JP4706268B2 - ITO granulated powder, ITO sintered body and method for producing the same - Google Patents

ITO granulated powder, ITO sintered body and method for producing the same Download PDF

Info

Publication number
JP4706268B2
JP4706268B2 JP2005017501A JP2005017501A JP4706268B2 JP 4706268 B2 JP4706268 B2 JP 4706268B2 JP 2005017501 A JP2005017501 A JP 2005017501A JP 2005017501 A JP2005017501 A JP 2005017501A JP 4706268 B2 JP4706268 B2 JP 4706268B2
Authority
JP
Japan
Prior art keywords
powder
ito
granulation
granulated
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005017501A
Other languages
Japanese (ja)
Other versions
JP2006206350A (en
Inventor
雅実 召田
貴裕 川畑
仁志 飯草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2005017501A priority Critical patent/JP4706268B2/en
Publication of JP2006206350A publication Critical patent/JP2006206350A/en
Application granted granted Critical
Publication of JP4706268B2 publication Critical patent/JP4706268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glanulating (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、液晶ディスプレイ等のITO透明導電膜を得るために用いられている高密度ITOターゲットの製造に用いられるITO造粒粉末及びITO焼結体並びにそれらの製造方法に関するものである。   The present invention relates to an ITO granulated powder and an ITO sintered body used for producing a high-density ITO target used for obtaining an ITO transparent conductive film such as a liquid crystal display, and a method for producing them.

ITO(Indium Tin Oxide)薄膜は高伝導性、高透過率といった特徴を有し、更に微細加工も容易に行える事から、フラットパネルディスプレイ用表示電極、太陽電池用窓材、帯電防止用膜等の広範囲な分野に渡って用いられている。特に液晶表示装置を初めとしてフラットパネルディスプレイ分野では、近年大型化および高精細化が進んでおり、その表示用電極であるITO薄膜に対する需要も又急速に高まっている。   ITO (Indium Tin Oxide) thin film has characteristics such as high conductivity and high transmittance, and since it can be easily processed finely, such as display electrodes for flat panel displays, window materials for solar cells, antistatic films, etc. It is used in a wide range of fields. In particular, in the flat panel display field such as a liquid crystal display device, in recent years, the size and resolution have been increased, and the demand for an ITO thin film serving as a display electrode is also rapidly increasing.

このようなITO薄膜の製造方法はスプレー熱分解法、CVD法などの化学的成膜法と、電子ビーム蒸着法、スパッタリング法等の物理的成膜法に大別する事ができる。中でもスパッタリング法は薄膜の大面積化が容易でかつ高性能の膜が得られる成膜法である事から様々な分野で利用されている。   Such ITO thin film production methods can be broadly divided into chemical film formation methods such as spray pyrolysis and CVD, and physical film formation methods such as electron beam evaporation and sputtering. Among these, the sputtering method is used in various fields because it is a film forming method that can easily increase the area of a thin film and obtain a high-performance film.

スパッタリング法ではスパッタリングの進行に伴い、ターゲット表面にノジュールが発生し、このノジュールに起因するスパーク等により均一な膜が安定して得られないという事態が発生する事がよく知られている。この問題を解決する手段として高密度ターゲットを用いる事が多い。ここで言う高密度ターゲットとは相対密度にして98%以上の密度のターゲットを指す。   It is well known that in the sputtering method, nodules are generated on the surface of the target as the sputtering proceeds, and a uniform film cannot be stably obtained due to sparks or the like caused by the nodules. As a means for solving this problem, a high-density target is often used. The high-density target here refers to a target having a relative density of 98% or more.

相対密度とは実際の密度を、その物質の真密度で除する事で計算する数値であり、ITOを例に挙げればITOの真密度は7.156g/cmである。例えば相対密度98%とはITOの場合7.013g/cmに相当する。 The relative density is a numerical value calculated by dividing the actual density by the true density of the substance. Taking ITO as an example, the true density of ITO is 7.156 g / cm 3 . For example, the relative density of 98% corresponds to 7.013 g / cm 3 in the case of ITO.

一般的にITOターゲットに用いる造粒粉末は以下の方法にて作製されていることが多い。   Generally, the granulated powder used for the ITO target is often produced by the following method.

1つは酸化インジウム粉末と酸化スズ粉末と水とバインダーを混合し、スラリーを作成し、得られたスラリーをスプレードライヤー装置に供給して噴霧乾燥する事で造粒粉末を得る方法がある(例えば特許文献1参照)。   One is a method of obtaining a granulated powder by mixing an indium oxide powder, a tin oxide powder, water and a binder, preparing a slurry, supplying the obtained slurry to a spray dryer apparatus and spray drying (for example, Patent Document 1).

また、もう1つには、酸化インジウム粉末と酸化スズ粉末を混合し、水やバインダーを加えながら撹拌造粒する方法もある(例えば特許文献2参照)。   In another method, indium oxide powder and tin oxide powder are mixed and stirred and granulated while adding water or a binder (see, for example, Patent Document 2).

これらの造粒粉末を用いて、例えばプレス法などで成形体を作製し、得られた成形体を焼結する事で焼結体を得、必要に応じて整形・研磨等を施し、必要に応じて例えば無酸素銅等からなるバッキングプレートに貼り付けることによりターゲットを製造している。   Using these granulated powders, for example, a molded body is produced by a press method or the like, and a sintered body is obtained by sintering the obtained molded body, and shaping, polishing, etc. are performed as necessary. Accordingly, the target is manufactured by sticking to a backing plate made of, for example, oxygen-free copper.

スプレードライ法の場合、工程としては、造粒前の酸化インジウムと酸化スズ原料粉末を有機バインダーや水を添加した状態でスラリー化する工程、スラリーをスプレードライ法にて乾燥する工程がある。この製法の場合、工程が2つあり、さらにスラリー化する際の条件やスプレードライにおける乾燥条件など、造粒における変動要因が多く工程管理が難しく煩雑である。収率に関しても、回収できない微細な粒子や装置への粉末の壁付着があり、収率としては80〜85%と低く、工数や、収率の概念から製造の経済性が悪い。   In the case of the spray drying method, the steps include a step of slurrying indium oxide and tin oxide raw material powder before granulation in a state where an organic binder and water are added, and a step of drying the slurry by a spray drying method. In this production method, there are two steps, and there are many fluctuation factors in granulation, such as the conditions for slurrying and the drying conditions in spray drying, making the process control difficult and cumbersome. As for the yield, there are fine particles that cannot be collected and powder wall adhering to the apparatus. The yield is as low as 80 to 85%, and the economical efficiency of the production is poor due to the concept of man-hours and yield.

撹拌造粒法の場合、工程としては、酸化インジウムと酸化スズを水又はバインダーを添加しながら撹拌混合造粒する工程、ならびに造粒粉末の乾燥工程がある。この製法の場合、撹拌造粒工程では、微粒の舞いあがり、造粒時の造粒装置への粉末付着により収率が70%程度となり、ターゲット製造における製造コストを引き上げる結果となる。そして、水分を添加する際にスラリー濃度や水分の添加量により造粒特性に大きな違いが生じ常に均一の造粒粒子を作製する事は困難である。よって、工数や、収率の概念から製造の経済性が悪い。   In the case of the stirring granulation method, the steps include a step of mixing and granulating indium oxide and tin oxide while adding water or a binder, and a step of drying the granulated powder. In the case of this production method, in the agitation granulation step, the fine particles fly up and the yield is about 70% due to the powder adhering to the granulator during granulation, resulting in an increase in production cost in target production. And when adding water, a big difference is produced in the granulation characteristics depending on the slurry concentration and the amount of water added, and it is difficult to always produce uniform granulated particles. Therefore, the economy of manufacture is bad from the concept of man-hours and yield.

また、酸化インジウムと酸化スズ粉末を圧密混合した、造粒処理を行わない粉末を用いた場合、焼結体の密度は相対密度にて99%以上と高いが、軽装嵩密度が1.3g/cm程度とスプレードライ造粒の軽装嵩密度1.6g/cmと比較して低く、また粉末の流動性も安息角として40度以上となり、流動性に乏しい。また、プレス作業を行う際に、流動性が悪く軽装嵩密度が低い事から、粉末の均一充填が難しくなる。さらに、軽装嵩密度が低い事から加圧成形時に収縮量が造粒粉末を用いた場合と比較して大きく、成形又は焼結時にクラックを生じやすい。 In addition, when using a powder in which indium oxide and tin oxide powder are intimately mixed and not granulated, the density of the sintered body is as high as 99% or more in relative density, but the light bulk density is 1.3 g / About 3 cm 3 , which is lower than the light dry bulk density of spray dry granulation 1.6 g / cm 3, and the fluidity of the powder is 40 degrees or more as the angle of repose, and the fluidity is poor. Moreover, when performing a press operation, since fluidity | liquidity is bad and lightly loaded bulk density is low, uniform filling of powder becomes difficult. Furthermore, since the light bulk density is low, the amount of shrinkage at the time of pressure molding is larger than when granulated powder is used, and cracks are likely to occur during molding or sintering.

特開2004−277836号公報JP 2004-277836 A 特開平4−293707号公報JP-A-4-293707

本発明の目的は、従来のターゲット用焼結体の粉末造粒方法である、スプレードライ造粒や撹拌造粒よりも経済的な工程で、圧密混合粉末と比較して軽装嵩密度および流動性を向上させることで加圧成形時の効率を向上した上で、ターゲット用焼結体の焼結体密度を圧密混合粉末と比較して、維持あるいは向上させることができる粉末を得ること、その粉末を用いて高密度の焼結体を安定して得ることであり、さらに、それらの製造方法を確立することにある。   The object of the present invention is a conventional powder granulation method of a sintered body for a target, which is more economical than spray-dry granulation and stirring granulation, and has a light bulk density and fluidity compared to a compacted mixed powder. To improve the efficiency at the time of pressure molding by improving the powder, and to obtain a powder that can maintain or improve the sintered body density of the sintered compact for the target compared to the compacted mixed powder, the powder It is to stably obtain a high-density sintered body by using and to establish a production method thereof.

本発明者等は焼結性と軽装嵩密度の向上及び流動性の向上ついて鋭意検討を重ねた結果、転動造粒にて造粒を行う事で、スプレードライ造粒よりも簡便で少ない工程にて粉末の軽装嵩密度及び流動性を圧密混合粉末よりも向上させ、さらに粉末を凝集させること無く、焼結体密度を圧密混合粉末を用いた際と同様、あるいはさらに向上させる事ができる事を見出した。   As a result of intensive investigations on the improvement of sinterability, light bulk density and fluidity, the present inventors have conducted granulation by rolling granulation, which is simpler and less process than spray-dry granulation. It is possible to improve the light bulk density and fluidity of the powder in comparison with the compacted mixed powder, and further to improve the sintered body density in the same manner as when the compacted mixed powder is used or without further aggregation. I found.

すなわち、本発明のITO造粒粉末の製造方法は、酸化インジウムと酸化スズを含む原料粉末を転動造粒にて造粒することを特徴とするITO造粒粉末の製造方法である。この酸化インジウムと酸化スズを含む原料粉末は水やバインダを含んでいても良いが、原料粉末中のバインダの含有量は5wt%以下であることが好ましく、原料粉末中の水含有量は5wt%以下であることが好ましい。   That is, the method for producing ITO granulated powder of the present invention is a method for producing ITO granulated powder, characterized in that raw material powder containing indium oxide and tin oxide is granulated by rolling granulation. The raw material powder containing indium oxide and tin oxide may contain water or a binder, but the binder content in the raw material powder is preferably 5 wt% or less, and the water content in the raw material powder is 5 wt%. The following is preferable.

また、本発明のITO造粒粉末は上記の製造方法により製造されたことを特徴とするITO造粒粉末である。さらに、本発明のITO焼結体の製造方法は、上記のITO造粒粉末を加圧成形した後に焼結することを特徴とするITO焼結体の製造方法であり、本発明のITO焼結体は、上記の製造方法により製造されたことを特徴とするITO焼結体である。   The ITO granulated powder of the present invention is an ITO granulated powder produced by the above production method. Furthermore, the manufacturing method of the ITO sintered body of the present invention is a manufacturing method of an ITO sintered body characterized in that the ITO granulated powder is sintered after being pressure-molded, and the ITO sintered body of the present invention is sintered. The body is an ITO sintered body manufactured by the above manufacturing method.

なお、本発明における酸化インジウムと酸化スズを含む原料粉末は、転動造粒により造粒することができるものであれば、酸化インジウム粉末と酸化スズ粉末との混合粉末、酸化インジウムと酸化スズの共沈粉末、原料粉末の焼成あるいは成形焼結後に再粉砕して粉末としたもの等を用いることができ、また、必要に応じて、インジウム、スズ以外の金属元素の化合物を添加したものであっても良い。酸化インジウムと酸化スズの含有率は要求される特性に応じて適宜定めれば良いが、例えば、酸化インジウム粉末と酸化スズ粉末との重量比で95:5から80:20程度のものを用いることができる。   In addition, the raw material powder containing indium oxide and tin oxide in the present invention may be a mixed powder of indium oxide powder and tin oxide powder, indium oxide and tin oxide, as long as it can be granulated by rolling granulation. Co-precipitated powder, raw powder or re-pulverized powder after sintering, etc. can be used, and if necessary, a metal element compound other than indium and tin is added. May be. The content ratio of indium oxide and tin oxide may be appropriately determined according to required characteristics. For example, the weight ratio of indium oxide powder and tin oxide powder is about 95: 5 to 80:20. Can do.

さらに、本発明のITO造粒粉末の製造方法においては、転動造粒を行う前に、原料粉末に対して、ボールミル等による圧密処理又は圧密混合を施すことにより、その軽装嵩密度を増大させておくことが好ましい。また、原料粉末、又は、圧密処理若しくは圧密混合を施した粉末から、粗粒成分を除去することにより、得られる造粒粉末の流動性や収率を向上することができるため、これらの粉末の粒度分布を調整しておくことが好ましい。この粒度分布の調整は、例えば、篩で篩うことで行うことができる。篩としては500μmの篩が好ましく、300μmの篩がさらに好ましい。   Furthermore, in the production method of the ITO granulated powder of the present invention, before rolling rolling granulation, the raw powder is subjected to consolidation treatment or consolidation by ball mill or the like to increase the light bulk density. It is preferable to keep it. In addition, by removing the coarse components from the raw material powder, or the powder that has been subjected to consolidation treatment or consolidation, the fluidity and yield of the resulting granulated powder can be improved. It is preferable to adjust the particle size distribution. The adjustment of the particle size distribution can be performed, for example, by sieving with a sieve. As the sieve, a 500 μm sieve is preferable, and a 300 μm sieve is more preferable.

また、この原料粉末は造粒を容易にするために、水や有機物等からなるバインダを含んでいても良いが、原料粉末中の水やバインダの含有量は5wt%以下であることが好ましい。特に、酸化インジウムと酸化スズを含む原料粉末が水以外の有機物等からなるバインダを含まず、かつ、水の含有量が5wt%以下であることが好ましい。   Further, in order to facilitate granulation, this raw material powder may contain a binder made of water, organic matter, or the like, but the content of water or binder in the raw material powder is preferably 5 wt% or less. In particular, it is preferable that the raw material powder containing indium oxide and tin oxide does not contain a binder made of an organic substance other than water and the water content is 5 wt% or less.

本発明のITO造粒粉末の製造方法により、原料粉末が有する焼結性を損なうことなく、平均粒径が50μmから300μmの、流動性が良くかつ軽装嵩密度の大きいITO造粒粉末を、高収率で得ることができる。なお、本発明のITO造粒粉末の製造方法では、原料粉末の変動等に起因する軽装嵩密度の変動を抑制することもできる。   By the ITO granulated powder production method of the present invention, an ITO granulated powder having an average particle size of 50 μm to 300 μm with good fluidity and a large light bulk density is obtained without impairing the sinterability of the raw material powder. The yield can be obtained. In addition, in the manufacturing method of ITO granulated powder of this invention, the fluctuation | variation of the light-packed bulk density resulting from the fluctuation | variation of raw material powder etc. can also be suppressed.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は転動造粒法を用いる事で、スプレードライ造粒や撹拌造粒よりも経済的な工程で、圧密混合粉末と比較して軽装嵩密度および流動性を向上させることで加圧成形時の効率を向上した上で、ターゲット焼結体の焼結体密度を圧密混合粉末と比較して、密度を維持あるいは向上する粉末及びその粉末を用いて焼結した焼結体およびそれらの製造方法を提供するものである。   The present invention uses a rolling granulation method, is a more economical process than spray-dry granulation and agitation granulation, and is compacted by improving light bulk density and fluidity compared to compacted mixed powder. In addition to improving the efficiency of the time, the sintered compact density of the target sintered compact is compared with the compacted mixed powder, and the powder that maintains or improves the density, and the sintered compact sintered using the powder, and their production A method is provided.

通常の転動造粒とはドラムやパン型容器内に粉末充填後、水分またはバインダを5%以上添加し、容器自体を回転させる事で、水分、バインダの凝集力、粉末の自重および付着力により粉末を造粒する技術である。しかし、この造粒方法では造粒粒子が1mm以上に大きくなり、また水、又はバインダの凝集力により原料粉末が凝集する事で、粉末の焼結性が低下する。さらにこの粉末により成形、焼結を行う場合、造粒時には水分の添加量の調整が困難であり、成形・焼結性に関して常に同等の粉末を調製する事が難しい。また、成形前には乾燥工程、さらに焼結時には脱脂工程が必要となり、工数が増え、複雑となり、また工程管理も難しくなる。   In normal rolling granulation, after filling powder in a drum or bread container, add 5% or more of moisture or binder, and rotate the container itself, moisture, binder cohesive force, powder self-weight and adhesion force This is a technology for granulating powder. However, in this granulation method, the granulated particles are increased to 1 mm or more, and the raw material powder is agglomerated by the cohesive force of water or the binder, so that the sinterability of the powder is lowered. Further, when molding and sintering with this powder, it is difficult to adjust the amount of water added during granulation, and it is difficult to always prepare an equivalent powder with respect to molding and sintering properties. In addition, a drying step is required before molding, and a degreasing step is required at the time of sintering, which increases the number of steps and complexity, and makes process management difficult.

そこで本発明の造粒方法では、水分やバインダを過剰に添加せずに転動造粒を行う事で、粉末の自重、付着力を基本的な造粒作用とすることにより粉末を造粒している。すなわち、本発明の造粒方法は、容器に粉末を充填し、容器を回転させる事で造粒するものである。工程の数としても造粒を行う1工程のみである。さらにこの工程も簡便な造粒方法であり、単純な造粒機構であるのでさらに工程管理も簡便である。そして、この造粒方法では粉末を流動させるだけなので、造粒粉末の収率も90%以上と他の造粒方法よりも高い。よって、経済性や作業性を鑑みて他の造粒方法と比較して優れている。   Therefore, in the granulation method of the present invention, by performing rolling granulation without adding excessive moisture and binder, the powder is granulated by making the powder's own weight and adhesive force a basic granulation action. ing. That is, the granulation method of the present invention is to granulate by filling powder in a container and rotating the container. The number of steps is only one step for granulation. Furthermore, this process is also a simple granulation method, and since it is a simple granulation mechanism, process management is further simple. And in this granulation method, since the powder is only flowed, the yield of the granulated powder is 90% or higher, which is higher than other granulation methods. Therefore, it is superior to other granulation methods in view of economy and workability.

この製法の造粒機構は粉末を回転の力を用いて流動させる事で、粉末の自重により、まず粉末の表面をなだらかにすることで整粒を行う。そして、更に粉末流動させる事で粉末同士の衝突により粉末粒子が軽い凝集、粒成長を起こすことで造粒が起きていると考えられる。   The granulation mechanism of this manufacturing method allows the powder to flow by using the rotational force, so that the powder surface is first smoothed by the weight of the powder, thereby regulating the size. Further, it is considered that granulation is caused by causing powder particles to lightly agglomerate and grow due to collision between powders by further flowing the powder.

この方法を用いる事で、水分添加量が少ない事から、粉末の凝集を抑える事が可能であり、粉末の凝集を抑えている事から、造粒時の粉末凝集に起因する焼結体密度の低下もない。更に言えば、造粒の程度を加減する事で、顆粒の凝集を弱めたまま流動性を向上させる事で成形時に粉末が流動、最密充填された後に粒子が潰れる事から、粒子がうまく潰れない事に起因する成形時のミクロンレベルのポアを軽減し、圧密混合粉末の焼結体と比較して焼結体密度を向上させる事もできる。   By using this method, it is possible to suppress the aggregation of powder because the amount of water added is small, and since the aggregation of powder is suppressed, the density of the sintered body due to the powder aggregation during granulation is reduced. There is no decline. Furthermore, by adjusting the degree of granulation, improving the fluidity while weakening the agglomeration of the granules allows the powder to flow at the time of molding. The pores at the micron level at the time of molding due to the absence of the powder can be reduced, and the density of the sintered body can be improved as compared with the sintered body of the compacted mixed powder.

製造工程に関して、この製法は粉末が自重により流動、付着する事で整粒および造粒する事を造粒する概念としておいているため、簡便な造粒装置にて行う事ができる。つまり、この造粒に関しては、粉末を造粒装置に投入し、回転などによる自重による粉末流動を促す工程のみにより造粒を行う。さらに、水分を過剰に添加していない事から、乾燥工程も必要無く、脱脂工程も必要としない。また、収率に関しても特に粉末に力を与えていない事から、外壁にも粉末が付着しにくく、90%以上の高い収率となる。   With respect to the manufacturing process, this manufacturing method is based on the concept of granulating that the powder flows and adheres by its own weight, so that it can be performed with a simple granulator. That is, regarding this granulation, the powder is put into a granulator and granulation is performed only by the process of promoting powder flow by its own weight due to rotation or the like. In addition, since no moisture is added excessively, no drying process is required and no degreasing process is required. In addition, since the yield is not particularly applied to the powder, the powder hardly adheres to the outer wall, resulting in a high yield of 90% or more.

造粒前の原料粉末であるが、特に限定しないが、この転動造粒では撹拌、混合としての能力は低いので、各物質が均一混合されているものが望ましい。その粉末としては、圧密混合された粉末、あるいは原料粉末を焼結あるいは成形焼結後に粉砕した粉末等が挙げられる。それは、この転動造粒法は付着力及び自重により造粒されるので、初期の粉末の状態により造粒後の状態がある程度決まってくる。圧密混合された粉末を用いた場合、圧密混合により粉末が圧縮、粉末表面が活性化することでより造粒されやすくなる状態になる。   Although it is a raw material powder before granulation, it is not particularly limited, but in this rolling granulation, the ability to stir and mix is low, so it is desirable that each substance is uniformly mixed. Examples of the powder include a powder that is compacted and mixed, or a powder obtained by sintering a raw material powder after sintering or molding and sintering. This is because the rolling granulation method is granulated by adhesion force and its own weight, and the state after granulation is determined to some extent by the initial powder state. In the case of using the compacted powder, the powder is compressed by the compaction and the powder surface is activated so that the powder is more easily granulated.

また、原料粉末の粒子径であるが、自重と付着力により造粒されることから、大きな粒子ほどより凝集した粒子を造粒する。つまり、あまり大きな粒子(例えば1mm以上)が多いと粉末の凝集力が大きくなり、硬い造粒粒子となってしまう可能性がある。また、大きな粒子が多いと粒子の自重などで容器壁への付着も多くなり造粒粉末の収率も低下する。よって造粒前に原料粉末の粉末粒径を制御する事が望ましい。粉末の粒径を制御する方法は特に限定しないが、粒度調整する手段としては、篩にかける、原料合成時に粉末粒径を制御するなどの手法が考えられる。他の方法として、造粒前に粒度調整を行わずに一度造粒した粉末を粒度調整する事もできる。しかしこの場合、篩われた大きな粒子は先に述べたように強い凝集を持っている可能性があり、この造粒粒子を再利用する事が難しい。また、大きい粒子の方がより大きな造粒粒子を生みやすいため、造粒後に篩にかけると造粒前に篩にかけるよりも、篩の収率が低下する。よって凝集する前の粉末を篩にかける事で篩われた粒子を再利用しやすくするという面もある。具体的には、原料粉末の平均粒径を50〜200μmに調整することが好ましい。また、篩により500μm以上の粗大な粒子を除くだけでも、収率を、粒度調整を行わない場合の90%から、95%以上に向上させることができ、また焼結性の向上にも効果がある。   Moreover, although it is the particle diameter of raw material powder, since it granulates by self-weight and adhesive force, the larger particle | grains are granulated more aggregated particle | grains. In other words, if there are too many large particles (for example, 1 mm or more), the cohesive force of the powder increases, and there is a possibility that the particles become hard granulated particles. In addition, when there are many large particles, adhesion to the container wall increases due to the weight of the particles, and the yield of the granulated powder decreases. Therefore, it is desirable to control the powder particle size of the raw material powder before granulation. The method for controlling the particle size of the powder is not particularly limited, but as means for adjusting the particle size, methods such as sieving and controlling the particle size of the powder during raw material synthesis are conceivable. As another method, it is possible to adjust the particle size of a granulated powder without adjusting the particle size before granulation. However, in this case, the sieved large particles may have strong aggregation as described above, and it is difficult to reuse the granulated particles. In addition, since larger particles are likely to produce larger granulated particles, the yield of the sieve is lowered when it is sieved after granulation than when it is sieved before granulation. Therefore, there is also an aspect of making it easy to reuse the sieved particles by passing the powder before aggregation through a sieve. Specifically, it is preferable to adjust the average particle diameter of the raw material powder to 50 to 200 μm. Moreover, the yield can be improved from 90% without adjusting the particle size to 95% or more simply by removing coarse particles of 500 μm or more with a sieve, and it is also effective in improving sinterability. is there.

造粒する装置の形状は転動造粒ができる装置であれば特に限定はしない。例えばプラスチック容器のようなものを回転架台にて回転する事で造粒してもかまわない。できれば容器への遺物の混入、粉末の舞いあがりが少ない事、また造粒の処理量を考えると密閉型の容器を用いた造粒が望ましく、ドラム型の転動造粒機を用いる事が望ましい。ここで言うドラム型転動造粒機とは密閉された円筒形容器を円周方向に回転する事で容器内の粉末を流動させる事で造粒する装置である。かといって、あらゆる方向にこの装置が回転しても特に問題とはならない。   The shape of the granulating apparatus is not particularly limited as long as it is an apparatus capable of rolling granulation. For example, it may be granulated by rotating a plastic container or the like on a rotating mount. If possible, it is preferable to mix relics in the container and the powder does not rise, and considering the amount of granulation, granulation using a sealed container is desirable, and it is desirable to use a drum-type rolling granulator. The drum-type rolling granulator mentioned here is an apparatus for granulating by rotating powder in a container by rotating a sealed cylindrical container in the circumferential direction. However, it does not matter if the device rotates in any direction.

造粒方法では造粒容器内に少量であるが、粉末が付着する事から、収率の低下および壁に付着した粉末のかけらが混入し、流動性や焼結性を阻害する可能性がある。これに対する対策として、造粒容器に外部より衝撃を与える機構がある事が望ましい。容器に衝撃を与える機構を設置し、容器に衝撃又は振動を与える事で容器外周に付着した粉末を早い段階で剥離させて造粒の促進、収率の増加を促す。   In the granulation method, the amount is small in the granulation container, but since the powder adheres, the yield is reduced and the fragments of the powder adhering to the wall may be mixed, which may hinder fluidity and sinterability. . As a countermeasure against this, it is desirable that there is a mechanism for giving an impact to the granulation container from the outside. A mechanism that gives impact to the container is installed, and by applying impact or vibration to the container, the powder adhering to the outer periphery of the container is peeled off at an early stage to promote granulation and increase the yield.

造粒する容器の材質については、特に限定しないが容器からのコンタミを防止するものであり、また、造粒時に容器の壁に粉末が付着しにくい材質を用いる事が望ましい。   The material of the container to be granulated is not particularly limited, but it is intended to prevent contamination from the container, and it is desirable to use a material that does not easily adhere powder to the wall of the container during granulation.

実際の転動造粒する条件としては容器の容量、粉末の投入量、容器の回転速度、転動造粒時間が挙げられる。   The actual rolling granulation conditions include the capacity of the container, the amount of powder input, the rotational speed of the container, and the rolling granulation time.

容器への投入量に関してはとくに限定はしないが、投入量が少なすぎると投入量が少ない事と投入量に対する容器付着量が増加し造粒粉末の収率が低下する。また、投入量が多すぎれば粉末流動がうまく行かないことと、粉末の自重などにより凝集性の強い造粒粉末が調製される。   Although there is no particular limitation on the amount charged into the container, if the amount is too small, the amount is small and the amount of container adhering to the amount is increased and the yield of the granulated powder is lowered. In addition, if the input amount is too large, granulated powder having strong cohesiveness is prepared due to poor powder flow and the self-weight of the powder.

容器の回転速度はあまり速い速度、例えば周速で1.5m/s以上の速度にて容器が回転すると粉末の凝集が強くなり焼結して得られる焼結体の密度が低下する。   When the container rotates at a very high speed, for example, at a peripheral speed of 1.5 m / s or more, the aggregation of the powder becomes strong and the density of the sintered body obtained by sintering decreases.

原料粉末への水やバインダの添加量は、なるべく少ない方が望ましい。水分を多く添加してしまうと、例えば5wt%より多く添加すると造粒される粒子の凝集度が大きくなり、また、造粒粒子の粒径も大きくなる事から、成形時にクラックが入りやすく、焼結体の密度も造粒前と比較して低下する傾向にある。よって成形焼結用粉末としては不向きとなる。また、水やバインダを多く添加する事で成形前に乾燥工程が必要となり作業が煩雑になる。水分量が少ない方が造粒した粒子が成長せずに緩い凝集をする事で、軽装嵩密度および流動性の向上が望まれる。   The amount of water or binder added to the raw material powder is preferably as small as possible. If a large amount of moisture is added, for example, if it is added in an amount of more than 5 wt%, the degree of aggregation of the granulated particles increases, and the particle size of the granulated particles also increases. The density of the aggregate also tends to be lower than before granulation. Therefore, it is not suitable as a powder for forming and sintering. In addition, adding a large amount of water and binder requires a drying step before molding, which complicates work. When the moisture content is smaller, granulated particles do not grow and agglomerate loosely, so that improvement of light bulk density and fluidity is desired.

転動造粒時間はごく短時間より造粒前と比較して高い軽装嵩密度及び流動性を有する。例えば圧密混合粉末の場合、軽装嵩密度はある程度の時間以上、例えば60時間以上転動造粒を行うと軽装嵩密度および流動性は向上するが徐々に焼結特性が低下していく可能性がある。これは長時間造粒する事で、粒子の凝集が高くなりそのことで焼結性が損なわれている。例えばITO粉末の圧密混合粉末を造粒する場合、軽装嵩密度は1.4から2.0g/cm程度が望ましい。軽装嵩密度が1.4g/cm未満の場合、ほとんど造粒が行われておらず、流動性も改善されていないので造粒の効果が期待できない。また、軽装嵩密度が2.0g/cm以上の場合は、粒子の凝集が大きく、焼結体の密度が低下する。流動性に関しても安息角が40°を超える場合、造粒の効果が薄く、成形性、作業性に効果が現れないので、安息角は40°以下が望ましい。 The rolling granulation time has a high light bulk density and fluidity compared to before the granulation from a very short time. For example, in the case of a compacted mixed powder, the light loading bulk density may be improved for a certain period of time or more, for example, 60 hours or more, and the light loading bulk density and fluidity may be improved, but the sintering characteristics may gradually deteriorate. is there. This is because granulation for a long time increases the aggregation of the particles, which impairs the sinterability. For example, when a compacted mixed powder of ITO powder is granulated, the light bulk density is desirably about 1.4 to 2.0 g / cm 3 . When the lightly loaded bulk density is less than 1.4 g / cm 3 , granulation is hardly performed and the fluidity is not improved, so that the granulation effect cannot be expected. Further, when the light bulk density is 2.0 g / cm 3 or more, the aggregation of particles is large and the density of the sintered body is lowered. Regarding the fluidity, when the angle of repose exceeds 40 °, the effect of granulation is thin, and the effect of moldability and workability does not appear. Therefore, the angle of repose is preferably 40 ° or less.

成形において、一般的に加圧成形が良く知られているが、加圧成形では、圧縮距離が短いほど加圧成形に向いているという事で軽装嵩密度は高いものが望ましい。また、仮に板状の成形体を作成する際は、なるべく粉末充填によるむらを軽減する必要がある。粉末充填にむらがある場合、成形体にクラックが入る、または焼結後の厚みにむらが生じるなどの問題が起こる。   In molding, pressure molding is generally well known. However, in pressure molding, it is desirable that the light-packed bulk density is high because it is suitable for pressure molding as the compression distance is shorter. Moreover, when producing a plate-shaped molded body, it is necessary to reduce unevenness due to powder filling as much as possible. If the powder filling is uneven, problems such as cracks in the molded body or unevenness in the thickness after sintering occur.

本発明の造粒粉末は圧密混合粉末と比較して高い軽装嵩密度及び流動性を持つ事から加圧時に圧縮距離が短くなる事から15mm以上の厚い成形体の作製時にもクラックが入りにくくなる。更に流動性も高い事から均一に粉末を充填する事ができ、成形体のクラック防止、焼結体における厚みむらの低減によりさらに生産性、経済性を向上する事ができる。   Since the granulated powder of the present invention has a high light bulk density and fluidity compared to a compacted mixed powder, the compression distance is shortened during pressurization, so that cracks are less likely to occur when a thick molded body of 15 mm or more is produced. . Furthermore, since the fluidity is high, the powder can be uniformly filled, and the productivity and economy can be further improved by preventing cracks in the molded body and reducing the thickness unevenness in the sintered body.

以上、転動造粒における様々な望ましい条件を挙げたが、これらは独立した因子であるので、各条件を組み合わせることでさらに優れたITO造粒粉末、すなわちITOターゲット焼結体用造粒粉末を製造する事が可能である。   As mentioned above, various desirable conditions in rolling granulation were mentioned, but since these are independent factors, ITO granulated powder further improved by combining each condition, that is, granulated powder for ITO target sintered body It is possible to manufacture.

造粒粉末の成形方法であるが、特に成形方法に限定されないが、粉末を造粒したところから、作製した粉末をそのまま成形する事が望ましい。更に言えば型などに充填、加圧成形する事が望ましい。加圧成形を用いる事で、より造粒した粉末の効果が現れる。ここで言う加圧成形とは、粉末を金型、容器などに充填し、金型、容器などに一軸或いは等方的に圧力をかける事で、一定の形状に成形する方法である。   Although it is a shaping | molding method of granulated powder, it is not limited to a shaping | molding method in particular, It is desirable to shape | mold the produced powder as it is from the place where the powder was granulated. Furthermore, it is desirable to fill a mold or the like and press-mold. By using pressure molding, the effect of more granulated powder appears. The pressure molding referred to here is a method in which powder is filled into a mold, a container, and the like, and the mold, the container, etc. are uniaxially or isotropically pressed to form a fixed shape.

焼結方法に関しても特に限定されないが、昇温プログラムおよび焼結温度は圧密混合粉末が高密度に焼結する条件にて行う事が望ましい。焼結時のガス雰囲気についても特に限定されないが、より高密度に焼結するためには酸素雰囲気中にて行う事が望ましい。   The sintering method is not particularly limited, however, it is desirable that the temperature raising program and the sintering temperature be performed under the condition that the compacted mixed powder is sintered at a high density. The gas atmosphere at the time of sintering is not particularly limited, but in order to sinter at higher density, it is desirable to carry out in an oxygen atmosphere.

本発明のITO造粒粉末、すなわち透明導電膜ターゲット用造粒粉末、及びその製造方法は以下の効果を有する。
1)本発明の方法は、他の造粒方法と比較して少なく簡便な製造工程で軽装嵩密度と流動性が向上したITO造粒粉末及びITO焼結体を得る事ができる。
2)本発明の造粒方法にて作製したITO造粒粉末は、軽装嵩密度と流動性が向上しており、より高密度のITO焼結体を安定性良く製造することができる。
3)本発明の方法は、他の造粒方法にて作製した粉末よりも、成形性の向上したITO造粒粉末を得ることができる。
4)本発明の造粒方法にて作製したITO造粒粉末は、粉末の均一充填性が向上しており、加圧成形時の作業性を向上させることができる。
The ITO granulated powder of the present invention, that is, the granulated powder for a transparent conductive film target, and the production method thereof have the following effects.
1) The method of the present invention can obtain an ITO granulated powder and an ITO sintered body with improved light bulk density and fluidity by a simpler manufacturing process that is less than other granulation methods.
2) The ITO granulated powder produced by the granulation method of the present invention has improved light bulk density and fluidity, and can produce a higher density ITO sintered body with good stability.
3) The method of the present invention can provide ITO granulated powder with improved moldability as compared with powders produced by other granulation methods.
4) The ITO granulated powder produced by the granulation method of the present invention has an improved powder uniform filling property, and can improve workability during pressure molding.

以下、本発明を実施例に基づき説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited only to these Examples.

実施例1
円筒形容器に酸化インジウム粉末と酸化スズ粉末を重量比で90:10の割合で投入した後、粉砕ボールを適量投入し回転する事で酸化インジウム粉末と酸化スズ粉末の圧密、混合、分散処理を行った。圧密混合処理後の粉末(以降この粉末を圧密混合粉末とする)の軽装嵩密度および安息角を求めたところ、軽装嵩密度は1.3g/cmであり、安息角は41度であった。
Example 1
After indium oxide powder and tin oxide powder are put into a cylindrical container at a weight ratio of 90:10, an appropriate amount of pulverized balls are put and rotated to perform compaction, mixing, and dispersion treatment of indium oxide powder and tin oxide powder. went. The powdered bulk density and angle of repose of the powder after the consolidation process (hereinafter, this powder is referred to as a compacted mixed powder) were determined. The bulked bulk density was 1.3 g / cm 3 and the angle of repose was 41 degrees. .

この圧密を行った混合粉末(圧密混合粉末)を、500μmの篩い網にて篩にかけることで500μm以上の粒子を除いた粉末を作製した。この粉末を、再び円筒形容器に投入し、回転架台にて周速0.5m/sで2時間円筒形容器を回転する事で転動造粒を行った。得られたITO造粒粉末の軽装嵩密度および安息角を求めたところ、軽装嵩密度は1.70g/cm、安息角は36度まで向上していた。また、得られたITO造粒粉末の平均粒径は150μmであった。さらに、得られたITO造粒粉末の重量は、原料として用いた圧密混合粉末の98%であった。 The mixed powder (consolidated mixed powder) subjected to this compaction was sieved with a 500 μm sieve mesh to produce a powder excluding particles of 500 μm or more. This powder was put into the cylindrical container again, and rolling granulation was performed by rotating the cylindrical container for 2 hours at a peripheral speed of 0.5 m / s on a rotating base. When the light-packed bulk density and repose angle of the obtained ITO granulated powder were determined, the light-packed bulk density was 1.70 g / cm 3 and the repose angle was improved to 36 degrees. Moreover, the average particle diameter of the obtained ITO granulated powder was 150 μm. Furthermore, the weight of the obtained ITO granulated powder was 98% of the compacted mixed powder used as a raw material.

得られたITO造粒粉末を300kgf/cmのプレス成形にて大きさ60mm角、厚さ約13mm、約18mmと約23mmの3種類の成形体を得た。該成形体を3t/cmにてCIP処理を行い、作製した成形体を雰囲気炉にて酸素雰囲気中1600℃で焼成を行う事でITO焼結体を得た。得られたITO焼結体の厚みは約10mm、約15mmおよび約19mmとなり、特に割れも見られず良好な焼結体を得た。各焼結体の密度は相対密度で厚み10mmのもので99.81%、15mmのものでは99.75%、19mmのものでは99.58%となった。 The obtained ITO granulated powder was press-molded at 300 kgf / cm 2 to obtain three types of molded bodies having a size of 60 mm square, a thickness of about 13 mm, about 18 mm, and about 23 mm. The molded body was subjected to CIP treatment at 3 t / cm 2 , and the produced molded body was baked at 1600 ° C. in an oxygen atmosphere in an atmosphere furnace to obtain an ITO sintered body. The thickness of the obtained ITO sintered body was about 10 mm, about 15 mm and about 19 mm, and a good sintered body was obtained with no particular cracks. The relative density of each sintered body was 99.81% when the thickness was 10 mm, 99.75% when the thickness was 15 mm, and 99.58% when the thickness was 19 mm.

比較例1
実施例1と同様の方法にて作製した圧密混合粉末を同様の成形および焼結方法にてITO焼結体を得た。得られたITO焼結体の厚みは約10mm、約15mmおよび約19mmとなった。厚さ19mmの焼結体に関しては焼結時に割れが生じた。各焼結体の密度は相対密度で厚さ10mmのもので99.82%、15mmのものでは99.72%となった。
Comparative Example 1
An ITO sintered body was obtained from the compacted mixed powder produced by the same method as in Example 1 by the same molding and sintering method. The thickness of the obtained ITO sintered body was about 10 mm, about 15 mm, and about 19 mm. The sintered body having a thickness of 19 mm was cracked during sintering. The relative density of each sintered body was 99.82% when the thickness was 10 mm, and 99.72% when the thickness was 15 mm.

厚さが15mm以下のものでは、得られたITO焼結体の密度は実施例1のものと同等又はわずかに低いものであったが、厚さ19mmのものでは焼結時に割れが生じてしまい、ITO焼結体製造用の粉末としては不十分なものであった。   When the thickness was 15 mm or less, the density of the obtained ITO sintered body was the same as or slightly lower than that of Example 1, but when the thickness was 19 mm, cracks occurred during sintering. The powder was insufficient as a powder for producing the ITO sintered body.

比較例2
実施例1と同様の方法にて作製した圧密混合粉末と水を重量比で100:20となるように撹拌造粒機(奈良機械製)へ投入し、30分間撹拌造粒を行った。該造粒後、乾燥を一晩行い、得られたITO造粒粉末の軽装嵩密度および安息角を求めたところ、軽装嵩密度は2.29g/cm、安息角は34度まで向上していた。また、得られたITO造粒粉末の重量は、原料として用いた圧密混合粉末の70%であった。
Comparative Example 2
The compacted mixed powder prepared in the same manner as in Example 1 and water were charged into a stirring granulator (manufactured by Nara Machinery) at a weight ratio of 100: 20, and stirring granulation was performed for 30 minutes. After the granulation, drying was performed overnight, and the light weight bulk density and angle of repose of the obtained ITO granulated powder were determined. The light weight bulk density was improved to 2.29 g / cm 3 and the angle of repose was improved to 34 degrees. It was. Moreover, the weight of the obtained ITO granulated powder was 70% of the compacted mixed powder used as a raw material.

得られたITO造粒粉末を300kgf/cmのプレス成形にて大きさ30mm角、厚さ約9.5mmおよび大きさ60mm角、厚さ約18mm、約23mmの2種類の成形体を得た。該成形体を3t/cmにてCIP処理を行い、作製した成形体を雰囲気炉にて酸素雰囲気中1600℃で焼成を行う事でITO焼結体を得た。得られたITO焼結体の厚みは約9mm、約15mmおよび約19mmとなったが、19mmの焼結体に関しては焼結時に割れが生じた。9mmの厚みの焼結体密度は相対密度で99.40%、15mmの厚みのものでは98.71%となり、実施例1のITO焼結体に比べて低い焼結体密度となった。焼結体は厚いもの程焼結体密度が低くなる傾向にあり、厚み9mm及び15mmの焼結体の密度が低いことから厚み19mmの場合では更に低い密度となると予想される。 The obtained ITO granulated powder was press-molded at 300 kgf / cm 2 to obtain two types of molded bodies having a size of 30 mm square, a thickness of about 9.5 mm, a size of 60 mm square, a thickness of about 18 mm, and about 23 mm. . The molded body was subjected to CIP treatment at 3 t / cm 2 , and the produced molded body was baked at 1600 ° C. in an oxygen atmosphere in an atmosphere furnace to obtain an ITO sintered body. The thickness of the obtained ITO sintered body was about 9 mm, about 15 mm, and about 19 mm, but the 19 mm sintered body was cracked during sintering. The density of the sintered body having a thickness of 9 mm was 99.40% in terms of relative density, and 98.71% in the case of having a thickness of 15 mm. Thus, the sintered body density was lower than that of the ITO sintered body of Example 1. The thicker the sintered body, the lower the density of the sintered body, and the lower the density of the 9 mm and 15 mm sintered bodies, the lower the density is expected in the case of 19 mm thickness.

この造粒方法では水分を添加する事により原料粉末のサブミクロンレベルの1次粒子が凝集し、結果としてこの造粒粉末を焼結して得られた焼結体の密度が圧密混合粉末を焼結した場合と比較して低下したと推測される。   In this granulation method, by adding water, the primary particles of the submicron level of the raw material powder are agglomerated, and as a result, the density of the sintered body obtained by sintering this granulated powder is equal to that of the compacted mixed powder. It is presumed that it has decreased compared to the case of concluding.

比較例3
実施例1と同様の方法にて作製した圧密混合粉末に水を添加しスラリー化後、スプレードライ造粒により造粒処理を行った。得られたITO造粒粉末の軽装嵩密度および安息角を求めたところ、軽装嵩密度は1.55g/cm、安息角は29度まで向上していた。また、得られたITO造粒粉末の重量は、原料として用いた圧密混合粉末の80%であった。
Comparative Example 3
Water was added to the compacted mixed powder produced by the same method as in Example 1 to form a slurry, and then granulated by spray dry granulation. When the light-packed bulk density and repose angle of the obtained ITO granulated powder were determined, the light-packed bulk density was 1.55 g / cm 3 and the repose angle was improved to 29 degrees. Moreover, the weight of the obtained ITO granulated powder was 80% of the compacted mixed powder used as a raw material.

得られたITO造粒粉末を300kgf/cmのプレス成形にて60mm角、厚さ約15mmおよび約20mmの成形体を得た。該成形体を3t/cmにてCIP処理を行い、作製した成形体を雰囲気炉にて酸素雰囲気中1600℃で焼成を行う事でITO焼結体を得た。得られたITO焼結体の厚みは約13mmおよび約17mmとなったが、17mmの焼結体に関しては焼結時に割れが生じた。13mmの厚みの焼結体の密度は相対密度で99.66%となり、実施例1のITO焼結体に比べて低い焼結体密度となった。焼結体は厚いもの程焼結体密度が低くなる傾向にあり、厚み13mmの焼結体の密度が低いことから厚み19mmの場合では更に低い密度となると予想される。 The obtained ITO granulated powder was subjected to press molding of 300 kgf / cm 2 to obtain molded bodies of 60 mm square, thickness of about 15 mm and about 20 mm. The molded body was subjected to CIP treatment at 3 t / cm 2 , and the produced molded body was baked at 1600 ° C. in an oxygen atmosphere in an atmosphere furnace to obtain an ITO sintered body. The thickness of the obtained ITO sintered body was about 13 mm and about 17 mm, but the 17 mm sintered body was cracked during sintering. The density of the sintered body having a thickness of 13 mm was 99.66% as a relative density, which was lower than that of the ITO sintered body of Example 1. The thicker the sintered body, the lower the density of the sintered body, and the lower the density of the 13 mm-thick sintered body, the lower the density expected at 19 mm.

この造粒方法では水分を添加する事により原料粉末のサブミクロンレベルの1次粒子が凝集し、結果として造粒粉末の焼結体の密度が圧密混合粉末を焼結した場合と比較して低下したと推測される。   In this granulation method, by adding moisture, the primary particles at the submicron level of the raw material powder are agglomerated, and as a result, the density of the sintered body of the granulated powder is lower than when the compacted mixed powder is sintered. I guess it was.

上記実施例1及び比較例1〜3のITO造粒粉末の軽装嵩密度と安息角、収率、及び、それらのITO造粒粉末を用いて得られたITO焼結体の焼結体密度、製造時の割れの発生の有無を表1に示す。また、上記で得られたITO焼結体の焼結体密度の厚さ依存性を図1に示す。   Light weight bulk density and angle of repose of ITO granulated powder of Example 1 and Comparative Examples 1 to 3, yield, and sintered body density of ITO sintered body obtained using those ITO granulated powder, Table 1 shows the presence or absence of cracks during production. Moreover, the thickness dependence of the sintered compact density of the ITO sintered compact obtained above is shown in FIG.

本発明のITO造粒粉末の製造方法では収率が高く、かつ、本発明のITO造粒粉末を用いることにより、高密度のITO焼結体を、焼結時に割れの発生を生じさせることなく安定的に製造することが可能となることが分かる。   In the production method of the ITO granulated powder of the present invention, the yield is high, and by using the ITO granulated powder of the present invention, a high-density ITO sintered body can be produced without generating cracks during sintering. It turns out that it becomes possible to manufacture stably.

Figure 0004706268
Figure 0004706268

各種造粒方法での焼結性の比較を示す図である。It is a figure which shows the comparison of the sinterability by various granulation methods.

Claims (2)

酸化インジウムと酸化スズを含む原料粉末中の水またはバインダの含有量が5wt%以下であり、当該原料粉末を転動造粒にて造粒し、軽装嵩密度が1.4g/cm 以上2.0g/cm 未満かつ安息角が40°以下のITO造粒粉末を製造することを特徴とするITO造粒粉末の製造方法。 The content of water or binder in the raw material powder containing indium oxide and tin oxide is 5 wt% or less, the raw material powder is granulated by rolling granulation, and the light bulk density is 1.4 g / cm 3 or more 2 A method for producing an ITO granulated powder, comprising producing an ITO granulated powder having an angle of repose of less than 0.0 g / cm 3 and an angle of repose of 40 ° or less . 酸化インジウムと酸化スズを含む原料粉末中の水またはバインダの含有量が5wt%以下であり、当該原料粉末を転動造粒にて造粒し、軽装嵩密度が1.4g/cm 以上2.0g/cm 未満かつ安息角が40°以下のITO造粒粉末を製造し、得られたITO造粒粉末を加圧成形した後に焼結することを特徴とするITO焼結体の製造方法。 The content of water or binder in the raw material powder containing indium oxide and tin oxide is 5 wt% or less, the raw material powder is granulated by rolling granulation, and the light bulk density is 1.4 g / cm 3 or more 2 A method for producing an ITO sintered body comprising producing an ITO granulated powder having an angle of repose of less than 0.0 g / cm 3 and an angle of repose of 40 ° or less, and pressurizing and molding the obtained ITO granulated powder. .
JP2005017501A 2005-01-25 2005-01-25 ITO granulated powder, ITO sintered body and method for producing the same Expired - Fee Related JP4706268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005017501A JP4706268B2 (en) 2005-01-25 2005-01-25 ITO granulated powder, ITO sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005017501A JP4706268B2 (en) 2005-01-25 2005-01-25 ITO granulated powder, ITO sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006206350A JP2006206350A (en) 2006-08-10
JP4706268B2 true JP4706268B2 (en) 2011-06-22

Family

ID=36963603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005017501A Expired - Fee Related JP4706268B2 (en) 2005-01-25 2005-01-25 ITO granulated powder, ITO sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4706268B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344864B2 (en) * 2008-07-31 2013-11-20 富士フイルム株式会社 Film forming apparatus and film forming method
JP5169969B2 (en) * 2009-04-20 2013-03-27 東ソー株式会社 Method for producing sintered body for transparent conductive film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144393A (en) * 1998-10-30 2000-05-26 Dowa Mining Co Ltd Ito sputtering target and its production
JP2000327431A (en) * 1999-05-12 2000-11-28 Tdk Corp Ceramic granule for molding of ceramic molding, its production or treatment, ceramic molding and its production
JP2004284952A (en) * 1995-12-06 2004-10-14 Sumitomo Chem Co Ltd Indium oxide-tin oxide powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3781878B2 (en) * 1996-10-04 2006-05-31 同和鉱業株式会社 ITO sintered body and ITO sputtering target

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284952A (en) * 1995-12-06 2004-10-14 Sumitomo Chem Co Ltd Indium oxide-tin oxide powder
JP2000144393A (en) * 1998-10-30 2000-05-26 Dowa Mining Co Ltd Ito sputtering target and its production
JP2000327431A (en) * 1999-05-12 2000-11-28 Tdk Corp Ceramic granule for molding of ceramic molding, its production or treatment, ceramic molding and its production

Also Published As

Publication number Publication date
JP2006206350A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
KR102336966B1 (en) Cylindrical sputtering target, cylindrical compact, manufacturing method of cylindrical sputtering target, manufacturing method of cylindrical sintered compact and manufacturing method of cylindrical compact
WO2021169418A1 (en) Itio rotary target and preparation method therefor
KR100433482B1 (en) Sputtering target using high-density sintered ITO compact and manufacturing method
JP4758697B2 (en) Manufacturing method of IZO sputtering target
CN104611543A (en) Device for the improvement of crude pellets and pelletizing process
JP2011093729A (en) Method for producing ito sintered compact, and method for producing ito sputtering target
CN111660211B (en) Polycrystalline diamond-like abrasive and preparation method thereof
JP5149262B2 (en) Indium oxide-zinc oxide sintered target and method for producing the same
JP4706268B2 (en) ITO granulated powder, ITO sintered body and method for producing the same
CN115745573A (en) Preparation method of fine-grain IZO target material
KR20080031873A (en) Process for producing izo sputtering target
TWI596213B (en) Sinter manufacturing method
JP4508079B2 (en) Manufacturing method of sputtering target
JP4196805B2 (en) Indium oxide target and method for manufacturing the same
JP4734936B2 (en) ITO granulated powder, ITO sintered body and method for producing the same
JP4396130B2 (en) Target for producing ITO thin film and manufacturing method thereof
CN111763864A (en) Method for controlling grain size of WC-Co hard alloy reclaimed material
CN108329017B (en) Isometric spherical magnesium material, preparation method thereof and application thereof in producing dispersed magnesium air-permeable plug
JP7474221B2 (en) Manufacturing method of spherical silica powder
JP4120351B2 (en) High concentration tin oxide ITO target and manufacturing method thereof
JPH03218924A (en) Oxide powder and production thereof
JP4755453B2 (en) Manufacturing method of IZO sputtering target
JP2007302556A (en) Method for producing ito sintered compact
JP2007230853A (en) Ito powder, its production method and method for producing ito sputtering target
JPH11100660A (en) Ito pellet for vapor deposition and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

R151 Written notification of patent or utility model registration

Ref document number: 4706268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees