JP4227227B2 - Manufacturing method of ITO sputtering target - Google Patents

Manufacturing method of ITO sputtering target Download PDF

Info

Publication number
JP4227227B2
JP4227227B2 JP31074998A JP31074998A JP4227227B2 JP 4227227 B2 JP4227227 B2 JP 4227227B2 JP 31074998 A JP31074998 A JP 31074998A JP 31074998 A JP31074998 A JP 31074998A JP 4227227 B2 JP4227227 B2 JP 4227227B2
Authority
JP
Japan
Prior art keywords
furnace
density
sputtering
sintered
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31074998A
Other languages
Japanese (ja)
Other versions
JP2000144393A (en
Inventor
光一郎 江島
勝明 岡部
光輝 戸石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP31074998A priority Critical patent/JP4227227B2/en
Publication of JP2000144393A publication Critical patent/JP2000144393A/en
Application granted granted Critical
Publication of JP4227227B2 publication Critical patent/JP4227227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はスパッタリングによるITO(インジウム−錫酸化物)膜の形成に使用されるターゲットに関し、さらに詳しくは大型のITOスパッタリングターゲットに関する。
【0002】
【従来の技術】
ITO膜は代表的な透光性導電膜として知られ、液晶ディスプレイや太陽電池の透明電極などオプトエレクトロニクスの分野で広く使用されている。ITO膜の作製法には、スプレー法、真空蒸着法、イオン・プレーティング法、スパッタリング法などがあるが、中でもスパッタリング法は生産性が高いなどの理由から注目されてきた。さらに、最近大型の液晶ディスプレーに対する需要が高まるに伴って、スパッタリング用のターゲットも大型化する必要が生じてきている。
【0003】
【発明が解決しようとする課題】
ターゲットとしてのITO焼結体を製造する方法としては、粉末原料の成形工程にホットプレスを適用するホットプレス法や、粉末原料を常温でプレス成形して得られた成形体を焼結した後、機械加工を施すコールドプレス焼結法などが知られているが、焼結体を大型化する場合、ホットプレス法は設備面からの制約が大きく、イニシャルコストが高いという問題がある。コールドプレス焼結法は工業的に用いられている方法であるが、均一な焼結体密度が得られ難いという問題がある。平面積が800cm2 を越えるような大型のターゲットは、通常、加工した焼結体を複数枚張り合わせて使用されるが、密度の不均一なターゲットを使用すると、ボンディングの際に熱応力が発生して割れやクラックを生じやすい。また、ターゲット密度が不均一な場合、スパッタリングの際にターゲットのエッチングレートに差が生じ、エロージョンにむらができたり、低密度部分から黒化がはじまり、低級酸化物に起因するノジュールを生成したりして、安定な成膜が得られない。また、複数枚の張り合わせでは張り合わせ部のところにノジュールやパーティクルが発生しやすいなどの問題があった。したがって均一な密度でできるだけ張り合わせ枚数を減らすため一枚の焼結体サイズを大きくすることが望まれていた。
【0004】
なお、前記成形体の焼結を行う従来の焼結炉においては、ヒータは、熱変形を吸収させるため吊り下げ方式に固定保持されている場合が多く、特に、1600℃以上の高温度では、吊り下げ固定でないと使用できないとされており、また、成形体の4側面方向にヒータを配置する炉構造としているため、平面積が800cm2 以上の平板状の大型成形品を焼成する際、中央部から端部にかけて温度分布を生じ、焼結時の収縮により割れができたり、あるいは密度むらを生じており、さらに、大型成形品を焼成するためには、発熱量を大きくとるためにヒータが長くなることになり、炉容積が大きくなって設備費が増大し、またさらには、焼成時にITOの解離抑制のための導入酸素ガス使用量が多くコストがかかる等の問題があった。
【0005】
上述の従来法における問題に鑑み、本発明はスパッタリングに際して安定な高品質の成膜を得るべく、コストが抑えられ、800cm2 以上の広い面積にわたって高密度で、かつ密度が均一な改良された大型のITOスパッタリングターゲットの提供を目的とするものである。
【0006】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために鋭意研究した結果、本発明を提供するに至った。
すなわち、本発明は相対密度が平均値で90%以上、相対密度のばらつきが前記平均値の±2%以内で、平面積が800cm2 以上であるITO焼結体からなるITOスパッタリングターゲットを、また、In2 3 とSnO2 とからなり、SnO2 の含有量が2〜20重量%、比表面積が15m2 /g以上の混合粉を造粒し、得られた造粒粉を加圧成形し、得られた板状成形体を、該板状成形体より大きい範囲に発熱部域を有するヒータを上下に配置した焼結電気炉内に前記板状成形体の平面部が前記ヒータに対して平行になるように保持し、1450〜1550℃で焼結して得られたITOスパッタリングターゲットを、さらに、前記板状成形体は相対密度が45%以上であるところのITOスパッタリングターゲットを、そして、In23 とSnO2 からなり、SnO2 の含有量が2〜20重量%、比表面積が15m2 /g以上の混合粉を造粒し、得られた造粒粉を等方圧プレスにより加圧成形し、得られた板状成形体を、該板状成形体より大きい範囲に発熱部域を有するヒータを上下に配置した焼結電気炉内に前記板状成形体の平面部が前記ヒータに対して平行になるように保持し、1450〜1550℃で焼結し、得られた焼結体を研削加工した後、バッキングプレートに接合するITOスパッタリングターゲットの製造方法を、そしてまた、前記板状成形体は相対密度が45%以上であるところのITOスパッタリングターゲットの製造方法を提供するものである。
【0007】
【発明の実施の形態】
本発明のITOスパッタリングターゲットは相対密度が90%以上のITO焼結体によって作製される。この焼結体の相対密度が90%を下回ると、スパッタリングターゲットとして用いる場合、気孔を起点とするノジュールとよばれる黒化物質(ITOの低級酸化物)が形成されやすく、スパッタレート(成膜速度)等が低くなり、膜特性の制御が難しくなる。
【0008】
また、前記相対密度のばらつきの範囲は2%以内を良好とする。スパッタリングターゲットの面内に2%を超えるばらつきの密度分布があると、部分的にノジュールが発生したり、スパッタレートの異なる点がみられ、膜特性がばらついて均一な膜が形成されない。
【0009】
図1に従って、本発明のITOスパッタリングターゲットとその製造工程の概要を説明する。ITO焼結体の原料には、酸化インジウム(In2 3 )粉末と酸化錫(SnO2 )粉末をSnO2 の含有量が2〜20重量%の範囲内の所定の割合で均一に混合した混合粉末を使用する。この含有量は、スパッタリング時の条件や用途に合わせて決めるが、2重量%未満では導電性が低下し、20重量%を超えると焼結性が悪くなる。
【0010】
粉体の比表面積(BET値)は、混合粉として15m2 /g以上が好ましい。このBET値より低いと焼結性が悪くなり、1600℃以上の高温での焼成が必要となり、ヒータの材質や炉材等に特別の仕様のものが必要となる。
このような混合粉末を成形に先立って顆粒状に造粒する。造粒については、噴霧造粒法、攪拌造粒法等が用いられる。造粒は粉の流動性向上を目的とするものであり、粉粒体の流動性がよくないと型に充填した際に充填むらが生じる。特に成形体が大型化した場合は、成形体に成形密度差を生じやすく、そのため成形時に割れを生じたり、成形割れがなくても焼成の際に焼結体の割れや密度むらが生じやすい。
【0011】
成形に使用する造粒粉は粉粒体の流動性の指標となる安息角が25°以下のものが好ましい。25°を越える造粒粉は流動性が悪く、平面積800cm2 以上の焼結体のための成形用型に対しては、充填むらがないように均一に充填することが難しくなり、成形体の割れあるいは焼結体の割れや密度むらが生じやすく、実質的に大型品が得られないことになる。また、造粒粉は成形時に潰れて顆粒粒界がなくなることが望ましく、この点からは潰れやすい噴霧造粒法による造粒粉が望ましい。
【0012】
このようにして得られた造粒粉は平板形状に成形する。通常、造粒粉を成形用型に入れ、一軸金型プレスにより加圧成形して板状成形体とし、得られた板状成形体の成形について、より均一な成形密度が得られるように冷間静水圧プレス等の等方圧プレスによって処理する2段階成形処理が望ましい。
即ち、造粒粉は、金型を使用した一軸金型プレスにより、例えば500kg/cm2 の圧力で所定の平板形状に一次成形する。そして、図1の工程図に示したように、得られた一次成形体をビニール袋などに入れ、真空パックなどの方法で封入して防水パック処理した後、等方加圧プレス即ち冷間静水圧プレスに入れて等方加圧することにより、成形密度が均一化された二次成形体を得る。この時の成形圧力は、十分な成形密度を得るために、前記一軸金型プレスによる成形圧力より十分に大きく、1,500kg/cm2 以上とすることが望ましい。
【0013】
また、SnO2 の配合比が8〜12重量%のITO原料を用いた場合、かさ密度が1.3g/cm3 未満の造粒粉には、中空の造粒粉や変形粒が多く成形体中にポア等の欠陥を生じやすく、かさ密度が2.0g/cm3 を超える造粒粉は顆粒強度が強く、また、冷間静水圧プレスによる二次成形後も顆粒の形骸が残りやすく、二次成形体中に密度のばらつきを生じやすい等の問題がある。
【0014】
成形体はある程度成形密度が高くないと焼結が進まないので、二次成形即ち等方加圧によって得られる二次成形体としては、焼成後に焼結体密度90%以上の相対密度を有する焼結体が安定して得られるように、成形密度が相対密度45%以上好ましくは50%以上となるようにする。
【0015】
さらに、等方加圧プレス即ち冷間静水圧プレスにより二次成形されて成形密度が均一化された二次成形体は、焼結電気炉内で焼成される。この焼結電気炉はバッチ式加熱炉であって、平板形状の二次成形体の平面部に対して平行になるように、ヒータが上下に配置されたものを用いる。二次成形体の側面部に面する4面にヒータを配置した場合は、得られる焼結体の平面部に密度差が生じやすい。焼結雰囲気としては、ITOの解離を抑えるため、酸素ガスをフローさせた酸素雰囲気とする。
【0016】
図2によって実施例で使用した焼結電気炉Aを説明する。
焼結電気炉Aは、アルミナ質炉材による下部炉体1と上部炉体2からなる上下分割型炉体に構成し、成形体aを収裝した後、炉を閉じるバッチ式加熱炉構造とし、下部ヒータ3と上部ヒータ4を備えている。図3のように、下部ヒータ3についてはヒートサイクルに伴うヒータの熱変形に配慮して一端固定方式のU字形状とし、下部床(下部炉体)1aに敷き詰めた1〜3mm径のムライト粒即ち融着防止材5の上に設置し、上部ヒータ4については上部壁(上部炉体)2aに張着したアルミナファイバーボード6にヒータと同材質のステープル7で適宜の箇所を固定してある。下部ヒータ3と上部ヒータ4はそれぞれ端子を介して炉体1外部のブスバー8に接続してある。また、上部ヒータ4と下部ヒータ3は少なくとも収裝された成形体aの平面部が上下ヒータの発熱部域内に納まるようにし、均一にかつ十分に成形体が加熱されるようにしてある。下部炉体1には炉内雰囲気を制御するためのガス導入口9を設け、上部炉体2にガス導出口10と共に炉内温度測定用の熱電対11を設けてある。
【0017】
さらに、下部ヒータ3と上部ヒータ4からの熱放射を直接当てないようにして成形体aを均一加熱するため、炉内下部床1aには成形体aを載置するためのアルミナ質耐火物による脚付下台板12を設け、また、成形体aを載置した後、この成形体aをアルミナ質耐火物によってカバーする脚付上台板13を前記脚付下台板12上に載置するようにしてある。
【0018】
上下ヒータ4,3の発熱部の寸法および各ヒータ本数は、被焼成成形体の寸法や炉材の熱容量等を考えて決定すればよい。なお、本発明の制御されたITO成形体の焼成の場合、上部ヒータ4は熱変形で垂れ下がることが抑制され、繰り返し使用できることが確認されている。また、下部ヒータ3と上部ヒータ4は、別実施例として示す図4のヒータ3′のように、W字形状とすることもできる。
【0019】
前記焼結電気炉Aにおいては、下部ヒータ3を主熱源とし、上部ヒータ4は補助熱源とする。上下ヒータ4,3の材質は、焼結に必要な1550℃の温度保持に耐え、かつ、バッチ式加熱炉として使用する点から温度昇降のヒートサイクルに耐えられるものが好ましく、保持温度の点からは二珪化モリブデン質、炭化珪素質、ランタンクロマイト質、ジルコニア質等のものが使用可能であるが、ヒートサイクル性の点を考慮すれば二珪化モリブデン質のものが好ましい。
【0020】
焼成は1450〜1550℃で5〜20時間保持し、ガス導入口9からの酸素フローの導入により炉内雰囲気は酸素濃度40%以上とする。
本発明で使用する焼結電気炉Aでは、前記のように、ヒータ配置を平板状の被焼成成形体aの平面部と平行に上部ヒータ4と下部ヒータ3を配置することで、温度むら(焼結むら)を抑制し、炉容積を小さくすることができ、従来の焼結炉における前記問題も解決された。
【0021】
本発明の焼成によって得られた焼結体は、さらに研削加工により所定寸法にした後、バッキングプレートに接合することによりITOスパッタリングターゲットとする。作製されたITO焼結体は、800cm2 以上の平面積を有する大型のスパッタリングターゲットに適用し、そのスパッタリングに際してスパッタリングターゲットの黒化の発生が抑制された90%以上の相対密度を有しており、しかも密度のばらつきが平均値の±2%以内と少なく、投入電力に対応した安定なスパッタレートを保持できる性能を有している。
【0022】
尚、焼結体の特性ばらつきも少なく、例えば焼結体のバルク比抵抗を四探針法で測定したところ、密度98%の焼結体で1.6×10-4Ω・cm(ばらつきは±0.1×10-4Ω・cm以内)であった。このことはスパッタ時の電荷集中が抑制されて放電電圧の安定化に寄与すると考えられる。このように焼結体が均一に製造されていることで特性のばらつきが少なく、スパッタ時の放電電圧の安定化、アーキングの抑制など成膜時の安定化につながるものと考えられる。
本発明の焼成によって得られたITO焼結体は、より好ましくは800cm2以上の平面積を有し、98%以上の相対密度を有しており、しかも密度のばらつきが平均値の±1%以内であり、さらにバルク抵抗が1.6×10-4Ω・cm以下でありばらつきが±0.1×10-4Ω・cm以内の非常に均一なものであり、スパッタ時の放電電圧の安定、アーキングの抑制など更に成膜時の安定化につながるものである。
【0023】
【実施例】
〔実施例1〕
図1の工程図に従って、ITO原料として、BET法による比表面積が33m2 /gの酸化インジウム(In23 )の粉末と比表面積4m2 /gの酸化錫(SnO2 )の粉末を重量比で90:10の割合になるように均一に混合して混合粉末を作製した。この混合粉末の比表面積は31m2 /gであった。この混合粉末をボールミルで湿式分散処理し、噴霧乾燥した後、噴霧造粒することにより平均粒径が50μmの顆粒状造粒粉に作製した。この顆粒状造粒粉の安息角は22°、かさ密度1.5g/cm3 であった。この顆粒状造粒粉を金型を用いた一軸金型プレスにより500kg/cm2 の成形圧で成形し、400×510×厚さ12mmの一次成形体を作製した。
得られた一次成形体をビニールシートで包み、真空パックにより防水パックとした後、冷間静水圧プレスを用いて2000kg/cm2 の圧力で等方加圧した。得られた二次成形体の外形寸法と重量から算定した相対密度は50%であった。
【0024】
次に、前記の二次成形体を上下ヒータを配置した図2の焼結電気炉Aに入れ、この二次成形体の平面部が前記上下ヒータに相対するように配置し、酸素ガスの導入により炉内の酸素濃度を70%に保持すると共に、1550℃の温度に10時間保持して焼結させた。得られた焼結体は、約310×390×厚さ10mmの寸法であったが、平面部にうねりや反りがあったため、研削加工により300×380×厚さ8mmの平板状焼結体に形成した。この平板状焼結体はさらに約20×20×厚さ8mmの大きさの測定片に切断し、285個の各測定片につきアルキメデス法で密度を測定した。
【0025】
切断する前の平板状焼結体について、その外形寸法と重量から求めた相対密度は、98.11%であったが、285個の各測定片について測定した結果は、相対密度の平均値が98.08%(密度 7.02g/cm3 )、最大値が98.53%(密度 7.05g/cm3 )、最小値が97.83%(密度 7.00g/cm3 )であった。即ち、ばらつきは〔平均値+0.46%〕〜〔平均値−0.25%〕であった。また、各測定片のバルク比抵抗を四探針法で測定したところ、平均値1.6×10-4Ω・cm、ばらつきは±0.1×10-4Ω・cmであった。
【0026】
上記と同様の材料を用い同様の製造工程を経て得られた2枚の平板状焼結体を、それぞれ研削加工により300×350×厚さ8mmに形成した。この2枚の平板状焼結体を左右に揃えバッキングプレートに接合して300×700×厚さ8mmのターゲットとした。
このターゲットを用いて枚葉式スパッタリング装置(直流マグネトロンスパッタリング装置)を用いてスパッタリングを行ったところ、異常放電やノジュールの発生もなく、良好にスパッタリングが行われたことが確認された。
【0027】
〔実施例2〕
実施例1で作製した成形体について、実施例1と同様に図2の焼結電気炉Aを用いて1500℃で10時間、外気を導入した大気雰囲気内で焼結して焼結体とした。
得られた焼結体を研削し、300×380×厚さ8mmの平板状焼結体とした。この外形寸法と重量から求めた平板状焼結体の相対密度は、91.30%であった。
この平板状焼結体から、実施例1と同様に約20×20×厚さ8mmの小測定片に切断し、これらの各測定片について、密度を測定し、相対密度を求めた。得られた相対密度は、平均値で91.00%(密度6.51g/cm3 )、最大値で91.85%、最小値89.51%であり、そのばらつきは、〔平均値+0.9%〕〜〔平均値−1.6%〕であった。
実施例1と同様に、スパッタリングターゲットを形成して同じ枚葉式スパッタリング装置によりスパッタリングを行ったところ、ノジュールが僅かに発生したが特に異常放電等はなく、スパッタレートも安定しており、良好にスパッタリングが行われたことが確認された。
【0028】
〔比較例〕
実施例1と同様にして作製した成形体を用いて、焼結炉としてヒーターが側面の4面に配置された別構造の焼結電気炉を用いて焼結を行った。温度条件や酸素濃度については、実施例1と同様とした。得られた焼結体は、実施例1の場合の焼結体よりもやや収縮が小さく、側面に微小クラックが発生しており、実施例1の場合に比べて収縮が側面と中央部とで差のあることが認められた。
この焼結体を実施例1の場合と同様に研削加工し、小測定片を作製して密度を測定し相対密度を求めた。
相対密度は、研削加工前の平板状焼結体については96.2%で、小測定片の場合は平均値が95.8%で、最大値で98.1%、最小値で93.2%で、そのばらつきは、〔平均値+2.4%〕〜〔平均値−2.7%〕であった。
実施例1の場合と同様にスパッタリングターゲットを形成して、スパッタリングを行ったところ、ノジュールの発生が焼結体の中央部の密度が低いと推定される部分に多く、外周部には少ないことが認められ、また、ターゲットの減り方にも平面内でむらが認められた。
【0029】
〔実施例3〕
前記の本発明のITO焼結体の製造方法において、成形処理条件等を制御することによって10%SnO2 のITO原料粉から相対密度が94%、96%および99%の焼結体を得、比較試料として相対密度が84%の焼結体を得た。各焼結体を100mm径の円板状ターゲットに研削加工し、それぞれ4分割し、図5のように、各焼結体の分割ターゲット片b,c,d,eを組み合わせて一個のスパッタリングターゲットに構成した。
このスパッタリングターゲットを枚葉式スパッタリング装置に収裝し、装置内にアルゴンガス29.8SCCMおよび酸素ガス0.18SCCMを導入し、スパッタリング圧力1.6×10-3Torr、放電電流0.2A、投入電力1.1W/cm2 でスパッタリング処理し、8KWHの電力量消費後、スパッタリングターゲットを調べた。
図5のように、ターゲット片b,c,d,eは、相対密度99%(b)、96%(c)、94%(d)および84(e)%の順に黒化度が顕著となり、99%のターゲット片bには殆どノジュールはみられなかったが、比較試料の84%のターゲット片eはスパッタ面の略全面にわたりノジュールの生成がみられた。即ち、ターゲットとしては少なくとも90%以上の相対密度が必要であることがわかる。
【0030】
〔実施例4〕
実施例3と同様にして、相対密度が93%、96%および99%の焼結体ならびに比較試料として70%および84%の焼結体を得た。
各焼結体からスパッタリングターゲットを作製し、実施例3と同様の処理条件により、スパッタリング処理を行い、所定積算電力量毎のスパッタリングターゲットの重量を測定し、スパッタによるエッチングレートを調べた。
得られた結果として、積算電力量(KWH)とスパッタリングターゲットの減量重量(g)との関係を図6に示した。相対密度が84%以下のスパッタリングターゲットではエッチングレートが低く、93%以上のものにおいてはエッチングレートは高く、積算電力量に対し直線性が高い。即ち、スパッタリングターゲットとしては、相対密度としては90%以上であってそのばらつきが少なくとも±2%の範囲を超えるとエッチングレートの差が大きくなることがわかる。
【0031】
【発明の効果】
以上のように、本発明によれば、800cm2 以上の大型で且つ高品質のITOスパッタリングターゲットが提供でき、また、本発明の方法によりコスト、特に、イニシャルコストが抑えられると共に上記の大型で高品質のITOスパッタリングターゲットを安定に作製することが可能になり、この大型スパッタリングターゲットを使用して大型液晶ディスプレイ用等のITO膜が工業的に生産できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明のターゲットの製造方法を示す工程図である。
【図2】本発明において使用する焼結電気炉の側面断面図である。
【図3】図2のIII −III 線に沿う平面断面図である。
【図4】別の実施例による焼結電気炉の図3相当の平面断面図である。
【図5】密度の異なる焼結体によるITOスパッタリングターゲットについてスパッタリング時の表面黒化状況を示した外観図である。
【図6】密度の異なる焼結体によるITOスパッタリングターゲットについてスパッタリング時の積算電力量と減量重量との関係を示した図表である。
【符号の説明】
A 焼結電気炉
a 成形体
1 下部炉体
2 上部炉体
3 下部ヒータ
4 上部ヒータ
5 融着防止材
6 アルミナファイバーボード
7 ステープル
8 ブスバー
9 ガス導入口
10 ガス導出口
11 熱電対
12 脚付下台板
13 脚付上台板
b,c,d,e ターゲット片
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a target used for forming an ITO (indium-tin oxide) film by sputtering, and more particularly to a large ITO sputtering target.
[0002]
[Prior art]
The ITO film is known as a typical translucent conductive film, and is widely used in the field of optoelectronics such as a liquid crystal display and a transparent electrode of a solar cell. There are various methods for producing an ITO film, such as a spray method, a vacuum deposition method, an ion plating method, and a sputtering method. Among them, the sputtering method has attracted attention because of its high productivity. Furthermore, with the recent increase in demand for large liquid crystal displays, it has become necessary to increase the size of sputtering targets.
[0003]
[Problems to be solved by the invention]
As a method for producing an ITO sintered body as a target, a hot press method in which a hot press is applied to a molding process of a powder raw material, or a sintered compact obtained by press molding a powder raw material at room temperature, A cold press sintering method for performing machining is known. However, when the size of a sintered body is increased, the hot press method has a problem that there are large restrictions on the equipment and high initial cost. The cold press sintering method is an industrially used method, but has a problem that it is difficult to obtain a uniform sintered body density. Large targets, such as planar area exceeding 800 cm 2 is usually used by laminating a plurality of sintered bodies obtained by processing, by using the non-uniform target density, thermal stress is generated during the bonding It tends to cause cracks and cracks. Also, if the target density is not uniform, there will be a difference in the etching rate of the target during sputtering, erosion may be uneven, blackening will start from the low density part, and nodules resulting from lower oxide will be generated. Thus, stable film formation cannot be obtained. Further, when a plurality of sheets are laminated, there is a problem that nodules and particles are likely to be generated at the laminated part. Accordingly, it has been desired to increase the size of one sintered body in order to reduce the number of laminated sheets as much as possible with a uniform density.
[0004]
In the conventional sintering furnace that sinters the molded body, the heater is often fixedly held in a suspended manner in order to absorb thermal deformation, particularly at a high temperature of 1600 ° C. or higher. It is said that it cannot be used unless it is fixed by hanging, and since it has a furnace structure in which heaters are arranged in the four side surfaces of the molded body, when firing a flat large molded product with a flat area of 800 cm 2 or more, the center Temperature distribution occurs from part to end, cracks are generated due to shrinkage during sintering, or density unevenness occurs, and in order to fire large molded products, a heater is used to increase the amount of heat generated. As a result, the furnace volume is increased, the equipment cost is increased, and furthermore, there is a problem that the amount of introduced oxygen gas for suppressing the dissociation of ITO at the time of firing is high and the cost is high.
[0005]
In view of the problems in the conventional methods described above, the present invention is an improved large-sized film that is low in cost, high density over a wide area of 800 cm 2 or more, and uniform density in order to obtain a stable high-quality film during sputtering. The purpose is to provide an ITO sputtering target.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have provided the present invention.
That is, the present invention provides an ITO sputtering target made of an ITO sintered body having a relative density of 90% or more on average, a variation in relative density within ± 2% of the average, and a plane area of 800 cm 2 or more, , Which is composed of In 2 O 3 and SnO 2 , granulated mixed powder having a SnO 2 content of 2 to 20% by weight and a specific surface area of 15 m 2 / g or more, and the resulting granulated powder was pressure-molded. Then, the plate-shaped molded body obtained was placed in a sintering electric furnace in which heaters having heat generating areas in a range larger than the plate-shaped molded body were arranged above and below the flat portion of the plate-shaped molded body with respect to the heater. And holding the ITO sputtering target obtained by sintering at 1450 to 1550 ° C., and further, an ITO sputtering target whose relative density is 45% or more, and , In 2 O 3 and SnO 2 , a mixed powder having a SnO 2 content of 2 to 20% by weight and a specific surface area of 15 m 2 / g or more is granulated, and the resulting granulated powder is pressed by an isotropic pressure press. Then, the plate-shaped molded body obtained was placed in a sintering electric furnace in which heaters having heat generating areas in a range larger than the plate-shaped molded body were arranged above and below the flat portion of the plate-shaped molded body with respect to the heater. And a method of manufacturing an ITO sputtering target that is sintered at 1450 to 1550 ° C., grounds the obtained sintered body, and is bonded to a backing plate. The body provides a method for producing an ITO sputtering target having a relative density of 45% or more.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The ITO sputtering target of the present invention is produced by an ITO sintered body having a relative density of 90% or more. When the relative density of this sintered body is less than 90%, when used as a sputtering target, a blackening substance called a nodule (a lower oxide of ITO) starting from pores tends to be formed, and the sputtering rate (deposition rate) ), Etc., and the control of the film characteristics becomes difficult.
[0008]
Further, the range of variation in the relative density is preferably within 2%. If there is a density distribution with a variation exceeding 2% in the plane of the sputtering target, nodules may be partially generated or the sputtering rate may be different, and the film characteristics vary and a uniform film cannot be formed.
[0009]
The outline of the ITO sputtering target of the present invention and its manufacturing process will be described with reference to FIG. As a raw material for the ITO sintered body, indium oxide (In 2 O 3 ) powder and tin oxide (SnO 2 ) powder were uniformly mixed at a predetermined ratio within the range of SnO 2 content of 2 to 20 wt%. Use mixed powder. This content is determined in accordance with the conditions and application at the time of sputtering, but if it is less than 2% by weight, the conductivity is lowered, and if it exceeds 20% by weight, the sinterability is deteriorated.
[0010]
The specific surface area (BET value) of the powder is preferably 15 m 2 / g or more as the mixed powder. If it is lower than this BET value, the sinterability is deteriorated, and firing at a high temperature of 1600 ° C. or higher is required, and the heater material, furnace material, etc. have special specifications.
Such a mixed powder is granulated prior to molding. As for granulation, spray granulation method, stirring granulation method and the like are used. Granulation is intended to improve the fluidity of the powder, and if the fluidity of the powder is not good, uneven filling occurs when the mold is filled. In particular, when the molded body is increased in size, a difference in molding density is likely to occur in the molded body. For this reason, cracks occur during molding, and cracks and uneven density of the sintered body tend to occur during firing even without molding cracks.
[0011]
The granulated powder used for molding preferably has an angle of repose of 25 ° or less, which is an index of fluidity of the granular material. Granulated powder exceeding 25 ° has poor fluidity, and it becomes difficult to uniformly fill the molding die for a sintered body having a flat area of 800 cm 2 or more so that there is no uneven filling. Or cracks in the sintered body and uneven density tend to occur, and a large-sized product cannot be obtained substantially. In addition, it is desirable that the granulated powder is crushed at the time of molding to eliminate the grain boundary. From this point, granulated powder by a spray granulation method that is easily crushed is desirable.
[0012]
The granulated powder thus obtained is formed into a flat plate shape. Usually, the granulated powder is put into a mold and pressed with a uniaxial mold press to form a plate-shaped molded body. The molded plate-shaped molded body is cooled so as to obtain a more uniform molding density. A two-stage molding process in which an isostatic press such as an isostatic press is used is desirable.
That is, the granulated powder is primarily formed into a predetermined flat plate shape with a pressure of, for example, 500 kg / cm 2 by a uniaxial mold press using a mold. Then, as shown in the process diagram of FIG. 1, the obtained primary molded body is put in a plastic bag or the like, sealed by a method such as a vacuum pack and waterproofed, and then subjected to an isotropic pressure press, that is, a cold static A secondary molded body having a uniform molding density is obtained by isostatic pressing in a hydraulic press. In order to obtain a sufficient molding density, it is desirable that the molding pressure at this time is sufficiently larger than the molding pressure by the uniaxial mold press and is 1,500 kg / cm 2 or more.
[0013]
Further, when an ITO raw material having a SnO 2 blending ratio of 8 to 12% by weight is used, the granulated powder having a bulk density of less than 1.3 g / cm 3 has a large number of hollow granulated powder and deformed particles. Granules having a bulk density of more than 2.0 g / cm 3 tend to have defects such as pores, and have a strong granule strength. Also, granules are likely to remain after secondary molding by cold isostatic pressing, There is a problem that density variation tends to occur in the secondary molded body.
[0014]
Sintering does not proceed unless the molding density is high to some extent. Therefore, a secondary molded body obtained by secondary molding, that is, isotropic pressing, is a sintered body having a relative density of 90% or higher after sintering. The molding density is set to a relative density of 45% or more, and preferably 50% or more so that a bonded body can be stably obtained.
[0015]
Further, the secondary molded body that has been subjected to secondary molding by an isotropic pressure press, that is, a cold isostatic press, to have a uniform molding density is fired in a sintered electric furnace. This sintering electric furnace is a batch-type heating furnace, in which heaters are vertically arranged so as to be parallel to the flat portion of the flat plate-shaped secondary molded body. In the case where the heaters are arranged on the four surfaces facing the side surface portion of the secondary molded body, a difference in density tends to occur in the flat portion of the obtained sintered body. The sintering atmosphere is an oxygen atmosphere in which oxygen gas is flowed in order to suppress dissociation of ITO.
[0016]
The sintered electric furnace A used in the embodiment will be described with reference to FIG.
The sintered electric furnace A is composed of an upper and lower split furnace body composed of a lower furnace body 1 and an upper furnace body 2 made of an alumina-based furnace material, and has a batch-type heating furnace structure in which the molded body a is converged and then the furnace is closed. The lower heater 3 and the upper heater 4 are provided. As shown in FIG. 3, the lower heater 3 has a U-shaped one-end fixing method in consideration of the thermal deformation of the heater accompanying the heat cycle, and has a 1 to 3 mm diameter mullite particle laid on the lower floor (lower furnace body) 1a. That is, it is installed on the anti-fusing material 5 and the upper heater 4 is fixed to an alumina fiber board 6 stuck to the upper wall (upper furnace body) 2a with a staple 7 made of the same material as the heater. . The lower heater 3 and the upper heater 4 are each connected to a bus bar 8 outside the furnace body 1 through terminals. In addition, the upper heater 4 and the lower heater 3 are configured so that at least the converged flat portion of the molded body a is accommodated in the heat generating area of the upper and lower heaters, and the molded body is uniformly and sufficiently heated. The lower furnace body 1 is provided with a gas inlet 9 for controlling the furnace atmosphere, and the upper furnace body 2 is provided with a thermocouple 11 for measuring the furnace temperature together with the gas outlet 10.
[0017]
Furthermore, in order not to directly apply the heat radiation from the lower heater 3 and the upper heater 4, the molded body a is uniformly heated, so that it is made of an alumina refractory for placing the molded body a on the lower floor 1 a in the furnace. After providing the leg-attached lower base plate 12 and placing the molded body a, the leg-attached upper base plate 13 covering the molded body a with an alumina refractory is placed on the leg-equipped lower base plate 12. It is.
[0018]
The dimensions of the heating portions of the upper and lower heaters 4 and 3 and the number of each heater may be determined in consideration of the dimensions of the fired molded body, the heat capacity of the furnace material, and the like. In the case of firing the controlled ITO molded body of the present invention, it has been confirmed that the upper heater 4 is suppressed from sagging due to thermal deformation and can be used repeatedly. Moreover, the lower heater 3 and the upper heater 4 can also be made into a W shape like the heater 3 'of FIG. 4 shown as another embodiment.
[0019]
In the sintered electric furnace A, the lower heater 3 is a main heat source, and the upper heater 4 is an auxiliary heat source. The material of the upper and lower heaters 4 and 3 is preferably one that can withstand the temperature holding of 1550 ° C. necessary for sintering and that can withstand the heat cycle of temperature increase and decrease from the point of use as a batch-type heating furnace. For example, molybdenum disilicide, silicon carbide, lanthanum chromite, zirconia or the like can be used, but in view of heat cycle property, molybdenum disilicide is preferable.
[0020]
Firing is held at 1450 to 1550 ° C. for 5 to 20 hours, and the atmosphere in the furnace is set to an oxygen concentration of 40% or more by introducing oxygen flow from the gas inlet 9.
In the sintering electric furnace A used in the present invention, as described above, the heater is arranged in parallel with the flat portion of the flat plate-like body to be fired a so that the upper heater 4 and the lower heater 3 are arranged, thereby causing uneven temperature ( (Sintering unevenness) can be suppressed and the furnace volume can be reduced, and the above-mentioned problems in conventional sintering furnaces have been solved.
[0021]
The sintered body obtained by firing according to the present invention is further grounded to a predetermined size and then joined to a backing plate to obtain an ITO sputtering target. The produced ITO sintered body is applied to a large sputtering target having a plane area of 800 cm 2 or more, and has a relative density of 90% or more in which the occurrence of blackening of the sputtering target is suppressed during the sputtering. In addition, the density variation is as small as ± 2% of the average value, and it has the performance of maintaining a stable sputtering rate corresponding to the input power.
[0022]
In addition, the characteristic variation of the sintered body is small. For example, when the bulk specific resistance of the sintered body is measured by the four-probe method, the sintered body with a density of 98% is 1.6 × 10 −4 Ω · cm (the variation is ± 0.1 × 10 −4 Ω · cm). This is considered to contribute to stabilization of the discharge voltage by suppressing charge concentration during sputtering. Thus, it is considered that since the sintered body is manufactured uniformly, there is little variation in characteristics, which leads to stabilization during film formation such as stabilization of discharge voltage during sputtering and suppression of arcing.
The ITO sintered body obtained by firing of the present invention preferably has a plane area of 800 cm 2 or more, has a relative density of 98% or more, and the density variation is ± 1% of the average value. Furthermore, the bulk resistance is 1.6 × 10 −4 Ω · cm or less, the variation is very uniform within ± 0.1 × 10 −4 Ω · cm, and the discharge voltage during sputtering is This leads to stabilization during film formation, such as stability and suppression of arcing.
[0023]
【Example】
[Example 1]
According to the steps of FIG. 1, as ITO raw material powder the weight of tin oxide (SnO 2) powder and a specific surface area of 4m 2 / g of indium oxide having a specific surface area of 33m 2 / g by the BET method (In 2 O 3) A mixed powder was prepared by uniformly mixing the mixture at a ratio of 90:10. The specific surface area of this mixed powder was 31 m 2 / g. This mixed powder was wet-dispersed with a ball mill, spray-dried, and then spray granulated to prepare a granulated granulated powder having an average particle size of 50 μm. The repose angle of this granular granulated powder was 22 °, and the bulk density was 1.5 g / cm 3 . This granular granulated powder was molded at a molding pressure of 500 kg / cm 2 by a uniaxial mold press using a mold to produce a primary molded body of 400 × 510 × thickness 12 mm.
The obtained primary molded body was wrapped with a vinyl sheet, made into a waterproof pack with a vacuum pack, and then isotropically pressed at a pressure of 2000 kg / cm 2 using a cold isostatic press. The relative density calculated from the external dimensions and weight of the obtained secondary molded body was 50%.
[0024]
Next, the secondary molded body is placed in the sintering electric furnace A shown in FIG. 2 in which upper and lower heaters are arranged, and the secondary molded body is disposed so that the flat portion of the secondary molded body faces the upper and lower heaters. Thus, the oxygen concentration in the furnace was maintained at 70% and sintered at a temperature of 1550 ° C. for 10 hours. The obtained sintered body had a size of about 310 × 390 × 10 mm in thickness. However, since there were waviness and warpage in the flat surface portion, a flat plate-like sintered body of 300 × 380 × 8 mm in thickness was obtained by grinding. Formed. This flat sintered body was further cut into measurement pieces each having a size of about 20 × 20 × 8 mm in thickness, and the density of each of the 285 measurement pieces was measured by the Archimedes method.
[0025]
About the flat sintered body before cutting, the relative density obtained from its external dimensions and weight was 98.11%, but the result of measuring each of the 285 measurement pieces is that the average value of the relative density is It was 98.08% (density 7.02 g / cm 3 ), the maximum value was 98.53% (density 7.05 g / cm 3 ), and the minimum value was 97.83% (density 7.00 g / cm 3 ). . That is, the variation was [average value + 0.46%] to [average value−0.25%]. Moreover, when the bulk specific resistance of each measurement piece was measured by the four-probe method, the average value was 1.6 × 10 −4 Ω · cm, and the variation was ± 0.1 × 10 −4 Ω · cm.
[0026]
Two flat plate-like sintered bodies obtained through the same manufacturing process using the same material as described above were each formed to a size of 300 × 350 × 8 mm by grinding. The two flat sintered bodies were aligned on the left and right sides and joined to a backing plate to obtain a target of 300 × 700 × 8 mm thickness.
When sputtering was performed using this target with a single wafer sputtering apparatus (DC magnetron sputtering apparatus), it was confirmed that sputtering was performed satisfactorily without occurrence of abnormal discharge or nodules.
[0027]
[Example 2]
The molded body produced in Example 1 was sintered in an air atmosphere introduced with outside air at 1500 ° C. for 10 hours using the sintering electric furnace A of FIG. .
The obtained sintered body was ground to obtain a plate-like sintered body having a size of 300 × 380 × 8 mm. The relative density of the flat sintered body determined from the external dimensions and weight was 91.30%.
The flat sintered body was cut into small measurement pieces having a size of about 20 × 20 × 8 mm in the same manner as in Example 1, and the density of each measurement piece was measured to obtain a relative density. The relative density obtained was 91.00% (density 6.51 g / cm 3 ) as an average value, 91.85% as a maximum value, and 89.51% as a minimum value. 9%] to [average value-1.6%].
As in Example 1, when a sputtering target was formed and sputtering was performed with the same single-wafer sputtering apparatus, nodules were slightly generated, but there was no abnormal discharge or the like, the sputtering rate was stable, and good It was confirmed that sputtering was performed.
[0028]
[Comparative example]
Sintering was performed using a compact produced in the same manner as in Example 1 and using a sintering electric furnace having another structure in which heaters were arranged on four side surfaces as a sintering furnace. The temperature conditions and oxygen concentration were the same as in Example 1. The obtained sintered body is slightly smaller in shrinkage than the sintered body in Example 1, and microcracks are generated on the side surface, and the shrinkage is smaller between the side surface and the central portion than in Example 1. There was a difference.
This sintered body was ground in the same manner as in Example 1, a small measurement piece was prepared, the density was measured, and the relative density was obtained.
The relative density is 96.2% for the flat sintered body before grinding, and the average value is 95.8% for the small measurement piece, 98.1% for the maximum value, and 93.2% for the minimum value. %, And the variation was from [average value + 2.4%] to [average value−2.7%].
When the sputtering target was formed and the sputtering was performed in the same manner as in Example 1, the generation of nodules was mostly in the portion where the density of the central portion of the sintered body was estimated to be low, and was small in the outer peripheral portion. In addition, unevenness was recognized in the plane in the target reduction method.
[0029]
Example 3
In the manufacturing method of the ITO sintered body of the present invention, a sintered body having a relative density of 94%, 96% and 99% is obtained from the ITO raw material powder of 10% SnO 2 by controlling the molding process conditions and the like. As a comparative sample, a sintered body having a relative density of 84% was obtained. Each sintered body is ground into a disk-shaped target having a diameter of 100 mm, divided into four parts, and a single sputtering target is formed by combining the divided target pieces b, c, d, e of each sintered body as shown in FIG. Configured.
And Osamu裝this sputtering target single wafer sputtering apparatus, argon gas was introduced 29.8SCCM and oxygen gas 0.18SCCM into the apparatus, the sputtering pressure 1.6 × 10 -3 Torr, the discharge current 0.2 A, introduced Sputtering was performed at a power of 1.1 W / cm 2 , and after consuming 8 KWH of power, the sputtering target was examined.
As shown in FIG. 5, the target pieces b, c, d, and e are noticeably blackened in the order of relative density 99% (b), 96% (c), 94% (d), and 84 (e)%. 99% of the target piece b showed almost no nodules, but 84% of the target piece e of the comparative sample produced nodules over almost the entire sputtering surface. That is, it can be seen that the target must have a relative density of at least 90%.
[0030]
Example 4
In the same manner as in Example 3, sintered bodies having a relative density of 93%, 96%, and 99% and 70% and 84% sintered bodies were obtained as comparative samples.
Sputtering targets were prepared from the respective sintered bodies, sputtered under the same processing conditions as in Example 3, the weight of the sputtering target for each predetermined integrated power amount was measured, and the etching rate by sputtering was examined.
As a result, the relationship between the accumulated power (KWH) and the weight loss (g) of the sputtering target is shown in FIG. A sputtering target having a relative density of 84% or less has a low etching rate, and a sputtering target having a relative density of 93% or more has a high etching rate and high linearity with respect to the integrated electric energy. That is, it can be seen that, as the sputtering target, the relative density is 90% or more, and when the variation exceeds the range of at least ± 2%, the difference in the etching rate becomes large.
[0031]
【The invention's effect】
As described above, according to the present invention, a large-sized and high-quality ITO sputtering target of 800 cm 2 or more can be provided, and the cost, particularly the initial cost, can be suppressed by the method of the present invention. It becomes possible to stably produce a quality ITO sputtering target, and the large sputtering target can be used to industrially produce an ITO film for a large liquid crystal display.
[Brief description of the drawings]
FIG. 1 is a process diagram illustrating a method for producing a target of the present invention.
FIG. 2 is a side sectional view of a sintered electric furnace used in the present invention.
FIG. 3 is a plan sectional view taken along line III-III in FIG. 2;
FIG. 4 is a plan sectional view corresponding to FIG. 3 of a sintered electric furnace according to another embodiment.
FIG. 5 is an external view showing the state of surface blackening during sputtering of an ITO sputtering target made of sintered bodies having different densities.
FIG. 6 is a chart showing the relationship between the accumulated power amount and the weight loss during sputtering for ITO sputtering targets made of sintered bodies having different densities.
[Explanation of symbols]
A Sintered electric furnace a Molded body 1 Lower furnace body 2 Upper furnace body 3 Lower heater 4 Upper heater 5 Fusion preventing material 6 Alumina fiber board 7 Staple 8 Bus bar 9 Gas inlet 10 Gas outlet 11 Thermocouple 12 Lower base with legs Plate 13 Upper base plate with legs b, c, d, e Target piece

Claims (2)

In23とSnO2からなり、SnO2の含有量が2〜20重量%、比表面積が15m2/g以上の混合粉を造粒し、得られた造粒粉を等方圧プレスにより加圧成形し、得られた板状成形体を、該板状成形体より大きい範囲に発熱部域を有するヒータを上下に配置し下部にガス導入口、上部にガス導出口を設けた焼結電気炉内に前記板状成形体の平面部が前記ヒータに対して平行になるように保持し、炉外からのガス導入により炉内雰囲気を制御して1450〜1550℃で焼結し、得られた平面積が800cm 2 以上の焼結体を研削加工した後、バッキングプレートに接合することを特徴とするITOスパッタリングターゲットの製造方法。Consists In 2 O 3 and SnO 2, SnO 2 content is 2-20 wt%, a specific surface area granulated 15 m 2 / g or more mixed powder, the equal Ho圧pressing the resulting granulated powder Sintering the plate-shaped body obtained by pressure molding and arranging the heaters with the heat generating area above and below the plate-shaped body, with the gas inlet at the bottom and the gas outlet at the top The flat portion of the plate-shaped molded body is held in an electric furnace so as to be parallel to the heater , and the atmosphere in the furnace is controlled by introducing gas from outside the furnace to be sintered at 1450 to 1550 ° C. A method for producing an ITO sputtering target, comprising grinding a sintered body having a plane area of 800 cm 2 or more and then bonding the sintered body to a backing plate. 前記板状成形体は相対密度が45%以上であることを特徴とする請求項1記載のITOスパッタリングターゲットの製造方法。2. The method of manufacturing an ITO sputtering target according to claim 1, wherein the plate-like molded body has a relative density of 45% or more.
JP31074998A 1998-10-30 1998-10-30 Manufacturing method of ITO sputtering target Expired - Fee Related JP4227227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31074998A JP4227227B2 (en) 1998-10-30 1998-10-30 Manufacturing method of ITO sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31074998A JP4227227B2 (en) 1998-10-30 1998-10-30 Manufacturing method of ITO sputtering target

Publications (2)

Publication Number Publication Date
JP2000144393A JP2000144393A (en) 2000-05-26
JP4227227B2 true JP4227227B2 (en) 2009-02-18

Family

ID=18009030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31074998A Expired - Fee Related JP4227227B2 (en) 1998-10-30 1998-10-30 Manufacturing method of ITO sputtering target

Country Status (1)

Country Link
JP (1) JP4227227B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047562A (en) * 2000-07-28 2002-02-15 Sumitomo Metal Mining Co Ltd Method for manufacturing ito target
JP2002294439A (en) * 2001-01-23 2002-10-09 Tosoh Corp Sputtering target and manufacturing method
JP2002322560A (en) * 2001-04-24 2002-11-08 Mitsui Mining & Smelting Co Ltd Sputtering target and manufacturing method thereof
US7799312B2 (en) * 2002-03-22 2010-09-21 Samsung Corning Precision Glass Co., Ltd. Method for manufacturing high-density indium tin oxide target, methods for preparing tin oxide powder and indium oxide powder used therefor
KR100505536B1 (en) 2002-03-27 2005-08-04 스미토모 긴조쿠 고잔 가부시키가이샤 Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescence device
JP4311051B2 (en) * 2003-03-19 2009-08-12 東レ株式会社 Hollow fiber membrane module manufacturing method and hollow fiber membrane module manufacturing apparatus used therefor
JP4706268B2 (en) * 2005-01-25 2011-06-22 東ソー株式会社 ITO granulated powder, ITO sintered body and method for producing the same
JP4734936B2 (en) * 2005-01-25 2011-07-27 東ソー株式会社 ITO granulated powder, ITO sintered body and method for producing the same
TWI385139B (en) * 2005-02-01 2013-02-11 Tosoh Corp A sintered body, a sputtering target and a forming die, and a sintered body manufacturing method using the same
JP2007113051A (en) * 2005-10-19 2007-05-10 Mitsui Mining & Smelting Co Ltd Manufacturing method of target material for sputtering target, and box used therefor
KR101446614B1 (en) 2006-08-08 2014-10-06 코닝정밀소재 주식회사 ITO granular power and cylindrical molded-object of ITO target having the same
KR101673976B1 (en) 2015-03-06 2016-11-08 (주)씨이케이 Method for manufacturing alumina plate using CIP complex mold
JP5887625B1 (en) * 2015-03-27 2016-03-16 Jx金属株式会社 Cylindrical sputtering target, cylindrical sintered body, cylindrical molded body, and manufacturing method thereof
JP6397869B2 (en) * 2016-03-28 2018-09-26 Jx金属株式会社 Cylindrical sputtering target and manufacturing method thereof
CN108923018A (en) * 2018-06-12 2018-11-30 沈志刚 A kind of method improving battery pole piece compacted density and gained battery pole piece and battery
DE102018129162A1 (en) * 2018-11-20 2020-05-20 Samson Aktiengesellschaft Process for producing a component from metal or materials from technical ceramics
CN113372123A (en) * 2021-05-26 2021-09-10 芜湖映日科技股份有限公司 Pad sintering method for improving utilization rate of ITO (indium tin oxide) planar target
CN115893989A (en) * 2022-12-29 2023-04-04 芜湖映日科技股份有限公司 Process method for refining ITO target material micro grain structure and enhancing mechanical strength

Also Published As

Publication number Publication date
JP2000144393A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
JP4227227B2 (en) Manufacturing method of ITO sputtering target
JP5205696B2 (en) Gallium oxide based sintered body and method for producing the same
TWI645059B (en) Indium oxide-zinc oxide (IZO) sputtered palladium and manufacturing method thereof
JP4894293B2 (en) Conductive ceramic sintered body, sputtering target, and manufacturing method thereof
JP5887819B2 (en) Zinc oxide sintered body, sputtering target comprising the same, and zinc oxide thin film
JP2013507526A (en) Tin oxide ceramic sputtering target and method for producing the same
JP2013533391A (en) Method for producing high-density indium tin oxide (ITO) sputtering target
JP2012126587A (en) Oxide sintered body for cylindrical sputtering target and method for producing the same
JP3470633B2 (en) Deposition material containing MgO as a main component and method for producing the same
JP3780932B2 (en) Sintered target for producing transparent conductive thin film and method for producing the same
JPH10291854A (en) Polycrystalline mgo vapor depositing material and its production
JP5218032B2 (en) Method for producing sintered body for transparent conductive film
JPH10297955A (en) Material having evaporated magnesium oxide layer and its production
JP2020164930A (en) Ito sputtering target, method for manufacturing the same, ito transparent conductive film and method for manufacturing the same
JP5428872B2 (en) Method for producing ZnO vapor deposition material
JP3494205B2 (en) Target material containing MgO as a main component and method for producing the same
JP6343695B2 (en) Indium oxide-zinc oxide (IZO) sputtering target and method for producing the same
JP4835542B2 (en) Method for producing conductive ceramic sintered body
JP5169969B2 (en) Method for producing sintered body for transparent conductive film
JP4835541B2 (en) Manufacturing method of sintered ceramics
JPH09228036A (en) Production of target for ito sputtering
JPH10237636A (en) Target essentially consisting of mgo and its production
JP2003119560A (en) Sputtering target
JP5428873B2 (en) Method for producing ZnO vapor deposition material
JP5685810B2 (en) Raw material powder for sintered body for transparent conductive film

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees