JP5890671B2 - Manufacturing method of ITO sputtering target - Google Patents

Manufacturing method of ITO sputtering target Download PDF

Info

Publication number
JP5890671B2
JP5890671B2 JP2011266411A JP2011266411A JP5890671B2 JP 5890671 B2 JP5890671 B2 JP 5890671B2 JP 2011266411 A JP2011266411 A JP 2011266411A JP 2011266411 A JP2011266411 A JP 2011266411A JP 5890671 B2 JP5890671 B2 JP 5890671B2
Authority
JP
Japan
Prior art keywords
target
ito
surface area
sno
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011266411A
Other languages
Japanese (ja)
Other versions
JP2013119628A (en
Inventor
洋平 山口
洋平 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011266411A priority Critical patent/JP5890671B2/en
Publication of JP2013119628A publication Critical patent/JP2013119628A/en
Application granted granted Critical
Publication of JP5890671B2 publication Critical patent/JP5890671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ITO膜形成に好適なITOスパッタリングターゲットに関する。特には、SnO濃度が高いITOスパッタリングターゲット及びその製造方法に関する。 The present invention relates to an ITO sputtering target suitable for forming an ITO film. In particular, the present invention relates to an ITO sputtering target having a high SnO 2 concentration and a method for producing the same.

ITO(インジウム−錫の複合酸化物)膜は、液晶ディスプレーを中心とする表示デバイスにおける透明電極(導電膜)として、広く使用されている。このITO膜を形成する方法として、真空蒸着法やスパッタリング法など、一般に物理蒸着法と言われている手段によって行われている。特に操作性や被膜の安定性からマグネトロンスパッタリング法を用いて形成することが多い。 An ITO (indium-tin composite oxide) film is widely used as a transparent electrode (conductive film) in a display device centering on a liquid crystal display. As a method for forming the ITO film, a method generally called physical vapor deposition such as vacuum vapor deposition or sputtering is used. In particular, the magnetron sputtering method is often used because of operability and coating stability.

スパッタリング法による膜の形成は、陰極に設置したターゲットにArイオンなどの陽イオンを物理的に衝突させ、その衝突エネルギーによってターゲットを構成する材料を放出させて、対面している陽極側の基板にターゲット材料とほぼ同組成の膜を積層することによって行われる。スパッタリング法による被覆法は、処理時間や供給電力等を調整することによって、安定した成膜速度で数nmの薄い膜から数十μmの厚い膜まで形成することができるという特徴を有している。   A film is formed by sputtering, in which a cation such as Ar ions is physically collided with a target placed on a cathode, and the material constituting the target is released by the collision energy, so that a substrate on the anode side facing the target is released. This is done by stacking films having the same composition as the target material. The coating method by sputtering has a feature that it can be formed from a thin film of several nm to a thick film of several tens of μm at a stable film formation speed by adjusting processing time, supply power and the like. .

近年、抵抗膜式タッチパネルなどに用いられる高抵抗のITO膜の需要があり、従来から広く用いられている5〜10wt%程度の酸化錫を含有するITOスパッタリングターゲットよりも多くの酸化錫を含有するターゲットの開発が行われている。例えば、特許文献1には、20〜50wt%の酸化錫を含有する酸化インジウムとの混合粉末をプレス成型し、この成形体を純酸素雰囲気中、温度1500〜1650℃、圧力0.15〜1MPaで加圧焼結してITOスパッタリングターゲットを製造することが開示されている。しかし、このような加圧焼結では、製造コストが極めて高く、製造できる形状ならびに大きさが限定されているなど、製品の大型化が進むITOターゲットの量産には適していない。   In recent years, there has been a demand for high-resistance ITO films used for resistive film type touch panels and the like, and contains more tin oxide than ITO sputtering targets containing about 5 to 10 wt% tin oxide which has been widely used conventionally. Target development is underway. For example, in Patent Document 1, a mixed powder with indium oxide containing 20 to 50 wt% of tin oxide is press-molded, and the compact is subjected to a temperature of 1500 to 1650 ° C. and a pressure of 0.15 to 1 MPa in a pure oxygen atmosphere. Manufacturing an ITO sputtering target by pressure sintering. However, such pressure sintering is not suitable for mass production of ITO targets whose products are becoming larger because the manufacturing cost is extremely high and the shape and size that can be manufactured are limited.

ターゲット密度を上げる対策として、例えば、特許文献2には、粒度分布から求めたメジアン径が0.40(0.40を除く)〜1.0μmの範囲にあり、かつ粒度分布から求めた90%粒径が3.0μm以下の範囲にある酸化錫粉末を用いて形成したITOターゲットが記載されている。しかし、このような酸化錫粉末を使用して、従来よりも多くの酸化錫を含有するITOターゲットを製造した場合は、焼結体内部にマクロポア及びマイクロクラックが発生して、焼結体の加工中や加工終了後の保管中に、割れやひびが発生することがあった。そして、それらはターゲットとしての製品の出荷に影響を及ぼすことがあった。   As a measure for increasing the target density, for example, in Patent Document 2, the median diameter obtained from the particle size distribution is in the range of 0.40 (excluding 0.40) to 1.0 μm, and 90% obtained from the particle size distribution. An ITO target formed using a tin oxide powder having a particle size in the range of 3.0 μm or less is described. However, when an ITO target containing a larger amount of tin oxide than before is produced using such tin oxide powder, macropores and microcracks are generated inside the sintered body, and the sintered body is processed. Cracks and cracks may occur during storage after storage or after processing. And they may affect the shipment of the product as a target.

以上のことから、SnO濃度の高いITO薄膜形成するための、高密度かつ不純物のコンタミの少ないターゲットを量産的かつ安定的に製造する最適な製法は確立されていない。 From the above, an optimal manufacturing method for mass-producing and stably producing a target with high density and low impurity contamination for forming an ITO thin film with a high SnO 2 concentration has not been established.

特開2003−27223号公報JP 2003-27223 A 特開2009−29706号公報JP 2009-29706 A

本発明は、SnO濃度が高いITOスパッタリングターゲットにおいて、製造時微粉砕条件を最適化することで、ITOターゲット密度を高めつつ、ジルコニウム不純物の混入を抑制でき、焼結中や焼結後の保管中に発生する焼結体の割れやひびを抑制することによりITOターゲットの生産性や信頼性を向上することを課題とする。 The present invention is an ITO sputtering target having a high SnO 2 concentration. By optimizing the fine pulverization conditions during production, it is possible to suppress the mixing of zirconium impurities while increasing the ITO target density, and during and after sintering. It is an object to improve the productivity and reliability of an ITO target by suppressing cracks and cracks in the sintered body generated therein.

上記の課題を解決するために、本発明は、以下の発明を提供するものである。
1)SnO20〜45wt%を含有し、残部がIn及び不可避的不純物であって、焼結密度が7.10g/cm以上であることを特徴とするITOスパッタリングターゲット、
2)不可避的不純物であるジルコニウムの濃度が500wtppm以下であることを特徴とする上記1に記載のITOスパッタリングターゲット、
3)マクロポア密度が1500個/mm以下であることを特徴とする上記1又は2に記載のITOスパッタリングターゲット、
4)比表面積4.0〜5.7m/gのSnO粉スラリーを微粉砕して比表面積を1.9〜2.4m/g増加させ、次に、このSnO粉スラリーと比表面積5.0〜7.5m/gのIn粉スラリーとを混合し、次に、得られた混合スラリーを微粉砕して比表面積を2.0〜3.0m/g増加させ、次に、得られた粉砕スラリーにバインダーを加えた後、造粒・乾燥させ、次に、これを成形し、焼結することを特徴とするITOスパッタリングターゲットの製造方法、を提供する。
In order to solve the above-described problems, the present invention provides the following inventions.
1) An ITO sputtering target containing SnO 2 20 to 45 wt%, the balance being In 2 O 3 and inevitable impurities, and a sintered density of 7.10 g / cm 3 or more,
2) The ITO sputtering target according to 1 above, wherein the concentration of zirconium, which is an unavoidable impurity, is 500 wtppm or less,
3) The ITO sputtering target according to the above 1 or 2, wherein the macropore density is 1500 / mm 2 or less,
4) The finely pulverized to a specific surface area of the SnO 2 powder slurry having a specific surface area 4.0~5.7m 2 / g was increased 1.9~2.4m 2 / g, then the SnO 2 powder slurry and the ratio mixing the in 2 O 3 powder slurry of surface area 5.0~7.5m 2 / g, then the resulting mixture slurry specific surface area by finely pulverizing 2.0~3.0m 2 / g increase Then, after adding a binder to the obtained pulverized slurry, granulation and drying are performed, and then, this is molded and sintered, and a method for producing an ITO sputtering target is provided.

本発明のSnO濃度が高いITOスパッタリングターゲットは、製造時の微粉砕条件を強化することで、ITOターゲット密度を高めつつ、ジルコニウム不純物の混入を抑制できるので、焼結中や焼結後の保管中に発生する焼結体の割れやひびを抑制することができる。これによりITOターゲットの生産性や信頼性を向上することができるという優れた効果を有する。 The ITO sputtering target having a high SnO 2 concentration according to the present invention can suppress mixing of zirconium impurities while increasing the ITO target density by strengthening the fine grinding conditions at the time of manufacture, so that it can be stored during and after sintering. It is possible to suppress cracks and cracks in the sintered body generated inside. Thereby, it has the outstanding effect that productivity and reliability of an ITO target can be improved.

実施例1のスパッタリングターゲットの表面を電子顕微鏡で観察したときの組織画像である。It is a structure | tissue image when the surface of the sputtering target of Example 1 is observed with an electron microscope. 比較例1のスパッタリングターゲットの表面を電子顕微鏡で観察したときの組織画像である。It is a structure | tissue image when the surface of the sputtering target of the comparative example 1 is observed with an electron microscope.

本発明において、ITOスパッタリングターゲットの組成は、SnO20〜45wt%を含有し、残部がIn及び不可避的不純物とする。このようなターゲットを使用することにより、抵抗膜式タッチパネルなどに好適な、高い表面抵抗率を有する透明導電膜を得ることができる。 In the present invention, the composition of the ITO sputtering target contains SnO 2 20 to 45 wt%, and the balance is In 2 O 3 and inevitable impurities. By using such a target, it is possible to obtain a transparent conductive film having a high surface resistivity suitable for a resistive film type touch panel.

また、本発明において、ITOスパッタリングターゲットは、焼結密度が7.10g/cm以上と高いことが特徴である。これは従来の常圧焼結で得られていた密度5.5〜6.9g/cm程度のITOターゲットよりも高い密度を有するものであり、これによって、従来発生していた焼結体内部のマクロポアやマイクロクラックの発生を抑制でき、焼結体の加工中や加工終了後の保管中に発生していた焼結割れや放置割れを防止することが可能となった。
なお、特許文献1では、密度7.16g/cmを達成しているが、加圧焼結は製造コストが極めて高く量産に適していないため、本発明の対象外である。
In the present invention, the ITO sputtering target is characterized by a high sintering density of 7.10 g / cm 3 or more. This has a higher density than the ITO target having a density of about 5.5 to 6.9 g / cm 3 obtained by the conventional atmospheric pressure sintering. The generation of macropores and microcracks of the ceramics can be suppressed, and it is possible to prevent sintered cracks and neglected cracks that have occurred during the processing of the sintered body and during storage after the processing.
In Patent Document 1, a density of 7.16 g / cm 3 is achieved, but pressure sintering is not suitable for mass production because it is extremely expensive to manufacture and is not suitable for mass production.

また、本発明において、不可避的不純物であるジルコニウムの濃度を500wtppm以下とすることが好ましい。本発明は、焼結体の高密度化による焼結割れを防止することを目的として微粉砕条件の強化を実施しているが、この微粉砕の際に粉砕メディアとして使用するジルコニウムビーズは粉砕中に磨耗していき、その一部が原料粉末中に混入してしまう問題がある。このように、原料粉の微粒化は、焼結体の高密度化を可能とする一方で原料粉末の汚染の問題が発生するため、ジルコニウムのコンタミ量とのバランスをみながら微粉砕条件を決定することが重要である。 Moreover, in this invention, it is preferable that the density | concentration of the zirconium which is an unavoidable impurity shall be 500 wtppm or less. In the present invention, pulverization conditions are strengthened for the purpose of preventing sintering cracks due to densification of the sintered body, but the zirconium beads used as the pulverization media during pulverization are being pulverized. There is a problem that a part of the material powder is mixed into the raw material powder. In this way, the atomization of the raw material powder enables the density of the sintered body to be increased while the problem of contamination of the raw material powder occurs. Therefore, the fine pulverization conditions are determined in consideration of the amount of zirconium contamination. It is important to.

また、本発明において、マクロポア密度が1500個/mm以下であることが好ましい。マクロポアとは、焼結体中に存在する微小径の空孔で大きさが2〜20μmのポアである。このマクロポアを起点として、焼結体の割れやひびが発生するため、マクロポア数を少なくすることで、焼結体の割れ率を低減することができる。好ましくは、マクロポア密度1000個/mm以下とする。 In the present invention, the macropore density is preferably 1500 / mm 2 or less. The macropore is a pore having a small diameter existing in the sintered body and having a size of 2 to 20 μm. Since cracks and cracks occur in the sintered body starting from this macropore, the cracking rate of the sintered body can be reduced by reducing the number of macropores. Preferably, the macropore density is 1000 / mm 2 or less.

本発明のITOスパッタリングターゲットは次のような方法で製造することができる。まず、BET比表面積が4.0〜5.7m/gのSnO粉を純水と混合しスラリーを作製し、次に、作製したスラリーをビーズミルにてBET比表面積の増加分が1.9〜2.4m/gとなるように粉砕する。この時粉砕ビーズは耐摩耗性を考慮してジルコニアビーズ(YTZ)を使用するのが好ましい。
次に、BET比表面積が4.0〜6.0m/gのIn粉を純水と混合して作製したスラリーを比表面積が5.0〜7.5m2/gとなるように微粉砕を行った。得られたIn2O3スラリーと前記微粉砕をしたSnO2スラリーをSnO含有量が20〜45wt%となるような比率で混合する。
次に、作製したSnOとInとの混合スラリーをビーズミルにて粉砕し、BET比表面積を2.0〜3.0m/g増加させる。この時も同様にジルコニアビーズを使用するのが好ましい。
次に、この粉砕スラリーにバインダーを加えて、造粒・乾燥する。その後、この乾燥粉末を金型に充填した後、一定の圧力下で成形する。そして、この成形体を一定の温度下で常圧焼結することによって焼結体を得ることができる。
The ITO sputtering target of the present invention can be produced by the following method. First, SnO 2 powder having a BET specific surface area of 4.0 to 5.7 m 2 / g is mixed with pure water to prepare a slurry. Next, the increase in the BET specific surface area of the prepared slurry is 1. Grind to 9-2.4 m 2 / g. At this time, it is preferable to use zirconia beads (YTZ) as the ground beads in consideration of wear resistance.
Next, a slurry prepared by mixing In 2 O 3 powder having a BET specific surface area of 4.0 to 6.0 m 2 / g with pure water so that the specific surface area becomes 5.0 to 7.5 m 2 / g. Fine grinding was performed. The obtained In 2 O 3 slurry and the finely pulverized SnO 2 slurry are mixed at a ratio such that the SnO 2 content is 20 to 45 wt%.
Next, the prepared mixed slurry of SnO 2 and In 2 O 3 is pulverized by a bead mill, and the BET specific surface area is increased by 2.0 to 3.0 m 2 / g. It is preferable to use zirconia beads at this time as well.
Next, a binder is added to the pulverized slurry, and granulated and dried. Then, after filling this dry powder into a metal mold | die, it shape | molds under fixed pressure. And a sintered compact can be obtained by carrying out an atmospheric pressure sintering of this molded object under fixed temperature.

次に、実施例に基づいて本発明を説明する。以下に示す実施例は、理解を容易にするためのものであり、これらの実施例によって本発明を制限するものではない。すなわち、本発明の技術思想に基づく変形及び他の実施例は、当然本発明に含まれる。   Next, the present invention will be described based on examples. The following examples are for ease of understanding, and the present invention is not limited by these examples. That is, modifications and other embodiments based on the technical idea of the present invention are naturally included in the present invention.

(実施例及び比較例)
ITOスパッタリングターゲットの原料粉末として、BET比表面積が4.0〜5.7m/gのSnO粉とBET比表面積が4.0〜6.0m/gのIn粉を使用した。そして、これらの粉末をそれぞれ純水に混合し、SnO粉スラリーとIn粉スラリーを作製した。
次に、これらのスラリーを表1に記載されるBET比表面積の増加分が得られるまでビーズミルにて微粉砕した。粉砕ビーズは、ジルコニアビーズを使用した。このとき、実施例と比較例でSnO粉スラリーのBET比表面積の増加量を変化させた。
次に、SnO含有量が20〜45wt%となるような比率でこれらのスラリーを混合した後、この混合スラリーを表1に記載されるBET比表面積の増加分が得られるまでビーズミルにて微粉砕した。このとき、実施例と比較例で粉砕によるBET比表面積の増加量を変化させた。
次に、この粉砕スラリーにバインダーを加え、スプレードライヤーにて造粒・乾燥した。そして、この乾燥粉末を金型に充填した後、油圧プレスにて成形した後、さらに冷間等方静水圧にて成形し、成形体を得た。
次に、該成形体を焼結温度1560℃、20時間、酸素雰囲気で常圧焼結し、焼結体を得た。
次に、該焼結体の表面を平面研削盤でダイヤモンド砥石を用いて研削し、さらに側片をダイヤモンドカッターにより切断した。このターゲット切断ピースを銅製のバッキングプレートにメタルボンディングして、ターゲット表面を研磨仕上げしてITOスパッタリングターゲットとした。
表1に、実施例1〜3及び比較例1〜3の微粉砕条件で作製したターゲットの焼結体密度、ジルコニウム含有量を示す。
(Examples and Comparative Examples)
As raw material powder of ITO sputtering targets, BET specific surface area of SnO 2 powder and a BET specific surface area of 4.0~5.7m 2 / g was used In 2 O 3 powder 4.0~6.0m 2 / g . Then, they mixed these powders in pure water, respectively, to produce a SnO 2 powder slurry and the In 2 O 3 powder slurry.
Next, these slurries were pulverized with a bead mill until an increase in the BET specific surface area described in Table 1 was obtained. As the pulverized beads, zirconia beads were used. At this time, the amount of increase in the BET specific surface area of the SnO 2 powder slurry was changed between the example and the comparative example.
Next, after mixing these slurries at a ratio such that the SnO 2 content is 20 to 45 wt%, the mixed slurries are finely mixed in a bead mill until an increase in the BET specific surface area described in Table 1 is obtained. Crushed. At this time, the amount of increase in the BET specific surface area by pulverization was changed between the example and the comparative example.
Next, a binder was added to the pulverized slurry, and granulated and dried with a spray dryer. And after filling this dry powder into a metal mold | die, after shape | molding with a hydraulic press, it shape | molded by cold isostatic pressure further, and obtained the molded object.
Next, the compact was sintered under normal pressure in an oxygen atmosphere at a sintering temperature of 1560 ° C. for 20 hours to obtain a sintered body.
Next, the surface of the sintered body was ground with a surface grinder using a diamond grindstone, and the side pieces were cut with a diamond cutter. This target cut piece was metal bonded to a copper backing plate, and the target surface was polished to obtain an ITO sputtering target.
In Table 1, the sintered compact density and zirconium content of the target produced on the fine grinding | pulverization conditions of Examples 1-3 and Comparative Examples 1-3 are shown.

上記表1に示す通り、実施例1〜3では、SnO含有量が20〜45wt%といったSnO濃度が高いITOスパッタリングターゲットにおいても、SnO粉の微粉砕時のBET比表面積の増加量が1.9〜2.4m/gの範囲内にあり、かつ、混合粉の微粉砕時のBET比表面積の増加量が2.0〜3.0m/gの範囲内にあれば、焼結密度7.10g/cm以上と高密度のITOスパッタリングターゲットが得られた。一方、比較例1〜3では、SnO粉や混合粉の微粉砕時のBET比表面積の増加量が十分ではなく、密度7.10g/cm以上のITOスパッタリングターゲットを得ることはできなかった。また、実施例1〜3においても、ジルコニウム濃度を500wtppm以下と低く抑制することができた。 As shown in Table 1 above, in Examples 1 to 3, even in an ITO sputtering target having a high SnO 2 concentration such as a SnO 2 content of 20 to 45 wt%, the amount of increase in the BET specific surface area at the time of fine pulverization of SnO 2 powder is as follows. If it is in the range of 1.9 to 2.4 m 2 / g and the increase amount of the BET specific surface area when the mixed powder is pulverized is in the range of 2.0 to 3.0 m 2 / g, An ITO sputtering target having a high density of 7.10 g / cm 3 or more was obtained. On the other hand, in Comparative Examples 1 to 3, the amount of increase in the BET specific surface area when SnO 2 powder or mixed powder was finely pulverized was not sufficient, and an ITO sputtering target having a density of 7.10 g / cm 3 or more could not be obtained. . Moreover, also in Examples 1 to 3, the zirconium concentration could be suppressed to a low value of 500 wtppm or less.

実施例1〜3及び比較例1〜3で作製したターゲットを切り出し、電子顕微鏡で組織を観察し、ターゲットの内部に存在するマクロポアの単位面積あたりの個数(密度)を計測した。またこのとき、実施例1及び比較例1で作製したターゲットについては、その組織写真を撮影した。実施例1のターゲットの組織写真を図1に、比較例1のターゲットの組織写真を図2に示す。また、焼結中及び焼結完了後36時間保管中に発生した焼結体の割れ率(焼結体の割れ枚数/焼結体の総数)を評価した。表1に、実施例1〜3及び比較例1〜3の条件で作製したターゲットのマクロポア密度、焼結体の割れ率を示す。   The target produced in Examples 1-3 and Comparative Examples 1-3 was cut out, the structure | tissue was observed with the electron microscope, and the number (density) per unit area of the macropore which exists in the inside of a target was measured. At this time, with respect to the targets prepared in Example 1 and Comparative Example 1, the structure photographs were taken. The structure photograph of the target of Example 1 is shown in FIG. 1, and the structure photograph of the target of Comparative Example 1 is shown in FIG. Moreover, the cracking rate (the number of cracks of the sintered body / the total number of sintered bodies) of the sintered body that occurred during sintering and during storage for 36 hours after completion of sintering was evaluated. In Table 1, the macropore density of the target produced on the conditions of Examples 1-3 and Comparative Examples 1-3, and the crack rate of a sintered compact are shown.

図1、2に示す通り、実施例1で得られたターゲットは、比較例1で得られたターゲットに比べて、マクロポアの数が格段に少ないことが確認できた。また、表1に示す通り、実施例1〜3ではマクロポア密度がいずれも1500個/mm以下と、比較例1〜3に比べてマクロポアの発生量が少なく良好な結果が得られた。そして、比較例1〜3では焼結体の割れ率が0.75、1.00、1.00であったが、実施例1〜3では焼結体は観測中一枚も割れることはなく、良好な結果が得られた。 As shown in FIGS. 1 and 2, it was confirmed that the target obtained in Example 1 had a significantly smaller number of macropores than the target obtained in Comparative Example 1. Further, as shown in Table 1, in Examples 1 to 3, the macropore density was all 1500 / mm 2 or less, and the amount of generated macropores was small compared to Comparative Examples 1 to 3, and good results were obtained. In Comparative Examples 1 to 3, the cracking rate of the sintered body was 0.75, 1.00, and 1.00. In Examples 1 to 3, the sintered body was not cracked even during observation. Good results were obtained.

本発明は、SnO濃度が高いITOスパッタリングターゲットを提供するものであり、微粉砕条件を制御することで、ITOターゲット密度を高めつつ、ジルコニウム不純物の混入を抑制し、焼結中や焼結後の保管中に発生する焼結体の割れやひびを抑制して、ITOターゲットの生産性や信頼性を向上することができるという優れた効果を有する。本発明のITOスパッタリングターゲットは特にITO膜形成に有用である。 The present invention provides an ITO sputtering target having a high SnO 2 concentration. By controlling the pulverization conditions, the ITO target density is increased and the incorporation of zirconium impurities is suppressed, and during and after sintering. It has the outstanding effect that the crack and crack of the sintered compact which generate | occur | produce during storage of this can be suppressed, and the productivity and reliability of an ITO target can be improved. The ITO sputtering target of the present invention is particularly useful for forming an ITO film.

Claims (1)

比表面積が4.0〜5.7m/gのSnO粉スラリーを微粉砕して比表面積を1.9〜2.4m/g増加させ、次に、このSnO粉スラリーと比表面積が5.0〜7.0m/gのIn粉スラリーとを混合し、次に、得られた混合スラリーを微粉砕して比表面積を2.0〜3.0m/g増加させ、次に、得られた粉砕スラリーにバインダーを加えた後、造粒・乾燥させ、次に、これを成形し、常圧焼結することを特徴とするITOスパッタリングターゲットの製造方法。 A specific surface area of 4.0~5.7m 2 / g of specific surface area of the SnO 2 powder slurry is milled 1.9~2.4m 2 / g is increased, then the SnO 2 powder slurry and the specific surface area Is mixed with 5.0 to 7.0 m 2 / g of In 2 O 3 powder slurry, and then the obtained mixed slurry is pulverized to increase the specific surface area by 2.0 to 3.0 m 2 / g. is allowed, then, after adding a binder to the ground slurry obtained, then granulated and dried, then molding it, method of manufacturing ITO sputtering target characterized by normal pressure sintering.
JP2011266411A 2011-12-06 2011-12-06 Manufacturing method of ITO sputtering target Active JP5890671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011266411A JP5890671B2 (en) 2011-12-06 2011-12-06 Manufacturing method of ITO sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011266411A JP5890671B2 (en) 2011-12-06 2011-12-06 Manufacturing method of ITO sputtering target

Publications (2)

Publication Number Publication Date
JP2013119628A JP2013119628A (en) 2013-06-17
JP5890671B2 true JP5890671B2 (en) 2016-03-22

Family

ID=48772429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011266411A Active JP5890671B2 (en) 2011-12-06 2011-12-06 Manufacturing method of ITO sputtering target

Country Status (1)

Country Link
JP (1) JP5890671B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100537828C (en) * 2001-03-12 2009-09-09 日矿金属株式会社 The ITO sputtering target with stannic oxide powder, this manufacturing method of power, be used to form the manufacture method of sinter sputtering target and this target of ITO film
JP3988411B2 (en) * 2001-06-22 2007-10-10 住友金属鉱山株式会社 ITO sintered body, method for producing the same, and ITO sputtering target using the same

Also Published As

Publication number Publication date
JP2013119628A (en) 2013-06-17

Similar Documents

Publication Publication Date Title
KR101623735B1 (en) Zn-Sn-O TYPE OXIDE SINTERED BODY AND METHOD FOR PRODUCING SAME
JP6291593B2 (en) ITO sputtering target, manufacturing method thereof, and manufacturing method of ITO transparent conductive film
KR20140079384A (en) Zn-Si-O SYSTEM OXIDE SINTERED BODY, METHOD FOR PRODUCING SAME, AND TRANSPARENT CONDUCTIVE FILM
JP5987105B2 (en) ITO sputtering target and manufacturing method thereof
KR101317080B1 (en) Process for producing izo sputtering target
CN101198565A (en) Method for producing IZO sputtering target
JP5381724B2 (en) Method for producing ZnO vapor deposition material
JP6582698B2 (en) Oxide sintered body and sputtering target
JP5381725B2 (en) Method for producing ZnO vapor deposition material
WO2020044798A1 (en) Oxide sputtering target and production method for oxide sputtering target
JP5890671B2 (en) Manufacturing method of ITO sputtering target
JP6287327B2 (en) Oxide sintered body and oxide transparent conductive film
JP6885038B2 (en) Oxide sintered body, its manufacturing method and sputtering target
JP2005075648A (en) Method of manufacturing indium tin oxide sintered compact
JP2010133013A (en) METHOD OF PRODUCING ZnO VAPOR DEPOSITION MATERIAL
JP4075361B2 (en) Method for producing Mg-containing ITO sputtering target
JP4234483B2 (en) ITO sputtering target, manufacturing method thereof, and ITO transparent conductive film
JP6155919B2 (en) Composite oxide sintered body and oxide transparent conductive film
JPWO2019187269A1 (en) Oxide sintered body, sputtering target and transparent conductive film
JP5971201B2 (en) In-Ce-O-based sputtering target and method for producing the same
JP5115249B2 (en) Vapor deposition material and method for forming a vapor deposition film using the vapor deposition material
JP2004143484A (en) High concentration tin oxide ito target, and production method therefor
JP2007230853A (en) Ito powder, its production method and method for producing ito sputtering target
JP2013256425A (en) Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target
JP2013067538A (en) Oxide sintered body and oxide transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160219

R150 Certificate of patent or registration of utility model

Ref document number: 5890671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250