KR20080031873A - Process for producing izo sputtering target - Google Patents

Process for producing izo sputtering target Download PDF

Info

Publication number
KR20080031873A
KR20080031873A KR1020077030586A KR20077030586A KR20080031873A KR 20080031873 A KR20080031873 A KR 20080031873A KR 1020077030586 A KR1020077030586 A KR 1020077030586A KR 20077030586 A KR20077030586 A KR 20077030586A KR 20080031873 A KR20080031873 A KR 20080031873A
Authority
KR
South Korea
Prior art keywords
sputtering target
powder
oxide powder
izo sputtering
molding
Prior art date
Application number
KR1020077030586A
Other languages
Korean (ko)
Other versions
KR101317080B1 (en
Inventor
가즈요시 이노우에
아키라 가이조
마사토 마츠바라
Original Assignee
이데미쓰 고산 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005193505A external-priority patent/JP4755453B2/en
Priority claimed from JP2005193504A external-priority patent/JP4758697B2/en
Application filed by 이데미쓰 고산 가부시키가이샤 filed Critical 이데미쓰 고산 가부시키가이샤
Publication of KR20080031873A publication Critical patent/KR20080031873A/en
Application granted granted Critical
Publication of KR101317080B1 publication Critical patent/KR101317080B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Abstract

A process for IZO sputtering target production in which the number of steps can be reduced while maintaining properties required of an IZO sputtering target to thereby attain an improvement in productivity and a reduction in production cost. Also provided is the production process in which a reduced sintering temperature can be used to thereby attain an improvement in productivity and a reduction in production cost. The process for producing an IZO sputtering target is characterized by comprising: a mixing/pulverization step in which either an indium oxide powder and zinc oxide power each having specific properties or a raw powder comprising these powders as major components is mixed and pulverized to obtain a fine powder; a molding step in which the fine powder is molded to obtain a molding; and a sintering step in which the molding is sintered at 1,250-1,450°C in an oxygenous atmosphere or sintered at 1,100-1,250°C in an oxygenous atmosphere with pressurizing to thereby obtain a sinter.

Description

IZO 스퍼터링 타겟의 제조방법{PROCESS FOR PRODUCING IZO SPUTTERING TARGET}Production method of IPO sputtering target {PROCESS FOR PRODUCING IZO SPUTTERING TARGET}

본 발명은 산화인듐 및 산화아연 또는 이들 분말을 주성분으로 하는 IZO 스퍼터링 타겟의 제조방법에 관한 것이다.The present invention relates to a method for producing an IZO sputtering target mainly composed of indium oxide and zinc oxide or these powders.

최근, 표시 장치는 눈부시게 발전되어, 액정 표시 장치나 전기 발광 표시 장치, 전계 방출 디스플레이(field emission display) 등이 퍼스널 컴퓨터나 워드 프로세서 등의 사무기기나, 공장에서의 제어 시스템용으로 개발되고 있다. 그리고, 이들 표시 장치는 어느 것이나 표시 소자를 투명 도전막에 의해 끼워 넣은 샌드위치 구조를 갖고 있다.Recently, display devices have been developed remarkably, and liquid crystal displays, electroluminescent displays, field emission displays, and the like have been developed for office equipment such as personal computers, word processors, and control systems in factories. And all of these display apparatuses have the sandwich structure which sandwiched the display element by the transparent conductive film.

이들 표시 장치에 사용되는 투명 도전막으로는, 인듐주석 산화물(이하, ITO라 약칭함) 막이 주류를 차지하고 있다. 이는, ITO 막이 투명성이나 도전성이 우수한 것 외에, 강산에 의한 에칭 가공이 가능하고, 또한 기판과의 밀착성도 우수하기 때문이다. 그리고, 이 ITO 막은 일반적으로는 스퍼터링법이나 이온 플레이팅법, 증착법에 의해서 제막되고 있다.As the transparent conductive film used for these display devices, an indium tin oxide (hereinafter, abbreviated as ITO) film occupies the mainstream. This is because the ITO film is not only excellent in transparency and conductivity, but also can be etched by a strong acid, and also excellent in adhesion to the substrate. In general, this ITO film is formed by a sputtering method, an ion plating method, or a vapor deposition method.

그러나, ITO는 상기한 성질에 대해서는 우수한 성능을 갖지만, 결정성 금속산화물이라는 점에서, ITO의 타겟을 이용하여 스퍼터링법 등에 의해 제막할 때, ITO의 결정화가 진행되고, 그 결정이 성장하면 투명 도전막의 표면에 결정립이 생성되어, 막의 표면 정밀도가 저하된다는 문제가 있다.However, ITO has excellent performance with respect to the above properties, but since it is a crystalline metal oxide, when the film is formed by sputtering or the like using a target of ITO, crystallization of ITO proceeds, and when the crystal grows, transparent conductivity is achieved. There is a problem that crystal grains are formed on the surface of the film and the surface precision of the film is lowered.

또한, 이 ITO가 결정성을 갖는다는 점에서, 에칭가공 시에 투명 도전막의 결정립의 계면 부위로부터 에칭된다. 이렇게 되면, 투명 도전막의 에칭 부위에, 이 결정 입자가 남겨져, 표시 소자로 한 경우에 도통(導通)에 의한 표시 불량의 원인이 된다는 문제도 있다.In addition, since this ITO has crystallinity, it is etched from the interface part of the crystal grain of a transparent conductive film at the time of an etching process. In this case, this crystal grain is left in the etching site | part of a transparent conductive film, and when it is set as a display element, there also exists a problem that it becomes a cause of the display defect by conduction.

그래서, ITO 이외의 조합에 의한, 예를 들면 산화아연과 산화주석을 주원료로 한 것, 산화주석에 안티몬을 첨가한 것, 산화아연에 알루미늄을 첨가한 것, 또는 산화인듐과 산화아연을 주성분으로 하는 IZO 등이 제안되어 있다(예를 들면, 특허문헌 1, 특허문헌 2 참조). 그 중에서도, 산화인듐과 산화아연을 주성분으로 하는 IZO는, ITO에 비하여 에칭속도가 크다는 특징을 갖는다는 점에서 주목받고 있다.Thus, for example, zinc oxide and tin oxide as a main raw material, antimony added to tin oxide, aluminum added to zinc oxide, or indium oxide and zinc oxide as a main component by combinations other than ITO. IZO etc. which are mentioned are proposed (for example, refer patent document 1, patent document 2). Among them, IZO, which has indium oxide and zinc oxide as its main components, has attracted attention in that it has a feature that the etching rate is higher than that of ITO.

일반적으로, ITO 스퍼터링 타겟은 산화인듐 및 산화아연 분말을 혼합, 분쇄, 건조, 가소(假燒), 분쇄, 조립(造粒), 성형, 소결이라는 많은 공정을 거쳐서 제조되고 있다(예를 들면, 특허문헌 3 참조). 이러한 많은 공정을 거치는 스퍼터링 타겟의 제조는 생산성의 저하를 초래하고 비용 증가가 되는 요인이 되고 있지만, 공정의 삭감 등의 개선은 충분히 검토되고 있지 않다. IZO 스퍼터링 타겟의 제조에 있어서도, 상기 종래대로의 제조 공정이 답습되어, 공정의 삭감 등의 제조면에서의 개선이 이루어지고 있지 않는 상황이며, 생산성의 향상 및 제조 비용의 저감이 요청되고 있다. In general, ITO sputtering targets are manufactured through a number of processes such as mixing, pulverizing, drying, calcining, pulverizing, granulating, shaping, and sintering an indium oxide and zinc oxide powder (for example, See Patent Document 3). The production of sputtering targets having undergone such a large number of processes causes a decrease in productivity and an increase in cost, but improvements such as reduction of processes have not been sufficiently studied. Also in the manufacture of an IZO sputtering target, the conventional manufacturing process is followed, and the improvement in the manufacturing aspect, such as reduction of a process, is not performed, and the improvement of productivity and reduction of a manufacturing cost are calculated | required.

특허문헌 1: 일본 공개특허공보 제1996-171824호Patent Document 1: Japanese Unexamined Patent Publication No. 1996-171824

특허문헌 2: 일본 공개특허공보 제2000-256059호Patent Document 2: Japanese Unexamined Patent Publication No. 2000-256059

특허문헌 3: 국제공개 제WO2003/14409호Patent Document 3: International Publication No. WO2003 / 14409

발명의 개시Disclosure of the Invention

발명이 해결하고자 하는 과제Problems to be Solved by the Invention

이러한 상황하에서, 본 발명은 IZO 스퍼터링 타겟의 제조에 있어서, IZO 스퍼터링 타겟으로서의 특성을 유지하면서, 공정을 삭감함으로써 생산성의 향상 및 제조 비용의 저감이 가능하게 되는 제조방법을 제공하는 것을 목적으로 한다. 또한, 소결 온도를 낮게 함으로써 생산성의 향상 및 제조 비용의 저감이 가능하게 되는 제조방법을 제공하는 것을 목적으로 한다.Under such circumstances, an object of the present invention is to provide a manufacturing method in which the production of the IZO sputtering target can be improved and productivity can be reduced by reducing the process while maintaining the characteristics of the IZO sputtering target. Moreover, it aims at providing the manufacturing method which can make productivity improvement and the manufacturing cost reduce by making sintering temperature low.

과제를 해결하기 위한 수단Means to solve the problem

본 발명자들은 상기 목적을 달성하기 위하여 예의 연구를 거듭한 결과, 특정한 성상을 갖는 산화인듐 분말과 산화아연 분말을, 또는 이들 분말을 주성분으로 하는 원료 분말을 이용함으로써, IZO 스퍼터링 타겟으로서의 특성을 유지하면서, 제조 공정을 삭감하는 것이 가능하게 된다는 것을 발견했다. 본 발명은 이러한 지견에 기초하여 완성된 것이다.The present inventors have intensively researched to achieve the above object, and as a result, by using indium oxide powder and zinc oxide powder having specific properties or raw material powder containing these powders as main components, the characteristics as IZO sputtering targets are maintained. It has been found that the manufacturing process can be reduced. The present invention has been completed based on these findings.

즉, 본 발명은,That is, the present invention,

(1) 산화인듐 분말과 산화아연 분말을, 또는 이들 분말을 주성분으로 하는 원료 분말을 혼합 분쇄하여 미(微)분말을 얻는 혼합 분쇄 공정, 상기 미분말을 성형하여 성형물을 얻는 성형 공정, 및 상기 성형물을 산소 분위기 중 1250 내지 1450℃에서, 또는 상기 성형물을 가압 하, 산소 분위기 중 1100 내지 1250℃에서 소결하여 소결체를 얻는 소결 공정을 포함하는 것을 특징으로 하는 IZO 스퍼터링 타겟의 제조방법으로서, 상기 산화인듐 분말의 비표면적이 8 내지 10㎡/g이고, 상기 산화아연 분말의 비표면적이 10㎡/g 이상인 IZO 스퍼터링 타겟의 제조방법,(1) A mixed grinding step of mixing and grinding an indium oxide powder and a zinc oxide powder or a raw material powder containing these powders as a main component to obtain a fine powder, a molding step of molding the fine powder to obtain a molded article, and the molded article A process for producing an IZO sputtering target, comprising a sintering step of sintering at 1250 to 1450 ° C. in an oxygen atmosphere or at 1100 to 1250 ° C. in an oxygen atmosphere under pressure. A method for producing an IZO sputtering target, wherein the specific surface area of the powder is 8 to 10 m 2 / g, and the specific surface area of the zinc oxide powder is 10 m 2 / g or more,

(2) 산화인듐 분말과 산화아연 분말을, 또는 이들 분말을 주성분으로 하는 원료 분말을 혼합 분쇄하여 미분말을 얻는 혼합 분쇄 공정, 상기 미분말을 성형하여 성형물을 얻는 성형 공정, 및 상기 성형물을 산소 분위기 중 1250 내지 1450℃에서, 또는 상기 성형물을 가압 하, 산소 분위기 중 1100 내지 1250℃에서 소결하여 소결체를 얻는 소결 공정을 포함하는 것을 특징으로 하는 IZO 스퍼터링 타겟의 제조방법으로서, 상기 산화인듐 분말의 입도 분포의 중앙 직경(median diameter)이 1 내지 2㎛이고, 상기 산화아연 분말의 입도 분포의 중앙 직경이 65nm 내지 0.2㎛이며, 상기 혼합 분쇄 공정 후의 평균 중앙 직경이 0.5 내지 1㎛인 IZO 스퍼터링 타겟의 제조방법,(2) a mixed grinding step of mixing and grinding an indium oxide powder and a zinc oxide powder or a raw material powder containing the powder as a main component thereof, a molding step of molding the fine powder to obtain a molded product, and the molded product in an oxygen atmosphere. A method for producing an IZO sputtering target, comprising a sintering step of obtaining a sintered body at 1250 to 1450 ° C. or by pressurizing the molding at 1100 to 1250 ° C. in an oxygen atmosphere. Preparation of IZO sputtering target whose median diameter is 1-2 micrometers, the median diameter of the particle size distribution of the said zinc oxide powder is 65 nm-0.2 micrometer, and the average median diameter after the said mixed grinding process is 0.5-1 micrometer. Way,

(3) 상기 성형 공정 전에, 가소하지 않는 것을 특징으로 하는 상기 (1) 또는 (2)에 기재된 IZO 스퍼터링 타겟의 제조방법, 및(3) The method for producing the IZO sputtering target according to the above (1) or (2), which is not calcined before the forming step, and

(4) 상기 소결체의 밀도가 6.5g/㎤ 이상인 것을 특징으로 하는 상기 (1) 내지 (3) 중 어느 하나에 기재된 IZO 스퍼터링 타겟의 제조방법(4) The method for producing an IZO sputtering target according to any one of (1) to (3), wherein the density of the sintered compact is 6.5 g / cm 3 or more.

을 제공하는 것이다. To provide.

발명의 효과Effects of the Invention

본 발명에 의하면, IZO 스퍼터링 타겟의 제조에 있어서, IZO 스퍼터링 타겟으로서의 특성을 유지하면서, 공정을 삭감함으로써 생산성의 향상 및 제조 비용의 저감이 가능하게 되는 제조방법을 제공할 수 있다. 또한, 소결 온도를 낮게 함으로써 생산성의 향상 및 제조 비용의 저감이 가능하게 되는 제조방법을 제공할 수 있다.Industrial Applicability According to the present invention, in the production of an IZO sputtering target, it is possible to provide a manufacturing method which enables improvement of productivity and reduction of manufacturing cost by reducing the process while maintaining the characteristics of the IZO sputtering target. In addition, by lowering the sintering temperature, it is possible to provide a manufacturing method which enables improvement of productivity and reduction of manufacturing cost.

발명을 실시하기Implement the invention 위한 최선의 형태 Best form for

[원료 분말][Raw powder]

본 발명은 특정한 성상을 갖는 산화인듐 분말과 산화아연 분말을, 또는 이들 분말을 주성분으로 하는 원료 분말을 이용함으로써 제조 공정의 삭감을 가능하게 하는 것이다.This invention makes it possible to reduce a manufacturing process by using indium oxide powder and zinc oxide powder which have a specific characteristic, or the raw material powder which has these powder as a main component.

본 발명에서 원료로서 이용하는 산화인듐 분말 및 산화아연 분말의 비표면적은, 스퍼터링 타겟 표면의 화이트 스폿(백색 반점 얼룩)이라고 불리는 결손의 발현을 저감하기 위해서, 각각 8 내지 10㎡/g 및 10㎡/g 이상일 것이 요구된다.The specific surface areas of the indium oxide powder and the zinc oxide powder used as raw materials in the present invention are 8 to 10 m 2 / g and 10 m 2 / in order to reduce the occurrence of defects called white spots (white spot stains) on the surface of the sputtering target, respectively. It is required to be at least g.

또한, 본 발명에서 원료로서 이용하는 산화인듐 분말 및 산화아연 분말의 입도 분포의 중앙 직경은, 화이트 스폿의 발현을 저감하기 위해서, 각각 1 내지 2㎛ 및 65nm 내지 0.2㎛일 것이 요구된다. 혼합 분쇄 공정 후의 미분말의 평균 중앙 직경은, 미세할수록 좋지만, 0.5 내지 1㎛가 되도록 분쇄한다. 이 범위 내에 있으면, 고밀도 IZO 스퍼터링 타겟을 얻을 수 있고, 분쇄시의 분쇄기 등으로부터의 불순물의 혼입량을 저감시킬 수 있다. 한편, 상기의 원료가 되는 분말은, 상기 비표면적 및 중앙 직경을 모두 만족하는 것이 바람직하다.In addition, the median diameter of the particle size distribution of the indium oxide powder and the zinc oxide powder used as a raw material in the present invention is required to be 1 to 2 µm and 65 nm to 0.2 µm, respectively, in order to reduce the expression of the white spot. The finer the average median diameter of the fine powder after the mixed grinding step, the finer it is, but it is pulverized so as to be 0.5 to 1 m. If it exists in this range, a high density IZO sputtering target can be obtained and the amount of mixing of impurities from the grinder etc. at the time of grinding | pulverization can be reduced. On the other hand, it is preferable that the powder used as the raw material satisfies both the specific surface area and the median diameter.

상기 산화인듐 분말과 산화아연 분말의 사용량은, 중량비로 75:25 내지 95:5가 바람직하고, 80:20 내지 94:6이 더욱 바람직하다.As for the usage-amount of the said indium oxide powder and zinc oxide powder, 75: 25-95: 5 are preferable by weight ratio, and 80: 20-94: 6 are more preferable.

본 발명의 제조에 관계되는 IZO 스퍼터링 타겟의 원료는, 산화인듐 및 산화아연을 주성분으로 하는 한, 상기 타겟의 특성을 향상시킬 목적으로 다른 성분을 첨가할 수도 있다. 예를 들면, IZO 스퍼터링 타겟의 벌크 전기 저항값을 낮추기 위해서, 100 내지 2000ppm 정도의 주석, 지르코늄, 타이타늄, 하프늄, 게르마늄, 세륨 등의 +4가 원소를 첨가할 수 있다.As long as the raw material of the IZO sputtering target which concerns on manufacture of this invention has indium oxide and zinc oxide as a main component, you may add another component for the purpose of improving the characteristic of the said target. For example, in order to lower the bulk electrical resistance of an IZO sputtering target, + tetravalent elements, such as about 100-2000 ppm of tin, zirconium, titanium, hafnium, germanium, and cerium, can be added.

[제조방법] [Manufacturing method]

IZO 스퍼터링 타겟은, 다음과 같이 하여 제조된다. 산화인듐 분말과 산화아연 분말의, 또는 이들 분말을 주성분으로 하는 혼합물을 습식 분쇄한 미분말을, 스프레이 건조기 등을 이용하여 건조시킨 입자를 프레스 성형하여 소결한 후, 그 성형물의 소결체에 절삭 가공을 실시함으로써 제조할 수 있다.An IZO sputtering target is manufactured as follows. The fine powder obtained by wet-pulverizing wet powder of an indium oxide powder and a zinc oxide powder or a mixture containing these powders as a main component is pressed and sintered to dry the particles dried using a spray dryer or the like, followed by cutting to the sintered compact of the molded product. It can manufacture by doing.

혼합 분쇄 공정이란, 상기 산화인듐 분말과 산화아연 분말을, 또는 이들 분말을 주성분으로 하는 원료 분말을, 습식 혼합 분쇄기, 예를 들면 습식 볼밀이나 비드밀, 초음파 등을 이용하여, 균일하게 혼합·분쇄하여 미분말을 얻는 공정이다. 분쇄한 미분말의 입경은, 상기와 같이 IZO 스퍼터링 타겟의 밀도, 및 분쇄시의 분쇄기 등으로부터의 불순물의 혼입량 저감의 관점에서 조정한다.The mixed grinding step is uniformly mixing and grinding the indium oxide powder and zinc oxide powder or a raw material powder containing these powders as a main component by using a wet mixing mill, for example, a wet ball mill, bead mill, or ultrasonic wave. To obtain fine powder. The particle size of the pulverized fine powder is adjusted in view of the density of the IZO sputtering target and the amount of mixing of impurities from the pulverizer and the like during pulverization as described above.

이어서, 얻어진 미분말을 건조시킨다. 미분말의 건조에는, 스프레이 건조기, 일반의 분말용 건조기 등을 사용할 수 있다.Next, the obtained fine powder is dried. A spray dryer, a general powder dryer, etc. can be used for drying fine powder.

건조한 미분말은, 금형에 충전하여 일반의 콜드 프레스기 등을 이용하여 원하는 형상으로 프레스 성형하는 성형 공정을 거친다. 프레스 성형은, 1축 프레스, 냉간 정수압 프레스(CIP) 등을 이용하여 할 수 있다.The dry fine powder is subjected to a molding step of filling into a mold and press molding into a desired shape using a common cold press machine or the like. Press molding can be performed using a uniaxial press, cold hydrostatic press (CIP), or the like.

프레스 성형하여 얻어진 성형물은, 소결 공정을 거쳐, IZO 스퍼터링 타겟용 소결체로 된다. 소결은 산소 분위기 하에서 행해진다. 산소 분위기란, 산소 농도가 21% 내지 50% 미만, 바람직하게는 21% 내지 40% 미만인 것을 말한다. 이 범위내에 있으면, 효율적으로 소결하는 것이 가능하고, 소성로가 소손(燒損)하는 일도 없다. 한편, 공기 분위기에서도 소결할 수 있다. 또한, 소결은, 대기압에서 행할 수도 있고, 소결 밀도를 높게 하여 소결로를 포함한 소결 장치의 비용이 증가하지 않도록 할 목적으로, 가압 하에서 대기압 초과 내지 0.5MPa에서 행할 수도 있다.The molded article obtained by press molding becomes a sintered compact for IZO sputtering targets through a sintering process. Sintering is performed in oxygen atmosphere. An oxygen atmosphere means that oxygen concentration is 21%-less than 50%, Preferably it is 21%-less than 40%. If it exists in this range, it can be sintered efficiently and a firing furnace will not burn out. On the other hand, it can sinter in air atmosphere. In addition, sintering may be performed at atmospheric pressure, and may be performed at atmospheric pressure above 0.5 MPa under pressure in order to make the sintering density high, and to prevent the cost of the sintering apparatus containing a sintering furnace from increasing.

대기압 하에서 소결을 행하는 경우, 소결 온도는 1250 내지 1400℃, 바람직하게는 1300 내지 1400℃이고, 이 범위 내에 있으면, 소결 밀도는 높아져서 제조 비용을 저감할 수 있다. 소결 시간은 소결 밀도를 높게 하여 제조 비용을 저감하기 위해서, 2 내지 48시간, 바람직하게는 4 내지 36시간이며, 소결시의 바람직한 승온 속도는 2 내지 24℃/분이다.In the case of sintering under atmospheric pressure, the sintering temperature is 1250 to 1400 ° C, preferably 1300 to 1400 ° C. If it is within this range, the sintering density is high and the production cost can be reduced. The sintering time is in the range of 2 to 48 hours, preferably 4 to 36 hours, in order to increase the sinter density and reduce the production cost, and the preferable temperature increase rate at the time of sintering is 2 to 24 ° C / min.

또한, 가압 하에서 소결을 행하는 경우, 소결 온도는 1100 내지 1250℃, 바람직하게는 1150 내지 1250℃로, 대기압 하에서 소결을 행하는 경우보다 낮은 온도에서 소결하는 것이 가능하고, 이 범위 내에 있으면, 소결 밀도는 높아져서 제조 비용을 저감할 수 있다. 소결 시간은 소결 밀도를 높게 하여 제조 비용을 저감하기 위해서, 2 내지 48시간, 바람직하게는 10 내지 36시간이며, 소결시의 바람직한 승온 속도는 2 내지 24℃/분이다.In the case of sintering under pressure, the sintering temperature is 1100 to 1250 ° C, preferably 1150 to 1250 ° C, and it is possible to sinter at a lower temperature than when sintering under atmospheric pressure. It can increase and manufacturing cost can be reduced. The sintering time is in the range of 2 to 48 hours, preferably 10 to 36 hours, in order to increase the sinter density and reduce the production cost, and the preferable temperature increase rate during sintering is 2 to 24 ° C / min.

얻어진 성형물의 소결체로부터 스퍼터링 타겟을 제작하기 위해서는, 이 소결체를 스퍼터링 장치에의 장착에 적합한 형상으로 절삭 가공하고, 이것에 장착용 치구를 설치할 수도 있다. 이 때, 상기 타겟의 평균 표면 조도를 향상시키기 위해서, 경면 가공을 할 수도 있다. 이 경면 가공에는, 화학 연마, 기계 연마, 화학기계 연마 등의 일반적인 연마 방법을 이용할 수 있다.In order to produce a sputtering target from the sintered compact of the obtained molded object, this sintered compact can be cut into the shape suitable for attachment to a sputtering apparatus, and a mounting jig can also be provided in this. At this time, in order to improve the average surface roughness of the said target, you may perform mirror surface processing. In this mirror working, a general polishing method such as chemical polishing, mechanical polishing, chemical mechanical polishing, or the like can be used.

이와 같이, 특정한 성상을 갖는 산화인듐 분말과 산화아연 분말을, 또는 이들 분말을 주성분으로 하는 원료 분말을 이용함으로써, 일반적으로 프레스 성형에 의한 성형 공정 전에 행했던 가소 공정을 거치지 않고, 대기압 하에서는 6.9g/㎤ 이상의 고밀도를 갖는 IZO 스퍼터링 타겟용 소결체를 얻을 수 있다. 또한, 가압 하에서는 6.5g/㎤ 이상의 고밀도를 갖는 IZO 스퍼터링 타겟용 소결체를 얻을 수 있다. 얻어진 소결체를 절삭 가공하여 제조한 IZO 스퍼터링 타겟은, 고밀도이고, 또한 상기 타겟 표면에는 화이트 스폿(백색 반점 얼룩)이라고 불리는 결함이 존재하지 않는 우수한 특성을 갖는다. 본 발명의 제조방법은, IZO 스퍼터링 타겟의 특성을 유지하면서, 공정을 삭감함으로써 생산성의 향상 및 제조 비용의 저감을 꾀하는 것이다.Thus, by using the indium oxide powder and zinc oxide powder which have a specific characteristic, or the raw material powder which has these powder as a main component, generally it does not go through the calcination process performed before the shaping | molding process by press molding, and it is 6.9g / under atmospheric pressure. A sintered compact for IZO sputtering targets having a high density of cm 3 or more can be obtained. Furthermore, under pressure, a sintered compact for IZO sputtering targets having a high density of 6.5 g / cm 3 or more can be obtained. The IZO sputtering target manufactured by cutting the obtained sintered compact is high density, and has the outstanding characteristic that the defect called a white spot (white spot unevenness) does not exist in the said target surface. The manufacturing method of this invention aims at the improvement of productivity and reduction of a manufacturing cost by reducing a process, maintaining the characteristic of an IZO sputtering target.

본 발명의 제조방법에 의해 얻어진 IZO 스퍼터링 타겟은, 상기와 같은 특성을 가짐으로써, 스퍼터링법에 의해 제막할 때에 타겟 표면에 노듈이라고 불리는 흑색 석출물(돌기물)의 발생을 억제한다. 따라서, 제막 속도의 저하를 초래하는 일이 없고, 이상 방전으로 비산한 노듈에 의한 투명 도전막에의 이물질 혼입을 일으키는 일도 없기 때문에, 안정된 스퍼터링을 가능하게 하고, 또한, 막 특성이 우수한 투명 전도막을 얻을 수 있다.The IZO sputtering target obtained by the manufacturing method of this invention suppresses generation | occurrence | production of black precipitate (projection) called a nodule on a target surface, when forming into a film by sputtering method by having the above characteristics. Therefore, since the film forming speed is not lowered and foreign matters are not mixed into the transparent conductive film by the nodules scattered by abnormal discharge, it is possible to provide a stable conductive sputtering and to provide a transparent conductive film with excellent film characteristics. You can get it.

이하, 본 발명을 실시예 및 비교예에 의해 더욱 상세히 설명하지만, 본 발명은 이들 실시예에 의해 조금도 한정되지 않는다.Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited at all by these Examples.

실시예 1Example 1

비표면적이 9㎡/g인 산화인듐 분말 90중량부와 비표면적이 12㎡/g인 산화아연 분말 10중량부를, 습식 비드밀을 이용하여 24시간 혼합 분쇄했다. 매체로는 1mmφ의 지르코니아 비드를 사용했다. 혼합 분쇄 후, 스프레이 건조기로 건조시켜 얻은 미분말을, 금형에 충전하여 콜드 프레스 및 냉간 등방압 프레스를 이용하여 1t/㎠로 프레스 성형했다. 얻어진 성형물을, 소성로에 장입하고, 산소 농도 25%의 산소 분위기 중 1350℃에서 4시간 소결했다. 얻어진 IZO 스퍼터링 타겟용 소결체는, 가소 공정이 없음에도 불구하고, 6.92g/㎤로 고밀도의 소결체였다. 90 parts by weight of indium oxide powder having a specific surface area of 9 m 2 / g and 10 parts by weight of zinc oxide powder having a specific surface area of 12 m 2 / g were mixed and ground for 24 hours using a wet bead mill. Zirconia beads of 1 mmφ were used as the medium. After mixing and pulverizing, the fine powder obtained by drying with a spray dryer was filled into a mold and press-molded at 1 t / cm 2 using a cold press and a cold isostatic press. The obtained molded product was charged to a calcination furnace and sintered at 1350 ° C. for 4 hours in an oxygen atmosphere having an oxygen concentration of 25%. The obtained IZO sputtering target sintered compact was a high density sintered compact at 6.92 g / cm <3>, although there was no calcination process.

실시예 2 Example 2

중앙 직경이 1.5㎛인 산화인듐 분말 90중량부와 중앙 직경이 0.1㎛인 산화아연 분말 10중량부를, 습식 비드밀을 이용하여 24시간 혼합 분쇄하여, 분쇄 후의 중앙 직경을 0.8㎛로 했다. 매체로는 1mmφ의 지르코니아 비드를 사용했다. 혼합 분쇄 후, 스프레이 건조기로 건조시켜 얻은 미분말을, 금형에 충전하여 콜드 프레스 및 냉간 등방압 프레스를 이용하여 1t/㎠로 프레스 성형했다. 얻어진 성형물을, 소성로에 장입하고, 산소 농도 30%의 산소 분위기 중 1280℃에서 4시간 소결했다. 얻어진 IZO 스퍼터링 타겟용 소결체는, 가소 공정이 없음에도 불구하고, 6.91g/㎤로 고밀도의 소결체였다.90 parts by weight of the indium oxide powder having a median diameter of 1.5 µm and 10 parts by weight of the zinc oxide powder having a median diameter of 0.1 µm were mixed and ground for 24 hours using a wet bead mill, and the median diameter after grinding was 0.8 µm. Zirconia beads of 1 mmφ were used as the medium. After mixing and pulverizing, the fine powder obtained by drying with a spray dryer was filled into a mold and press-molded at 1 t / cm 2 using a cold press and a cold isostatic press. The obtained molded product was charged to a kiln and sintered at 1280 ° C for 4 hours in an oxygen atmosphere having an oxygen concentration of 30%. The obtained IZO sputtering target sintered compact was a high density sintered compact at 6.91 g / cm <3>, although there was no calcination process.

실시예 3Example 3

비표면적이 9㎡/g인 산화인듐 분말 90중량부와 비표면적이 12㎡/g인 산화아연 분말 10중량부를, 습식 비드밀을 이용하여 24시간 혼합 분쇄했다. 매체로는 1mmφ의 지르코니아 비드를 사용했다. 혼합 분쇄 후, 스프레이 건조기로 건조시켜 얻은 미분말을, 금형에 충전하여 콜드 프레스 및 냉간 등방압 프레스를 이용하여 1t/㎠로 프레스 성형했다. 얻어진 성형물을, 소성로에 장입하고, 0.15MPa의 가압 하에 두고 산소 농도 25%의 산소 분위기 중 1230℃에서 24시간 소결했다. 얻어진 IZO 스퍼터링 타겟용 소결체는, 가소 공정이 없음에도 불구하고, 6.72g/㎤로 고밀도의 소결체였다.90 parts by weight of indium oxide powder having a specific surface area of 9 m 2 / g and 10 parts by weight of zinc oxide powder having a specific surface area of 12 m 2 / g were mixed and ground for 24 hours using a wet bead mill. Zirconia beads of 1 mmφ were used as the medium. After mixing and pulverizing, the fine powder obtained by drying with a spray dryer was filled into a mold and press-molded at 1 t / cm 2 using a cold press and a cold isostatic press. The obtained molded product was charged to a calcination furnace, and placed under pressure of 0.15 MPa and sintered at 1230 ° C. for 24 hours in an oxygen atmosphere having an oxygen concentration of 25%. The obtained IZO sputtering target sintered compact was a high density sintered compact at 6.72 g / cm <3>, although there was no calcination process.

실시예 4Example 4

중앙 직경이 1.5㎛인 산화인듐 분말 90중량부와 중앙 직경이 0.1㎛인 산화아연 분말 10중량부를, 습식 비드밀을 이용하여 24시간 혼합 분쇄하여, 분쇄 후의 중앙 직경을 0.8㎛로 했다. 매체로는 1mmφ의 지르코니아 비드를 사용했다. 혼합 분쇄 후, 스프레이 건조기로 건조시켜 얻은 미분말을, 금형에 충전하여 콜드 프레스 및 냉간 등방압 프레스를 이용하여 1t/㎠로 프레스 성형했다. 얻어진 성형물 을, 소성로에 장입하고, 0.12MPa의 가압 하에 두고 산소 농도 30%의 산소 분위기 중 1180℃에서 24시간 소결했다. 얻어진 IZO 스퍼터링 타겟용 소결체는, 가소 공정이 없음에도 불구하고, 6.65g/㎤로 고밀도의 소결체였다.90 parts by weight of the indium oxide powder having a median diameter of 1.5 µm and 10 parts by weight of the zinc oxide powder having a median diameter of 0.1 µm were mixed and ground for 24 hours using a wet bead mill, and the median diameter after grinding was 0.8 µm. Zirconia beads of 1 mmφ were used as the medium. After mixing and pulverizing, the fine powder obtained by drying with a spray dryer was filled into a mold and press-molded at 1 t / cm 2 using a cold press and a cold isostatic press. The obtained molded product was charged to a sintering furnace and placed under pressure of 0.12 MPa and sintered at 1180 ° C. for 24 hours in an oxygen atmosphere having an oxygen concentration of 30%. The obtained sinter for IZO sputtering target was a high density sintered compact at 6.65 g / cm <3>, although there was no calcination process.

비교예 1Comparative Example 1

비표면적이 9㎡/g인 산화인듐 분말 90중량부와 비표면적이 3㎡/g인 산화아연 분말 10중량부를, 습식 비드밀을 이용하여 24시간 혼합 분쇄했다. 매체로는 1mmφ의 지르코니아 비드를 사용했다. 혼합 분쇄 후, 스프레이 건조기로 건조시켜 얻은 미분말을, 금형에 충전하여 콜드 프레스 및 냉간 등방압 프레스를 이용하여 1t/㎠로 프레스 성형했다. 얻어진 성형물을, 소성로에 장입하고, 산소 농도 25%의 산소 분위기 중 1400℃에서 4시간 소결했다. 얻어진 IZO 스퍼터링 타겟용 소결체의 밀도는 6.10g/㎤로 낮은 것이었다.90 parts by weight of indium oxide powder having a specific surface area of 9 m 2 / g and 10 parts by weight of zinc oxide powder having a specific surface area of 3 m 2 / g were mixed and ground for 24 hours using a wet bead mill. Zirconia beads of 1 mmφ were used as the medium. After mixing and pulverizing, the fine powder obtained by drying with a spray dryer was filled into a mold and press-molded at 1 t / cm 2 using a cold press and a cold isostatic press. The obtained molded product was charged into a calcination furnace and sintered at 1400 ° C. for 4 hours in an oxygen atmosphere having an oxygen concentration of 25%. The density of the sintered compact for IZO sputtering targets obtained was as low as 6.10 g / cm <3>.

비교예 2Comparative Example 2

중앙 직경이 1.5㎛인 산화인듐 분말 90중량부와 중앙 직경이 1.0㎛인 산화아연 분말 10중량부를, 습식 비드밀을 이용하여 24시간 혼합 분쇄하여, 분쇄 후의 중앙 직경을 1.2㎛로 했다. 매체로는 1mmφ의 지르코니아 비드를 사용했다. 혼합 분쇄 후, 스프레이 건조기로 건조시켜 얻은 미분말을, 금형에 충전하여 콜드 프레스 및 냉간 등방압 프레스를 이용하여 1t/㎠로 프레스 성형했다. 얻어진 성형물을, 소성로에 장입하고, 산소 농도 25%의 산소 분위기 중 1400℃에서 10시간 소결했다. 얻어진 IZO 스퍼터링 타겟용 소결체의 밀도는 6.00g/㎤로 낮은 것이었다.90 parts by weight of the indium oxide powder having a median diameter of 1.5 µm and 10 parts by weight of the zinc oxide powder having a median diameter of 1.0 µm were mixed and ground for 24 hours using a wet bead mill, and the median diameter after grinding was 1.2 µm. Zirconia beads of 1 mmφ were used as the medium. After mixing and pulverizing, the fine powder obtained by drying with a spray dryer was filled into a mold and press-molded at 1 t / cm 2 using a cold press and a cold isostatic press. The obtained molded product was charged into a calcination furnace and sintered at 1400 ° C. for 10 hours in an oxygen atmosphere having an oxygen concentration of 25%. The density of the obtained IZO sputtering target sintered compact was as low as 6.00 g / cm <3>.

비교예 3Comparative Example 3

비교예 1 및 비교예 2에 있어서, 혼합 분쇄 후, 또한 프레스 성형 전에, 공기 분위기 중 1200℃에서 가소를 2시간 행하고, 얻어진 가소 분말을 습식 비드밀을 이용하여 분쇄하는 것을 제외하고는, 비교예 1 및 비교예 2와 같이 하여 IZO 스퍼터링 타겟용 소결체를 얻었다. 얻어진 소결체의 밀도는, 비교예 1 및 2에 비하여 각각 6.73g/㎤, 6.73g/㎤로 높아졌다. 상기 밀도의 상승은 가소를 행한 것에 의한 것이지만, 그래도 실시예 1 및 실시예 2의 밀도에는 미치지 못하였을 뿐 아니라, 가소 공정 및 분쇄 공정이 추가됨으로써 생산성이 저하되었다.Comparative Examples 1 and 2, except that after calcining and before press molding, calcining was carried out at 1200 ° C. for 2 hours in an air atmosphere, and the resulting calcined powder was ground using a wet bead mill. A sintered compact for IZO sputtering targets was obtained in the same manner as in 1 and Comparative Example 2. The density of the obtained sintered compact was increased to 6.73 g / cm <3> and 6.73 g / cm <3>, respectively, compared with the comparative examples 1 and 2. As shown in FIG. The increase in density was caused by calcination, but still not the density of Examples 1 and 2, and the productivity was lowered by the addition of the calcination step and the grinding step.

비교예 4Comparative Example 4

비표면적이 9㎡/g인 산화인듐 분말 90중량부와 비표면적이 3㎡/g인 산화아연 분말 10중량부를, 습식 비드밀을 이용하여 24시간 혼합 분쇄했다. 매체로는 1mmφ의 지르코니아 비드를 사용했다. 혼합 분쇄 후, 스프레이 건조기로 건조시켜 얻은 미분말을, 금형에 충전하여 콜드 프레스 및 냉간 등방압 프레스를 이용하여 1t/㎠로 프레스 성형했다. 얻어진 성형물을, 소성로에 장입하고, 공기 분위기 중에서 1400℃, 대기압으로 24시간 소결했다. 얻어진 IZO 스퍼터링 타겟용 소결체의 밀도는 6.10g/㎤로 낮은 것이었다.90 parts by weight of indium oxide powder having a specific surface area of 9 m 2 / g and 10 parts by weight of zinc oxide powder having a specific surface area of 3 m 2 / g were mixed and ground for 24 hours using a wet bead mill. Zirconia beads of 1 mmφ were used as the medium. After mixing and pulverizing, the fine powder obtained by drying with a spray dryer was filled into a mold and press-molded at 1 t / cm 2 using a cold press and a cold isostatic press. The obtained molded product was charged to a baking furnace and sintered at 1400 degreeC and atmospheric pressure for 24 hours in air atmosphere. The density of the sintered compact for IZO sputtering targets obtained was as low as 6.10 g / cm <3>.

비교예 5 Comparative Example 5

중앙 직경이 1.5㎛인 산화인듐 분말 90중량부와 중앙 직경이 1.0㎛인 산화아연 분말 10중량부를, 습식 비드밀을 이용하여 24시간 혼합 분쇄하여, 분쇄 후의 중앙 직경을 1.2㎛로 했다. 매체로는 1mmφ의 지르코니아 비드를 사용했다. 혼합 분쇄 후, 스프레이 건조기로 건조시켜 얻은 미분말을, 금형에 충전하여 콜드 프레 스 및 냉간 등방압 프레스를 이용하여 1t/㎠로 프레스 성형했다. 얻어진 성형물을, 소성로에 장입하고, 공기 분위기 중에서 1200℃, 대기압으로 24시간 소결했다. 얻어진 IZO 스퍼터링 타겟용 소결체의 밀도는 6.00g/㎤로 낮은 것이었다.90 parts by weight of the indium oxide powder having a median diameter of 1.5 µm and 10 parts by weight of the zinc oxide powder having a median diameter of 1.0 µm were mixed and ground for 24 hours using a wet bead mill, and the median diameter after grinding was 1.2 µm. Zirconia beads of 1 mmφ were used as the medium. After mixing and pulverizing, the fine powder obtained by drying with a spray dryer was filled into a mold and press-molded at 1 t / cm 2 using a cold press and a cold isostatic press. The obtained molded product was charged to a baking furnace and sintered at 1200 degreeC and atmospheric pressure for 24 hours in air atmosphere. The density of the obtained IZO sputtering target sintered compact was as low as 6.00 g / cm <3>.

비교예 6Comparative Example 6

비교예 4 및 비교예 5에 있어서, 혼합 분쇄 후, 또한 프레스 성형 전에, 공기 분위기 중 1200℃에서 가소를 2시간 행하고, 얻어진 가소 분말을 습식 비드밀을 이용하여 분쇄하는 것을 제외하고는, 비교예 1 및 비교예 2와 같이 하여 IZO 스퍼터링 타겟용 소결체를 얻었다. 얻어진 소결체의 밀도는, 비교예 4 및 5에 비하여 각각 6.73g/㎤, 6.73g/㎤로 높아졌다. 상기 밀도의 상승은 가소를 행한 것에 의한 것으로서, 실시예 3 및 실시예 4보다도 고밀도인 소결체를 얻을 수 있었지만, 가소 공정 및 분쇄 공정이 추가됨으로써 생산성은 저하되었다.Comparative Examples 4 and 5, except that after calcining and before press molding, calcining was performed at 1200 ° C. for 2 hours in an air atmosphere, and the resulting calcined powder was ground using a wet bead mill. A sintered compact for IZO sputtering targets was obtained in the same manner as in 1 and Comparative Example 2. The density of the obtained sintered compact was increased to 6.73 g / cm <3> and 6.73 g / cm <3>, respectively, compared with the comparative examples 4 and 5. As shown in FIG. The increase in density was caused by sintering, whereby a sintered body having a higher density than those in Examples 3 and 4 was obtained, but the productivity was lowered by the addition of the sintering step and the grinding step.

본 발명의 IZO 스퍼터링 타겟의 제조는, IZO 스퍼터링 타겟으로서의 특성을 유지하면서, 공정을 삭감함으로써 생산성을 향상시키고 제조 비용을 저감할 수 있다. 또한, 소결 온도를 낮게 함으로써 생산성을 향상시키고 제조 비용을 저감할 수 있다.Production of the IZO sputtering target of this invention can improve productivity and reduce manufacturing cost by reducing a process, maintaining the characteristic as an IZO sputtering target. In addition, by lowering the sintering temperature, productivity can be improved and manufacturing costs can be reduced.

Claims (4)

산화인듐 분말과 산화아연 분말을, 또는 이들 분말을 주성분으로 하는 원료 분말을 혼합 분쇄하여 미분말을 얻는 혼합 분쇄 공정, 상기 미분말을 성형하여 성형물을 얻는 성형 공정, 및 상기 성형물을 산소 분위기 중 1250 내지 1450℃에서, 또는 상기 성형물을 가압 하, 산소 분위기 중 1100 내지 1250℃에서 소결하여 소결체를 얻는 소결 공정을 포함하는 것을 특징으로 하는 IZO 스퍼터링 타겟의 제조방법으로서, 상기 산화인듐 분말의 비표면적이 8 내지 10㎡/g이고, 상기 산화아연 분말의 비표면적이 10㎡/g 이상인 IZO 스퍼터링 타겟의 제조방법.A mixed grinding step of mixing and grinding an indium oxide powder and a zinc oxide powder or a raw material powder containing these powders as a main component to obtain fine powder, a molding step of molding the fine powder to obtain a molded product, and the molded product in an oxygen atmosphere of 1250 to 1450. A method for producing an IZO sputtering target, comprising a sintering step of obtaining a sintered body by sintering at 1 ° C. or at 1100 to 1250 ° C. in an oxygen atmosphere under pressurization of the molded product. The manufacturing method of the IZO sputtering target which is 10 m <2> / g and the specific surface area of the said zinc oxide powder is 10 m <2> / g or more. 산화인듐 분말과 산화아연 분말을, 또는 이들 분말을 주성분으로 하는 원료 분말을 혼합 분쇄하여 미분말를 얻는 혼합 분쇄 공정, 상기 미분말을 성형하여 성형물을 얻는 성형 공정, 및 상기 성형물을 산소 분위기 중 1250 내지 1450℃에서, 또는 상기 성형물을 가압 하, 산소 분위기 중 1100 내지 1250℃에서 소결하여 소결체를 얻는 소결 공정을 포함하는 것을 특징으로 하는 IZO 스퍼터링 타겟의 제조방법으로서, 상기 산화인듐 분말의 입도 분포의 중앙 직경이 1 내지 2㎛이고, 상기 산화아연 분말의 입도 분포의 중앙 직경이 65nm 내지 0.2㎛이며, 상기 혼합 분쇄 공정 후의 평균 중앙 직경이 0.5 내지 1㎛인 IZO 스퍼터링 타겟의 제조방법.A mixed grinding step of mixing and grinding an indium oxide powder and a zinc oxide powder or a raw material powder containing these powders as a main component to obtain a fine powder, a molding step of molding the fine powder to obtain a molded product, and the molded product in an oxygen atmosphere at 1250 to 1450 ° C. Or a sintering step of obtaining a sintered body by sintering at 1100 to 1250 ° C. in an oxygen atmosphere under pressurization of the molding, wherein the median diameter of the particle size distribution of the indium oxide powder is A method for producing an IZO sputtering target having a thickness of 1 to 2 µm, a median diameter of the particle size distribution of the zinc oxide powder is 65 nm to 0.2 µm, and an average median diameter after the mixed grinding step. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 성형 공정 전에, 가소하지 않는 것을 특징으로 하는 IZO 스퍼터링 타겟의 제조방법.A method for producing an IZO sputtering target, characterized in that it is not calcined before the forming step. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 소결체의 밀도가 6.5g/㎤ 이상인 것을 특징으로 하는 IZO 스퍼터링 타겟의 제조방법.The density of the said sintered compact is 6.5 g / cm <3> or more, The manufacturing method of the IZO sputtering target characterized by the above-mentioned.
KR1020077030586A 2005-07-01 2006-06-27 Process for producing izo sputtering target KR101317080B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005193505A JP4755453B2 (en) 2005-07-01 2005-07-01 Manufacturing method of IZO sputtering target
JP2005193504A JP4758697B2 (en) 2005-07-01 2005-07-01 Manufacturing method of IZO sputtering target
JPJP-P-2005-00193505 2005-07-01
JPJP-P-2005-00193504 2005-07-01
PCT/JP2006/312825 WO2007004473A1 (en) 2005-07-01 2006-06-27 Process for producing izo sputtering target

Publications (2)

Publication Number Publication Date
KR20080031873A true KR20080031873A (en) 2008-04-11
KR101317080B1 KR101317080B1 (en) 2013-10-11

Family

ID=37604342

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077030586A KR101317080B1 (en) 2005-07-01 2006-06-27 Process for producing izo sputtering target

Country Status (4)

Country Link
KR (1) KR101317080B1 (en)
CN (1) CN104710163A (en)
TW (1) TWI422699B (en)
WO (1) WO2007004473A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101434318B1 (en) * 2013-01-22 2014-08-29 국립대학법인 울산과학기술대학교 산학협력단 Method for manufacturing of nitride-based led

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102367568B (en) * 2011-10-20 2014-04-23 宁波江丰电子材料有限公司 Preparation method of high-purity tantalum target material
JP6078189B1 (en) * 2016-03-31 2017-02-08 Jx金属株式会社 IZO sintered compact sputtering target and manufacturing method thereof
CN113149612A (en) * 2021-05-17 2021-07-23 先导薄膜材料(广东)有限公司 Method for recycling IZO target material
CN113402261B (en) * 2021-06-04 2022-06-21 长沙壹纳光电材料有限公司 IZO target precursor and preparation method and application thereof
CN115745573A (en) * 2022-10-31 2023-03-07 芜湖映日科技股份有限公司 Preparation method of fine-grain IZO target material
CN116768604A (en) * 2023-06-16 2023-09-19 芜湖映日科技股份有限公司 Preparation method of high-density IZTO target

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570943A (en) * 1991-09-11 1993-03-23 Mitsubishi Materials Corp High density sintered target material for forming electric conductive transparent thin film by sputtering
JP3746094B2 (en) * 1995-06-28 2006-02-15 出光興産株式会社 Target and manufacturing method thereof
EP2610229A3 (en) * 1998-08-31 2015-02-18 Idemitsu Kosan Co., Ltd. Transparent electroconductive glass coated with transparent electroconductive film containing IZTO
KR100603128B1 (en) * 1999-05-10 2006-07-20 닛코킨조쿠 가부시키가이샤 Sputtering target
JP3628566B2 (en) * 1999-11-09 2005-03-16 株式会社日鉱マテリアルズ Sputtering target and manufacturing method thereof
JP3915965B2 (en) * 2001-05-30 2007-05-16 日鉱金属株式会社 Manufacturing method of IZO sputtering target
CN1320155C (en) * 2001-06-26 2007-06-06 三井金属矿业株式会社 Sputtering target for high resistance transparent conductive membrane and mfg. method of high resistance transparent conductive membrane
ES2383352T3 (en) * 2001-07-17 2012-06-20 Idemitsu Kosan Co., Ltd. Cathodic spray target for the deposition of a transparent conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101434318B1 (en) * 2013-01-22 2014-08-29 국립대학법인 울산과학기술대학교 산학협력단 Method for manufacturing of nitride-based led

Also Published As

Publication number Publication date
CN104710163A (en) 2015-06-17
TWI422699B (en) 2014-01-11
KR101317080B1 (en) 2013-10-11
WO2007004473A1 (en) 2007-01-11
TW200714726A (en) 2007-04-16

Similar Documents

Publication Publication Date Title
JP4324470B2 (en) Sputtering target, transparent conductive film and method for producing them
KR101317080B1 (en) Process for producing izo sputtering target
TWI433823B (en) Composite oxide sinter, method for producing composite oxide sinter, method for producing sputtering target and thin film
KR102322184B1 (en) Indium zinc oxide (izo) based sputtering target, and method for producing same
KR20090091755A (en) Sputtering target and oxide semiconductor film
KR102045661B1 (en) Izo sintered compact sputtering target and method for producing same
JP4758697B2 (en) Manufacturing method of IZO sputtering target
KR101859787B1 (en) Sintered composite oxide, manufacturing method therefor, sputtering target, transparent conductive oxide film, and manufacturing method therefor
JPWO2007034749A1 (en) Oxide material and sputtering target
KR20180093140A (en) Ito sputtering target and method for manufacturing same, ito transparent electroconductive film, and method for manufacturing ito transparent electroconductive film
JP6500446B2 (en) Oxide sintered body and oxide transparent conductive film
JP5472655B2 (en) Vapor deposition tablet and manufacturing method thereof
KR102115629B1 (en) Composite oxide sintered body and transparent conductive oxide film
JP6287327B2 (en) Oxide sintered body and oxide transparent conductive film
JP4755453B2 (en) Manufacturing method of IZO sputtering target
JP2005126766A (en) Indium-oxide-based target and manufacturing method therefor
JP6155919B2 (en) Composite oxide sintered body and oxide transparent conductive film
JPH09111444A (en) Production of indium oxide-zinc oxide based sintered body target
JPWO2019187269A1 (en) Oxide sintered body, sputtering target and transparent conductive film
KR102188415B1 (en) Sputtering target
JP5890671B2 (en) Manufacturing method of ITO sputtering target

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee