JPWO2017195311A1 - Cylindrical sputtering target material firing apparatus and firing method - Google Patents

Cylindrical sputtering target material firing apparatus and firing method Download PDF

Info

Publication number
JPWO2017195311A1
JPWO2017195311A1 JP2016555619A JP2016555619A JPWO2017195311A1 JP WO2017195311 A1 JPWO2017195311 A1 JP WO2017195311A1 JP 2016555619 A JP2016555619 A JP 2016555619A JP 2016555619 A JP2016555619 A JP 2016555619A JP WO2017195311 A1 JPWO2017195311 A1 JP WO2017195311A1
Authority
JP
Japan
Prior art keywords
firing
furnace
sputtering target
cylindrical sputtering
target material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016555619A
Other languages
Japanese (ja)
Other versions
JP6198363B1 (en
Inventor
久保田 善明
善明 久保田
稔裕 森岡
稔裕 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirochiku Co Ltd
Original Assignee
Hirochiku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirochiku Co Ltd filed Critical Hirochiku Co Ltd
Application granted granted Critical
Publication of JP6198363B1 publication Critical patent/JP6198363B1/en
Publication of JPWO2017195311A1 publication Critical patent/JPWO2017195311A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/005Shaft or like vertical or substantially vertical furnaces wherein no smelting of the charge occurs, e.g. calcining or sintering furnaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/12Shells or casings; Supports therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/20Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/12Travelling or movable supports or containers for the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Furnace Details (AREA)
  • Resistance Heating (AREA)

Abstract

【課題】本発明は、液晶表示素子や太陽電池などに用いられる透明導電膜をスパッタリング法で製作する場合に用いられる長尺物の円筒形スパッタリングターゲットを製造する焼成装置を提供する。【解決手段】長尺物の円筒形スパッタリングターゲット材の被焼成体を直立した状態で載置する固定炉床と、固定炉床を中心に配置され、炉内壁面に複数段の加熱ヒータと酸素流入口を設けた焼成炉本体と、焼成炉本体を走行台車上に載置しており、焼成炉本体が焼成位置と待避位置との間の軌条走行を可能にし、また、焼成炉の下部と固定炉床との間に炉シールを開閉する機構を設けたことを特徴とする。The present invention provides a firing apparatus for producing a long cylindrical sputtering target used when a transparent conductive film used for a liquid crystal display element, a solar cell, or the like is produced by a sputtering method. A fixed hearth on which a fired body of a long cylindrical sputtering target material is placed in an upright state, a fixed hearth placed around the fixed hearth, and a plurality of stages of heaters and oxygen on the inner wall surface of the furnace A firing furnace body provided with an inlet, and the firing furnace body are placed on a traveling carriage, the firing furnace body enables trajectory travel between the firing position and the retracted position, and the lower part of the firing furnace A mechanism for opening and closing the furnace seal is provided between the fixed hearth.

Description

本発明は、円筒形スパッタリングターゲット材の焼成装置に関し、詳しくは液晶表示素子や太陽電池などに用いられる透明導電膜をスパッタリング法で製作する場合に用いられる長尺物の円筒形スパッタリングターゲットを製造する酸化物被焼成体の焼成装置に関するものである。   The present invention relates to a cylindrical sputtering target material firing apparatus, and more particularly, to produce a long cylindrical sputtering target used when a transparent conductive film used for a liquid crystal display element, a solar battery, or the like is manufactured by a sputtering method. The present invention relates to a firing apparatus for an oxide fired body.

透明導電膜は、その高い導電性と可視光領域での高い透過率を有することから液晶表示素子、太陽電池その他の各種受光素子電極などに利用される。透明導電膜としては、高透過率かつ低抵抗の膜が得られることから、酸化錫―酸化インジウム系膜(ITO膜)、酸化アルミニウムー酸化亜鉛系膜(AZO膜)、酸化インジウムー酸化ガリウムー酸化亜鉛系膜(IGZO膜)が広く用いられている。   The transparent conductive film is used for liquid crystal display elements, solar cells, and other various light receiving element electrodes because of its high conductivity and high transmittance in the visible light region. As a transparent conductive film, a film having high transmittance and low resistance can be obtained. Therefore, a tin oxide-indium oxide film (ITO film), an aluminum oxide-zinc oxide film (AZO film), an indium oxide-gallium oxide-zinc oxide film. A system film (IGZO film) is widely used.

このような酸化物膜からなる透明導電膜の製造方法としてスパッタリング法が用いられる。スパッタリング法では、一般に約10Pa以下の100%アルゴンガスを導入して、膜の原料になるスパッタリングターゲットを陰極に設置し、基板をターゲットに対して平行に設置した状態で、アルゴンプラズマを発生させ、アルゴン陽イオンがターゲットに衝突した際に弾き飛ばされるターゲット成分の粒子が基板上に堆積して膜を形成する。現在では、スパッタリング法において成膜レートを高めるために、陰極に磁場を印加しながらスパッタリングを行うマグネトロンスパッタリングが採用されている。   A sputtering method is used as a method for producing a transparent conductive film made of such an oxide film. In the sputtering method, 100% argon gas of about 10 Pa or less is generally introduced, a sputtering target that is a raw material of the film is set on the cathode, and argon plasma is generated in a state where the substrate is set parallel to the target, Particles of the target component that are blown off when the argon cation collides with the target are deposited on the substrate to form a film. At present, in order to increase the film formation rate in the sputtering method, magnetron sputtering is employed in which sputtering is performed while applying a magnetic field to the cathode.

このスパッタリングターゲットに、平板状スパッタリングターゲットを用いた場合、マグネトロンスパッタリング法において、磁場によってプラズマが平板状スパッタリングターゲット材の特定箇所に集中してエロージョンが発生して、エロージョンの最深部がバッキングプレートに達した所で寿命となり、結果的に、そのターゲットの使用効率が20〜30%に留まる問題があった。   When a flat sputtering target is used for this sputtering target, in the magnetron sputtering method, plasma concentrates on a specific portion of the flat sputtering target material due to a magnetic field, and erosion occurs, and the deepest part of the erosion reaches the backing plate. As a result, there was a problem that the use efficiency of the target remained at 20 to 30%.

この問題に対応するため円筒形スパッタリングターゲットを採用して、円筒形バッキングチューブ内側に磁場発生設備と冷却設備を設置して、円筒形スパッタリングターゲットを回転しながらスパッタリングを行うもので、その結果、ターゲットの使用効率を60〜70%まで高めることができる。この円筒形スパッタリングターゲットの製造方法の一つに焼結法がある。   In order to cope with this problem, a cylindrical sputtering target is adopted, a magnetic field generating facility and a cooling facility are installed inside the cylindrical backing tube, and sputtering is performed while rotating the cylindrical sputtering target. As a result, the target The use efficiency can be increased to 60 to 70%. One method for producing this cylindrical sputtering target is a sintering method.

焼結法は、原料酸化物粉末に水、バインダと分散剤を加えて混合してスラリー化し、スプレードライヤなどで造粒粉にした後、冷間静水圧プレス(CIP法)などで円筒形スパッタリングターゲットを成形し、得られた成形体を酸素含有ガスが流れる高温の雰囲気中において、常圧で焼成成形する方法であり、相対密度90%以上の高密度なターゲットを製造することができる。   In the sintering method, water, a binder, and a dispersant are added to the raw material oxide powder and mixed to form a slurry, which is granulated with a spray dryer, etc., and then subjected to cylindrical sputtering with a cold isostatic press (CIP method). In this method, the target is molded, and the resulting molded body is fired and molded at normal pressure in a high-temperature atmosphere in which an oxygen-containing gas flows, and a high-density target having a relative density of 90% or more can be produced.

しかしながら、焼結法で円筒形スパッタリングターゲットを形成する場合、酸化物焼結体の焼成時に、焼結体に割れやクラック、変形、反り、微細なクラックが発生する問題がある。また、スパッタリング法において、安定して均質な特性の膜を均一な膜厚で得るためには、酸化物焼結体の密度、結晶粒径、バルク抵抗について均一にすることが望まれる。   However, when a cylindrical sputtering target is formed by a sintering method, there is a problem that cracks, cracks, deformation, warpage, and fine cracks are generated in the sintered body during firing of the oxide sintered body. In addition, in the sputtering method, in order to obtain a film having stable and uniform characteristics with a uniform film thickness, it is desirable to make the density, crystal grain size, and bulk resistance of the oxide sintered body uniform.

この問題に対して、高密度で、バルク均一性が高く、焼成時のみならず、焼成後の円筒形スパッタリングターゲットの製造工程やスパッタリング時において、クラック、割れ、変形などの不具合が抑止される高品質な円筒形スパッタリングターゲット用酸化物焼結体を得る先行技術が開示されている。   In order to solve this problem, the density is high, the bulk uniformity is high, and defects such as cracks, cracks and deformation are suppressed not only during firing but also in the manufacturing process and sputtering of a cylindrical sputtering target after firing. Prior art for obtaining a quality oxide sintered body for a cylindrical sputtering target is disclosed.

特開2012−126587公報(〔0019〜0021〕、〔0024〜0026〕、〔図1〕)JP 2012-1265887 A ([0019-0021], [0024-0026], [FIG. 1])

前記先行技術は、円筒形スパッタリングターゲット成形体の大きさが15cm径×20cm長さ〜20cm径×30cm長さのものを焼成の対象とした直方形の電気炉で、炉内の下方より上方に向けての酸素ガスなどの雰囲気ガスを流通させる場合において、炉内の高さ方向や成形体の内側、外側で酸素含有ガスの流れが不均一となり、ひいては炉内温度分布が不均一なものとなる問題を解決したものであって、雰囲気ガスを供給する配管の位置と数を適切にすることによって、円筒形の成形体の高さ方向にわたって、また外側と内側との間で夫々均一な雰囲気ガスの流れを作り、炉内温度分布を均一なものとして、焼結を均一に進行させるもので、その結果、均一性の高い円筒形酸化物焼結体を得ることができるとしている。   The prior art is a rectangular electric furnace having a cylindrical sputtering target molded body having a size of 15 cm diameter × 20 cm length to 20 cm diameter × 30 cm length, and is directed upward from below in the furnace. When the atmospheric gas such as oxygen gas is circulated, the flow of oxygen-containing gas is uneven in the height direction in the furnace and inside and outside of the molded body, and the furnace temperature distribution is uneven. A uniform atmosphere over the height direction of the cylindrical molded body and between the outside and inside by adjusting the position and number of pipes for supplying the atmosphere gas. The gas flow is made, the furnace temperature distribution is made uniform, and the sintering proceeds uniformly. As a result, a highly uniform cylindrical oxide sintered body can be obtained.

一方、先行技術により得られる円筒形スパッタリングターゲットは、長さが20〜30cmであり、これを用いて1.5〜3mの長尺の円筒形スパッタリングターゲットを製作するには、5〜10本を積み重ねる必要があり、このターゲット同士の接合はボンディングで行われるが、その接合である分割部の段差を0.5mm以下にしなければ、アーキングやパーティクルの発生が抑制できないとされている。よって、分割の数が増加すると、アーキングの発生回数が増加し、分割部に起因する割れが生じ易く、また、ボンディングをする手間が掛かり、製造上生産効率が悪くなる問題があった。   On the other hand, the cylindrical sputtering target obtained by the prior art has a length of 20 to 30 cm, and in order to produce a 1.5 to 3 m long cylindrical sputtering target using this, 5 to 10 pieces are used. Although it is necessary to stack the targets, bonding between the targets is performed by bonding. However, it is said that the generation of arcing and particles cannot be suppressed unless the level difference of the divided portion which is the bonding is 0.5 mm or less. Therefore, when the number of divisions is increased, the number of occurrences of arcing is increased, cracking due to the divided portions is likely to occur, and there is a problem in that it takes time and labor for bonding, resulting in poor production efficiency.

これを解決するためには、できるだけ長尺の円筒形スパッタリングターゲットを製造できて使用することが求められ、その一つとして、長尺の円筒形スパッタリングターゲット材の焼成が品質を充当した上で達成できることが求められてきた。従来の平板状スパッタリングターゲット材や短尺の円筒形スパッタリングターゲット材の焼成には、炉高さの低い焼成炉が用いられてきている。これらの焼成炉は、炉内に被焼成物である平板状や短尺の円筒形スパッタリングターゲット材を炉内に搬入移送して焼成する形式のものである。この炉を長尺の円筒形スパッタリングターゲット材の焼成に応用する場合には、長尺の被焼成物を炉内に搬入する際に、倒れや傾きなどを完全に防止しないと、均一な焼成が達成されず、最悪の場合倒れて損壊する恐れがあった。   In order to solve this problem, it is required to manufacture and use as long a cylindrical sputtering target as possible, and as one of them, firing of a long cylindrical sputtering target material is achieved with appropriate quality. There has been a need to be able to do it. For firing conventional flat sputtering target materials and short cylindrical sputtering target materials, a firing furnace having a low furnace height has been used. These firing furnaces are of a type in which a plate-like or short cylindrical sputtering target material, which is an object to be fired, is carried into the furnace and transferred into the furnace for firing. When this furnace is applied to firing a long cylindrical sputtering target material, when carrying a long object to be fired into the furnace, it is necessary to completely prevent falling and tilting. It was not achieved, and in the worst case, it could fall down and be damaged.

本発明は、これらの問題を解決したものであって、長尺の円筒形スパッタリングターゲット材を複数本立設して焼成するに際して、長尺の被焼成物を損壊することなく、また被焼成物の高さや径方向に品質のバラツキを少なくして焼成ができる焼成装置及び焼成方法を提供することを目的とする。   The present invention solves these problems, and when firing a plurality of long cylindrical sputtering target materials standing up and firing, without destroying the long fired object, It is an object of the present invention to provide a firing apparatus and a firing method that can be fired with less quality variation in the height and radial direction.

上記の目的を達成するために、本発明の請求項1に係る円筒形スパッタリングターゲット材の焼成装置は、長さ1.5〜2mの長尺物の円筒形スパッタリングターゲット材の焼成装置であって、該長尺物の円筒形スパッタリングターゲット材の被焼成体を直立した状態で載置する固定炉床と、前記固定炉床を内包するように配置され、かつ炉内壁面に複数の加熱ヒータを設けた焼成炉本体と、前記焼成炉本体を走行台車上に載置しており、前記焼成炉本体が前記固定炉床を内包する位置から離隔して待避する位置へ軌条走行を可能にした焼成炉走行装置と、を備え、前記焼成炉本体の側部一面に前記固定炉床を内包する際に干渉しないよう開閉可能な炉殻扉を設けると共に、前記焼成炉の炉殻下部と前記固定炉床の周縁部との間に漏気防止のシール部を設け、焼成時には前記焼成炉本体を下降移動することによりシール部を圧下密着してシールする炉シール昇降装置を設けたことを特徴とする。 In order to achieve the above object, a firing apparatus for a cylindrical sputtering target material according to claim 1 of the present invention is a firing apparatus for a long cylindrical sputtering target material having a length of 1.5 to 2 m. A fixed hearth on which the sintered body of the long cylindrical sputtering target material is placed in an upright state, and a plurality of heaters disposed on the inner wall surface of the furnace. The firing furnace body provided and the firing furnace body placed on a traveling carriage, the firing that enables the rail travel to a position where the firing furnace body is separated from the position containing the fixed hearth and retracted A furnace traveling device, and a furnace shell door that is openable and closable so as not to interfere when the fixed hearth is included is provided on one side surface of the firing furnace main body, and a lower part of the furnace shell and the fixed furnace Air leakage prevention between the floor edge Lumpur portion is provided, at the time of firing is characterized in that a furnace sealing lifting device for sealing by pressure contact seal portion by downward moving the sintering furnace main body.

本発明に係る円筒形スパッタリングターゲット材は、直径150〜300mm、肉厚10mm前後、長さが1.5〜2mの長尺の円筒形スパッタリングターゲット材である。この焼成は、温度1250〜1700℃の高温で、酸素雰囲気中で3〜30時間に亘り行われる。請求項1の構成を採用することにより、前記長尺の円筒形スパッタリングターゲット材を複数本焼成するに際し、焼成炉本体と走行装置が待避位置に離隔しているので、前記円筒形スパッタリングターゲット材を固定炉床に適正な位置に載置する作業が確実に行うことができる。また、焼成炉本体が焼成位置に走行して戻り固定炉床を取り囲むようにするが、焼成炉の炉殻扉を全開して走行するので、円筒形スパッタリングターゲット材を損傷することなく焼成炉内に配置して焼成することができる。また、焼成位置で、焼成炉本体と固定炉床の隙間を防ぐ炉シール昇降装置を設けて、炉内と炉外との間のシールを完全に行うことができるので、炉内の各位置で高温の焼成温度を適正に保持することが可能となる。これにより均質で適正な品質の長尺の円筒形スパッタリングターゲットを焼成して得ることができる。   The cylindrical sputtering target material according to the present invention is a long cylindrical sputtering target material having a diameter of 150 to 300 mm, a thickness of around 10 mm, and a length of 1.5 to 2 m. This baking is performed at a high temperature of 1250 to 1700 ° C. for 3 to 30 hours in an oxygen atmosphere. By adopting the configuration of claim 1, when firing a plurality of the long cylindrical sputtering target materials, the firing furnace main body and the traveling device are separated from the retracted position. The operation | work which mounts in an appropriate position on a fixed hearth can be performed reliably. In addition, the firing furnace body travels to the firing position and surrounds the fixed hearth, but the furnace shell door of the firing furnace is fully opened so that it travels without damaging the cylindrical sputtering target material. And can be fired. Also, at the firing position, a furnace seal elevating device that prevents the gap between the firing furnace main body and the fixed hearth can be provided, and the seal between the inside of the furnace and the outside of the furnace can be performed completely. It is possible to appropriately maintain a high firing temperature. Thus, a long cylindrical sputtering target having a uniform and appropriate quality can be obtained by firing.

また、請求項2に係る円筒形スパッタリングターゲット材の焼成装置は、請求項1に記載の円筒形スパッタリングターゲット材の焼成装置において、前記炉シール昇降装置が、前記焼成炉体の下部に炉を支持する4箇所の支持梁とそれに連なるギヤード圧下装置を備え、1台の昇降用ギヤードモータから駆動力分配装置を経て該各ギヤード圧下装置を駆動するように構成したことを特徴とする。   A cylindrical sputtering target material firing apparatus according to claim 2 is the cylindrical sputtering target material firing apparatus according to claim 1, wherein the furnace seal lifting device supports a furnace at a lower portion of the firing furnace body. The four support beams and the geared reduction device connected to the four support beams are provided, and each geared reduction device is driven from a single lifting / lowering geared motor through a driving force distribution device.

この構成によれば、焼成炉の周囲4箇所にギヤード圧下装置を設け、1台の駆動ギヤードモータの回転力を適正に4分割してシール部の圧下を加えることができるので、焼成炉本体と固定炉床間のシールが適切に均等に行われて、高温炉内温度が漏気によって外乱を受けることなく、適切に保持することができる。 According to this configuration, the geared reduction device is provided at four locations around the firing furnace, and the rotational force of one drive geared motor can be properly divided into four to apply the reduction of the seal portion. Sealing between the fixed hearths is performed appropriately and evenly, and the high-temperature furnace temperature can be appropriately maintained without being disturbed by air leakage.

また、請求項3に係る円筒形スパッタリングターゲット材の焼成装置は、請求項1又は2に記載の円筒形スパッタリングターゲット材の焼成装置において、前記焼成炉内壁面に設けた加熱ヒータが、各炉内壁の高さ方向に3段以上に分画して配設していることを特徴とする。 Further, the cylindrical sputtering target material firing apparatus according to claim 3 is the cylindrical sputtering target material firing apparatus according to claim 1 or 2, wherein a heater provided on the inner wall surface of the firing furnace includes an inner wall of each furnace. It is characterized by being arranged in three or more stages in the height direction.

また、請求項4の円筒形スパッタリングターゲット材の焼成装置は、請求項3に記載の円筒形スパッタリングターゲット材の焼成装置において、前記加熱ヒータが、MoSiから成るU字状セラミックヒータであることを特徴とする。Further, the cylindrical sputtering target material firing apparatus according to claim 4 is the cylindrical sputtering target material firing apparatus according to claim 3, wherein the heater is a U-shaped ceramic heater made of MoSi 2. Features.

また、請求項5に係る円筒形スパッタリングターゲット材の焼成装置は、請求項3又は4に記載の円筒形スパッタリングターゲット材の焼成装置において、前記加熱ヒータが、炉内温度計と対になって配設していることを特徴とする。 A cylindrical sputtering target material firing apparatus according to claim 5 is the cylindrical sputtering target material firing apparatus according to claim 3 or 4, wherein the heater is paired with an in-furnace thermometer. It is characterized by having installed.

これらの構成により、焼成炉内の高さ方向の焼成温度の分布を均一に調整することができる。具体的には、高さ方向に分画された区域の温度をそこに設置されている温度計で測定して、その区域の加熱ヒータの熱出力を増減することにより所定温度に制御できる。通常であれば、炉内温度が、低い位置の温度より高い位置の温度の方が高くなる傾向を各区域毎の熱出力を調節することにより所定温度に均一に近付けることができる。これにより長尺の円筒形スパッタリングターゲット材の高さ(長さ)方向の焼成度のバラツキがなく、品質の安定に寄与する。 With these configurations, the distribution of the firing temperature in the height direction in the firing furnace can be adjusted uniformly. Specifically, it is possible to control the temperature to a predetermined temperature by measuring the temperature of the area divided in the height direction with a thermometer installed therein and increasing or decreasing the heat output of the heater in the area. Normally, the tendency that the temperature in the furnace becomes higher at the higher temperature than at the lower temperature can be made to approach the predetermined temperature uniformly by adjusting the heat output for each zone. Thereby, there is no variation in the firing degree in the height (length) direction of the long cylindrical sputtering target material, which contributes to stable quality.

また、加熱ヒータとして、MoSiのU字状セラミックヒータを採用しているので、酸素雰囲気中で最高焼成温度1700℃辺りでも十分耐熱、耐酸化性があって寿命が長く、十分加熱能力を発揮できるから、長時間焼成する円筒形スパッタリングターゲット材の焼成に最適である。また、加熱ヒータの形状をU字状としているので、加熱ヒータの昇温や冷却に伴う熱膨張や熱収縮にも耐える形状であると共に、高さ方向、周辺方向に区切られた分画区域ごとの加熱ヒータとして、加熱強度、加熱密度の点で最適の形状である。また、加熱ヒータと温度計とを区域毎に対として配置しているので、高さ方向、周辺方向の分画区域毎の温度制御が的確に精度良く行うことができる。In addition, because the MoSi 2 U-shaped ceramic heater is used as the heater, it has sufficient heat resistance and oxidation resistance at a maximum firing temperature of around 1700 ° C in an oxygen atmosphere, has a long life, and exhibits sufficient heating capacity. Therefore, it is optimal for firing a cylindrical sputtering target material that is fired for a long time. In addition, because the shape of the heater is U-shaped, it has a shape that can withstand the thermal expansion and contraction associated with the temperature rise and cooling of the heater, as well as each fractionated area divided in the height direction and the peripheral direction. This heater has an optimum shape in terms of heating strength and heating density. In addition, since the heater and the thermometer are arranged as a pair for each area, the temperature control for each of the divided areas in the height direction and the peripheral direction can be performed accurately and accurately.

また、請求項6に係る円筒形スパッタリングターゲット材の焼成装置は、請求項1から5のいずれかに記載の円筒形スパッタリングターゲット材の焼成装置において、前記焼成炉本体が、上部に単数又は複数のガス排出孔を設けると共に、固定炉床の載置された円筒形スパッタリングターゲット材の下部から、また炉内壁に高さ方向/周辺方向に複数の酸素吹き込み孔を設けたことを特徴とする。 Moreover, the cylindrical sputtering target material firing apparatus according to claim 6 is the cylindrical sputtering target material firing apparatus according to any one of claims 1 to 5, wherein the firing furnace main body has one or more upper portions. A gas discharge hole is provided, and a plurality of oxygen blowing holes are provided in the height direction / periphery direction on the furnace inner wall from the lower part of the cylindrical sputtering target material on which the fixed hearth is placed.

この構成をとることにより、焼成炉内の酸素の流れを断面方向に対して一様にすることができて、場所毎の酸素濃度の差異を最小にする。ひいては、炉内温度分布や酸素濃度分布を一様にすることができるので、被焼成物である長尺の円筒形スパッタリングターゲット材の焼成をほぼ完全に均質に進めることができ、相対密度を安定して向上することができると共に、長さ方向や断面方向の相対密度のバラツキをほぼ無くすことができる。 By adopting this configuration, the flow of oxygen in the firing furnace can be made uniform in the cross-sectional direction, and the difference in oxygen concentration at each location is minimized. As a result, the furnace temperature distribution and the oxygen concentration distribution can be made uniform, so that the firing of the long cylindrical sputtering target material that is the object to be fired can proceed almost completely homogeneously, and the relative density can be stabilized. In addition, the variation in relative density in the length direction and the cross-sectional direction can be substantially eliminated.

また、請求項7の円筒形スパッタリングターゲット材の焼成方法は、請求項1から6のいずれかに記載の円筒形スパッタリングターゲット材の焼成装置を用いて、長さ1.5〜2mの長尺物の円筒形スパッタリングターゲット材の被焼成物を単数又は複数本を所定間隔に置いて自立させた状態で固定炉床に載置し、次いで前記固定炉床を炉内中央に取り込むように焼成炉の炉殻扉を開放して、焼成炉を待避位置から焼成位置に走行移動した後、前記炉殻扉を閉鎖して、焼成炉を昇温し、1250〜1700℃の高温で、かつ酸素雰囲気中で3〜30時間に亘り被焼成物を焼成して円筒形スパッタリングターゲットを得ることを特徴とする。 Moreover, the baking method of the cylindrical sputtering target material of Claim 7 uses the baking apparatus of the cylindrical sputtering target material in any one of Claims 1-6, and is a long thing 1.5-2 m in length. One or a plurality of cylindrical sputtering target materials to be fired are placed on a fixed hearth in a state where they are self-supporting at predetermined intervals, and then the fixed hearth is taken into the center of the furnace. After the furnace shell door is opened and the firing furnace is moved from the retracted position to the firing position, the furnace shell door is closed and the temperature of the firing furnace is increased to a high temperature of 1250 to 1700 ° C. in an oxygen atmosphere. And firing a material to be fired for 3 to 30 hours to obtain a cylindrical sputtering target.

また、請求項8の円筒形スパッタリングターゲット材の焼成方法は、請求項7の円筒形スパッタリングターゲット材の焼成方法において、前記円筒形スパッタリングターゲット材がITO(酸化錫―酸化インジウム系)材、AZO(酸化アルミニウムー酸化亜鉛系)材又はIGZO(酸化インジウムー酸化ガリウムー酸化亜鉛系)材であることを特徴とする。 The cylindrical sputtering target material firing method according to claim 8 is the cylindrical sputtering target material firing method according to claim 7, wherein the cylindrical sputtering target material is an ITO (tin oxide-indium oxide system) material, AZO ( It is characterized by being an aluminum oxide-zinc oxide system material or an IGZO (indium oxide-gallium oxide-zinc oxide system) material.

本発明に係る円筒形スパッタリングターゲット材は、直径150〜300mm、肉厚10mm前後、長さが1.5〜2mの長尺の円筒形スパッタリングターゲット材である。この焼成は、ITO材で、温度1450〜1700℃の高温で、好ましくは、温度1500〜1600℃の高温で、また、AZO又はIGZO材で、温度1250〜1500℃の高温で、好ましくは、温度1300〜1450℃の高温で、酸素雰囲気中で3〜30時間、好ましくは、5〜10時間に亘り行われる。この時間が長過ぎると、焼結組織が肥大化して割れ易くなる恐れがある。焼成における目標焼成温度までの昇温速度は、100〜500℃/Hrで、目標焼成温度からの降温速度は10〜150℃/Hrである。 The cylindrical sputtering target material according to the present invention is a long cylindrical sputtering target material having a diameter of 150 to 300 mm, a thickness of around 10 mm, and a length of 1.5 to 2 m. This firing is performed with an ITO material at a high temperature of 1450 to 1700 ° C., preferably at a high temperature of 1500 to 1600 ° C., and with an AZO or IGZO material at a high temperature of 1250 to 1500 ° C., preferably at a temperature of The reaction is performed at a high temperature of 1300 to 1450 ° C. in an oxygen atmosphere for 3 to 30 hours, preferably 5 to 10 hours. If this time is too long, the sintered structure may be enlarged and easily cracked. The rate of temperature rise to the target firing temperature in firing is 100 to 500 ° C./Hr, and the rate of temperature decrease from the target firing temperature is 10 to 150 ° C./Hr.

前述の円筒形スパッタリングターゲット材の焼成を行うに際し、前述の円筒形スパッタリングターゲット材の焼成装置を用いることにより、固定炉床に長尺の円筒形スパッタリングターゲット材を安定した姿勢で載置できるし、載置する作業で円筒形スパッタリングターゲット材を損傷する恐れがない。また、本焼成炉を用いているので、適切な焼成温度およびその分布を、また酸素雰囲気を制御して、容易に付与できるから、被焼成物の全長方向に一様に同じ焼成温度を付加でき、亀裂等のない表面性状や相対密度を高く、安定した円筒形スパッタリングターゲットを得ることができる。 When firing the above-described cylindrical sputtering target material, by using the above-mentioned cylindrical sputtering target material firing apparatus, it is possible to place a long cylindrical sputtering target material on the fixed hearth in a stable posture, There is no risk of damaging the cylindrical sputtering target material during the mounting operation. Moreover, since the main firing furnace is used, an appropriate firing temperature and its distribution can be easily given by controlling the oxygen atmosphere, so that the same firing temperature can be uniformly applied in the entire length direction of the object to be fired. In addition, it is possible to obtain a stable cylindrical sputtering target having high surface properties and relative density without cracks.

本発明に係る請求項1から8に記載の円筒形スパッタリングターゲット材の焼成装置及び焼成方法によれば、被焼成物である円筒形スパッタリングターゲット材は、焼成作業中は固定炉床に載置されて移動せず、代わりに焼成炉が待機位置から焼成位置に移動して焼成を行うので、移動により被焼成物が傾いたり、加熱源との間隔も変わらず、また、移動による損壊の恐れも無く、被焼成物の焼成品質が安定して得られる。また、四方向からの炉壁からの加熱が、加熱ヒータを高さ方向に分割して設置しているので、炉高さ方向の温度分布を一定に調節し易く、長尺の円筒形スパッタリングターゲットの焼成品質の安定、向上に貢献する。また、酸素雰囲気を調整する酸素の流入、流出の数、位置も被焼成物に対して一様な流れが得られるように配設しているので、焼成炉の固定炉床とのシール効果と相まって、長尺の円筒形スパッタリングターゲット材に対して酸素濃度、焼成温度を安定して目標通りに付与できる。 According to the firing apparatus and firing method for a cylindrical sputtering target material according to claims 1 to 8 of the present invention, the cylindrical sputtering target material, which is an object to be fired, is placed on the fixed hearth during the firing operation. Instead, the firing furnace moves from the standby position to the firing position to perform firing, so that the object to be fired is tilted by movement and the distance from the heating source does not change, and there is a risk of damage due to movement. No, the firing quality of the object to be fired can be obtained stably. In addition, heating from the furnace wall from four directions is installed by dividing the heater in the height direction, making it easy to adjust the temperature distribution in the furnace height direction to be a long cylindrical sputtering target. Contributes to stable and improved firing quality. In addition, the number and position of oxygen inflow and outflow for adjusting the oxygen atmosphere are arranged so that a uniform flow can be obtained with respect to the object to be fired. In combination, the oxygen concentration and the firing temperature can be stably applied to the long cylindrical sputtering target material as intended.

上述したように、本発明の円筒形スパッタリングターゲット材の焼成装置及び焼成方法によれば、長尺の円筒形スパッタリングターゲットを目標品質に対応して作り込みし易く、設備も過大とならない。また、焼成装置は、使用実績のある設備をコンパクトに集約して構成されており、設置面積も小さく、設備費用も多大とならない、大気汚染もない環境的にも優れた設備である。また、1.5〜2mの長尺の円筒形スパッタリングターゲットを高品質に容易に作り込めるので、これを用いて、大型の液晶表示装置や大型の太陽光発電装置の透明導電膜の製造に際し、使用効率の高い最適なスパッタリング用のターゲットを提供できる。 As described above, according to the firing apparatus and firing method of the cylindrical sputtering target material of the present invention, it is easy to make a long cylindrical sputtering target corresponding to the target quality, and the equipment is not excessive. In addition, the baking apparatus is configured by compactly integrating facilities that have been used, has a small installation area, does not have a large facility cost, and is environmentally superior with no air pollution. In addition, since a 1.5 to 2 m long cylindrical sputtering target can be easily produced with high quality, this is used to manufacture a transparent conductive film of a large liquid crystal display device or a large photovoltaic power generation device. An optimum sputtering target with high use efficiency can be provided.

図1は、本発明を実施するための形態に係る円筒形スパッタリングターゲット材の焼成装置の模式的配置図であって、焼成時の配置(断面)図である。FIG. 1 is a schematic layout diagram of a firing apparatus for a cylindrical sputtering target material according to an embodiment for carrying out the present invention, and is a layout (cross section) diagram at the time of firing. 図2は、図1における待避時の配置(断面)図である。FIG. 2 is an arrangement (cross-sectional) view at the time of saving in FIG. 図3は、図1におけるA−A矢視の模式的断面図である。3 is a schematic cross-sectional view taken along the line AA in FIG. 図4は、図1におけるB−B矢視の模式的断面図である。4 is a schematic cross-sectional view taken along the line BB in FIG.

本発明に係る円筒形スパッタリングターゲット材の焼成装置1(以下、焼成装置1と称す。)を図1,2,3,4を用いて説明する。 A firing apparatus 1 (hereinafter referred to as firing apparatus 1) for a cylindrical sputtering target material according to the present invention will be described with reference to FIGS.

本発明に係る円筒形スパッタリングターゲット材の焼成装置及び焼成方法に用いる円筒形スパッタリングターゲット材Mは、直径150〜300mm、肉厚10mm前後、長さが1.5〜2mの長尺の円筒形スパッタリングターゲット材である。この材質は、ITO(酸化錫―酸化インジウム系)材、AZO(酸化アルミニウムー酸化亜鉛系)材又はIGZO(酸化インジウムー酸化ガリウムー酸化亜鉛系)材である。この焼成は、ITO材の場合で、温度1450〜1700℃の高温で、好ましくは、温度1500〜1600℃の高温で、また、AZO又はIGZO材の場合で、温度1250〜1500℃の高温で、好ましくは、温度1300〜1450℃の高温で、酸素雰囲気中で3〜30時間、好ましくは、5〜10時間に亘り行われる。焼成における昇温速度は、100〜500℃/Hrで、降温速度は10〜150℃/Hrである。   The cylindrical sputtering target material M used in the firing apparatus and firing method for the cylindrical sputtering target material according to the present invention is a long cylindrical sputtering material having a diameter of 150 to 300 mm, a thickness of about 10 mm, and a length of 1.5 to 2 m. Target material. This material is an ITO (tin oxide-indium oxide system) material, an AZO (aluminum oxide-zinc oxide system) material, or an IGZO (indium oxide-gallium oxide-zinc oxide system) material. This firing is in the case of ITO material at a high temperature of 1450-1700 ° C, preferably at a high temperature of 1500-1600 ° C, and in the case of AZO or IGZO material at a high temperature of 1250-1500 ° C, Preferably, it is performed at a high temperature of 1300 to 1450 ° C. for 3 to 30 hours, preferably 5 to 10 hours in an oxygen atmosphere. The temperature rising rate in firing is 100 to 500 ° C./Hr, and the temperature decreasing rate is 10 to 150 ° C./Hr.

図1は、焼成装置1の模式的平面配置図であって、焼成時の配置を示す。円筒形スパッタリングターゲット材である被焼成物Mの4本が立設の状態で載置されている固定炉床3を中央に取り込んだ焼成炉本体2が焼成炉走行装置4上に載荷されて走行レール4−3上を走行可能としている。焼成時には、焼成炉本体2は、中央部の下に固定炉床3を周囲四方から取り囲むように炉殻2−cと炉壁耐火物2−aが3面あり、残る1面には開閉可能で耐火物2−aを内張りした開閉扉2−2があり、また、図示していないが、炉上部には炉天井耐火物2−bがあり、このように焼成炉本体2の内部は耐火物で内張りされている。耐火物として、アルミナ質、マグネシア質等の耐高温や耐酸化性の定型または不定形の耐火材が用いられ、炉殻側には常法の断熱材を用いる。また、固定炉床3は、図3,4に示すように、四角柱形状の耐火物であり、アルミナ質、マグネシア質等の耐高温や耐酸化性の定型または不定形の耐火材が用いられる。また、固定炉床3上に被焼成物Mを立てて載置する場合、間に載置台3−aを入れることにより、被焼成物Mの下端の焼成温度が維持できて、焼成品質を保ち易い。載置台3−aは、固定炉床3と同等の性状の耐火物を用いるのが良い。   FIG. 1 is a schematic plan view of the firing apparatus 1 and shows the layout during firing. A firing furnace main body 2 that takes in a fixed hearth 3 on which four of the objects M to be fired, which are cylindrical sputtering target materials, are placed in a standing state is loaded on the firing furnace traveling device 4 and travels. The vehicle can run on the rail 4-3. At the time of firing, the firing furnace main body 2 has three faces of the furnace shell 2-c and the furnace wall refractory 2-a so as to surround the fixed hearth 3 from the four sides under the center, and the remaining one face can be opened and closed. There is an open / close door 2-2 lined with a refractory 2-a, and although not shown, there is a furnace refractory 2-b at the top of the furnace, and thus the inside of the firing furnace body 2 is refractory. Lined with objects. As the refractory, a high-temperature and oxidation-resistant regular or irregular refractory material such as alumina or magnesia is used, and a conventional heat insulation is used on the furnace shell side. Further, as shown in FIGS. 3 and 4, the fixed hearth 3 is a quadrangular prism-shaped refractory, and a high-temperature and oxidation-resistant regular or irregular refractory material such as alumina and magnesia is used. . In addition, when placing the object to be fired M on the fixed hearth 3, the firing temperature at the lower end of the object to be fired M can be maintained by inserting the placing table 3-a between them, and the firing quality is maintained. easy. As the mounting table 3-a, a refractory having the same properties as the fixed hearth 3 is preferably used.

図2は、焼成装置1の焼成炉本体2が固定炉床3から待避している待機状態の位置に移動していることを示す。この場合、固定炉床3は?き出し状態にあり、被焼成物Mを装入載置するか又は焼成済みの被焼成物Mを取り出す場合であって、作業を妨害する物が周りに無いから、前記作業を容易に確実に行うことができる。一方、焼成炉本体2は、開閉扉2−2が全開状態であって、固定炉床3からの待避移動が支障なく容易に実施できる。また、焼成炉本体2を移動するに際しては、炉シール昇降装置5を作動させて、炉シールを解除する必要がある。   FIG. 2 shows that the firing furnace body 2 of the firing apparatus 1 has moved from the fixed hearth 3 to a standby position. In this case, the fixed hearth 3 is in an uncovered state, in which the object to be fired M is loaded or placed, or the fired object M to be fired is taken out, and there are no obstacles around the work. Therefore, the operation can be easily and reliably performed. On the other hand, the firing furnace main body 2 has the open / close door 2-2 fully open, and can be easily moved away from the fixed hearth 3 without hindrance. Further, when moving the firing furnace body 2, it is necessary to operate the furnace seal lifting device 5 to release the furnace seal.

次に、図3、4に基づいて、焼成炉走行装置4について説明すると、焼成炉本体2は四箇所の支持梁5−5を介して走行台車4−4に載る。走行台車4−4は、二条の走行レール4−3上に載る走行車輪4−2を合計四輪備え、それぞれ片側の走行車輪4−2の一つが駆動ギヤードモータ4−1により回転駆動する。走行台車4−4は、図示していないが、走行レ−ル4−3に設けた焼成炉本体2の焼成位置と待避位置に相当する近接スイッチにより所定の距離間を自動走行することができる。 Next, the firing furnace traveling device 4 will be described with reference to FIGS. 3 and 4. The firing furnace body 2 is mounted on the traveling carriage 4-4 via the four support beams 5-5. The traveling carriage 4-4 includes a total of four traveling wheels 4-2 mounted on two traveling rails 4-3, and one of the traveling wheels 4-2 on one side is rotationally driven by a drive geared motor 4-1. Although not shown, the traveling carriage 4-4 can automatically travel between a predetermined distance by a proximity switch corresponding to the firing position and the retreat position of the firing furnace body 2 provided on the traveling rail 4-3. .

次に、図1,3、4に基づいて、焼成炉本体2と固定炉床3との間の炉シールについて説明すると、図1の焼成位置に焼成炉本体2が移動走行して来て、固定炉床3を炉内に取り込んだ状態で停止し、次いで開閉扉2−2を閉鎖すると、図3,4に示すように、焼成炉本体2の下部と固定炉床3の外周部との間に階段状の隙間を設けている。この隙間を焼成炉本体2を下降させて塞ぐことにより炉シールが完成する。この炉シールが成立することにより、外気がシール部を通って炉内に浸入すること、又は炉内の酸素雰囲気ガスが炉外に漏れることを完全に防止して、焼成温度に対して外乱となることを防ぐ。 Next, the furnace seal between the firing furnace body 2 and the fixed hearth 3 will be described based on FIGS. 1, 3, and 4. The firing furnace body 2 travels to the firing position in FIG. 1, When the fixed hearth 3 is stopped in the state of being taken into the furnace, and then the door 2-2 is closed, as shown in FIGS. 3 and 4, the lower portion of the firing furnace body 2 and the outer peripheral portion of the fixed hearth 3 are separated. A step-like gap is provided between them. The furnace seal is completed by closing the firing furnace body 2 by closing the gap. By establishing this furnace seal, it is possible to completely prevent the outside air from entering the furnace through the seal portion, or the oxygen atmosphere gas in the furnace from leaking outside the furnace, and to disturb the firing temperature. To prevent becoming.

前述したように、焼成炉本体2は、支持梁5−5、ギヤード圧下装置5−4を介して走行台車4−4に載っている。炉シ−ル昇降装置5は、一台の駆動ギヤードモータ5−1、駆動軸2、2台の駆動力分配装置5−3、4台のギヤード圧下装置5−4から成る。1台の駆動ギヤードモータ5−1の出力は、先ず1台の駆動力分配装置5−3により主力軸5−2と直交する出力軸5−2に分配され、一つの出力軸5−2は2台のギヤード圧下装置5−4に連結される。もう一つの直交する出力軸5−2は、駆動力分配装置5−3により直交する出力軸5−2を経て2台のギヤード圧下装置5−4に連結される。このように1台の駆動ギヤードモータ5−1の出力に同期同調して4台のギヤード圧下装置5−4が夫々支持梁5−5と連結して焼成炉本体2を上下に移動させ、焼成炉本体2と固定炉床3との間の炉シ−ルの実施と解除を行うことができる。 As described above, the firing furnace body 2 is placed on the traveling carriage 4-4 via the support beam 5-5 and the geared reduction device 5-4. The furnace seal elevating device 5 includes a single drive geared motor 5-1, a drive shaft 2, two drive force distribution devices 5-3, and four geared reduction devices 5-4. The output of one drive geared motor 5-1 is first distributed to the output shaft 5-2 orthogonal to the main shaft 5-2 by one drive force distribution device 5-3, and one output shaft 5-2 Connected to two geared reduction devices 5-4. Another orthogonal output shaft 5-2 is connected to the two geared reduction devices 5-4 via the orthogonal output shaft 5-2 by the driving force distribution device 5-3. Thus, in synchronization with the output of one drive geared motor 5-1, the four geared reduction devices 5-4 are connected to the support beams 5-5 to move the firing furnace main body 2 up and down, and firing. Implementation and cancellation of the furnace seal between the furnace body 2 and the fixed hearth 3 can be performed.

また、図1,2,3に示すように、焼成炉本体2に付属する開閉扉2−2は、焼成炉本体2の待避移動方向の反対の炉側面全体に設けられている。開閉扉2−2は炉殻に取付けられた開閉軸2−2−aを中心に旋回する片開きの構造であり、焼成炉本体2の移動の際には、固定炉床3と干渉しないように全開状態にすることができる。開閉扉2−2の炉内壁は扉耐火物2−2−cを設け、さらに扉耐火物2−2−cから突き出しで高さ方向に4段の多段にわたり加熱ヒータ2−d及び炉内温度計2−eを設けている。開閉扉2−2の開閉は、手動でも自動でも可能であるが、自動の場合は、焼成炉本体2と固定炉床3の位置情報とのインターロックが必要である。 As shown in FIGS. 1, 2, and 3, the open / close door 2-2 attached to the firing furnace body 2 is provided on the entire furnace side surface opposite to the retracting movement direction of the firing furnace body 2. The open / close door 2-2 has a single-open structure that revolves around an open / close shaft 2-2a attached to the furnace shell so that it does not interfere with the fixed hearth 3 when the firing furnace body 2 moves. Can be fully opened. The furnace inner wall of the open / close door 2-2 is provided with a door refractory 2-2c, and further protrudes from the door refractory 2-2c, and the heater 2-d and the furnace temperature over four stages in the height direction. A total of 2-e is provided. The opening / closing of the open / close door 2-2 can be performed manually or automatically. However, in the case of automatic, it is necessary to interlock the position information of the firing furnace body 2 and the fixed hearth 3.

また、図1,2,3,4に基づいて、焼成炉本体2について説明する。焼成炉本体2は、外徑150〜300mm×1.5〜2m長さの長尺の円筒形スパッタリングターゲット材を1250〜1700℃の範囲の設定温度で、酸素雰囲気中で、3〜30時間焼成する焼成炉として用いられる。焼成炉本体2の炉内寸法は、本実施例の場合、概略1.1m角×2.2m高さである。本図においては、4本の長尺の被焼成物を焼成する実施形態について説明するが、本発明はこの本数に拘束されることなく、被焼成物に均等に輻射、対流伝熱が行使できる配列であればよく、2×N列の配列であれば、本発明は適用可能である。また、長尺の長さも同じ被焼成物を焼成するのが、同じ焼成品質が得られ易いので望ましい。 The firing furnace body 2 will be described with reference to FIGS. The firing furnace main body 2 bakes a long cylindrical sputtering target material with a length of 150 to 300 mm × 1.5 to 2 m in an oxygen atmosphere at a set temperature in the range of 1250 to 1700 ° C. for 3 to 30 hours. Used as a firing furnace. In the present embodiment, the in-furnace dimensions of the firing furnace body 2 are approximately 1.1 m square × 2.2 m height. In this figure, an embodiment in which four long objects to be fired are described. However, the present invention is not restricted by this number, and can uniformly apply radiation and convection heat transfer to the objects to be fired. The present invention is applicable as long as it has an array of 2 × N columns. In addition, it is desirable to bake an object to be fired having the same long length because the same baking quality is easily obtained.

焼成炉本体2は、側面に炉殻2−cが3面あり、残り1面は開閉扉2−2で外郭が構成される。炉殻2−cと開閉扉2−2の炉内側はそれぞれ炉壁耐火物2−aと扉耐火物2−2−cで内張りされる。焼成炉本体2の天井部の内壁は炉天井耐火物2−bからなる。耐火物として、アルミナ質、マグネシア質等の耐高温や耐酸化性の定型または不定形の耐火材が用いられ、炉殻側には常法の断熱材を用いる。 The firing furnace body 2 has three sides of the furnace shell 2-c on the side surface, and the remaining one surface is constituted by an open / close door 2-2. The furnace inner sides of the furnace shell 2-c and the open / close door 2-2 are lined with a furnace wall refractory 2-a and a door refractory 2-2c, respectively. The inner wall of the ceiling portion of the firing furnace body 2 is made of a furnace ceiling refractory 2-b. As the refractory, a high-temperature and oxidation-resistant regular or irregular refractory material such as alumina or magnesia is used, and a conventional heat insulation is used on the furnace shell side.

また、図3、4に示すように、加熱ヒータ2−dは、炉殻2−c等に端子部を設け、炉壁耐火物2−aと扉耐火物2−2−cを貫通して炉内側表面から突設した形でヒータ部を設けている。また、加熱ヒータ2−dは炉高さ方向に4段に区分けして設けられている。また、加熱ヒータ2−dは、MoSiから成るU字状セラミックヒータがよく、酸素雰囲気中で最高焼成温度1700℃辺りでも十分耐熱、耐酸化性があって寿命が長く、十分加熱能力を発揮できるから、長時間焼成する円筒形スパッタリングターゲット材Mの焼成に最適である。また、加熱ヒータ2−dの形状をU字状としているので、加熱ヒータ2−dの昇温や冷却に伴う熱膨張や熱収縮にも耐える形状であると共に、高さ方向、周辺方向に区切られた分画区域ごとの加熱ヒータ2−dとして、加熱強度、加熱密度の点で最適の形状であるAs shown in FIGS. 3 and 4, the heater 2-d is provided with a terminal portion in the furnace shell 2-c and the like, and penetrates the furnace wall refractory 2-a and the door refractory 2-2c. The heater part is provided in a form protruding from the furnace inner surface. The heater 2-d is provided in four stages in the furnace height direction. The heater 2-d is preferably a U-shaped ceramic heater made of MoSi 2 and has sufficient heat resistance and oxidation resistance at a maximum firing temperature of about 1700 ° C. in an oxygen atmosphere, has a long life, and exhibits sufficient heating capability. Therefore, it is optimal for firing the cylindrical sputtering target material M that is fired for a long time. Moreover, since the shape of the heater 2-d is U-shaped, the heater 2-d has a shape that can withstand thermal expansion and contraction caused by temperature rise and cooling of the heater 2-d, and is divided in the height direction and the peripheral direction As the heater 2-d for each fractionated area, it has an optimum shape in terms of heating strength and heating density.

また、各段の加熱ヒータ2−dの中央部には炉殻2−cから炉内温度計2−eを炉内へ挿通し、加熱ヒータ2−dと対になって配設して炉内温度を測定できるようにしている。これにより、焼成炉本体2の炉内の高さ方向の焼成温度の分布を均一に調整することができる。具体的には、高さ方向に分画された区域の温度をそこに設置されている炉内温度計2−eで測定して、その区域の加熱ヒータ2−dの熱出力を増減することにより所定温度に制御できる。通常であれば、炉内温度が、低い位置の温度より高い位置の温度の方が高くなる傾向を各区域毎の熱出力を調節することにより所定温度に均一に近付けることができる。これにより長尺の円筒形スパッタリングターゲット材Mの高さ(長さ)方向の焼成度のバラツキがなく、品質の安定に寄与する。炉内温度計2−eとしては、周知の白金ロジウム系熱電対を用いることができる。 A furnace thermometer 2-e is inserted from the furnace shell 2-c into the furnace at the center of each stage of the heater 2-d, and is disposed in pairs with the heater 2-d. The internal temperature can be measured. Thereby, distribution of the baking temperature of the height direction in the furnace of the baking furnace main body 2 can be adjusted uniformly. Specifically, the temperature of the section divided in the height direction is measured by the in-furnace thermometer 2-e, and the heat output of the heater 2-d in the section is increased or decreased. Can be controlled to a predetermined temperature. Normally, the tendency that the temperature in the furnace becomes higher at the higher temperature than at the lower temperature can be made to approach the predetermined temperature uniformly by adjusting the heat output for each zone. As a result, there is no variation in the firing degree in the height (length) direction of the long cylindrical sputtering target material M, which contributes to stable quality. As the in-furnace thermometer 2-e, a well-known platinum rhodium thermocouple can be used.

また、図3,4に示すように、焼成炉本体2の炉内を酸素雰囲気に維持し、焼成温度を規定に保てるように、焼成炉本体2の上部に単数又は複数のガス排出孔2−gを設けると共に、固定炉床の載置された円筒形スパッタリングターゲット材Mの下部から、また炉内壁2−b、2−2−cからに高さ方向/周辺方向に複数の酸素吹き込み孔(図示しない)を設けている。この構成により、焼成炉本体2内の酸素の流れを断面方向に一様にすることができて、場所毎の酸素濃度の差を最小にする。ひいては、炉内温度分布や酸素濃度分布を一様にすることができるので、被焼成物である長尺の円筒形スパッタリングターゲット材Mの焼成をほぼ完全に均質に進めることができ、相対密度を安定して向上することができると共に、長さ方向や断面方向の相対密度のバラツキをほぼ無くすことができる。 As shown in FIGS. 3 and 4, one or a plurality of gas discharge holes 2-are formed in the upper part of the firing furnace body 2 so that the inside of the firing furnace body 2 is maintained in an oxygen atmosphere and the firing temperature is kept at a specified level. g and a plurality of oxygen blowing holes in the height direction / periphery direction from the lower part of the cylindrical sputtering target material M on which the fixed hearth is placed and from the furnace inner walls 2-b, 2-2-2c ( (Not shown). With this configuration, the flow of oxygen in the firing furnace main body 2 can be made uniform in the cross-sectional direction, and the difference in oxygen concentration at each location is minimized. As a result, the furnace temperature distribution and the oxygen concentration distribution can be made uniform, so that the firing of the long cylindrical sputtering target material M, which is an object to be fired, can proceed almost completely homogeneously, and the relative density can be increased. While improving stably, the variation of the relative density of a length direction or a cross-sectional direction can be substantially eliminated.

また、図1,2,3,4を用いて本発明に係る円筒形スパッタリングターゲット材焼成装置を用いた焼成方法について説明する。円筒形スパッタリングターゲット材は、ITO(酸化錫―酸化インジウム系)材、AZO(酸化アルミニウムー酸化亜鉛系)材又はIGZO(酸化インジウムー酸化ガリウムー酸化亜鉛系)材から選ばれたものを用いることができる。円筒形スパッタリングターゲット材は、前記の原料酸化物粉末に水、バインダと分散剤を加えて混合してスラリー化し、スプレードライヤなどで造粒粉にした後、冷間静水圧プレス(CIP法)などで成形して製作することができる。円筒形スパッタリングターゲット材は、直径150〜300mm、肉厚10mm前後、長さが1.5〜2mの長尺の円筒形スパッタリングターゲット材である。 A firing method using the cylindrical sputtering target material firing apparatus according to the present invention will be described with reference to FIGS. As the cylindrical sputtering target material, a material selected from an ITO (tin oxide-indium oxide system) material, an AZO (aluminum oxide-zinc oxide system) material, or an IGZO (indium oxide-gallium oxide-zinc oxide system) material can be used. . The cylindrical sputtering target material is prepared by adding water, a binder and a dispersant to the raw material oxide powder, mixing it into a slurry, granulating it with a spray dryer, etc., and then cold isostatic pressing (CIP method), etc. Can be molded and manufactured. The cylindrical sputtering target material is a long cylindrical sputtering target material having a diameter of 150 to 300 mm, a thickness of around 10 mm, and a length of 1.5 to 2 m.

円筒形スパッタリングターゲット材の焼成方法は次のように行う。長さ1.5〜2mの範囲の長尺物の円筒形スパッタリングターゲット材Mの被焼成物を単数又は複数本(本図では、4本)を所定間隔に置いて自立させた状態で固定炉床3に載置し、次いで前記固定炉床3を炉内中央に取り込むように焼成炉本体2の開閉扉2−2を開放して、焼成炉本体2を待避位置から焼成位置に走行移動した後、前記開閉扉2−2を閉鎖して、焼成炉本体2を昇温し、1250〜1700℃の高温で、かつ酸素雰囲気中で3〜30時間に亘り被焼成物Mを焼成して円筒形スパッタリングターゲットを得ることができる。 The firing method of the cylindrical sputtering target material is performed as follows. A fixed furnace in which a single or a plurality (four in the figure) of objects to be fired of a cylindrical sputtering target material M having a length in the range of 1.5 to 2 m are self-supported at predetermined intervals. The open / close door 2-2 of the firing furnace body 2 was opened so that the fixed furnace floor 3 was taken into the center of the furnace, and the firing furnace body 2 traveled from the retracted position to the firing position. Thereafter, the door 2-2 is closed, the temperature of the firing furnace body 2 is increased, and the object to be baked M is baked at a high temperature of 1250 to 1700 ° C. in an oxygen atmosphere for 3 to 30 hours. A shaped sputtering target can be obtained.

この焼成は、ITO材で、温度1450〜1700℃の高温で、好ましくは、温度1500〜1600℃の高温で、また、AZO又はIGZO材で、温度1250〜1500℃の高温で、好ましくは、温度1300〜1450℃の高温で、酸素雰囲気中で3〜30時間、好ましくは、5〜10時間に亘り行われる。この時間が長過ぎると、焼結組織が肥大化して割れ易くなる恐れがある。焼成過程における目標焼成温度までの昇温速度は、100〜500℃/Hrで、焼成完了後の降温速度は10〜150℃/Hrである。 This firing is performed with an ITO material at a high temperature of 1450 to 1700 ° C., preferably at a high temperature of 1500 to 1600 ° C., and with an AZO or IGZO material at a high temperature of 1250 to 1500 ° C., preferably at a temperature of The reaction is performed at a high temperature of 1300 to 1450 ° C. in an oxygen atmosphere for 3 to 30 hours, preferably 5 to 10 hours. If this time is too long, the sintered structure may be enlarged and easily cracked. The rate of temperature rise to the target firing temperature in the firing process is 100 to 500 ° C./Hr, and the rate of temperature decrease after the firing is 10 to 150 ° C./Hr.

焼成済の円筒形スパッタリングターゲットは、磁場発生設備と冷却設備を内蔵したバッキングチューブにボンディングにより貼り付けて、マグネトロンスパッタリングを行い、このスパッタリングにより基板に目標とする酸化物の蒸着を施し、液晶表示素子や太陽電池等に用いられる透明導電膜を確実に安定して製造することができる。 The sintered cylindrical sputtering target is bonded to a backing tube with a built-in magnetic field generation facility and cooling facility by bonding, magnetron sputtering is performed, and the target oxide is deposited on the substrate by this sputtering. And a transparent conductive film used for solar cells and the like can be reliably and stably manufactured.

円筒形スパッタリングターゲット材の焼成分野で利用されるのみならず、長尺物の酸化性、還元性雰囲気での高温焼成処理分野で適用することができる。 Not only can it be used in the field of firing cylindrical sputtering target materials, it can also be applied in the field of high-temperature firing treatment in an oxidizing and reducing atmosphere of long objects.

1:円筒形スパッタリングターゲット材焼成装置
2:焼成炉本体 2−a:炉壁耐火物 2−b:炉天井耐火物
2−c:炉殻 2−d:加熱ヒータ 2−e:炉内温度計
2−f:酸素流入口 2−g:酸素流出口 2−2:開閉扉
2−2−a:開閉軸 2−2−b:閉鎖用ハンドル 2−2−c:扉耐火物
3:固定炉床 3−a:載置台
4:焼成炉走行装置 4−1:駆動ギヤードモータ 4−2:走行車輪 4−3:走行レール 4−4:走行台車
5:炉シール昇降装置 5−1駆動ギヤードモータ 5−2:駆動軸
5−3:駆動力分配装置 5―4:ギヤード圧下装置 5−5:支持梁
M:被焼成物(円筒形スパッタリングターゲット材)
1: Cylindrical sputtering target material firing device
2: Firing furnace main body 2-a: Furnace wall refractory 2-b: Furnace ceiling refractory 2-c: Furnace shell 2-d: Heater 2-e: In-furnace thermometer
2-f: Oxygen inlet 2-g: Oxygen outlet 2-2: Open / close door
2-2a: Opening and closing shaft 2-2b: Closing handle 2-2c: Door refractory 3: Fixed hearth 3-a: Mounting table 4: Firing furnace traveling device 4-1: Drive geared motor 4-2: Traveling wheel 4-3: Traveling rail 4-4: Traveling cart 5: Furnace seal lifting device 5-1 Drive geared motor 5-2: Drive shaft 5-3: Driving force distribution device 5-4: Geared pressure reduction Apparatus 5-5: Support beam M: Object to be fired (cylindrical sputtering target material)

Claims (8)

長さ1.5〜2mの長尺物の円筒形スパッタリングターゲット材の焼成装置であって、該長尺物の円筒形スパッタリングターゲット材の被焼成体を直立した状態で載置する固定炉床と、前記固定炉床を内包するように配置され、かつ炉内壁面に複数の加熱ヒータを設けた焼成炉本体と、前記焼成炉本体を走行台車上に載置しており、前記焼成炉本体が前記固定炉床を内包する位置から離隔して待避する位置へ軌条走行を可能にした焼成炉走行装置と、を備え、前記焼成炉本体の側部一面に前記固定炉床を内包する際に干渉しないよう開閉可能な炉殻扉を設けると共に、前記焼成炉の炉殻下部と前記固定炉床の周縁部との間に漏気防止のシール部を設け、焼成時には前記焼成炉本体を下降移動することによりシール部を圧下密着してシールする炉シール昇降装置を設けたことを特徴とする円筒形スパッタリングターゲット材の焼成装置。 A firing apparatus for a long cylindrical sputtering target material having a length of 1.5 to 2 m, and a fixed hearth on which the fired body of the long cylindrical sputtering target material is placed in an upright state; A firing furnace body disposed to contain the fixed hearth and having a plurality of heaters provided on a wall surface of the furnace, and the firing furnace body is placed on a traveling carriage, the firing furnace body A firing furnace traveling device that enables rail travel to a position away from a position including the fixed hearth and retracting, and interfering when the fixed hearth is included on one side of the firing furnace body. In addition to providing a furnace shell door that can be opened and closed, a seal part for preventing leakage is provided between the bottom of the furnace shell and the peripheral edge of the fixed hearth, and the firing furnace body is moved downward during firing. Seal the seal part tightly under pressure Baking apparatus the cylindrical sputtering target material, characterized in that a sealing lifting device. 前記炉シール昇降装置が、前記焼成炉体の下部に炉を支持する4箇所の支持梁とそれに連なるギヤード圧下装置を備え、1台の昇降用ギヤードモータから駆動分配装置を経て該各ギヤード圧下装置を駆動するように構成したことを特徴とする請求項1記載の円筒形スパッタリングターゲット材の焼成装置。 The furnace seal elevating device includes four supporting beams for supporting the furnace at the lower part of the firing furnace body and a geared pressure reducing device connected to the support beam, and each geared pressure reducing device from a single elevating geared motor through a drive distributor. The apparatus for firing a cylindrical sputtering target material according to claim 1, wherein the apparatus is driven. 前記焼成炉内壁面に設けた加熱ヒータが、各炉内壁の高さ方向に3段以上に分画して配設していることを特徴とする請求項1又は2に記載の円筒形スパッタリングターゲット材の焼成装置。 The cylindrical sputtering target according to claim 1 or 2, wherein the heater provided on the inner wall surface of the firing furnace is divided into three or more stages in the height direction of each inner wall of the furnace. Material firing equipment. 前記加熱ヒータが、MoSiから成るU字状セラミックヒータであることを特徴とする請求項3に記載の円筒形スパッタリングターゲット材の焼成装置。The heater is calciner cylindrical sputtering target material according to claim 3, characterized in that the U-shaped ceramic heater made of MoSi 2. 前記加熱ヒータが、炉内温度計と対になって配設していることを特徴とする請求項3又は4に記載の円筒形スパッタリングターゲット材の焼成装置。 5. The cylindrical sputtering target material firing apparatus according to claim 3, wherein the heater is disposed in a pair with a furnace thermometer. 6. 前記焼成炉本体が、上部に単数又は複数のガス排出孔を設けると共に、固定炉床の載置された円筒形スパッタリングターゲット材の下部から、また炉内壁に高さ方向/周辺方向に複数の酸素吹き込み孔を設けたことを特徴とする請求項1から5のいずれかに記載の円筒形スパッタリングターゲット材の焼成装置。 The firing furnace main body has one or a plurality of gas discharge holes in the upper part, and a plurality of oxygen in the height direction / periphery direction from the lower part of the cylindrical sputtering target material on which the fixed hearth is placed and on the inner wall of the furnace. The firing apparatus for a cylindrical sputtering target material according to any one of claims 1 to 5, wherein a blowing hole is provided. 請求項1から6のいずれかに記載の円筒形スパッタリングターゲット材の焼成装置を用いて、長さ1.5〜2mの長尺物の円筒形スパッタリングターゲット材の被焼成物を単数又は複数本を所定間隔に置いて自立させた状態で固定炉床に載置し、次いで前記固定炉床を炉内中央に取り込むように焼成炉の炉殻扉を開放して、焼成炉を待避位置から焼成位置に走行移動した後、前記炉殻扉を閉鎖して、焼成炉を昇温し、1250〜1700℃の高温で、かつ酸素雰囲気中で3〜30時間に亘り被焼成物を焼成して円筒形スパッタリングターゲットを得ることを特徴とする円筒形スパッタリングターゲット材の焼成方法。 Using the cylindrical sputtering target material firing apparatus according to any one of claims 1 to 6, a single or a plurality of cylindrical sputtering target materials to be fired having a length of 1.5 to 2 m. Place it on the fixed hearth in a state of being self-supported at a predetermined interval, then open the furnace shell door so that the fixed hearth is taken into the center of the furnace, and the firing furnace from the retracted position to the firing position The furnace shell door is closed, the firing furnace is closed, the firing furnace is heated, and the fired article is fired at a high temperature of 1250 to 1700 ° C. for 3 to 30 hours in an oxygen atmosphere to form a cylindrical shape. A method for firing a cylindrical sputtering target material, comprising obtaining a sputtering target. 前記円筒形スパッタリングターゲット材が、ITO(酸化錫―酸化インジウム系)材、AZO(酸化アルミニウムー酸化亜鉛系)材又はIGZO(酸化インジウムー酸化ガリウムー酸化亜鉛系)材であることを特徴とする請求項7記載の円筒形スパッタリングターゲット材の焼成方法。
The cylindrical sputtering target material is an ITO (tin oxide-indium oxide system) material, an AZO (aluminum oxide-zinc oxide system) material, or an IGZO (indium oxide-gallium oxide-zinc oxide system) material. 8. A method for firing a cylindrical sputtering target material according to item 7.
JP2016555619A 2016-05-12 2016-05-12 Cylindrical sputtering target material firing apparatus and firing method Active JP6198363B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064097 WO2017195311A1 (en) 2016-05-12 2016-05-12 Baking device and baking method for cylindrical sputtering target material

Publications (2)

Publication Number Publication Date
JP6198363B1 JP6198363B1 (en) 2017-09-20
JPWO2017195311A1 true JPWO2017195311A1 (en) 2018-05-24

Family

ID=59895757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016555619A Active JP6198363B1 (en) 2016-05-12 2016-05-12 Cylindrical sputtering target material firing apparatus and firing method

Country Status (5)

Country Link
JP (1) JP6198363B1 (en)
KR (1) KR101892877B1 (en)
CN (1) CN107614739B (en)
TW (1) TWI636227B (en)
WO (1) WO2017195311A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108097530B (en) * 2018-01-19 2023-12-29 广西晶联光电材料有限责任公司 Plane target back metallization equipment and method
CN109706285B (en) * 2018-11-29 2020-07-31 沧州中铁装备制造材料有限公司 Bottom anti-splashing collecting seat device for smelting furnace transfer furnace
CN111485218B (en) * 2020-04-22 2022-06-17 广东生波尔光电技术有限公司 Automatic control system for auxiliary coating of special workpiece
CN114107929A (en) * 2021-11-29 2022-03-01 青岛科技大学 Rotary target tube device capable of preheating sputtering target material

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678561B2 (en) * 1986-03-20 1994-10-05 株式会社トーキン Method for manufacturing substrate for sputtering target
JPH03207858A (en) * 1990-01-08 1991-09-11 Nippon Mining Co Ltd Production of ito sputtering target
JP3212391B2 (en) * 1992-11-24 2001-09-25 旭テック株式会社 Heat treatment furnace
JP4031578B2 (en) * 1998-06-04 2008-01-09 日本特殊陶業株式会社 Manufacturing method of bottomed cylindrical ceramic sintered body
KR19990034769U (en) * 1999-04-10 1999-09-06 최인선 far infrared rays radiating material heat treating furnace
WO2006038538A1 (en) * 2004-10-01 2006-04-13 Mitsui Mining & Smelting Co., Ltd. Method for manufacturing target material for sputtering target
JP2008120653A (en) * 2006-11-15 2008-05-29 Denso Corp Placing table for firing ceramic honeycomb-formed body
JP4748071B2 (en) * 2007-01-26 2011-08-17 東ソー株式会社 Manufacturing method of ceramic sintered body
KR20100069353A (en) * 2008-12-16 2010-06-24 주식회사 테라세미콘 Heater
KR100903551B1 (en) * 2009-01-05 2009-06-23 세원셀론텍(주) An annealing furnace and annealing system thereof
TWM384987U (en) * 2009-12-11 2010-07-21 Lih Chern Technologies Co Ltd High-temperature batch-type atmosphere sintering furnace
JP5299415B2 (en) * 2010-12-13 2013-09-25 住友金属鉱山株式会社 Oxide sintered body for cylindrical sputtering target and method for producing the same
CN202101556U (en) * 2011-04-20 2012-01-04 韶关市欧莱高新材料有限公司 Pad for minimizing sintering deformation of rotary ceramic target

Also Published As

Publication number Publication date
TW201740068A (en) 2017-11-16
CN107614739B (en) 2020-08-14
TWI636227B (en) 2018-09-21
WO2017195311A1 (en) 2017-11-16
JP6198363B1 (en) 2017-09-20
KR20170138986A (en) 2017-12-18
KR101892877B1 (en) 2018-08-28
CN107614739A (en) 2018-01-19

Similar Documents

Publication Publication Date Title
JP6198363B1 (en) Cylindrical sputtering target material firing apparatus and firing method
US9139438B2 (en) Graphitization furnace and method for producing graphite
JP4227227B2 (en) Manufacturing method of ITO sputtering target
JP2015064189A (en) Heat treatment furnace and heat treatment method
JP4999422B2 (en) Continuous heat treatment method and continuous heat treatment furnace
JP6281437B2 (en) Oxide sintered body, manufacturing method thereof, and sputtering target using this oxide sintered body
CN210773377U (en) Sintering device in production of lithium ion battery anode material
JP2021044282A (en) Substrate processing apparatus, method of manufacturing semiconductor device, and program
JP3274089B2 (en) Hybrid type heat treatment equipment
CN108531693A (en) Aluminum alloy heat processing equipment and aluminum alloy heat processing method
JP2010236779A (en) Method of burning workpiece by roller hearth kiln
JPH0693439B2 (en) Semiconductor wafer heat treatment equipment
KR101946752B1 (en) Microwave sintering apparatus
CN103159400B (en) A kind of glass-ceramic rotary processing stove
KR101322595B1 (en) Method of manufacturing for indium tin oxide target thereof and indium tin oxide target by using the same
JP2985331B2 (en) Batch type firing furnace
JP2011169504A (en) Solid-phase reaction baking method for powder, and solid-phase reaction baking furnace
JP2003077398A (en) Manufacturing method of plasma display panel and furnace equipment for same
JP2001153564A (en) Continuous heating furnace for substrate, utilizing radiant tube burner
KR101358358B1 (en) Degreasing sintering furnace
JP2007113051A (en) Manufacturing method of target material for sputtering target, and box used therefor
KR20240063657A (en) Heat treatment apparatus for fabricating active material for secondary battery
TW202120456A (en) Manufacturing method of cylindrical sputtering target and firing jig used in the manufacturing method
JP2004251484A (en) Roller hearth furnace, its conveying roller, and method of manufacturing conveying roller
JP2009051674A (en) Method for producing ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6198363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250