    • H01F41/304Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation using temporary decoupling, e.g. involving blocking, Néel or Curie temperature transitions by heat treatment in presence/absence of a magnetic field

Abstract

不揮発性メモリセルは、磁化方向に対応して情報を記憶する記憶層20と、記憶層20の磁化方向を規定する磁化固定層30とが積層されて成る積層構造体11、及び、磁化固定層30を加熱し、磁化固定層30の磁化方向を制御する加熱層40を備えている。

Description

本開示は、不揮発性メモリセル、より具体的には、磁気抵抗素子から成る不揮発性メモリセル、係る不揮発性メモリセルを備えたメモリセルユニット、及び、係るメモリセルユニットにおける情報書き込み方法、並びに、係るメモリセルユニットを備えた電子機器に関する。
MRAM(Magnetic Random Access Memory)は、磁性体の磁化方向に基づきデータ記憶を行うので、高速、且つ、ほぼ無限(1015回以上)の書換えが可能であり、既に産業オートメーションや航空機等の分野で使用されている。そして、MRAMは、その高速動作と高い信頼性から、今後、コードストレージやワーキングメモリへの展開が期待されているが、現実には、低消費電力化、大容量化に課題を有している。これは、MRAMの記録原理、即ち、配線から発生する電流磁界により磁化を反転させるという方式に起因する本質的な課題である。この問題を解決するための1つの方法として、電流磁界によらない記録方式、即ち、磁化反転方式が検討されており、中でも、スピン注入による磁化反転を応用したスピン注入型磁気抵抗効果素子(STT−MRAM,Spin Transfer Torque based Magnetic Random Access Memory)が注目されている(例えば、特開2014−072393号公報参照)。
スピン注入による磁化反転とは、磁性体を通過してスピン偏極した電子が他の磁性体に注入されることにより、他の磁性体において磁化反転が生じる現象である。スピン注入型磁気抵抗効果素子にあっては、スピン注入による磁化反転を利用することにより、外部磁界に基づき磁化反転を行うMRAMと比較して、素子の微細化が進んでも、書込み電流が増大しないという利点、書込み電流値が素子体積に比例して減少するためスケーリングが可能であるという利点、セル面積を縮小できるといった利点を有するし、MRAMで必要とされる記録用電流磁界発生用のワード線が不要であるため、デバイス構造、セル構造が単純になるという利点もある。
2端子素子であるスピン注入型磁気抵抗効果素子、及び、ゲート電極及びソース/ドレイン領域を備えた3端子素子である選択用トランジスタから構成された不揮発性メモリセルの等価回路図を図4に示す。スピン注入型磁気抵抗効果素子は、例えば、磁気トンネル接合素子(MTJ素子、Magnetic Tunnel Junction 素子)から構成されており、少なくとも2層の磁性層(具体的には、記憶層及び磁化固定層)を有する。磁化固定層にあっては磁化方向が固定されている。一方、記憶層(自由層)にあっては磁化方向が変化し、磁化方向に依存して情報「1」又は「0」を記憶する。スピン注入型磁気抵抗効果素子の一端は選択用トランジスタTRのソース/ドレイン領域の一方(便宜上、『ドレイン領域』と呼ぶ)に接続されており、他端はビット線BLに接続されている。また、選択用トランジスタTRのソース/ドレイン領域の他方(便宜上、『ソース領域』と呼ぶ)はセンス線65に接続されている。そして、ビット線BLからセンス線65へと電流を流すことで、あるいは又、センス線65からビット線BLへと電流を流すことで、スピン注入により記憶層の磁化方向を電流の流れの向きに応じて反転させ、情報を記憶する。
このようなスピン注入による磁化反転を利用するスピン注入型磁気抵抗効果素子において、情報の書き込み時、スピン注入型磁気抵抗効果素子に印加される電圧、電流は、選択用トランジスタの駆動能力によって決められる。ところで、選択用トランジスタの駆動電流は、ドレイン領域からソース領域に電流を流す場合と、ソース領域からドレイン領域に電流を流す場合とでは、流れる電流値に相違があるといった、非対称性が存在する。
センス線から選択用トランジスタ、スピン注入型磁気抵抗効果素子を経由してビット線へと電流を流す「書き込み−1」における等価回路図、並びに、スピン注入型磁気抵抗効果素子に印加される電圧と、スピン注入型磁気抵抗効果素子及び選択用トランジスタに流れる電流との関係を図14Aに示す。また、ビット線からスピン注入型磁気抵抗効果素子選択用トランジスタを経由してセンス線へと電流を流す「書き込み−2」における等価回路図、並びに、スピン注入型磁気抵抗効果素子に印加される電圧と、スピン注入型磁気抵抗効果素子及び選択用トランジスタに流れる電流との関係を図14Bに示す。図14A及び図14Bにおいて、縦軸は、スピン注入型磁気抵抗効果素子及び選択用トランジスタを流れる電流(単位:マイクロアンペア)であり、横軸は、スピン注入型磁気抵抗効果素子に印加される電圧(単位:ボルト)である。尚、図14A、図14Bにおいて、スピン注入型磁気抵抗効果素子を「MTJ」で表し、また、選択用トランジスタはNMOSから構成されているとする。図14Aに示す例では、センス線(ソース領域)にVdd(例えば、1.0ボルト。以下の説明においても同様)を印加し、ビット線を接地している。一方、図14Bに示す例では、ビット線にVddを印加し、センス線(ソース領域)を接地している。そして、どちらの書き込みの場合においても、選択用トランジスタのゲート電極に電源電圧Vddを印加することで選択用トランジスタを導通状態とし、選択用トランジスタを介してスピン注入型磁気抵抗効果素子に電流を流す。このとき、電源電圧Vddを、センス線に印加するか、ビット線に印加するかで、電流の向きが変わり、スピン注入型磁気抵抗効果素子に所望の情報を書き込むことができる。
ここで、ゲート電位はVddに固定されている。そして、「書き込み−1」の場合、ドレイン領域の電位は、スピン注入型磁気抵抗効果素子における電圧降下(ΔV)があるために、VddとVGNDとの間の値、具体的には、ΔVとなる。それ故、ゲート電極とドレイン領域との電位差ΔV1は(Vdd−ΔV)となる。一方、「書き込み−2」の場合、ソース領域の電位はVGNDに固定されており、ゲート電極とソース領域との電位差ΔV2はVddとなる。
特開2014−072393号公報
上述したように、「書き込み−1」の場合と「書き込み−2」の場合とを比較すると、|ΔV1|<|ΔV2|であり、「書き込み−1」の場合の方が駆動電流を決める電位差が小さくなり、結果として駆動電流が小さくなる。即ち、「書き込み−2」の場合における情報の書き込みと比較して、「書き込み−1」の情報の書き込みの方が、スピン注入型磁気抵抗効果素子に流れる電流量が少なくなり、不利な状態となる。このように従来のスピン注入型磁気抵抗効果素子における情報の書き込みにあっては、駆動用トランジスタの駆動能力が書き込む情報に依存して変わる。そして、不利な状態の場合(即ち、「書き込み−1」の場合)であっても適切な書き込み電流を確保するためには、選択用トランジスタを大きくしなければならず、セル面積が増大するという問題がある。
従って、本開示の目的は、選択用トランジスタにおいて双方向に電流を流すことなく、単一の方向に電流を流すことで情報の書き込みを行うことを可能とする構成、構造を有する不揮発性メモリセル(磁気抵抗効果素子)、係る不揮発性メモリセルを備えたメモリセルユニット、及び、係るメモリセルユニットにおける情報書き込み方法、並びに、係るメモリセルユニットを備えた電子機器を提供することにある。
上記の目的を達成するための本開示のメモリセルユニットは、
複数の不揮発性メモリセルが、第1の方向、及び、第1の方向とは異なる第2の方向に2次元マトリクス状に配列されて成るメモリセルユニットであって、
各不揮発性メモリセルは、磁化方向に対応して情報を記憶する記憶層と、記憶層の磁化方向を規定する磁化固定層とが積層されて成る積層構造体、及び、磁化固定層を加熱し、磁化固定層の磁化方向を制御する加熱層を備えている。
上記の目的を達成するための本開示の不揮発性メモリセルは、
磁化方向に対応して情報を記憶する記憶層と、記憶層の磁化方向を規定する磁化固定層とが積層されて成る積層構造体、及び、磁化固定層を加熱し、磁化固定層の磁化方向を制御する加熱層を備えている。
上記の目的を達成するための本開示の情報書き込み方法は、
複数の不揮発性メモリセルが、第1の方向、及び、第1の方向とは異なる第2の方向に2次元マトリクス状に配列されて成り、
各不揮発性メモリセルは、磁化方向に対応して情報を記憶する記憶層と、記憶層の磁化方向を規定する磁化固定層とが積層されて成る積層構造体を備えているメモリセルユニットにおける情報書き込み方法であって、
磁化固定層を加熱し、以て、磁化固定層の磁化方向を制御することで、磁化固定層の磁化方向に基づく情報を記憶層に書き込む。
上記の目的を達成するための本開示の電子機器は、本開示のメモリセルユニットを備えている。
本開示の不揮発性メモリセル、本開示のメモリセルユニットを構成する不揮発性メモリセル、本開示の情報書き込み方法における不揮発性メモリセル、及び、本開示の電子機器に備えられた不揮発性メモリセルにあっては、磁化固定層の加熱によって磁化固定層の磁化方向を制御する加熱層を備えており、磁化固定層の加熱によって不揮発性メモリセルに「1」又は「0」のいずれか一方の情報の書き込みを行うことができる。即ち、選択用トランジスタにおいて双方向に電流を流すことなく、単一の方向に電流を流すことで、「1」又は「0」のいずれか一方の情報の書き込みを行うことが可能となる。云い換えれば、選択用トランジスタの駆動能力が低い書込み電流の方向では、通常のスピン注入書き込みを行わず、磁化固定層の磁界による一括書き込みを行う。一方、選択用トランジスタの駆動能力が高い書込み電流の方向では、通常のスピン注入書き込みを行う。それ故、選択用トランジスタに流れる電流値に相違があるといった非対称性に起因して、選択用トランジスタを大きくしなければならず、セル面積が増大するといった問題を回避することができる。また、一括書き込み時の記憶層の磁化反転に磁化固定層の磁界を利用するが故に、大きな電力を必要としない。尚、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また、付加的な効果があってもよい。
図1A並びに図1Bは、それぞれ、実施例1の不揮発性メモリセルの模式的な斜視図、並びに、積層構造体及び加熱層の配置状態を模式的に示す図である。 図2は、図1Aに示す第1の方向に沿った実施例1の不揮発性メモリセルの模式的な一部断面図である。 図3は、図1Aに示す第2の方向に沿った実施例1の不揮発性メモリセルの模式的な一部断面図である。 図4は、スピン注入型磁気抵抗効果素子及び選択用トランジスタから構成された不揮発性メモリセルの等価回路図である。 図5は、メモリセルユニットの一部における積層構造体及び加熱層の配置状態を模式的に示す図である。 図6A及び図6Bは、実施例1の不揮発性メモリセルの動作状態を模式的に示す図である。 図7A及び図7Bは、実施例1の不揮発性メモリセルの動作状態を模式的に示す図である。 図8A及び図8Bは、実施例1の不揮発性メモリセルの変形例の動作状態を模式的に示す図である。 図9A及び図9Bは、実施例1の不揮発性メモリセルの変形例の動作状態を模式的に示す図である。 図10は、図1Aに示す第1の方向に沿ったと同様の実施例2の不揮発性メモリセルの模式的な一部断面図である。 図11は、図1Aに示す第2の方向に沿ったと同様の実施例2の不揮発性メモリセルの模式的な一部断面図である。 図12は、図1Aに示す第1の方向に沿ったと同様の実施例3(但し、実施例1の変形例)の不揮発性メモリセルの模式的な一部断面図である。 図13は、図1Aに示す第1の方向に沿ったと同様の実施例3(但し、実施例2の変形例)の不揮発性メモリセルの模式的な一部断面図である。 図14Aは、センス線からビット線へと電流を流す「書き込み−1」における等価回路図、並びに、スピン注入型磁気抵抗効果素子に印加される電圧と、スピン注入型磁気抵抗効果素子及び選択用トランジスタに流れる電流との関係を示す図であり、図14Bは、ビット線からセンス線へと電流を流す「書き込み−2」における等価回路図、並びに、スピン注入型磁気抵抗効果素子に印加される電圧と、スピン注入型磁気抵抗効果素子及び選択用トランジスタに流れる電流との関係を示す図である。 図15A及び図15Bは、それぞれ、スピン注入磁化反転を適用したスピン注入型磁気抵抗効果素子の概念図である。 図16A及び図16Bは、それぞれ、スピン注入磁化反転を適用したスピン注入型磁気抵抗効果素子の概念図である。 図17は、ダブル・スピンフィルター構造を有するスピン注入型磁気抵抗効果素子の概念図である。
以下、図面を参照して、実施例に基づき本開示を説明するが、本開示は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本開示の不揮発性メモリセル、メモリセルユニット及び情報書き込み方法、並びに、電子機器、全般に関する説明
2.実施例1(不揮発性メモリセル、メモリセルユニット及び情報書き込み方法)
3.実施例2(実施例1の変形)
4.実施例3(実施例1〜実施例2の変形)
5.その他
〈本開示の不揮発性メモリセル、メモリセルユニット及び情報書き込み方法、並びに、電子機器、全般に関する説明〉
本開示のメモリセルユニットあるいは本開示の電子機器に備えられたメモリセルユニットにおいて、
加熱層は、磁化固定層の少なくとも一部から成り、
第1の方向に沿って配列された不揮発性メモリセル群において、各不揮発性メモリセルを構成する加熱層は、加熱層延在部によって結ばれており、
加熱層延在部は、加熱層と同じ層構成を有する形態とすることができる。また、本開示の不揮発性メモリセルにおいて、
加熱層は、磁化固定層の少なくとも一部から成り、
一の方向に沿って隣接する不揮発性メモリセル間において、不揮発性メモリセルを構成する加熱層は、加熱層延在部によって結ばれており、
加熱層延在部は、加熱層と同じ層構成を有する形態とすることができる。
あるいは又、本開示のメモリセルユニットあるいは本開示の電子機器に備えられたメモリセルユニットにおいて、
加熱層は、磁化固定層と接して設けられており、
第1の方向に沿って配列された不揮発性メモリセル群において、各不揮発性メモリセルを構成する加熱層は、加熱層延在部によって結ばれている形態とすることができる。また、本開示の不揮発性メモリセルにおいて、
加熱層は、磁化固定層と接して設けられており、
一の方向に沿って隣接する不揮発性メモリセル間において、不揮発性メモリセルを構成する加熱層は、加熱層延在部によって結ばれている形態とすることができる。
そして、本開示のメモリセルユニット、本開示の電子機器に備えられたメモリセルユニット、あるいは、本開示の不揮発性メモリセルにおける以上に説明した好ましい形態において、加熱層の最大幅は加熱層延在部の幅の平均よりも狭い形態とすることができ、これによって、加熱層に流れる電流の密度を増加させることができる結果、磁化固定層を確実に加熱することができ、更には、これらの形態にあっては、加熱層及び加熱層延在部はビット線を兼ねている形態とすることができる。
本開示の情報書き込み方法において、
各不揮発性メモリセルは、積層構造体を構成する磁化固定層の少なくとも一部から成る加熱層を備えており、
第1の方向に沿って配列された不揮発性メモリセル群において、各不揮発性メモリセルを構成する加熱層は、加熱層延在部によって結ばれており、
加熱層延在部は、加熱層と同じ層構成を有し、
加熱層及び加熱層延在部に電流を流すことで、磁化固定層を加熱する形態とすることができる。あるいは又、
各不揮発性メモリセルは、積層構造体を構成する磁化固定層と接して設けられた加熱層を備えており、
第1の方向に沿って配列された不揮発性メモリセル群において、各不揮発性メモリセルを構成する加熱層は、加熱層延在部によって結ばれており、
加熱層及び加熱層延在部に電流を流すことで、磁化固定層を加熱する形態とすることができる。そして、これらの場合、加熱層の最大幅は加熱層延在部の幅の平均よりも狭い形態とすることができ、これによって、磁化固定層を確実に加熱することができ、更には、これらの場合、加熱層及び加熱層延在部はビット線を兼ねている形態とすることができる。
更には、以上に説明した好ましい各種形態を含む本開示の情報書き込み方法において、磁化固定層を加熱することで、第1の方向に沿って配列された不揮発性メモリセル群に一括して第1の情報を書き込む形態とすることができ、更には、第1の方向に沿って配列された不揮発性メモリセル群に一括して第1の情報を書き込んだ後、加熱層による磁化固定層の加熱を中止し、第1の方向に沿って配列された不揮発性メモリセル群において、所望の不揮発性メモリセルに第2の情報を書き込む形態とすることができる。
更には、以上に説明した好ましい形態を含む本開示のメモリセルユニット、本開示の電子機器に備えられたメモリセルユニット、本開示の不揮発性メモリセル、本開示の情報書き込み方法において、
磁化固定層と記憶層の間には中間層が設けられており、
磁化固定層は、中間層側から、第1の固定層、非磁性層及び第2の固定層の積層構造を有し、
第1の固定層と第2の固定層とは反強磁性的結合を有し、
磁化固定層の加熱時、第1の固定層の保磁力と、第2の固定層の保磁力とは異なる形態とすることができる。そして、この場合、磁化固定層の加熱によって、第1の固定層と第2の固定層との反強磁性的結合が解除され、第1の固定層の磁化方向と第2の固定層の磁化方向と記憶層の磁化方向とは同方向(同じ向き)となる形態とすることができ、更には、第1の固定層と第2の固定層の内、保磁力が大きい方の固定層の磁化方向と、記憶層の磁化方向とが同方向(同じ向き)となる形態とすることができる。あるいは又、この場合、磁化固定層の加熱によって、第1の固定層と第2の固定層との反強磁性的結合を解除し、第1の固定層の磁化方向と第2の固定層の磁化方向と記憶層の磁化方向とを同方向(同じ向き)とする形態とすることができ、更には、第1の固定層と第2の固定層の内、保磁力が大きい方の固定層の磁化方向と、記憶層の磁化方向とが同方向(同じ向き)となる形態とすることができる。ここで、「磁化方向が同方向になる」とは、磁化方向が平行になる状態だけではなく、磁化方向が平行から逸脱した状態をも含む。即ち、後述するように、第1の固定層あるいは第2の固定層の磁化方向は、記憶層に記憶すべき情報の基準となる磁化方向であり、記憶層の磁化方向と第1の固定層あるいは第2の固定層の磁化方向の相対的な角度によって、情報「0」及び情報「1」が規定されるが、このように、情報「0」及び情報「1」が規定される限りにおいて、第1の固定層あるいは第2の固定層の磁化方向と記憶層の磁化方向とは同方向であるとみなす。以下の説明においても同様である。
更には、以上に説明した好ましい形態を含む本開示のメモリセルユニット、本開示の電子機器に備えられたメモリセルユニット、本開示の不揮発性メモリセル、本開示の情報書き込み方法において、各不揮発性メモリセルは、周知のMIS型FETやMOS型FETといった電界効果トランジスタから成る選択用トランジスタを更に備えている構成とすることができる。そして、この場合、選択用トランジスタを不作動とした状態で、電流が加熱層に流されることで加熱層が発熱する構成とすることができ、あるいは又、選択用トランジスタを不作動とした状態で、電流を加熱層に流すことで加熱層を発熱させ、不揮発性メモリセルに第1の情報を書き込む構成とすることができ、更には、第1の情報を書き込んだ後、磁化固定層の加熱を中止し、選択用トランジスタを作動させて、所望の不揮発性メモリセルに第2の情報を書き込む構成とすることができ、更には、不揮発性メモリセルに第2の情報を書き込むとき、不揮発性メモリセルにおいて、記憶層から磁化固定層に向かって電流を流す構成とすることができる。
更には、本開示のメモリセルユニット、本開示の電子機器に備えられたメモリセルユニット、本開示の不揮発性メモリセル、本開示の情報書き込み方法における上述した各種の好ましい構成において、記憶層はソース/ドレイン領域の一方に接続されている構成とすることができ、この場合、選択用トランジスタのソース/ドレイン領域の他方は配線層(センス線)に接続されている構成とすることができる。
更には、本開示のメモリセルユニット、本開示の電子機器に備えられたメモリセルユニット、本開示の不揮発性メモリセル、本開示の情報書き込み方法における上述した各種の好ましい構成において、選択用トランジスタのゲート電極はワード線に接続されている構成とすることができ、この場合、ワード線は、第2の方向に延びている構成、あるいは、ワード線は、一の方向とは異なる方向に延びている構成とすることができる。
更には、本開示のメモリセルユニット、本開示の電子機器に備えられたメモリセルユニット、本開示の不揮発性メモリセル、本開示の情報書き込み方法における上述した各種の好ましい構成において、各不揮発性メモリセルの積層構造体は、層間絶縁層を介して選択用トランジスタの上方に設けられている構成とすることができる。そして、各不揮発性メモリセルの積層構造体において、磁化固定層は、層間絶縁層上に形成された下地層の上に設けられている形態とすることができるし、磁化固定層は、層間絶縁層の上方に設けられている形態とすることができる。
更には、以上に説明した好ましい形態、構成を含む本開示のメモリセルユニット、本開示の電子機器に備えられたメモリセルユニット、本開示の不揮発性メモリセル、本開示の情報書き込み方法において、不揮発性メモリセルは、垂直磁化方式のスピン注入型磁気抵抗効果素子、即ち、スピントルクによって記憶層の磁化が反転することで、情報の書き込み、消去を行う垂直磁化方式の磁気抵抗効果素子から成る形態とすることができる。
以上に説明した好ましい各種形態を含む本開示の不揮発性メモリセル、以上に説明した好ましい各種形態を含む本開示のメモリセルユニットを構成する不揮発性メモリセル、以上に説明した好ましい各種形態を含む本開示の情報書き込み方法における不揮発性メモリセル、以上に説明した好ましい各種形態を含む本開示の電子機器に備えられた不揮発性メモリセル(以下、これらを総称して、『本開示の不揮発性メモリセル等』と呼ぶ場合がある)にあっては、前述したとおり、情報を記憶する記憶層(記録層、磁化反転層あるいは自由層とも呼ばれる)、中間層及び磁化固定層によって、TMR(Tunnel Magnetoresistance)効果あるいはGMR(Giant Magnetoresistance,巨大磁気抵抗)効果を有する積層構造体が構成されている構造とすることができる。
図15A及び図16Aに概念図を示すように、記憶層に記憶されている情報「0」を「1」に書き換えるとする。即ち、平行の磁化状態で、書込み電流(磁化反転電流とも呼ばれる)を磁化固定層から記憶層へ流す。云い換えれば、記憶層から磁化固定層に向かって電子を流す。磁化固定層に達した一方の向きのスピンを有する電子は、磁化固定層を通過する。一方、他方の向きのスピンを有する電子は、磁化固定層で反射される。そして、係る電子が記憶層に進入すると、記憶層にトルクを与え、記憶層は反平行状態へと反転する。ここで、磁化固定層の磁化方向は固定されているために反転できず、系全体の角運動量を保存するために記憶層が反転すると考えてもよい。
図15B及び図16Bに概念図を示すように、記憶層に記憶されている情報「1」を「0」に書き換えるとする。即ち、反平行の磁化状態で、書込み電流を記憶層から磁化固定層へ流す。云い換えれば、磁化固定層から記憶層に向かって電子を流す。磁化固定層を通過した電子には、スピン偏極、即ち、上向きと下向きの数に差が生じる。中間層の厚さが十分に薄く、このスピン偏極が緩和して通常の非磁性体における非偏極状態(上向きと下向きが同数の状態)になる前に、記憶層に達すると、スピン偏極度の符号が逆になっていることにより、系全体のエネルギーを下げるために、一部の電子は、反転、即ち、スピン角運動量の向きを変えさせられる。このとき、系の全角運動量は保存されなければならないため、向きを変えた電子による角運動量変化の合計と等価な反作用が、記憶層における磁気モーメントに与えられる。電流、即ち、単位時間に磁化固定層を通過する電子の数が少ない場合には、向きを変える電子の総数も少ないために、記憶層における磁気モーメントに発生する角運動量変化も小さいが、電流が増えると、多くの角運動量変化を単位時間内に記憶層に与えることができる。角運動量の時間変化はトルクであり、トルクが或る閾値を超えると記憶層の磁気モーメントは反転を開始し、その一軸異方性により180度回転したところで安定となる。即ち、反平行状態から平行状態への反転が起こり、情報「0」が記憶層に記憶される。
あるいは又、図17に概念図を示すように、磁化固定層、中間層、記憶層、中間層、磁化固定層によって、TMR効果あるいはGMR効果を有する積層構造体が構成されている構造(ダブル・スピンフィルター構造)とすることもできる。このような構造にあっては、記憶層の上下に位置する2つの中間層の磁気抵抗の変化に差を付けておく必要がある。磁化固定層、中間層及び記憶層によって、TMR効果を有する積層構造体が構成されるとは、磁性材料から成る磁化固定層と、磁性材料から成る記憶層との間に、トンネル絶縁層として機能する非磁性体材料から成る中間層が挟まれた構造を指す。中間層は、記憶層と磁化固定層との間の磁気的結合を切ると共に、トンネル電流を流すための役割を担う。
記憶層は、コバルト、鉄及びニッケルから成る金属材料(合金、化合物)、又は、コバルト、鉄、ニッケル及びホウ素から成る金属材料(合金、化合物)から構成されている形態とすることができる。あるいは又、記憶層を構成する材料として、ニッケル(Ni)、鉄(Fe)、コバルト(Co)といった強磁性材料、これらの強磁性材料の合金(例えば、Co−Fe、Co−Fe−B、Co−Fe−Ni、Fe−Pt、Ni−Fe、Fe−B、Co−B等)、あるいは、これらの合金にガドリニウム(Gd)が添加された合金、これらの合金に非磁性元素(例えば、タンタル、ホウ素、クロム、白金、シリコン、炭素、窒素等)を混ぜた合金(例えば、Co−Fe−B等)、Co、Fe、Niの内の1種類以上を含む酸化物(例えば、フェライト:Fe−MnO等)、ハーフメタリック強磁性材料と呼ばれる一群の金属間化合物(ホイスラー合金:NiMnSb、Co2MnGe、Co2MnSi、Co2CrAl等)、酸化物(例えば、(La,Sr)MnO3、CrO2、Fe34等)を挙げることができる。更には、垂直磁化型において、垂直磁気異方性を一層増加させるために、係る合金にテルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)等の重希土類を添加してもよいし、これらを含む合金を積層してもよい。記憶層や磁化固定層の結晶性は、本質的に任意であり、多結晶であってもよいし、単結晶であってもよいし、非晶質であってもよい。また、記憶層は、単層構成とすることもできるし、上述した複数の異なる強磁性材料層を積層した積層構成とすることもできるし、強磁性材料層と非磁性材料層を積層した積層構成とすることもできる。また、記憶層を構成する材料に非磁性元素を添加することも可能である。非磁性元素の添加により、拡散の防止による耐熱性の向上や磁気抵抗効果の増大、平坦化に伴う絶縁耐圧の増大等の効果が得られる。添加する非磁性元素として、B、C、N、O、F、Li、Mg、Si、P、Ti、V、Cr、Mn、Ni、Cu、Ge、Nb、Ru、Rh、Pd、Ag、Ta、Ir、Pt、Au、Zr、Hf、W、Mo、Re、Osを挙げることができる。
更には、記憶層として、組成の異なる強磁性材料層を積層させることも可能である。あるいは又、強磁性材料層と軟磁性材料層とを積層させたり、複数層の強磁性材料層を軟磁性材料層や非磁性体層を介して積層させたりすることも可能である。特に、Fe層、Co層、Fe−Ni合金層、Co−Fe合金層、Co−Fe−B合金層、Fe−B合金層、Co−B合金層といった強磁性材料層の複数を非磁性体層を介して積層させた構成とする場合、強磁性材料層相互の磁気的強さの関係を調整することが可能になるため、スピン注入型磁気抵抗効果素子における磁化反転電流が大きくならないように抑制することが可能となる。非磁性体層の材料として、Ru、Os、Re、Ir、Au、Ag、Cu、Al、Bi、Si、B、C、Cr、Ta、Pd、Pt、Zr、Hf、W、Mo、Nb、V、又は、これらの合金を挙げることができる。
磁化固定層全体を構成する材料として、上記の記憶層を構成する材料(強磁性材料)を挙げることができるし、あるいは又、磁化固定層は、Co層とPt層との積層体、Co層とPd層との積層体、Co層とNi層との積層体、Co層とTb層との積層体、Co−Pt合金層、Co−Pd合金層、Co−Ni合金層、Co−Ni−Fe合金層、Co−Fe合金層、Co−Fe−B合金層、Ni−Fe合金層、Co−Tb合金層、Co層、Fe層、Ni層、又は、Co−Fe−B合金層から成る構成とすることができ、あるいは又、これらの材料に、Ag、Cu、Au、Al、Si、Bi、Ta、B、C、O、N、Pd、Pt、Zr、Ta、Hf、Ir、W、Mo、Nb、V、Ru、Rh等の非磁性元素を添加して磁気特性を調整したり、結晶構造や結晶性や物質の安定性等の各種物性を調整したりしてもよい。磁化固定層の磁化方向は情報の基準であるので、情報の記憶(記録)や読出しによって磁化方向が変化してはならないが、必ずしも特定の方向に固定されている必要はなく、記憶層よりも保磁力を大きくするか、膜厚を厚くするか、あるいは、磁気ダンピング定数を大きくして、記憶層よりも磁化方向が変化し難い構成、構造とすればよい。
磁化固定層は、少なくとも2層の固定層から成るが、係る構造は積層フェリ構造と呼ばれる。積層フェリ構造は、反強磁性的結合を有する積層構造であり、即ち、2つの磁性材料層(第1の固定層及び第2の固定層)の層間交換結合が反強磁性的になる構造であり、合成反強磁性結合(SAF:Synthetic Antiferromagnet)とも呼ばれ、非磁性層の厚さによって、2つの磁性材料層の層間交換結合が、反強磁性的あるいは強磁性的になる構造を指し、例えば、 S. S. Parkin et. al, Physical Review Letters, 7 May, pp 2304-2307 (1990) に報告されている。
積層フェリ構造を構成する第1の固定層(参照層)は、鉄(Fe)、コバルト(Co)及びニッケル(Ni)から成る群から選択された少なくとも1種の元素を含み、又は、鉄(Fe)、コバルト(Co)及びニッケル(Ni)から成る群から選択された少なくとも1種の元素及びホウ素(B)を含み、
第2の固定層は、鉄(Fe)、コバルト(Co)、ニッケル(Ni)及びマンガン(Mn)から成る群から選択された少なくとも1種の元素〈便宜上、『元素−A』と呼ぶ〉、並びに、白金(Pt)、パラジウム(Pd)、ニッケル(Ni)、マンガン(Mn)、イリジウム(Ir)及びロジウム(Rh)から成る群から選択された少なくとも1種の元素(但し、前記の元素−Aとは異なる元素)を主成分とする材料から成る形態とすることができる。
ここで、磁化固定層の加熱時、第1の固定層を構成する材料の保磁力と、第2の固定層を構成する材料の保磁力とは異なるが、(保磁力が低い固定層を構成する材料,保磁力が高い固定層を構成する材料)の組み合わせとして、具体的には、(CoFe,CoPt)、(CoFeB,CoPt)、(CoFe,CoPd)、(CoFeB,CoPd)を例示することができるが、これらに限定するものではない。
非磁性層を構成する材料として、ルテニウム(Ru)やその合金、ルテニウム化合物を挙げることができるし、あるいは又、Os、Re、Ir、Au、Ag、Cu、Al、Bi、Si、B、C、Cr、Ta、Pd、Pt、Zr、Hf、W、Mo、Nb、V、Rhや、これらの合金を挙げることができる。
中間層は非磁性体材料から成ることが好ましい。即ち、スピン注入型磁気抵抗効果素子において、TMR効果を有する積層構造体を構成する場合の中間層は、絶縁材料であって、しかも、非磁性体材料から成ることが好ましい。ここで、絶縁材料であって、しかも、非磁性体材料である材料として、マグネシウム酸化物(MgO)、マグネシウム窒化物、マグネシウムフッ化物、アルミニウム酸化物(AlOX)、アルミニウム窒化物(AlN)、シリコン酸化物(SiOX)、シリコン窒化物(SiN)、TiO2、Cr23、Ge、NiO、CdOX、HfO2、Ta25、Bi23、CaF、SrTiO3、AlLaO3、Mg−Al2−O、Al−N−O、BN、ZnS等の各種絶縁材料、誘電体材料、半導体材料を挙げることができる。絶縁材料から成る中間層の面積抵抗値は、数十Ω・μm2程度以下であることが好ましい。中間層をマグネシウム酸化物(MgO)から構成する場合、MgO層は結晶化していることが望ましく、(001)方向に結晶配向性を有することがより望ましい。また、中間層をマグネシウム酸化物(MgO)から構成する場合、その厚さは1.5nm以下とすることが望ましい。一方、GMR効果を有する積層構造体を構成する非磁性体材料膜を構成する材料として、Cu、Ru、Cr、Au、Ag、Pt、Ta等、あるいは、これらの合金といった導電性材料を挙げることができるし、導電性が高ければ(抵抗率が数百μΩ・cm以下)、任意の非金属材料としてもよいが、記憶層や磁化固定層と界面反応を起こし難い材料を、適宜、選択することが望ましい。
記憶層の厚さとして、0.5nm乃至30nmを例示することができるし、磁化固定層の厚さとして、0.5nm乃至30nmを例示することができる。
絶縁材料であって、しかも、非磁性体材料から構成された中間層は、例えば、スパッタリング法にて形成された金属層を酸化若しくは窒化することにより得ることができる。より具体的には、中間層を構成する絶縁材料としてアルミニウム酸化物(AlOX)、マグネシウム酸化物(MgO)を用いる場合、例えば、スパッタリング法にて形成されたアルミニウムやマグネシウムを大気中で酸化する方法、スパッタリング法にて形成されたアルミニウムやマグネシウムをプラズマ酸化する方法、スパッタリング法にて形成されたアルミニウムやマグネシウムをIPCプラズマで酸化する方法、スパッタリング法にて形成されたアルミニウムやマグネシウムを酸素中で自然酸化する方法、スパッタリング法にて形成されたアルミニウムやマグネシウムを酸素ラジカルで酸化する方法、スパッタリング法にて形成されたアルミニウムやマグネシウムを酸素中で自然酸化させるときに紫外線を照射する方法、アルミニウムやマグネシウムを反応性スパッタリング法にて成膜する方法、アルミニウム酸化物(AlOX)やマグネシウム酸化物(MgO)をスパッタリング法にて成膜する方法を例示することができる。
以上に説明した種々の層は、例えば、スパッタリング法、イオンビーム堆積法、真空蒸着法に例示される物理的気相成長法(PVD法)、ALD(Atomic Layer Deposition)法に代表される化学的気相成長法(CVD法)にて形成することができる。また、これらの層のパターニングは、反応性イオンエッチング法(RIE法)やイオンミリング法(イオンビームエッチング法)にて行うことができる。種々の層を真空装置内で連続的に形成することが好ましく、その後、パターニングを行うことが好ましい。
磁化固定層が設けられた面とは反対側の記憶層の面上には、接続部等を構成する原子と記憶層を構成する原子の相互拡散の防止、接触抵抗の低減、記憶層の酸化防止のために、キャップ層を形成することが好ましい。キャップ層は、ハフニウム、タンタル、タングステン、ジルコニウム、ニオブ、モリブデン、チタン、バナジウム、クロム、マグネシウム、ルテニウム、ロジウム、パラジウム及び白金から成る群から選択された少なくとも1種の材料から成る単層構造;酸化マグネシウム層、酸化アルミニウム層、酸化チタン層、酸化シリコン層、Bi23層、SrTiO3層、AlLaO3層、Al−N−O層、Mg−Ti−O層、MgAl24層といった酸化物から成る単層構造;又は、ハフニウム、タンタル、タングステン、ジルコニウム、ニオブ、モリブデン、チタン、バナジウム、クロム、マグネシウム、ルテニウム、ロジウム、パラジウム及び白金から成る群から選択された少なくとも1種の材料層、並びに、MgTiO、MgO、AlO、SiOから成る群から選択された少なくとも1種の酸化物層の積層構造(例えば、Ru層/Ta層)から構成されている形態とすることができる。
垂直磁化方式のスピン注入型磁気抵抗効果素子において、記憶層の立体形状は、円柱形(円筒形)であることが、加工の容易さ、記憶層における磁化容易軸の方向の均一性を確保するといった観点から望ましいが、これに限定するものではなく、三角柱、四角柱、六角柱、八角柱等(これらにあっては側辺あるいは側稜が丸みを帯びているものを含む)、楕円柱とすることもできる。記憶層の面積は、低磁化反転電流で磁化の向きを容易に反転させるといった観点から、例えば、0.01μm2以下であることが好ましい。
また、磁性層の結晶性向上のために、Ta、Cr、Ru、Ti等から成る下地層を、上述したとおり、形成してもよい。
本開示の不揮発性メモリセル等において、層間絶縁層上には、不揮発性メモリセルの積層構造体あるいは記憶層を埋め込むように、絶縁材料層が形成されている。
記憶層、磁化固定層及び選択用トランジスタの上下方向の配置関係として、下から、選択用トランジスタ、磁化固定層及び記憶層を挙げることもできるし、選択用トランジスタ、記憶層及び磁化固定層を挙げることもできる。前者の場合、選択用トランジスタのソース/ドレイン領域の一方と記憶層とは、層間絶縁層に設けられた接続孔(あるいは接続孔とランディングパッド部や下層配線)、並びに、絶縁材料層に設けられた接続孔及び接続部を介して接続すればよい。また、後者の場合、選択用トランジスタのソース/ドレイン領域の一方と記憶層とは、層間絶縁層に設けられた接続孔(あるいは接続孔とランディングパッド部や下層配線)を介して接続すればよい。
層間絶縁層や絶縁材料層を構成する材料として、酸化シリコン(SiO2)、窒化シリコン(SiN)、SiON、SOG、NSG、BPSG、PSG、BSG、LTO、Al23を例示することができる。接続孔や接続部、配線層は、不純物がドーピングされたポリシリコンや、タングステン、Ti、Pt、Pd、Cu、TiW、TiNW、WSi2、MoSi2等の高融点金属や金属シリサイドから構成することができ、CVD法や、スパッタリング法に例示されるPVD法に基づき形成することができる。
本開示の電子機器(電子デバイス)として、モバイル機器、ゲーム機器、音楽機器、ビデオ機器といった携帯可能な電子デバイスや、固定型の電子デバイスを挙げることができる。また、本開示の不揮発性メモリセルが2次元マトリクス状に配列されて成るメモリセルユニットから構成された記憶装置を挙げることもできる。
実施例1は、本開示の不揮発性メモリセル、本開示のメモリセルユニット、本開示の情報書き込み方法、及び、本開示の電子機器に関する。実施例1の不揮発性メモリセルの模式的な斜視図(一部の構成要素を除いている)を図1Aに示し、積層構造体及び加熱層の配置状態を図1Bに模式的に示し、図1Aに示す第1の方向に沿った実施例1の不揮発性メモリセルの模式的な一部断面図を図2に示し、図1Aに示す第2の方向に沿った実施例1の不揮発性メモリセルの模式的な一部断面図を図3に示し、実施例1のメモリセルユニットの一部の等価回路図を図4に示し、メモリセルユニットの一部における積層構造体及び加熱層の配置状態を模式的に図5に示す。更には、図6A、図6B、図7A及び図7Bには、実施例1の不揮発性メモリセルの動作状態を模式的に示す。
実施例1の不揮発性メモリセル10は、積層構造体11及び加熱層40を備えている。そして、積層構造体11は、磁化方向に対応して情報を記憶する記憶層20と、記憶層20の磁化方向を規定する磁化固定層30とが積層されて成る。また、加熱層40は、磁化固定層30を加熱し、磁化固定層30の磁化方向を制御する。
また、実施例1のメモリセルユニットは、複数の不揮発性メモリセル10が、第1の方向、及び、第1の方向とは異なる第2の方向に2次元マトリクス状に配列されて成り、各不揮発性メモリセル10は、積層構造体11及び加熱層40を備えている。そして、積層構造体11は、磁化方向に対応して情報を記憶する記憶層20と、記憶層20の磁化方向を規定する磁化固定層30とが積層されて成る。また、加熱層40は、磁化固定層30を加熱し、磁化固定層30の磁化方向を制御する。
更には、実施例1の電子機器は、実施例1のメモリセルユニットを備えている。
ここで、加熱層40は、磁化固定層30の少なくとも一部から成り(実施例1にあっては、具体的には、磁化固定層30から成り)、
第1の方向に沿って配列された不揮発性メモリセル群において、各不揮発性メモリセル10を構成する加熱層40は、加熱層延在部41によって結ばれており、
加熱層延在部41は、加熱層40と同じ層構成を有する。
あるいは又、加熱層40は、磁化固定層30の少なくとも一部から成り(実施例1にあっては、具体的には、磁化固定層30から成り)、
一の方向に沿って隣接する不揮発性メモリセル間において、不揮発性メモリセル10を構成する加熱層40は、加熱層延在部41によって結ばれており、
加熱層延在部41は、加熱層40と同じ層構成を有する。
そして、加熱層40の最大幅は加熱層延在部41の幅の平均よりも狭く、これによって加熱層40及び加熱層延在部41に電流を流したとき、加熱層40が発熱し、磁化固定層30を確実に加熱することができる。また、加熱層40及び加熱層延在部41はビット線BLを兼ねている。
更には、磁化固定層30と記憶層20の間には中間層21が設けられており、
磁化固定層30は、中間層側から、第1の固定層31、非磁性層33及び第2の固定層32の積層構造を有し、
第1の固定層31と第2の固定層32とは反強磁性的結合を有し、
磁化固定層30の加熱時、第1の固定層31の保磁力(抗磁力)と、第2の固定層32の保磁力(抗磁力)とは異なる。実施例1においては、具体的には、第2の固定層32の保磁力の方が、第1の固定層31の保磁力(抗磁力)よりも高い。そして、磁化固定層30の加熱によって、第1の固定層31と第2の固定層32との反強磁性的結合が解除され、第1の固定層31の磁化方向と第2の固定層32の磁化方向と記憶層20の磁化方向とは同方向(同じ向き)となる。更には、第1の固定層31と第2の固定層32の内、保磁力(抗磁力)が大きい方の固定層(実施例1にあっては、第2の固定層32)の磁化方向と、記憶層20の磁化方向とが同方向(同じ向き)となる。
また、各不揮発性メモリセル10は、電界効果トランジスタから成る選択用トランジスタTRを更に備えている。そして、選択用トランジスタTRを不作動とした状態で、電流が加熱層40に流されることで加熱層40が発熱する。
記憶層20はソース/ドレイン領域の一方64Aに接続されており、ソース/ドレイン領域の他方64Bは配線層(センス線)65に接続されている。
選択用トランジスタTRのゲート電極61はワード線WL(アドレス線でもある)に接続されている。ワード線WLは、具体的には、選択用トランジスタTRのゲート電極61及びゲート電極61の延在部から構成されている。そして、ワード線WLは、第2の方向に延びており、あるいは、ワード線WLは、一の方向とは異なる方向に延びている。実施例1にあっては、選択用トランジスタTRをPMOSとしたが、NMOSとすることもできる。
各不揮発性メモリセル10の積層構造体11は、SiO2から成る層間絶縁層68,69を介して選択用トランジスタ(電界効果トランジスタ)TRの上方に設けられている。具体的には、実施例1にあっては、各不揮発性メモリセル10の積層構造体11において、磁化固定層30は、層間絶縁層69上に形成された下地層50の上に設けられている。即ち、記憶層20、磁化固定層30及び選択用トランジスタTRの上下方向の配置関係は、下から、選択用トランジスタTR、磁化固定層30及び記憶層20である。選択用トランジスタTRは、ゲート電極61、ゲート絶縁層62、チャネル形成領域63及びソース/ドレイン領域(ソース/ドレイン領域の一方64A及びソース/ドレイン領域の他方64B)を備えている。層間絶縁層69上には、記憶層20を埋め込むように、SiO2から成る絶縁材料層51が形成されている。そして、選択用トランジスタTRのソース/ドレイン領域の一方64Aと記憶層20とは、層間絶縁層68,69に設けられたタングステンから成る接続孔67A,67B、ランディングパッド部67C、並びに、絶縁材料層51に設けられた接続孔52、及び、絶縁材料層51上に設けられた接続部53を介して接続されている。
実施例1の不揮発性メモリセル10において、記憶層20の磁化方向は、記憶すべき情報に対応して変化する。そして、記憶層20において、磁化容易軸は固定層30の積層方向に対して平行である(即ち、垂直磁化型である)。即ち、実施例1の不揮発性メモリセル10は、垂直磁化方式のスピン注入型磁気抵抗効果素子(スピントルクによって記憶層の磁化が反転することで、情報の書き込み、消去を行う垂直磁化方式の磁気抵抗効果素子)から成り、また、MTJ素子から成る。
記憶層20は、磁化方向が磁化固定層30の積層方向と平行に自由に変化する磁気モーメントを有する強磁性材料、より具体的には、Co−Fe−B合金[(Co20Fe808020]から構成されている。非磁性体材料から成る中間層21は、トンネルバリア層(トンネル絶縁層)として機能する絶縁層、具体的には、酸化マグネシウム(MgO)層から成る。中間層21をMgO層から構成することで、磁気抵抗変化率(MR比)を大きくすることができ、これによって、スピン注入の効率を向上させることができ、記憶層20の磁化方向を反転させるために必要とされる磁化反転電流密度を低減させることができる。記憶層20の立体形状は、円筒形(円柱形)あるいは四角柱であるが、これに限定するものではない。更には、磁化固定層30が設けられた面とは反対側の記憶層20の面上にはキャップ層22が形成されている。キャップ層22は、絶縁材料層51上に設けられたと接続部53と接している。
磁化固定層30は、上述したとおり、少なくとも2層の磁性材料層が積層された積層フェリ構造(積層フェリピン構造とも呼ばれる)を有する。積層フェリ構造を構成する第1の固定層(参照層)31と積層フェリ構造を構成する第2の固定層32との間には、ルテニウム(Ru)から成る非磁性層33が形成されている。また、具体的には、第1の固定層31は、Co層とTa層とCoFeB層の積層構造(層間絶縁層側から、Co/Ta/CoFeBの積層構造)から成り、第2の固定層32は、Co層とPt層とを、複数回、積層した積層構造(層間絶縁層側から、例えば、Co層/Pt層/Co層/Pt層/Co層/Pt層)から成る。第1の固定層31(参照層)あるいは第2の固定層32の磁化方向は、記憶層20に記憶すべき情報の基準となる磁化方向であり、記憶層20の磁化方向と第1の固定層31あるいは第2の固定層32の磁化方向の相対的な角度によって、情報「0」及び情報「1」が規定される。
以上に説明した各種の層構成を、以下の表1に掲げた。
〈表1〉
キャップ層22 :膜厚1nmのTa層と膜厚5nmのRu層の積層
記憶層20 :膜厚1.6nmの(Co20Fe808020
中間層21 :膜厚1.0nmのMgO層
磁化固定層30
第1の固定層31:膜厚0.9nmのCoFeB層
膜厚0.2nmのTa層
膜厚0.8nmのCo層
非磁性層33 :膜厚0.8nmのRu層
第2の固定層32:膜厚0.1nmのPt層と膜厚0.3nmのCo層とを3回繰り
返し積層した積層構造
下地層50 :膜厚5nmのTa層
実施例1の情報書き込み方法は、
複数の不揮発性メモリセル10が、第1の方向、及び、第1の方向とは異なる第2の方向に2次元マトリクス状に配列されて成り、
各不揮発性メモリセル10は、磁化方向に対応して情報を記憶する記憶層20と、記憶層20の磁化方向を規定する磁化固定層30とが積層されて成る積層構造体11を備えているメモリセルユニットにおける情報書き込み方法である。そして、
磁化固定層30を加熱し、以て、磁化固定層30の磁化方向を制御することで、磁化固定層30の磁化方向に基づく情報を記憶層20に書き込む。
そして、実施例1の情報書き込み方法における各不揮発性メモリセル10は、前述したとおり、積層構造体11を構成する磁化固定層30の少なくとも一部から成る加熱層40を備えており、第1の方向に沿って配列された不揮発性メモリセル群において、各不揮発性メモリセル10を構成する加熱層40は、加熱層延在部41によって結ばれており、加熱層延在部41は、加熱層40と同じ層構成を有し、加熱層40及び加熱層延在部41に電流を流すことで、磁化固定層30を加熱する。加熱層40及び加熱層延在部41に流す電流値として10メガアンペア/cm2、電流を流す時間として10ナノ秒乃至100ナノ秒を例示することができる。そして、これによって、磁化固定層30の温度は250゜C程度となる。
ここで、実施例1の情報書き込み方法においては、磁化固定層30を加熱することで、第1の方向に沿って配列された不揮発性メモリセル群に一括して第1の情報(情報「1」)を書き込む。具体的には、選択用トランジスタ(電界効果トランジスタ)TRを不作動とした状態で、電流を加熱層40に流すことで加熱層40を発熱させ、磁化固定層30を加熱することで、不揮発性メモリセル10に第1の情報を書き込む。即ち、記憶層20には情報「0」が記憶されているとする(図6Aの概念図を参照)。尚、記憶層20に情報「1」が記憶されている場合も同様である。強磁性材料から成る記憶層20と第1の固定層(参照層)31とは、情報「0」が記憶されている場合、互いの磁気モーメントの向きが平行状態にあり、記憶層20は低抵抗状態にある。また、情報「1」が記憶されている場合、互いの磁気モーメントの向きが反平行状態にあり、記憶層20は高抵抗状態にある。この状態で、加熱層40及び加熱層延在部41に電流を流すことで、加熱層40は発熱し、磁化固定層30を加熱する。これによって、磁化固定層30の温度が上昇し、第1の固定層(参照層)31と第2の固定層32の保磁力は、加熱前に比べると減少する。そして、減少の割合が第1の固定層31と第2の固定層32とで異なる。こうして、第1の固定層31と第2の固定層32との反強磁性的結合を解除し、第1の固定層31の磁化方向と第2の固定層32の磁化方向と記憶層20の磁化方向とを同方向(同じ向き)とすることができる。実施例1にあっては、第2の固定層32の方が第1の固定層31よりも大きな保磁力を有する。従って、第2の固定層32の磁化方向と、記憶層20の磁化方向とが同方向(同じ向き)となる(図6Bの概念図を参照)。加熱層40及び加熱層延在部41に電流を流すことを中止すると、第1の固定層31と第2の固定層32との反強磁性的結合が復活する(図7Aの概念図を参照)。即ち、第2の固定層32の磁化方向はそのままであるが、第1の固定層31の磁化方向が逆転する。しかしながら、記憶層20の磁化方向は保持され、記憶層20には情報「1」が記憶され続ける。以上の結果として、記憶層20の磁化方向と第1の固定層31の磁化方向が反対となり、記憶層20は高抵抗状態に変化する。
第1の方向に沿って配列された不揮発性メモリセル群に一括して第1の情報(情報「1」)を書き込んだ後、加熱層40による磁化固定層30の加熱を中止し、第1の方向に沿って配列された不揮発性メモリセル群において、所望の不揮発性メモリセル10に第2の情報(情報「0」)を書き込む(図7B参照)。具体的には、第1の情報を書き込んだ後、磁化固定層30の加熱を中止し、選択用トランジスタ(電界効果トランジスタ)TRを作動させて、所望の不揮発性メモリセル10に第2の情報を書き込む。尚、不揮発性メモリセル10に第2の情報を書き込むとき、記憶層20から磁化固定層30に向かって書込み電流を流す。即ち、磁化固定層30から記憶層20に向かって電子を流す。このとき流す電流の値は、加熱層40によって磁化固定層30が加熱されない程度に低い電流値である。具体的には、加熱層40及び加熱層延在部41を接地し、配線層(センス線)65に、例えば、Vddを印加し、PMOSから構成された選択用トランジスタTRのゲート電極61に0ボルトを印加することで、前述した「書き込み−2」の状態とし、第2の情報(情報「0」)を記憶層20に書き込む。
記憶層20に書き込まれた情報を読み出すときには、情報を読み出すべき不揮発性メモリセルにおける選択用トランジスタ(電界効果トランジスタ)TRを導通状態とする。そして、加熱層40及び加熱層延在部41から構成されたビット線BLと配線層(センス線)65との間に電流を流し、ビット線BLに現れる電位を、比較回路(図示せず)を構成するコンパレータ回路(図示せず)の他方の入力部に入力する。一方、リファレンス抵抗値を求める回路(図示せず)からの電位を、比較回路を構成するコンパレータ回路の一方の入力部に入力する。そして、比較回路にあっては、リファレンス抵抗値を求める回路からの電位を基準として、ビット線BLに現れる電位が高いか低いかが比較され、比較結果(情報0/1)が、比較回路を構成するコンパレータ回路の出力部から出力される。
以下、実施例1の不揮発性メモリセルの製造方法の概要を説明する。
[工程−100]
先ず、周知の方法に基づき、シリコン半導体基板60に素子分離領域(図示せず)を形成し、素子分離領域によって囲まれたシリコン半導体基板60の部分に、ゲート酸化膜62、ゲート電極61、ソース/ドレイン領域64A,64Bから成る選択用トランジスタTRを形成する。ソース/ドレイン領域64Aとソース/ドレイン領域64Bの間に位置するシリコン半導体基板60の部分がチャネル形成領域63に相当する。次いで、層間絶縁層68を形成し、ソース/ドレイン領域の他方64Bの上方の層間絶縁層68の部分にタングステンプラグ67Dを形成し、更には、層間絶縁層68上に配線層(センス線)65を形成する。その後、全面に層間絶縁層69を形成し、ソース/ドレイン領域の一方64Aの上方の層間絶縁層68、層間絶縁層69の部分にタングステンプラグから成る接続孔67A、ランディングパッド部67C、接続孔67Bを形成する。こうして、層間絶縁層68,69で覆われた選択用トランジスタTRを得ることができる。
[工程−110]
その後、全面に、下地層50、積層構造体11(第2の固定層32、非磁性層33、第1の固定層31、中間層21、記憶層20)、キャップ層22を連続成膜し、次いで、キャップ層22、記憶層20及び中間層21を反応性イオンエッチング法(RIE法)に基づきエッチングすることで、円柱状の記憶層20を得ることができる。次いで、第1の固定層31、非磁性層33、第2の固定層32及び下地層50をRIE法に基づきエッチングすることで、加熱層40及び加熱層延在部41を得ることができる。尚、酸化マグネシウム(MgO)から成る中間層21は、RFマグネトロンスパッタ法に基づきMgO層の成膜を行うことで形成した。また、その他の層はDCマグネトロンスパッタ法に基づき成膜を行った。
[工程−120]
次に、全面に絶縁材料層51を形成し、絶縁材料層51に平坦化処理を施すことで、絶縁材料層51の頂面をキャップ層22の頂面と同じレベルとする。その後、絶縁材料層51に、接続孔67Bと接続された接続孔52を設け、更に、絶縁材料層51上に、キャップ層22と接続孔52とを接続する接続部53を形成する。こうして、図1A、図1B、図2、図3に示した構造の不揮発性メモリセル(具体的には、スピン注入型磁気抵抗効果素子)を得ることができる。尚、RIE法によって各層をパターニングする代わりに、イオンミリング法(イオンビームエッチング法)に基づき各層をパターニングすることもできる。
ところで、情報は、一軸異方性を有する記憶層20の磁化方向の向きによって規定される。情報の書き込みは、積層構造体11の積層方向に書込み電流を流し、スピントルク磁化反転を生じさせることによって行われる。以下、スピン注入磁化反転を適用したスピン注入型磁気抵抗効果素子の概念図である図7A、図7Bを参照して、スピントルク磁化反転について簡単に説明する。電子は2種類のスピン角運動量を有する。仮にこれを上向き、下向きと定義する。非磁性体内部では両者が同数であり、強磁性体内部では両者の数に差がある。
以上に説明したとおり、実施例1にあっては、磁化固定層の加熱によって磁化固定層の磁化方向を制御する加熱層を備えている。そして、磁化固定層の加熱によって不揮発性メモリセルに「1」又は「0」の情報の書き込みを行うことができる。即ち、第1の固定層(参照層)と第2の固定層の反強磁性結合の温度依存性、及び、第1の固定層(参照層)と第2の固定層の保磁力の温度依存性の違いを利用して、加熱層に電流を流すことによって、記憶層の低抵抗状態から高抵抗状態への書き込み、あるいは、高抵抗状態から低抵抗状態への書き込みが可能となる。そして、このような書き込みは、加熱層を共有する第1の方向の全ての不揮発性メモリセルで行われるため、一括して書き込みを行うことができる。このように、選択用トランジスタにおいて双方向に電流を流すことなく、単一の方向に電流を流すことで情報の書き込みを行うことが可能となる。云い換えれば、選択用トランジスタの駆動能力が低い書込み電流の方向では、通常のスピン注入書き込みを行わず、磁化固定層の磁界による一括書き込みを行う。一方、選択用トランジスタの駆動能力が高い書込み電流の方向では、通常のスピン注入書き込みを行う。それ故、選択用トランジスタに流れる電流値に相違があるといった非対称性に起因して、選択用トランジスタを大きくしなければならず、セル面積が増大するという問題を回避することができる。また、一括書き込み時の記憶層の磁化反転に磁化固定層の磁界を利用するが故に、大きな電力を必要としない。
実施例2は実施例1の変形である。実施例2の不揮発性メモリセルの模式的な一部断面図を図10及び図11に示す。尚、図10は、図1の第1の方向に沿ったと同様の模式的な一部断面図であり、図11は、図1の第2の方向に沿ったと同様の模式的な一部断面図である。図10においては、選択用トランジスタの図示を省略した。
実施例1にあっては、磁化固定層30を層間絶縁層69の上に設けた。一方、実施例2にあっては、磁化固定層30は層間絶縁層69の上方に設けられている。記憶層20、磁化固定層30及び選択用トランジスタの上下方向の配置関係は、下から、選択用トランジスタ(電界効果トランジスタ)TR、記憶層20及び磁化固定層30である。選択用トランジスタTRのソース/ドレイン領域の一方64Aと記憶層20とは、層間絶縁層68,69に設けられたタングステンから成る接続孔67A,67Bと不純物がドーピングされたポリシリコンから成るランディングパッド部67C、下地層50を介して接続されている。
以上に説明した点を除き、実施例2の不揮発性メモリセルの構成、構造は、実施例1において説明した不揮発性メモリセルの構成、構造と同様とすることができるので、詳細な説明は省略する。
実施例3は、実施例1〜実施例2の変形である。実施例3の不揮発性メモリセルの模式的な一部断面図を図12(実施例1の変形例)、並びに、図13(実施例2の変形例)に示す。尚、図12は、図1Aに示す第1の方向に沿ったと同様の模式的な一部断面図であり、図13は、図1Aに示す第1の方向に沿ったと同様の模式的な一部断面図である。図13においては、選択用トランジスタの図示を省略した。
実施例3のメモリセルユニットにおいて、加熱層42は、磁化固定層30と接して設けられており、第1の方向に沿って配列された不揮発性メモリセル群において、各不揮発性メモリセル10を構成する加熱層42は、加熱層延在部43によって結ばれている。あるいは又、実施例3の不揮発性メモリセル10において、加熱層42は、磁化固定層30と接して設けられており、一の方向に沿って隣接する不揮発性メモリセル間において、不揮発性メモリセル10を構成する加熱層42は、加熱層延在部43によって結ばれている。即ち、加熱層42は、磁化固定層30とは別個に設けられている。そして、加熱層42及び加熱層延在部43に電流を流すことで、磁化固定層30を加熱する。ここで、加熱層42及び加熱層延在部43は、具体的には、例えば、鉄(Fe)、白金(Pt)、コバルト(Co)、ルテニウム(Ru)といったシート抵抗値の高い材料から成る。
以上に説明した点を除き、実施例3の不揮発性メモリセルの構成、構造は、実施例1〜実施例2において説明した不揮発性メモリセルの構成、構造と同様とすることができるので、詳細な説明は省略する。
以上、本開示の不揮発性メモリセル、メモリセルユニット、情報書き込み方法、電子機器を好ましい実施例に基づき説明したが、本開示はこれらの実施例に限定されるものではない。実施例において説明した不揮発性メモリセルやメモリセルユニットの構成、構造は例示であり、適宜、変更することができるし、実施例において説明した使用材料等も例示であり、適宜、変更することができる。加熱層及び加熱層延在部に印加する電圧、選択用トランジスタのゲート電極、配線層(センス線)に印加する電圧も例示であり、適宜、変更することができるし、磁化固定層を加熱するために加熱層及び加熱層延在部に流す電流の値や電流を流す時間も例示であり、適宜、変更することができる。中間層が加熱層及び加熱層延在部に含まれる場合もある。
実施例にあっては、第2の固定層32の方が第1の固定層31よりも大きな保磁力を有するとしたが、これに限定されるものではない。図8A、図8B、図9A及び図9Bには、実施例1の不揮発性メモリセルの変形例の動作状態を模式的に示すが、第1の固定層31の方が第2の固定層32よりも大きな保磁力を有していてもよい。尚、選択用トランジスタ(電界効果トランジスタ)TRをNMOSから構成しているが、PMOSから構成してもよい。例えば、図8Aに示す状態において、加熱層40及び加熱層延在部41に電流を流すことで、加熱層40は発熱し、磁化固定層30を加熱する。これによって、磁化固定層30の温度が上昇し、第1の固定層(参照層)31と第2の固定層32の保磁力は、加熱前に比べると減少する。こうして、第1の固定層31と第2の固定層32との反強磁性的結合を解除し、第1の固定層31の磁化方向と第2の固定層32の磁化方向と記憶層20の磁化方向とを同方向(同じ向き)とする。図示した例にあっては、第1の固定層31の方が第2の固定層32よりも大きな保磁力を有する。従って、第1の固定層31の磁化方向と、記憶層20の磁化方向とが同方向(同じ向き)となる(図8Bの概念図を参照)。加熱層40及び加熱層延在部41に電流を流すことを中止すると、第1の固定層31と第2の固定層32との反強磁性的結合が復活する(図9Aの概念図を参照)。即ち、第1の固定層31の磁化方向はそのままであるが、第2の固定層32の磁化方向が逆転する。しかしながら、記憶層20の磁化方向は保持され、記憶層20には情報「0」が記憶され続ける。以上の結果として、記憶層20の磁化方向と第1の固定層31の磁化方向が同じ方向となり、記憶層20は低抵抗状態に変化する。
第1の方向に沿って配列された不揮発性メモリセル群に一括して第1の情報(情報「0」)を書き込んだ後、加熱層40による磁化固定層30の加熱を中止し、第1の方向に沿って配列された不揮発性メモリセル群において、所望の不揮発性メモリセル10に第2の情報(情報「1」)を書き込む(図9B参照)。具体的には、第1の情報を書き込んだ後、磁化固定層30の加熱を中止し、NMOSから構成された選択用トランジスタ(電界効果トランジスタ)TRを作動させて、所望の不揮発性メモリセル10に第2の情報を書き込む。尚、不揮発性メモリセル10に第2の情報を書き込むとき、不揮発性メモリセル10において、磁化固定層30から記憶層20に向かって書込み電流を流す。云い換えれば、記憶層20から磁化固定層30に向かって電子を流す。具体的には、加熱層40及び加熱層延在部41に、例えば、Vddを印加し、配線層(センス線)65を接地することで、前述した「書き込み−2」の状態とし、第2の情報(情報「1」)を記憶層20に書き込む。
尚、本開示は、以下のような構成を取ることもできる。
[A01]《メモリセルユニット》
複数の不揮発性メモリセルが、第1の方向、及び、第1の方向とは異なる第2の方向に2次元マトリクス状に配列されて成るメモリセルユニットであって、
各不揮発性メモリセルは、磁化方向に対応して情報を記憶する記憶層と、記憶層の磁化方向を規定する磁化固定層とが積層されて成る積層構造体、及び、磁化固定層を加熱し、磁化固定層の磁化方向を制御する加熱層を備えているメモリセルユニット。
[A02]加熱層は、磁化固定層の少なくとも一部から成り、
第1の方向に沿って配列された不揮発性メモリセル群において、各不揮発性メモリセルを構成する加熱層は、加熱層延在部によって結ばれており、
加熱層延在部は、加熱層と同じ層構成を有する[A01]に記載のメモリセルユニット。
[A03]加熱層は、磁化固定層と接して設けられており、
第1の方向に沿って配列された不揮発性メモリセル群において、各不揮発性メモリセルを構成する加熱層は、加熱層延在部によって結ばれている[A01]に記載のメモリセルユニット。
[A04]加熱層の最大幅は加熱層延在部の幅の平均よりも狭い[A02]又は[A03]に記載のメモリセルユニット。
[A05]加熱層及び加熱層延在部はビット線を兼ねている[A02]乃至[A04]のいずれか1項に記載のメモリセルユニット。
[A06]磁化固定層と記憶層の間には中間層が設けられており、
磁化固定層は、中間層側から、第1の固定層、非磁性層及び第2の固定層の積層構造を有し、
第1の固定層と第2の固定層とは反強磁性的結合を有し、
磁化固定層の加熱時、第1の固定層の保磁力と、第2の固定層の保磁力とは異なる[A01]乃至[A05]のいずれか1項に記載のメモリセルユニット。
[A07]磁化固定層の加熱によって、第1の固定層と第2の固定層との反強磁性的結合が解除され、第1の固定層の磁化方向と第2の固定層の磁化方向と記憶層の磁化方向とは同方向(同じ向き)となる[A06]に記載のメモリセルユニット。
[A08]第1の固定層と第2の固定層の内、保磁力が大きい方の固定層の磁化方向と、記憶層の磁化方向とが同方向(同じ向き)となる[A07]に記載のメモリセルユニット。
[A09]各不揮発性メモリセルは、電界効果トランジスタから成る選択用トランジスタを更に備えている[A01]乃至[A08]のいずれか1項に記載のメモリセルユニット。
[A10]選択用トランジスタを不作動とした状態で、電流が加熱層に流されることで加熱層が発熱する[A09]に記載のメモリセルユニット。
[A11]記憶層はソース/ドレイン領域の一方に接続されている[A09]又は[A10]に記載のメモリセルユニット。
[A12]選択用トランジスタのソース/ドレイン領域の他方は配線層に接続されている[A11]に記載のメモリセルユニット。
[A13]選択用トランジスタのゲート電極はワード線に接続されている[A09]乃至[A12]のいずれか1項に記載のメモリセルユニット。
[A14]ワード線は、第2の方向に延びている[A13]に記載のメモリセルユニット。
[A15]各不揮発性メモリセルの積層構造体は、層間絶縁層を介して選択用トランジスタの上方に設けられている[A09]乃至[A14]のいずれか1項に記載のメモリセルユニット。
[A16]不揮発性メモリセルは、垂直磁化方式のスピン注入型磁気抵抗効果素子から成る[A01]乃至[A15]のいずれか1項に記載のメモリセルユニット。
[B01]《不揮発性メモリセル》
磁化方向に対応して情報を記憶する記憶層と、記憶層の磁化方向を規定する磁化固定層とが積層されて成る積層構造体、及び、磁化固定層を加熱し、磁化固定層の磁化方向を制御する加熱層を備えている不揮発性メモリセル。
[B02]加熱層は、磁化固定層の少なくとも一部から成り、
一の方向に沿って隣接する不揮発性メモリセル間において、不揮発性メモリセルを構成する加熱層は、加熱層延在部によって結ばれており、
加熱層延在部は、加熱層と同じ層構成を有する[B01]に記載の不揮発性メモリセル。
[B03]加熱層は、磁化固定層と接して設けられており、
一の方向に沿って隣接する不揮発性メモリセル間において、不揮発性メモリセルを構成する加熱層は、加熱層延在部によって結ばれている[B01]に記載の不揮発性メモリセル。
[B04]加熱層の最大幅は加熱層延在部の幅の平均よりも狭い[B02]又は[B03]に記載の不揮発性メモリセル。
[B05]加熱層及び加熱層延在部はビット線を兼ねている[B02]乃至[B04]のいずれか1項に記載の不揮発性メモリセル。
[B06]磁化固定層と記憶層の間には中間層が設けられており、
磁化固定層は、中間層側から、第1の固定層、非磁性層及び第2の固定層の積層構造を有し、
第1の固定層と第2の固定層とは反強磁性的結合を有し、
磁化固定層の加熱時、第1の固定層の保磁力と、第2の固定層の保磁力とは異なる[B01]乃至[B05]のいずれか1項に記載の不揮発性メモリセル。
[B07]磁化固定層の加熱によって、第1の固定層と第2の固定層との反強磁性的結合が解除され、第1の固定層の磁化方向と第2の固定層の磁化方向と記憶層の磁化方向とは同方向(同じ向き)となる[B06]に記載の不揮発性メモリセル。
[B08]第1の固定層と第2の固定層の内、保磁力が大きい方の固定層の磁化方向と、記憶層の磁化方向とが同方向(同じ向き)となる[B07]に記載の不揮発性メモリセル。
[B09]電界効果トランジスタから成る選択用トランジスタを更に備えている[B01]乃至[B08]のいずれか1項に記載の不揮発性メモリセル。
[B10]選択用トランジスタを不作動とした状態で、電流が加熱層に流されることで加熱層が発熱する[B09]に記載の不揮発性メモリセル。
[B11]記憶層はソース/ドレイン領域の一方に接続されている[B09]又は[B10]に記載の不揮発性メモリセル。
[B12]選択用トランジスタのソース/ドレイン領域の他方は配線層に接続されている[B11]に記載の不揮発性メモリセル。
[B13]選択用トランジスタのゲート電極はワード線に接続されている[B09]乃至[B12]のいずれか1項に記載の不揮発性メモリセル。
[B14]ワード線は、一の方向とは異なる方向に延びている[B13]に記載の不揮発性メモリセル。
[B15]積層構造体は、層間絶縁層を介して選択用トランジスタの上方に設けられている[B09]乃至[B14]のいずれか1項に記載の不揮発性メモリセル。
[B16]垂直磁化方式のスピン注入型磁気抵抗効果素子から成る[B01]乃至[B15]のいずれか1項に記載の不揮発性メモリセル。
[C01]《情報書き込み方法》
複数の不揮発性メモリセルが、第1の方向、及び、第1の方向とは異なる第2の方向に2次元マトリクス状に配列されて成り、
各不揮発性メモリセルは、磁化方向に対応して情報を記憶する記憶層と、記憶層の磁化方向を規定する磁化固定層とが積層されて成る積層構造体を備えているメモリセルユニットにおける情報書き込み方法であって、
磁化固定層を加熱し、以て、磁化固定層の磁化方向を制御することで、磁化固定層の磁化方向に基づく情報を記憶層に書き込む、情報書き込み方法。
[C02]各不揮発性メモリセルは、積層構造体を構成する磁化固定層の少なくとも一部から成る加熱層を備えており、
第1の方向に沿って配列された不揮発性メモリセル群において、各不揮発性メモリセルを構成する加熱層は、加熱層延在部によって結ばれており、
加熱層延在部は、加熱層と同じ層構成を有し、
加熱層及び加熱層延在部に電流を流すことで、磁化固定層を加熱する[C01]に記載の情報書き込み方法。
[C03]各不揮発性メモリセルは、積層構造体を構成する磁化固定層と接して設けられた加熱層を備えており、
第1の方向に沿って配列された不揮発性メモリセル群において、各不揮発性メモリセルを構成する加熱層は、加熱層延在部によって結ばれており、
加熱層及び加熱層延在部に電流を流すことで、磁化固定層を加熱する[C01]に記載の情報書き込み方法。
[C04]加熱層の最大幅は加熱層延在部の幅の平均よりも狭い[C02]又は[C03]に記載の情報書き込み方法。
[C05]加熱層及び加熱層延在部はビット線を兼ねている[C02]乃至[C04]のいずれか1項に記載の情報書き込み方法。
[C06]磁化固定層を加熱することで、第1の方向に沿って配列された不揮発性メモリセル群に一括して第1の情報を書き込む[C01]乃至[C05]に記載の情報書き込み方法。
[C07]第1の方向に沿って配列された不揮発性メモリセル群に一括して第1の情報を書き込んだ後、加熱層による磁化固定層の加熱を中止し、第1の方向に沿って配列された不揮発性メモリセル群において、所望の不揮発性メモリセルに第2の情報を書き込む[C06]に記載の情報書き込み方法。
[C08]磁化固定層と記憶層の間には中間層が設けられており、
磁化固定層は、中間層側から、第1の固定層、非磁性層及び第2の固定層の積層構造を有し、
第1の固定層と第2の固定層とは反強磁性的結合を有し、
磁化固定層の加熱時、第1の固定層の保磁力と、第2の固定層の保磁力とは異なる[C01]乃至[C07]のいずれか1項に記載の情報書き込み方法。
[C09]磁化固定層の加熱によって、第1の固定層と第2の固定層との反強磁性的結合を解除し、第1の固定層の磁化方向と第2の固定層の磁化方向と記憶層の磁化方向とを同方向(同じ向き)とする[C08]に記載の情報書き込み方法。
[C10]第1の固定層と第2の固定層の内、保磁力が大きい方の固定層の磁化方向と、記憶層の磁化方向とが同方向(同じ向き)となる[C09]に記載の情報書き込み方法。
[C11]各不揮発性メモリセルは、電界効果トランジスタから成る選択用トランジスタを更に備えている[C01]乃至[C10]のいずれか1項に記載の情報書き込み方法。
[C12]選択用トランジスタを不作動とした状態で、電流を加熱層に流すことで加熱層を発熱させ、不揮発性メモリセルに第1の情報を書き込む[C11]に記載の情報書き込み方法。
[C13]第1の情報を書き込んだ後、磁化固定層の加熱を中止し、選択用トランジスタを作動させて、所望の不揮発性メモリセルに第2の情報を書き込む[C12]に記載の情報書き込み方法。
[C14]不揮発性メモリセルに第2の情報を書き込むとき、不揮発性メモリセルにおいて、記憶層から磁化固定層に向かって電流を流す[C13]に記載の情報書き込み方法。
[C15]記憶層はソース/ドレイン領域の一方に接続されている[C11]乃至[C14]のいずれか1項に記載の情報書き込み方法。
[C16]選択用トランジスタのソース/ドレイン領域の他方は配線層に接続されている[C15]に記載の情報書き込み方法。
[C17]選択用トランジスタのゲート電極はワード線に接続されている[C11]乃至[C16]のいずれか1項に記載の情報書き込み方法。
[C18]ワード線は、第2の方向に延びている[C17]に記載の情報書き込み方法。
[C19]各不揮発性メモリセルの積層構造体は、層間絶縁層を介して選択用トランジスタの上方に設けられている[C11]乃至[C18]のいずれか1項に記載の情報書き込み方法。
[C20]不揮発性メモリセルは、垂直磁化方式のスピン注入型磁気抵抗効果素子から成る[C01]乃至[C19]のいずれか1項に記載の情報書き込み方法。
[D01]《電子機器》
[A01]乃至[A16]のいずれか1項に記載のメモリセルユニットを備えている電子機器。
10・・・不揮発性メモリセル、11・・・積層構造体、20・・・記憶層、21・・・中間層、22・・・キャップ層、30・・・磁化固定層、31・・・第1の固定層、32・・・第2の固定層、33・・・非磁性層、40,42・・・加熱層、41,43・・・加熱層延在部、50・・・下地層、51・・・絶縁材料層、52・・・接続孔、53・・・接続部、61・・・ゲート電極、62・・・ゲート絶縁層、63・・・チャネル形成領域、64A・・・ソース/ドレイン領域の一方、64B・・・ソース/ドレイン領域の他方、65・・・配線層(センス線)、67A,67B・・・接続孔、67C・・・ランディングパッド部、68,69・・・層間絶縁層、TR・・・選択用トランジスタ(電界効果トランジスタ)、BL・・・ビット線、WL・・・ワード線

Claims (20)

  1. 複数の不揮発性メモリセルが、第1の方向、及び、第1の方向とは異なる第2の方向に2次元マトリクス状に配列されて成るメモリセルユニットであって、
    各不揮発性メモリセルは、磁化方向に対応して情報を記憶する記憶層と、記憶層の磁化方向を規定する磁化固定層とが積層されて成る積層構造体、及び、磁化固定層を加熱し、磁化固定層の磁化方向を制御する加熱層を備えているメモリセルユニット。
  2. 加熱層は、磁化固定層の少なくとも一部から成り、
    第1の方向に沿って配列された不揮発性メモリセル群において、各不揮発性メモリセルを構成する加熱層は、加熱層延在部によって結ばれており、
    加熱層延在部は、加熱層と同じ層構成を有する請求項1に記載のメモリセルユニット。
  3. 加熱層は、磁化固定層と接して設けられており、
    第1の方向に沿って配列された不揮発性メモリセル群において、各不揮発性メモリセルを構成する加熱層は、加熱層延在部によって結ばれている請求項1に記載のメモリセルユニット。
  4. 加熱層の最大幅は加熱層延在部の幅の平均よりも狭い請求項2又は請求項3に記載のメモリセルユニット。
  5. 加熱層及び加熱層延在部はビット線を兼ねている請求項2又は請求項3に記載のメモリセルユニット。
  6. 磁化固定層と記憶層の間には中間層が設けられており、
    磁化固定層は、中間層側から、第1の固定層、非磁性層及び第2の固定層の積層構造を有し、
    第1の固定層と第2の固定層とは反強磁性的結合を有し、
    磁化固定層の加熱時、第1の固定層の保磁力と、第2の固定層の保磁力とは異なる請求項1に記載のメモリセルユニット。
  7. 磁化固定層の加熱によって、第1の固定層と第2の固定層との反強磁性的結合が解除され、第1の固定層の磁化方向と第2の固定層の磁化方向と記憶層の磁化方向とは同方向となる請求項6に記載のメモリセルユニット。
  8. 第1の固定層と第2の固定層の内、保磁力が大きい方の固定層の磁化方向と、記憶層の磁化方向とが同方向となる請求項7に記載のメモリセルユニット。
  9. 各不揮発性メモリセルは、電界効果トランジスタから成る選択用トランジスタを更に備えている請求項1に記載の不揮発性メモリセル。
  10. 選択用トランジスタを不作動とした状態で、電流が加熱層に流されることで加熱層が発熱する請求項9に記載の不揮発性メモリセル。
  11. 記憶層はソース/ドレイン領域の一方に接続されている請求項9に記載の不揮発性メモリセル。
  12. 選択用トランジスタのゲート電極はワード線に接続されている請求項9に記載のメモリセルユニット。
  13. 不揮発性メモリセルは、垂直磁化方式のスピン注入型磁気抵抗効果素子から成る請求項1に記載のメモリセルユニット。
  14. 磁化方向に対応して情報を記憶する記憶層と、記憶層の磁化方向を規定する磁化固定層とが積層されて成る積層構造体、及び、磁化固定層を加熱し、磁化固定層の磁化方向を制御する加熱層を備えている不揮発性メモリセル。
  15. 複数の不揮発性メモリセルが、第1の方向、及び、第1の方向とは異なる第2の方向に2次元マトリクス状に配列されて成り、
    各不揮発性メモリセルは、磁化方向に対応して情報を記憶する記憶層と、記憶層の磁化方向を規定する磁化固定層とが積層されて成る積層構造体を備えているメモリセルユニットにおける情報書き込み方法であって、
    磁化固定層を加熱し、以て、磁化固定層の磁化方向を制御することで、磁化固定層の磁化方向に基づく情報を記憶層に書き込む、情報書き込み方法。
  16. 各不揮発性メモリセルは、積層構造体を構成する磁化固定層の少なくとも一部から成る加熱層を備えており、
    第1の方向に沿って配列された不揮発性メモリセル群において、各不揮発性メモリセルを構成する加熱層は、加熱層延在部によって結ばれており、
    加熱層延在部は、加熱層と同じ層構成を有し、
    加熱層及び加熱層延在部に電流を流すことで、磁化固定層を加熱する請求項15に記載の情報書き込み方法。
  17. 各不揮発性メモリセルは、積層構造体を構成する磁化固定層と接して設けられた加熱層を備えており、
    第1の方向に沿って配列された不揮発性メモリセル群において、各不揮発性メモリセルを構成する加熱層は、加熱層延在部によって結ばれており、
    加熱層及び加熱層延在部に電流を流すことで、磁化固定層を加熱する請求項15に記載の情報書き込み方法。
  18. 磁化固定層を加熱することで、第1の方向に沿って配列された不揮発性メモリセル群に一括して第1の情報を書き込む請求項15に記載の情報書き込み方法。
  19. 第1の方向に沿って配列された不揮発性メモリセル群に一括して第1の情報を書き込んだ後、加熱層による磁化固定層の加熱を中止し、第1の方向に沿って配列された不揮発性メモリセル群において、所望の不揮発性メモリセルに第2の情報を書き込む請求項18に記載の情報書き込み方法。
  20. 請求項1乃至請求項13のいずれか1項に記載のメモリセルユニットを備えている電子機器。
JP2018520706A 2016-05-31 2017-04-18 不揮発性メモリセル、メモリセルユニット及び情報書き込み方法、並びに、電子機器 Active JP6904343B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016108494 2016-05-31
JP2016108494 2016-05-31
PCT/JP2017/015610 WO2017208653A1 (ja) 2016-05-31 2017-04-18 不揮発性メモリセル、メモリセルユニット及び情報書き込み方法、並びに、電子機器

Publications (2)

Publication Number Publication Date
JPWO2017208653A1 true JPWO2017208653A1 (ja) 2019-03-28
JP6904343B2 JP6904343B2 (ja) 2021-07-14

Family

ID=60478297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018520706A Active JP6904343B2 (ja) 2016-05-31 2017-04-18 不揮発性メモリセル、メモリセルユニット及び情報書き込み方法、並びに、電子機器

Country Status (4)

Country Link
US (1) US10706903B2 (ja)
JP (1) JP6904343B2 (ja)
KR (1) KR102306333B1 (ja)
WO (1) WO2017208653A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10818729B2 (en) * 2018-05-17 2020-10-27 Macronix International Co., Ltd. Bit cost scalable 3D phase change cross-point memory
US10756255B2 (en) 2018-05-17 2020-08-25 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with asymmetrical pinned magnets, and method of manufacture
CN109300495B (zh) * 2018-09-18 2020-11-06 西安交通大学 基于人工反铁磁自由层的磁性结构及sot-mram
US11442700B2 (en) 2019-03-29 2022-09-13 Stmicroelectronics S.R.L. Hardware accelerator method, system and device
KR102632986B1 (ko) * 2019-10-01 2024-02-05 에스케이하이닉스 주식회사 전자 장치
WO2021161700A1 (ja) * 2020-02-12 2021-08-19 ソニーセミコンダクタソリューションズ株式会社 不揮発性メモリ素子及びその製造方法
EP3917009A1 (en) * 2020-05-29 2021-12-01 Melexis Bulgaria Ltd. Semiconductor device with passive magneto-electric transducer
WO2022137284A1 (ja) * 2020-12-21 2022-06-30 Tdk株式会社 磁気抵抗効果素子
US11696512B2 (en) 2021-01-05 2023-07-04 Tdk Corporation Magnetic domain wall moving element and magnetic array
CN114823882B (zh) * 2022-04-15 2023-05-12 电子科技大学 一种多功能自旋波晶体管及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098796A1 (ja) * 2008-02-08 2009-08-13 Fuji Electric Holdings Co., Ltd. 磁気メモリー素子、その駆動方法及び不揮発性記憶装置
WO2010073790A1 (ja) * 2008-12-22 2010-07-01 富士電機ホールディングス株式会社 磁気抵抗素子およびそれを用いる記憶装置
WO2011033873A1 (ja) * 2009-09-17 2011-03-24 富士電機ホールディングス株式会社 磁気抵抗素子及びそれを用いた不揮発性半導体記憶装置
JP2012015312A (ja) * 2010-06-30 2012-01-19 Sony Corp 磁気記憶素子及び磁気メモリ
US9218864B1 (en) * 2014-10-04 2015-12-22 Ge Yi Magnetoresistive random access memory cell and 3D memory cell array

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2832542B1 (fr) * 2001-11-16 2005-05-06 Commissariat Energie Atomique Dispositif magnetique a jonction tunnel magnetique, memoire et procedes d'ecriture et de lecture utilisant ce dispositif
KR20050053724A (ko) * 2002-10-03 2005-06-08 코닌클리케 필립스 일렉트로닉스 엔.브이. 프로그램가능 자기 메모리 장치
JP2004172218A (ja) * 2002-11-18 2004-06-17 Sony Corp 磁気記憶素子及びその記録方法、並びに磁気記憶装置
KR100568512B1 (ko) * 2003-09-29 2006-04-07 삼성전자주식회사 열발생층을 갖는 자기열 램셀들 및 이를 구동시키는 방법들
US7372722B2 (en) * 2003-09-29 2008-05-13 Samsung Electronics Co., Ltd. Methods of operating magnetic random access memory devices including heat-generating structures
EP2325846B1 (en) * 2009-11-12 2015-10-28 Crocus Technology S.A. A magnetic tunnel junction memory with thermally assisted writing
JP2014072393A (ja) 2012-09-28 2014-04-21 Sony Corp 記憶素子、記憶装置、磁気ヘッド
US9372722B2 (en) * 2013-07-01 2016-06-21 International Business Machines Corporation Reliable asynchronous processing of a synchronous request

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098796A1 (ja) * 2008-02-08 2009-08-13 Fuji Electric Holdings Co., Ltd. 磁気メモリー素子、その駆動方法及び不揮発性記憶装置
JP5057254B2 (ja) * 2008-02-08 2012-10-24 富士電機株式会社 磁気メモリー素子、その駆動方法及び不揮発性記憶装置
EP2242097A1 (en) * 2008-02-08 2010-10-20 Fuji Electric Holdings Co., Ltd.; Magnetic memory element, method for driving same, and nonvolatile storage
US20110063899A1 (en) * 2008-02-08 2011-03-17 Fuji Electric Holdings Co., Ltd Magnetic memory element, method of driving same, and nonvolatile storage device
US20110310660A1 (en) * 2008-12-22 2011-12-22 Fuji Electric Co., Ltd. Magnetoresistance element and storage device using the same
EP2375464A1 (en) * 2008-12-22 2011-10-12 Fuji Electric Co., Ltd. Magnetoresistive element and memory device using same
WO2010073790A1 (ja) * 2008-12-22 2010-07-01 富士電機ホールディングス株式会社 磁気抵抗素子およびそれを用いる記憶装置
JP5440509B2 (ja) * 2008-12-22 2014-03-12 富士電機株式会社 不揮発記憶装置
WO2011033873A1 (ja) * 2009-09-17 2011-03-24 富士電機ホールディングス株式会社 磁気抵抗素子及びそれを用いた不揮発性半導体記憶装置
EP2479787A1 (en) * 2009-09-17 2012-07-25 Fuji Electric Co., Ltd. Magnetoresistive element and non-volatile semiconductor memory device using same
US20120230089A1 (en) * 2009-09-17 2012-09-13 Fuji Electric Co., Ltd. Magnetoresistance element and non-volatile semiconductor storage device using same magnetoresistance element
JP5578448B2 (ja) * 2009-09-17 2014-08-27 富士電機株式会社 磁気抵抗素子及びそれを用いた不揮発性半導体記憶装置
JP2012015312A (ja) * 2010-06-30 2012-01-19 Sony Corp 磁気記憶素子及び磁気メモリ
US9218864B1 (en) * 2014-10-04 2015-12-22 Ge Yi Magnetoresistive random access memory cell and 3D memory cell array

Also Published As

Publication number Publication date
KR20190013757A (ko) 2019-02-11
JP6904343B2 (ja) 2021-07-14
WO2017208653A1 (ja) 2017-12-07
US20190189172A1 (en) 2019-06-20
KR102306333B1 (ko) 2021-09-30
US10706903B2 (en) 2020-07-07

Similar Documents

Publication Publication Date Title
JP6904343B2 (ja) 不揮発性メモリセル、メモリセルユニット及び情報書き込み方法、並びに、電子機器
US11276729B2 (en) Magnetoresistive element and electronic device having high heat resistance
JP3863484B2 (ja) 磁気抵抗効果素子および磁気メモリ
JP4991155B2 (ja) 半導体記憶装置
US8456898B2 (en) Magnetic element having perpendicular anisotropy with enhanced efficiency
US7119410B2 (en) Magneto-resistive effect element and magnetic memory
JP4970113B2 (ja) 磁気抵抗素子及び磁気メモリ
CN109564896B (zh) 磁阻元件和电子设备
US8565013B2 (en) Storage element and storage device
JP2011054873A (ja) 不揮発性メモリ素子の製造方法
JP2010165790A (ja) 不揮発性磁気メモリ装置
US8194443B2 (en) Memory device and memory
WO2017169147A1 (ja) 不揮発性メモリ素子および不揮発性メモリ素子の製造方法
JP7475057B2 (ja) 磁性積層膜、磁気メモリ素子及び磁気メモリ
JP2008117930A (ja) 記憶素子、メモリ
US9299916B2 (en) Memory element and memory device
JP2016004589A (ja) 抵抗変化型メモリ装置及び半導体装置
JP5327293B2 (ja) 不揮発性磁気メモリ装置
JP2015146370A (ja) 磁気抵抗素子
KR20230089260A (ko) 자기 저항 메모리 소자
JP2010021584A (ja) 記憶素子、メモリ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R151 Written notification of patent or utility model registration

Ref document number: 6904343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151