JP2011169504A - Solid-phase reaction baking method for powder, and solid-phase reaction baking furnace - Google Patents

Solid-phase reaction baking method for powder, and solid-phase reaction baking furnace Download PDF

Info

Publication number
JP2011169504A
JP2011169504A JP2010033155A JP2010033155A JP2011169504A JP 2011169504 A JP2011169504 A JP 2011169504A JP 2010033155 A JP2010033155 A JP 2010033155A JP 2010033155 A JP2010033155 A JP 2010033155A JP 2011169504 A JP2011169504 A JP 2011169504A
Authority
JP
Japan
Prior art keywords
powder
temperature
phase reaction
solid
maximum temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010033155A
Other languages
Japanese (ja)
Inventor
Takeki Fujita
雄樹 藤田
Michiro Aoki
道郎 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2010033155A priority Critical patent/JP2011169504A/en
Publication of JP2011169504A publication Critical patent/JP2011169504A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for quantity production capable of uniformly and economically performing solid-phase reaction baking on powder received in a sagger while preventing dispersion of baking quality between its surface layer and inside. <P>SOLUTION: In this solid-phase reaction baking method for the powder for performing solid-phase reaction baking on the powder received in the sagger 3 by heating the powder in a continuous furnace, the powder is heated to a temperature just before the maximum temperature by a resistance heater 8 disposed in a furnace body, then microwave is applied thereto by a microwave heating device 11 to make the powder generate heat, and to equally heat the surface layer and the inside, and then the maximum temperature is kept by the resistance heater 8 again. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウムイオン電池やセラミックコンデンサ等の製造に用いられる粉体の固相反応焼成方法及び固相反応焼成炉に関するものである。   The present invention relates to a solid phase reaction firing method and a solid phase reaction firing furnace for powders used in the manufacture of lithium ion batteries, ceramic capacitors and the like.

リチウムイオン電池の正極材の原料としては各種のリチウム化合物が用いられており、セラミックコンデンサの原料としてはチタン酸バリウムが用いられている。これらの製造方法として実験室的には様々な方法が提案されているが、量産可能な工業的な製造方法としては、これらの粉末の前駆体粉末を匣鉢と呼ばれる容器に入れて炉内で加熱し、化合物によって定まる所定温度に昇温したうえ、最高温度に所定時間保持して固相反応を進行させる方法が一般的である。   Various lithium compounds are used as a raw material for a positive electrode material of a lithium ion battery, and barium titanate is used as a raw material for a ceramic capacitor. Various methods have been proposed in the laboratory as these production methods. However, as an industrial production method capable of mass production, the precursor powder of these powders is placed in a container called a mortar and placed in a furnace. A general method is to heat and raise the temperature to a predetermined temperature determined by the compound, and maintain the maximum temperature for a predetermined time to advance the solid phase reaction.

炉内雰囲気は粉末の種類に応じて様々であるが、加熱手段としては炉内雰囲気を汚染するおそれがなく、かつ温度コントロールが容易な抵抗加熱ヒータが広く用いられている。抵抗加熱ヒータは炉の天井等に設置され、匣鉢及び前駆体粉末を輻射加熱する。また炉内雰囲気も加熱されるため、炉内で対流加熱も行われる。   Although the furnace atmosphere varies depending on the type of powder, a resistance heater that does not cause contamination of the furnace atmosphere and is easy to control temperature is widely used as a heating means. The resistance heater is installed on the ceiling of the furnace and radiates and heats the mortar and the precursor powder. Further, since the furnace atmosphere is also heated, convection heating is also performed in the furnace.

匣鉢内の粉体層の厚さは50〜100mm程度とするのが普通であり、加熱は主としてその表層部から行われる。しかもこれらの粉体は熱伝導率があまり大きくない。このため、匣鉢内の表層部の粉体は昇温し易いが内部の粉体は昇温が遅くなり、昇温工程において不可避的に温度差が発生する。この温度差は最高温度に所定時間保持される間に徐々に解消されて行くが、表層部の粉体は比較的長時間にわたり最高温度に保持されるのに対して、内部の粉体は最高温度に保持される時間が短くなるため、固相反応の進行状況にバラツキが生ずる。特に最近では要求される粉体の粒径が10μm以下と従来よりも小さくなっているため、焼成を行う温度条件巾に正確さが要求され、わずかな固相反応条件の差が焼成品質に大きく影響する傾向にある。   Usually, the thickness of the powder layer in the mortar is about 50 to 100 mm, and the heating is mainly performed from the surface layer portion. Moreover, these powders do not have a very high thermal conductivity. For this reason, although the temperature of the powder in the surface layer portion in the mortar tends to rise, the temperature of the powder inside becomes slow, and a temperature difference inevitably occurs in the temperature raising step. This temperature difference is gradually eliminated while the maximum temperature is maintained for a predetermined time, but the powder on the surface layer is maintained at the maximum temperature for a relatively long time, whereas the internal powder is the maximum. Since the time during which the temperature is maintained is shortened, the progress of the solid-phase reaction varies. In particular, recently, the required particle size of the powder is 10 μm or less, which is smaller than in the past. Therefore, accuracy is required for the temperature condition range for firing, and a slight difference in solid-phase reaction conditions greatly affects the firing quality. Tend to influence.

上記の問題を解決するには昇温速度を低速にすればよいが、生産性の低下や炉体の大型化を招く。そこで特許文献1に示されるように、マイクロ波を利用して粉体を加熱することが提案されている。マイクロ波による加熱は粉体そのものを発熱させる方法であるから、抵抗加熱ヒータによる加熱のように表層部のみが集中的に加熱されることがない。しかしこの加熱方式を工業的に実施するには、次のような多くの問題があり、量産設備への適用は容易ではない。   In order to solve the above problem, the temperature raising rate may be lowered, but this causes a decrease in productivity and an increase in the size of the furnace body. Therefore, as shown in Patent Document 1, it has been proposed to heat powder using a microwave. Since the heating by the microwave is a method of causing the powder itself to generate heat, only the surface layer portion is not intensively heated unlike the heating by the resistance heater. However, in order to implement this heating method industrially, there are many problems as follows, and application to mass production facilities is not easy.

第1に、マイクロ波は水分子を含む物質の加熱には極めて有効であるが、セラミック粉体は水に比べて損失係数が非常に小さいために発熱しにくく、特に低温域では加熱しにくい。
第2に、セラミックの損失係数は温度とともに上昇する傾向を持つため、マイクロ波の照射不均一によって部分的に高温領域が生ずると、その部分の温度が加速度的に上昇するランナウエイ現象が生じる。
第3に、抵抗加熱ヒータに比較してマイクロ波加熱装置は設備コストが10倍以上となり、量産設備に適用することは経済的に困難である。
First, although microwaves are extremely effective for heating a substance containing water molecules, ceramic powders have a very small loss coefficient compared to water, so that they do not generate heat easily, especially in a low temperature range.
Secondly, since the loss factor of ceramic tends to increase with temperature, if a high temperature region is partially generated due to non-uniformity of microwave irradiation, a runaway phenomenon in which the temperature of that portion increases at an accelerated rate occurs.
Third, compared to resistance heaters, the microwave heating apparatus has an equipment cost of 10 times or more, and it is economically difficult to apply to mass production equipment.

特開2004−168575号公報JP 2004-168575 A

従って本発明の目的は上記した従来の問題点を解決し、匣鉢に収納した粉体を表層部と内部との間で焼成品質のバラツキが生じないように均一に、しかも経済的に固相反応焼成することができる量産化技術を提供することである。   Accordingly, the object of the present invention is to solve the above-mentioned conventional problems, and to uniformly and economically prevent the powder stored in the mortar from being uniform in the firing quality between the surface layer portion and the inside. It is to provide a mass production technique that can be fired by reaction.

上記の課題を解決するためになされた本発明の粉体の固相反応焼成方法は、匣鉢に収納した粉体を連続炉により加熱して固相反応焼成を行なう方法であって、炉体に設置された抵抗加熱ヒータによって粉体を最高温度の直前温度まで加熱したうえ、マイクロ波を照射して粉体を発熱させることにより表層部と内部とを均熱化し、その後は再び抵抗加熱ヒータによって最高温度に保持することを特徴とする。ものである。   The solid phase reaction firing method of the powder of the present invention made to solve the above problems is a method of performing solid phase reaction firing by heating the powder stored in a mortar with a continuous furnace, The powder is heated to a temperature just before the maximum temperature by a resistance heater installed in the chamber, and the surface layer and the inside are soaked by irradiating microwaves to generate heat, and then the resistance heater is again heated It is characterized by maintaining at the maximum temperature. Is.

なお、粉体はたとえばリチウムイオン電池の正極用の前駆体粉体あるいはチタン酸バリウムの前駆体粉体である。また匣鉢としてムライトコージライト、アルミナ、カーボン匣鉢を用いることができる。また最高温度の直前温度は、(最高温度−30℃)〜(最高温度−100℃)の温度とすることができる。   The powder is, for example, a precursor powder for a positive electrode of a lithium ion battery or a precursor powder of barium titanate. Further, mullite cordierite, alumina, and carbon mortar can be used as the mortar. Further, the temperature immediately before the maximum temperature can be a temperature of (maximum temperature-30 ° C) to (maximum temperature-100 ° C).

また本発明の粉体の固相反応焼成炉は、匣鉢に収納した粉体を移送しながら加熱して固相反応焼成するための連続炉であって、昇温ゾーン及び最高温度保持ゾーンに抵抗加熱ヒータを配置し、これらに挟まれた均熱ゾーンにマイクロ波加熱装置を配置したことを特徴とするものである。   The solid phase reaction firing furnace of the powder of the present invention is a continuous furnace for heating and solid phase reaction firing while transporting the powder stored in the sagger, and in the temperature raising zone and the maximum temperature holding zone. A resistance heater is arranged, and a microwave heating device is arranged in a soaking zone sandwiched between them.

本発明によれば、粉体の昇温工程及び最高温度保持工程を含む大部分を経済性に優れた抵抗加熱ヒータを用いて表面加熱し、最高温度の直前温度領域のみをマイクロ波によって加熱する。このため抵抗加熱ヒータによる表面加熱では不可避的に発生する匣鉢内の表層部と内部との粉体の温度差を、マイクロ波で粉体自体を発熱させることによって容易に解消することができ、均一な固相反応焼成を行わせることができる。   According to the present invention, most of the process including the temperature raising step and the maximum temperature holding step of the powder is surface-heated using a resistance heater excellent in economic efficiency, and only the temperature region immediately before the maximum temperature is heated by the microwave. . For this reason, the temperature difference between the surface layer part in the mortar and the inside, which is inevitably generated by surface heating with a resistance heater, can be easily eliminated by heating the powder itself with microwaves, Uniform solid phase reaction firing can be performed.

また高温域ではセラミックの損失係数が増加しているためにマイクロ波による加熱効率も良好である。しかも昇温ゾーン及び最高温度保持ゾーンには安価な抵抗加熱ヒータを配置し、これらに挟まれた均熱ゾーンのみにマイクロ波加熱装置を配置すればよいので、設備コスト及びランニングコストが安価となり、工業的規模での実施が可能となる。   Moreover, since the loss factor of the ceramic increases at high temperatures, the heating efficiency by microwaves is also good. Moreover, an inexpensive resistance heater is disposed in the temperature raising zone and the maximum temperature holding zone, and the microwave heating device only needs to be disposed in the soaking zone sandwiched between them, so that the equipment cost and running cost are reduced, Implementation on an industrial scale is possible.

本発明の実施形態を示す(焼成温度−時間)曲線と炉体の断面図である。It is sectional drawing of the (fired temperature-time) curve and furnace body which shows embodiment of this invention. 本発明の作用効果の説明図である。It is explanatory drawing of the effect of this invention. 各種物質の(損失係数−温度)曲線である。It is a (loss factor-temperature) curve of various substances.

以下に本発明の実施形態を示す。
図1は本発明の実施形態を示す模式図であり、上段に炉内の設定温度曲線を示し、下段に炉体の断面を示している。説明を簡素化するために、図示の設定温度は最初に最高温度まで昇温し、その後は最高温度で所定時間保持し、その後に冷却するという単純化されたパターンとしてある。またこの実施形態の固相反応焼成炉は、炉体1の内部に一定ピッチで多数の搬送用ローラ2を配置したローラハースキルンであり、粉体は匣鉢3に入れられて炉体1の内部を入口側から出口側に向かって図1の右方向に一定速度で搬送されながら、連続焼成される。
Embodiments of the present invention will be described below.
FIG. 1 is a schematic view showing an embodiment of the present invention, in which an upper stage shows a set temperature curve in the furnace, and a lower stage shows a cross section of the furnace body. In order to simplify the explanation, the set temperature shown in the figure is a simplified pattern in which the temperature is first raised to the maximum temperature, then maintained at the maximum temperature for a predetermined time, and then cooled. The solid-phase reaction firing furnace of this embodiment is a roller hearth kiln in which a large number of conveying rollers 2 are arranged at a constant pitch inside the furnace body 1, and the powder is placed in the sagger 3 and the furnace body 1 The inside is continuously fired while being conveyed at a constant speed in the right direction in FIG. 1 from the inlet side to the outlet side.

連続炉である炉体1の内部は、昇温ゾーン4と最高温度保持ゾーン5と冷却ゾーン6とに大別されるが、本発明では昇温ゾーン4と最高温度保持ゾーン5との間に均熱ゾーン7を設けてある。この均熱ゾーン7は炉内温度が最高温度の直前温度となるゾーンである。昇温ゾーン4と最高温度保持ゾーン5には従来と同様に炉内に電気ヒータである抵抗加熱ヒータ8が設けられており、これらに通電することによって抵抗加熱ヒータ8を発熱させ、主として輻射加熱によって匣鉢3に収納された粉体を加熱する。   Although the inside of the furnace body 1 which is a continuous furnace is divided roughly into the temperature rising zone 4, the maximum temperature holding zone 5, and the cooling zone 6, in this invention, between the temperature rising zone 4 and the maximum temperature holding zone 5 is provided. A soaking zone 7 is provided. The soaking zone 7 is a zone in which the temperature in the furnace is just before the maximum temperature. In the temperature raising zone 4 and the maximum temperature holding zone 5, a resistance heater 8 as an electric heater is provided in the furnace as in the conventional case. By energizing these, the resistance heater 8 generates heat, mainly radiant heating. To heat the powder stored in the mortar 3.

しかし均熱ゾーン7にはマグネトロン9と導波管10とを備えたマイクロ波加熱装置11が設けられており、匣鉢3に収納された粉体をマイクロ波加熱する。図1では均熱ゾーン7には抵抗加熱ヒータ8が設けられていないが、設けてあっても差し支えない。マイクロ波加熱装置11は2450MHzのマイクロ波を匣鉢3に向かって照射し、粉体自体を発熱させて加熱する。   However, the soaking zone 7 is provided with a microwave heating device 11 provided with a magnetron 9 and a waveguide 10, and the powder stored in the mortar 3 is microwave-heated. Although the resistance heater 8 is not provided in the soaking zone 7 in FIG. 1, it may be provided. The microwave heating device 11 irradiates microwaves of 2450 MHz toward the bowl 3 to generate heat and heat the powder itself.

本発明はリチウムイオン電池やセラミックコンデンサ等の製造に用いられる粉体の固相反応焼成に適したものであり、より詳細には、粉体はリチウムイオン電池の正極用の前駆体粉体や、チタン酸バリウムの前駆体粉体であるセラミック粉体である。リチウムイオン電池の正極用の前駆体粉体としてはコバルト系、ニッケル系、マンガン系、鉄リン系(オリビン系)などがあり、それぞれに好ましい焼成温度と焼成雰囲気で焼成すると固相反応が進行してリチウムイオン電池の正極材が得られる。コバルト系では焼成温度は900〜1000℃、焼成雰囲気は大気雰囲気である。ニッケル系、マンガン系、鉄リン系(オリビン系)についてのそれぞれの焼成温度は、700〜800℃、750〜950℃、550〜800℃であり、それぞれの焼成雰囲気は、酸素雰囲気、大気雰囲気、窒素+水素雰囲気である。またチタン酸バリウムの前駆体粉体は炭酸バリウムと酸化チタンであり、大気雰囲気中で1100〜1200℃で焼成することによってチタン酸バリウムが得られる。   The present invention is suitable for solid-phase reaction firing of powders used in the production of lithium ion batteries, ceramic capacitors and the like. More specifically, the powder is a precursor powder for a positive electrode of a lithium ion battery, It is a ceramic powder that is a precursor powder of barium titanate. Precursor powders for positive electrodes of lithium ion batteries include cobalt-based, nickel-based, manganese-based, and iron-phosphorus-based (olivine-based), and solid phase reactions proceed when fired at a preferred firing temperature and firing atmosphere. Thus, a positive electrode material for a lithium ion battery is obtained. In the cobalt system, the firing temperature is 900 to 1000 ° C., and the firing atmosphere is an air atmosphere. The firing temperatures for nickel-based, manganese-based, and iron-phosphorus-based (olivine-based) are 700 to 800 ° C., 750 to 950 ° C., and 550 to 800 ° C., and each firing atmosphere includes an oxygen atmosphere, an air atmosphere, Nitrogen + hydrogen atmosphere. The precursor powder of barium titanate is barium carbonate and titanium oxide, and barium titanate is obtained by firing at 1100 to 1200 ° C. in an air atmosphere.

このように、粉体の種類によって焼成温度(最高温度)は異なるが、マイクロ波加熱を行う最高温度の直前温度は、(最高温度−30℃)〜(最高温度−100℃)の範囲内の温度とすることが好ましい。これよりも低温であるとマイクロ波加熱装置11の出力を高める必要があって経済的ではなく、これよりも高温であるとマイクロ波加熱により表層部の粉体温度が上昇し過ぎるためである。   Thus, although the firing temperature (maximum temperature) varies depending on the type of powder, the temperature immediately before the maximum temperature for microwave heating is within the range of (maximum temperature-30 ° C) to (maximum temperature-100 ° C). It is preferable to set the temperature. If the temperature is lower than this, the output of the microwave heating device 11 needs to be increased, which is not economical, and if the temperature is higher than this, the powder temperature of the surface layer portion increases excessively due to the microwave heating.

次に図2によって本発明の作用効果を説明する。実線で示すように炉内温度が設定されていると、匣鉢内の表層部の粉体温度はほぼ設定温度と同様に昇温するが、匣鉢内部の粉体温度は設定温度よりも遅れて昇温する。これが従来の、昇温ゾーン4と最高温度保持ゾーン5に抵抗加熱ヒータ8を設置した連続炉における実情である。しかし本発明では最高温度の直前温度まで加熱された粉体に対してマイクロ波加熱を行うので、内部の粉体も発熱して破線で示すように加熱される。このため内部の粉体温度も急速に設定温度に近づき、匣鉢内の表層部と内部との粉体の温度差を解消することができる。なお、マイクロ波加熱によって表層部の粉体温度も設定温度よりも上昇するが、均熱ゾーン7を通過した後は粉体表面からの放射により炉内温度(設定温度)まで低下するので大きな問題はない。また粉体表面温度の上昇を極力抑制したい場合は、粉体表面に冷却ガスを吹き込むことにより充分回避が可能となる。   Next, the function and effect of the present invention will be described with reference to FIG. When the furnace temperature is set as shown by the solid line, the powder temperature of the surface layer in the sagger rises almost the same as the set temperature, but the powder temperature inside the slag is delayed from the set temperature. Temperature. This is the actual situation in the conventional continuous furnace in which the resistance heater 8 is installed in the temperature raising zone 4 and the maximum temperature holding zone 5. However, in the present invention, since microwave heating is performed on the powder heated to the temperature just before the maximum temperature, the internal powder also generates heat and is heated as indicated by a broken line. For this reason, the internal powder temperature also rapidly approaches the set temperature, and the temperature difference between the surface layer portion in the mortar and the inside can be eliminated. In addition, although the powder temperature of the surface layer part also rises from the set temperature by microwave heating, it passes through the soaking zone 7 and is lowered to the furnace temperature (set temperature) due to radiation from the powder surface. There is no. When it is desired to suppress the increase in the powder surface temperature as much as possible, it can be sufficiently avoided by blowing a cooling gas onto the powder surface.

このように本発明では均熱ゾーン7にのみマイクロ波加熱装置11を設置すればよいので、設備コストもランニングコストも従来の炉と大差はない。またセラミックは低温域では損失係数が小さく加熱しにくいが、温度上昇とともに損失係数も増加するため、高温域ではマイクロ波加熱により効率よく加熱することができる。   As described above, in the present invention, the microwave heating device 11 only needs to be installed in the soaking zone 7, so that the equipment cost and running cost are not significantly different from those of the conventional furnace. Ceramics have a low loss factor in the low temperature range and are difficult to heat, but the loss factor increases with increasing temperature. Therefore, the ceramic can be efficiently heated by microwave heating in the high temperature range.

なお本発明においてもセラミックのマイクロ波加熱における問題点であるランナウエイ現象を完全に防止することはできないが、限られた均熱ゾーン7を通過する時間だけマイクロ波加熱を行うので、その悪影響は小さい。また図3に示すように温度の上昇に伴う損失係数の増加は粉体の種類によって大きく異なり、酸化クロムのような急激な変化を示す粉体はランナウエイ現象が生じ易いため本発明には適さない。しかし酸化鉄のような温度の上昇に伴い損失係数が緩やかに増加して飽和傾向を示す粉体に対しては本発明は特に有効であり、オリビン系の電極材料の固相反応焼成には最適である。   In the present invention, the runaway phenomenon, which is a problem in microwave heating of ceramics, cannot be completely prevented, but the adverse effect is small because microwave heating is performed only for the time passing through the limited soaking zone 7. . Also, as shown in FIG. 3, the increase in loss factor with increasing temperature varies greatly depending on the type of powder, and powder showing rapid change such as chromium oxide is not suitable for the present invention because it tends to cause runaway phenomenon. . However, the present invention is particularly effective for powders that show a tendency to saturate due to a moderate increase in loss factor as the temperature rises, such as iron oxide, and is optimal for solid-phase reaction firing of olivine-based electrode materials. It is.

さらに、匣鉢3の内部における粉体の温度差を解消するうえでは匣鉢3も粉体と同様に加熱昇温されることが好ましく、特にマイクロ波加熱に好適な鉄リン系(オリビン系)は、窒素+水素雰囲気で焼成されるためにカーボン製の匣鉢3を使用でき、同匣鉢を使用すればマイクロ波加熱も可能であるので特に好ましい。しかし従来のムライトコージライトやアルミナ製の匣鉢であっても大きな支障はない。
次に本発明の実施例を示す。
Furthermore, in order to eliminate the temperature difference of the powder inside the mortar 3, the mortar 3 is also preferably heated and heated in the same manner as the powder, and particularly iron-phosphorous (olivine) suitable for microwave heating. Is particularly preferable because it can be used in a nitrogen + hydrogen atmosphere, and a carbon sachet 3 can be used. However, even the conventional mullite cordierite or alumina mortar does not cause any serious trouble.
Next, examples of the present invention will be described.

リチウムイオン電池の正極用の前駆体粉体であるFe(CH3COO)2とLi2CO3と(NH4)2HPO4との粉末を、モル比で1:1:1の割合で混合し、330mm×330mm×深さ100mm,厚さ10mmの寸法のカーボン製匣鉢の内部に厚さが70mm前後となるように収納し、図1に示した抵抗加熱ヒータを備えたローラハースキルンによって連続焼成した。なお粉体の粒径は5〜10μmである。 Powders of Fe (CH 3 COO) 2 , Li 2 CO 3 and (NH 4 ) 2 HPO 4 which are precursor powders for lithium ion battery cathodes are mixed at a molar ratio of 1: 1: 1. It is housed in a carbon bowl having dimensions of 330 mm × 330 mm × depth 100 mm and thickness 10 mm so that the thickness is about 70 mm, and the roller heater kiln equipped with the resistance heater shown in FIG. Continuous firing. The particle size of the powder is 5 to 10 μm.

炉内温度は、1時間で室温から750℃まで昇温し、その後1時間にわたり750℃に保持し、その後は1時間で室温まで冷却するように温度設定した。設定温度が最高温度に達する12分前の区間を均熱ゾーンとし、この均熱ゾーンのみに発振周波数2450MHz、出力5kWのマイクロ波加熱装置を配置し、抵抗加熱ヒータによって最高温度の直前温度まで加熱した粉体をマイクロ波加熱した。なお均熱ゾーンに入るときの炉内温度は700℃である。   The temperature in the furnace was set so that the temperature was raised from room temperature to 750 ° C. in 1 hour, maintained at 750 ° C. over 1 hour, and then cooled to room temperature in 1 hour. A section 12 minutes before the set temperature reaches the maximum temperature is set as a soaking zone, and a microwave heating device with an oscillation frequency of 2450 MHz and an output of 5 kW is placed only in this soaking zone, and it is heated to the temperature just before the maximum temperature by a resistance heater. The powder was heated by microwave. The furnace temperature when entering the soaking zone is 700 ° C.

マイクロ波加熱を実施しない従来の抵抗加熱ヒータのみによる加熱を行った場合には、表層部の粉体が750℃に昇温されたときに内部(表層部から50mm深さ)の粉体温度は600℃であって150℃の温度差があった。しかし本発明により表層部の粉体が700℃に達したときにマイクロ波加熱を行えば、内部の粉体温度は急上昇し、表層部の粉体が750℃に昇温されたときの内部の粉体温度は745℃に達し、温度差は5℃になった。   In the case of heating only with a conventional resistance heater that does not perform microwave heating, when the powder of the surface layer is heated to 750 ° C., the powder temperature inside (50 mm depth from the surface layer) is The temperature difference was 600 ° C. and 150 ° C. However, if microwave heating is performed when the surface layer powder reaches 700 ° C. according to the present invention, the internal powder temperature rises rapidly, and the internal temperature when the surface layer powder is heated to 750 ° C. The powder temperature reached 745 ° C., and the temperature difference became 5 ° C.

このように本発明によれば、抵抗加熱ヒータによる表面加熱では不可避的に発生する匣鉢内の表層部と内部との粉体の温度差を、マイクロ波で粉体自体を発熱させることによって容易に解消することができ、均一な固相反応焼成を行わせることができる。   As described above, according to the present invention, the temperature difference between the surface layer portion in the mortar and the inside, which is inevitably generated by surface heating with a resistance heater, can be easily achieved by heating the powder itself with microwaves. And uniform solid phase reaction firing can be performed.

1 炉体
2 搬送用ローラ
3 匣鉢
4 昇温ゾーン
5 最高温度保持ゾーン
6 冷却ゾーン
7 均熱ゾーン
8 抵抗加熱ヒータ
9 マグネトロン
10 導波管
11 マイクロ波加熱装置
DESCRIPTION OF SYMBOLS 1 Furnace body 2 Roller 3 Conveyance bowl 4 Temperature rising zone 5 Maximum temperature holding zone 6 Cooling zone 7 Soaking zone 8 Resistance heater 9 Magnetron 10 Waveguide 11 Microwave heating device

Claims (6)

匣鉢に収納した粉体を連続炉により加熱して固相反応焼成を行なう方法であって、炉体に設置された抵抗加熱ヒータによって粉体を最高温度の直前温度まで加熱したうえ、マイクロ波を照射して粉体を発熱させることにより表層部と内部とを均熱化し、その後は再び抵抗加熱ヒータによって最高温度に保持することを特徴とする粉体の固相反応焼成方法。   In this method, the powder stored in the sagger is heated in a continuous furnace and solid-phase reaction firing is performed. The powder is heated to a temperature just before the maximum temperature by a resistance heater installed in the furnace body, and then microwaved. A method for solid-phase reaction firing of powder, characterized in that the surface layer portion and the inside are soaked by irradiating the powder to heat the powder, and then maintained at the maximum temperature again by a resistance heater. 粉体がリチウムイオン電池の正極用の前駆体粉体であることを特徴とする請求項1記載の粉体の固相反応焼成方法。   2. The powder solid phase reaction firing method according to claim 1, wherein the powder is a precursor powder for a positive electrode of a lithium ion battery. 粉体がチタン酸バリウムの前駆体粉体であることを特徴とする請求項1記載の粉体の固相反応焼成方法。   2. The powder solid-phase reaction firing method according to claim 1, wherein the powder is a precursor powder of barium titanate. 匣鉢としてカーボン匣鉢を用いることを特徴とする請求項1記載の粉体の固相反応焼成方法。   2. The powder solid phase reaction baking method according to claim 1, wherein a carbon sagger is used as the sagger. 最高温度の直前温度が、(最高温度−30℃)〜(最高温度−100℃)の温度であることを特徴とする請求項1記載の粉体の固相反応焼成方法。   The method for solid-phase reaction firing of powder according to claim 1, wherein the temperature immediately before the maximum temperature is a temperature of (maximum temperature-30 ° C) to (maximum temperature-100 ° C). 匣鉢に収納した粉体を移送しながら加熱して固相反応焼成するための連続炉であって、昇温ゾーン及び最高温度保持ゾーンに抵抗加熱ヒータを配置し、これらに挟まれた均熱ゾーンにマイクロ波加熱装置を配置したことを特徴とする粉体の固相反応焼成炉。   It is a continuous furnace for solid phase reaction firing by heating while transferring the powder stored in the mortar, where resistance heaters are placed in the temperature rising zone and the maximum temperature holding zone, and the soaking is sandwiched between them A solid phase reaction firing furnace for powder, characterized in that a microwave heating device is disposed in the zone.
JP2010033155A 2010-02-18 2010-02-18 Solid-phase reaction baking method for powder, and solid-phase reaction baking furnace Withdrawn JP2011169504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033155A JP2011169504A (en) 2010-02-18 2010-02-18 Solid-phase reaction baking method for powder, and solid-phase reaction baking furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033155A JP2011169504A (en) 2010-02-18 2010-02-18 Solid-phase reaction baking method for powder, and solid-phase reaction baking furnace

Publications (1)

Publication Number Publication Date
JP2011169504A true JP2011169504A (en) 2011-09-01

Family

ID=44683811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033155A Withdrawn JP2011169504A (en) 2010-02-18 2010-02-18 Solid-phase reaction baking method for powder, and solid-phase reaction baking furnace

Country Status (1)

Country Link
JP (1) JP2011169504A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106643183A (en) * 2016-12-23 2017-05-10 方大炭素新材料科技股份有限公司 Furnace loading method for electrode production through Acheson graphitizing furnace
CN108123100A (en) * 2018-01-17 2018-06-05 广东中鹏热能科技有限公司 A kind of lithium electric material full-automatic production method and production line
KR20200026567A (en) * 2018-09-03 2020-03-11 주식회사 엘지화학 Microwave furnace and plasticity method of positive electrode active material using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106643183A (en) * 2016-12-23 2017-05-10 方大炭素新材料科技股份有限公司 Furnace loading method for electrode production through Acheson graphitizing furnace
CN108123100A (en) * 2018-01-17 2018-06-05 广东中鹏热能科技有限公司 A kind of lithium electric material full-automatic production method and production line
KR20200026567A (en) * 2018-09-03 2020-03-11 주식회사 엘지화학 Microwave furnace and plasticity method of positive electrode active material using the same
KR102282277B1 (en) 2018-09-03 2021-07-28 주식회사 엘지화학 Microwave furnace and plasticity method of positive electrode active material using the same

Similar Documents

Publication Publication Date Title
US6512216B2 (en) Microwave processing using highly microwave absorbing powdered material layers
EP1333012B1 (en) Burning furnace, burnt body producing method, and burnt body
JP4214040B2 (en) Operation method of microwave heating furnace and microwave heating furnace
JP2003075077A (en) Microwave calcination furnace, and microwave calcination method
US6706233B2 (en) Method for processing ceramics using electromagnetic energy
JP2013248597A (en) Low-oxygen atmosphere apparatus
JP2011169504A (en) Solid-phase reaction baking method for powder, and solid-phase reaction baking furnace
TWI636227B (en) Sintering facility and sintering method for a cylindrical target using sputtering
CN204718379U (en) Ultrasonic wave vibration activation assisted microwave synthesis sintering furnace
JP2000272973A (en) Microwave heating furnace and baking of refractory containing organic binder
JP4999422B2 (en) Continuous heat treatment method and continuous heat treatment furnace
JP2005331158A (en) Microwave heat treatment device
JP4782537B2 (en) Carbon material firing furnace and carbon material firing method
JP2010236779A (en) Method of burning workpiece by roller hearth kiln
JP2002130955A (en) Continuous baking furance, burned product and method for manufacturing the same
JPH07114188B2 (en) Heat treatment method for semiconductor substrate and heat treatment apparatus used therefor
JP2008280599A (en) Sealing treatment method for metal surface film, sealing treatment device for metal surface film, and continuous casting mold
JP2007303805A (en) Heat treatment furnace for manufacturing planar display element, planar display element manufacturing apparatus including the same, manufacturing method for it, and planar display element using it
CN206173385U (en) Heat treatment of materials system
KR20180050259A (en) Microwave sintering apparatus
JP4926445B2 (en) Oxidation-resistant furnace for graphite material and oxidation-resistant method for graphite material
RU2315443C1 (en) Method for caking a large-sized ceramic product using microwave radiation heating
JP2018080891A (en) Wall surface material and heat treat furnace
JP2001011505A (en) Equipment for removing binder for work to be sintered
JP2019100671A (en) Heat treatment apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130507