JP2013256425A - Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target - Google Patents

Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target Download PDF

Info

Publication number
JP2013256425A
JP2013256425A JP2012134616A JP2012134616A JP2013256425A JP 2013256425 A JP2013256425 A JP 2013256425A JP 2012134616 A JP2012134616 A JP 2012134616A JP 2012134616 A JP2012134616 A JP 2012134616A JP 2013256425 A JP2013256425 A JP 2013256425A
Authority
JP
Japan
Prior art keywords
tin oxide
powder
particle size
sputtering target
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012134616A
Other languages
Japanese (ja)
Inventor
Kotaro Shiraki
浩太郎 白木
Keiichi Sato
啓一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012134616A priority Critical patent/JP2013256425A/en
Publication of JP2013256425A publication Critical patent/JP2013256425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: an ITO sintered compact that is suitable for forming an ITO film and that excels in further high density and component uniformity; and a tin oxide powder and a mixed powder of the tin oxide powder and an indium oxide that are suitable for a raw material of the ITO sintered compact.SOLUTION: A tin oxide raw material powder is ground by a wet process bead mill until becoming such that D50 is in a range exceeding 0.4 μm and at most 1.1 μm, D90 is at most 2.5 μm, and a BET specific surface area is at least 13 m/g, and a mixed powder slurry that mixes an obtained tin oxide powder and an indium oxide powder is ground by a wet process bead mill until becoming such that D50 is in a range exceeding 0.4 μm and at most 0.5 μm, D90 is at least 1.0 μm, and a BET specific surface area is at least 12.3 m/g.

Description

本発明は、ITOスパッタリングターゲットの原材料の1つとしての酸化スズ粉末、および、該酸化スズ粉末を用いたITOスパッタリングターゲット用酸化スズおよび酸化インジウムの混合粉末の製造方法、さらには、該混合粉末を原材料として用いて得られ、加工によりITOスパッタリングターゲットとして使用されるITO焼結体に関する。   The present invention provides a tin oxide powder as one of raw materials for an ITO sputtering target, a method for producing a mixed powder of tin oxide and indium oxide for an ITO sputtering target using the tin oxide powder, and further, the mixed powder The present invention relates to an ITO sintered body obtained as a raw material and used as an ITO sputtering target by processing.

ITO(スズドープ酸化インジウム)膜は、高い導電性と高い可視光透過性を併せ持つため、太陽電池、液晶ディスプレイ、プラズマディスプレイ、タッチパネルなどの透明電極や、窓ガラス用結露防止発熱膜などのように、透明導電膜を必要とするさまざまな用途に広く用いられている。   ITO (tin-doped indium oxide) film has both high conductivity and high visible light transmission, so transparent electrodes such as solar cells, liquid crystal displays, plasma displays and touch panels, and anti-condensation heating films for window glass, Widely used in various applications that require transparent conductive films.

このようなITO膜を製造する方法として、スパッタリング法、真空蒸着法、ゾル・ゲル法、クラスタービーム蒸着法、PLD(パルスレーザ堆積)などの方法が挙げられるが、これらの中でも、マグネトロンスパッタリング法を含むスパッタリング法が、大面積基板上に低抵抗な膜を比較的低温で作製できるため、工業的に広く用いられている。   Examples of methods for producing such an ITO film include sputtering, vacuum deposition, sol-gel method, cluster beam deposition, and PLD (pulse laser deposition). Among these, magnetron sputtering is used. The sputtering method including it is widely used industrially because a low-resistance film can be formed on a large-area substrate at a relatively low temperature.

スパッタリング法による膜の形成は、陰極に設置したスパッタリングターゲット(以下、「ターゲット」と称する)にArイオンなどの正イオンを物理的に衝突させ、その衝突エネルギで、ターゲットを構成する材料を放出させて、対面している陽極側の基板に、ターゲット材料とほぼ同組成の膜を積層することによって行われる。   A film is formed by a sputtering method in which positive ions such as Ar ions are physically collided with a sputtering target (hereinafter referred to as “target”) installed on a cathode, and the material constituting the target is released by the collision energy. Then, a film having substantially the same composition as that of the target material is laminated on the substrate on the anode side facing each other.

スパッタリング法による被覆法は、処理時間や供給電力などを調節することによって、安定した成膜速度で、数十nmの薄い膜から数十μmの厚い膜まで形成できるという特徴を有している。   The coating method by sputtering has a feature that it can be formed from a thin film of several tens of nm to a thick film of several tens of μm at a stable film formation rate by adjusting processing time, supply power, and the like.

ITO膜を形成する場合に、特に問題となるのは、ITOターゲットのエロージョン部やその周辺にノジュールと呼ばれる異常突起物が発生することである。このノジュールが発生すると、スパッタリングレートの低下や異常放電(マイクロアーキング)を引き起こし、著しく生産性を低下させてしまう。   When forming an ITO film, a particular problem is that abnormal protrusions called nodules are generated in the erosion portion of the ITO target or in the vicinity thereof. When this nodule is generated, the sputtering rate is lowered and abnormal discharge (micro arcing) is caused, and the productivity is remarkably lowered.

また、ノジュールや異常放電に起因して、スパッタリングチャンバ内に、粗大化した粒子(パーティクル)が浮遊するようになり、これが生成した薄膜に再付着して、薄膜の欠陥(ピンホール)や突起物の原因となり、膜の品質を低下させるという問題が発生する。   Also, due to nodules and abnormal discharge, coarse particles (particles) float in the sputtering chamber, and they reattach to the generated thin film, resulting in thin film defects (pinholes) and protrusions. This causes a problem of deteriorating the quality of the film.

ノジュールの発生を抑える対策としては、一般的にターゲットの密度を上げ、ターゲット中の空孔を減少させることが知られている。ターゲットの密度向上には、焼結体の原料粉末となる酸化インジウム粉末と酸化スズ粉末を微細化し、それぞれの分散性を上げることにより、ターゲット中の組成のばらつきを減少させることが効果的である。これは、酸化スズが絶縁性であるため、酸化スズ粉末の分散性が悪いと、成膜時にターゲット表面にノジュールとして出現し、膜組成が不均一になる要因となるからである。   As a measure for suppressing the generation of nodules, it is generally known to increase the density of the target and reduce the vacancies in the target. In order to improve the density of the target, it is effective to reduce the dispersion of the composition in the target by miniaturizing the indium oxide powder and tin oxide powder that are the raw material powder of the sintered body and increasing the dispersibility of each. . This is because tin oxide is insulative, so if the dispersibility of the tin oxide powder is poor, it appears as nodules on the target surface during film formation, which causes the film composition to become non-uniform.

また、原料粉末中に粗大粒子が存在すると、成形体中で空孔を作る原因になり、これが焼結体中に残存してしまい、焼結体の高密度化を阻害する要因となる。   Further, if coarse particles are present in the raw material powder, it will cause pores in the molded body, which will remain in the sintered body, which will hinder the densification of the sintered body.

酸化スズ粉末を微細化するためには、原料粉末を機械的に粉砕する方法が、最も簡便かつ低コストである。特にITOターゲット用の焼結体を得るための酸化スズおよび酸化インジウムの混合粉末を得るためには、それぞれの原料粉末を粉砕するに際して、メディア攪拌型の粉砕機を使用することが好ましく、原料粉末の凝集を制御するのに容易な湿式ビーズミルを使用することが最適である。   In order to refine the tin oxide powder, the method of mechanically pulverizing the raw material powder is the simplest and the lowest cost. In particular, in order to obtain a mixed powder of tin oxide and indium oxide for obtaining a sintered body for an ITO target, it is preferable to use a media stirring type pulverizer when pulverizing each raw material powder. It is optimal to use a wet bead mill that is easy to control the agglomeration.

このビーズミルにおいて粉砕動力またはパス回数を増すと、より微粉化するが、余り強すぎると粉砕量の制御が困難となり、逆に弱すぎるとビーズミル内のビーズとスラリーの動きが悪くなって、粉砕効率が著しく低下するため、適度な強さに制御して粉砕を行うことが要求される。   If the grinding power or the number of passes is increased in this bead mill, it will be finer. However, if it is too strong, it will be difficult to control the amount of grinding. Therefore, the pulverization is required to be controlled to an appropriate strength.

ITOターゲットの原料粉末である酸化インジウム粉末については、粗い粒子の粉砕は容易であるが、酸化スズ粉末は、固く、凝集性が強いため、酸化インジウム粉末に比べて、その粉砕が難しくなる。したがって、酸化インジウムと酸化スズを同時に投入して粉砕を行う場合には、粗い粒子が残らないように、粉砕条件を酸化スズに合わせて行っている。このため、混合粉砕では、スラリー中の酸化インジウム粉末は、過剰に粉砕されることとなり、かつ、粉砕時間も余分に必要とされることとなる。   As for the indium oxide powder that is the raw material powder of the ITO target, coarse particles can be easily pulverized. However, since the tin oxide powder is hard and highly cohesive, the pulverization is more difficult than the indium oxide powder. Therefore, when pulverization is performed by simultaneously adding indium oxide and tin oxide, the pulverization conditions are set in accordance with the tin oxide so as not to leave coarse particles. For this reason, in the mixed pulverization, the indium oxide powder in the slurry is excessively pulverized, and an excessive pulverization time is required.

以上のことから、ITO膜の形成には、成分が均一で、かつ、高密度の焼結体ターゲットを得ることが必要であるが、これらの要求に満足できる最適な酸化スズ粉末および高密度のITOターゲットが得られていないというのが実情である。   From the above, it is necessary to obtain a sintered compact target having a uniform component and a high density for the formation of the ITO film. The reality is that no ITO target has been obtained.

このような問題に関して、これまでもさまざまな改善案が提案されており、たとえば、特許第4022676号公報や特開2009−29706号公報では、酸化スズ粉末を微細化する改善案が提示されている。   With respect to such problems, various improvement proposals have been proposed so far. For example, in Japanese Patent No. 4022266 and Japanese Patent Application Laid-Open No. 2009-29706, an improvement proposal for refining tin oxide powder is presented. .

特許第4022676号公報では、粒度分布から求めたメジアン径(粉体をある粒子径から2つに分けたとき、大きい側と小さい側が等量となる径、D50)が0.4μm以下であり、かつ、最大粒径が1.0μm以下の酸化スズ粉末を用いたITOターゲットの製造方法が提案されている。しかしながら、メジアン径が0.4μm以下と、原料粉末があまりに微細であるため、原料粉末同士が凝集して歪な形状の凝集体として焼結されてしまうため、ITOターゲットとなるITO焼結体中に空孔が生成し、ITO焼結体の高密度化が阻害される要因となっている。   In Japanese Patent No. 40226676, the median diameter obtained from the particle size distribution (when the powder is divided into two from a certain particle diameter, the larger side and the smaller side are equal in diameter, D50) is 0.4 μm or less, And the manufacturing method of the ITO target using the tin oxide powder whose maximum particle diameter is 1.0 micrometer or less is proposed. However, since the median diameter is 0.4 μm or less and the raw material powder is too fine, the raw material powders are aggregated and sintered as a distorted aggregate. In other words, pores are formed in the ITO sintered body, which is a factor that hinders the densification of the ITO sintered body.

また、特開2009−29706号公報では、ITOターゲットの原材料となる酸化スズ粉末として、酸化スズ粉末スラリーをビーズミルを用いて粉砕し、粒度分布から求めたメジアン径が0.40μmを超えて1.0μm以下の範囲にあり、かつ、粒度分布から求めた90%粒径が3.0μm以下の範囲とし、好ましくは粒度分布から求めたメジアン径が0.40μm〜0.60μmの範囲にあり、かつ、粒度分布から求めた90%粒径が1.0μm以下の範囲としたものを用いて、7.12g/cm3(相対密度99.4%〜99.5%)以上、具体的には7.130g/cm3の高密度(相対密度99.5%〜99.6%)、かつ、高品質のITO焼結体を得ることが開示されている。しかしながら、この方法では、この実証値を超える高密度化は困難である。 In JP 2009-29706 A, a tin oxide powder slurry as a raw material of an ITO target is ground using a bead mill, and the median diameter obtained from the particle size distribution exceeds 0.40 μm. The 90% particle size determined from the particle size distribution is in the range of 3.0 μm or less, preferably the median diameter determined from the particle size distribution is in the range of 0.40 μm to 0.60 μm, and , using what 90% particle size calculated from the particle size distribution is not more than the range 1.0μm, 7.12g / cm 3 (relative density 99.4% 99.5%) or more, in particular 7 It is disclosed to obtain a high-quality ITO sintered body having a high density of .130 g / cm 3 (relative density of 99.5% to 99.6%) and high quality. However, with this method, it is difficult to increase the density exceeding this verification value.

特許第4022676号公報Japanese Patent No. 40226676 特開2009−29706号公報JP 2009-29706 A

本発明は、ITO膜の形成に好適なさらなる高密度化と成分の均一性に優れたITO焼結体、および、このような優れた特性を備えたITO焼結体を得ることを可能とする、その原材料としての酸化スズ粉末とその製造方法を提供することを目的としたものである。   The present invention makes it possible to obtain an ITO sintered body excellent in further densification and component uniformity suitable for forming an ITO film, and an ITO sintered body having such excellent characteristics. An object of the present invention is to provide a tin oxide powder as a raw material and a method for producing the same.

上記課題に対して、本発明者は鋭意検討を行い、ITO焼結体の密度と成分の均一性に、原材料となる酸化スズ粉末の粒径だけでなく、そのBET比表面積が影響を及ぼしているとの知見、および、酸化スズ粉末のBET比表面積を厳密に管理することにより、この酸化スズ粉末を用いることにより、ITO膜の成膜用のスパッタリングターゲットとして適した高密度のITO焼結体が得られるとの知見を得て、本発明を完成したものである。   In order to solve the above-mentioned problems, the present inventor has intensively studied, and not only the particle diameter of the tin oxide powder as a raw material but also the BET specific surface area has an influence on the density and uniformity of the ITO sintered body. By using this tin oxide powder by strictly controlling the BET specific surface area of the tin oxide powder and the knowledge that it is a high-density ITO sintered body suitable as a sputtering target for forming an ITO film The present invention has been completed with the knowledge that can be obtained.

すなわち、本発明のITOスパッタリングターゲット用酸化スズ粉末は、粒度分布から求めたメジアン径が0.4μmを超えて1.1μm以下の範囲にあり、粒度分布から求めた粒子全体の90%を含む粒径が2.5μm以下であり、かつ、BET比表面積が13m2/g以上であることを特徴とする。 That is, the tin oxide powder for ITO sputtering target of the present invention has a median diameter determined from the particle size distribution in the range of more than 0.4 μm and 1.1 μm or less, and includes 90% of the whole particles determined from the particle size distribution. The diameter is 2.5 μm or less, and the BET specific surface area is 13 m 2 / g or more.

また、本発明のITOスパッタリングターゲット用酸化スズおよび酸化インジウムの混合粉末の製造方法は、酸化スズ原料粉末を、湿式ビーズミルを用いて、粒度分布から求めたメジアン径が0.4μmを超えて1.1μm以下の範囲、粒度分布から求めた粒子全体の90%を含む粒径が2.5μm以下、かつ、BET比表面積が13m2/g以上となるまで粉砕し、得られた酸化スズ粉末と、酸化インジウム粉末とを混合してスラリーとし、湿式ビーズミルを用いて、得られた混合粉末スラリーを、混合粉末の粒度分布から求めたメジアン径が0.4μmを超えて0.5μm以下の範囲、粒度分布から求めた粒子全体の90%を含む粒径が1.0μm以下、かつ、BET比表面積が12.3m2/g以上となるまで粉砕することを特徴とする。 In the method for producing a mixed powder of tin oxide and indium oxide for an ITO sputtering target of the present invention, the median diameter obtained from the particle size distribution of the tin oxide raw material powder using a wet bead mill exceeds 0.4 μm. Pulverizing until the particle size including 90% of the whole particle determined from the particle size distribution in the range of 1 μm or less is 2.5 μm or less and the BET specific surface area is 13 m 2 / g or more; Indium oxide powder is mixed to form a slurry, and a wet bead mill is used to obtain the mixed powder slurry. The median diameter obtained from the particle size distribution of the mixed powder exceeds 0.4 μm and is 0.5 μm or less. It is characterized by pulverizing until the particle size including 90% of the whole particle determined from the distribution is 1.0 μm or less and the BET specific surface area is 12.3 m 2 / g or more.

前記酸化スズ原料粉末として、金属スズを硝酸に反応させて、水酸化スズを沈澱させ、得られた沈殿物を濾別回収して乾燥し、焼成することにより得られた、粒度分布から求めたメジアン径が1.5μm〜1.8μmの範囲にあり、粒度分布から求めた粒子全体の90%を含む粒径が5.0μm以下であり、かつ、BET比表面積が11.0m2/g以上である粉末を用いることが好ましい。 As the tin oxide raw material powder, metal tin was reacted with nitric acid to precipitate tin hydroxide, and the obtained precipitate was collected by filtration, dried, and calcined, and obtained from the particle size distribution. The median diameter is in the range of 1.5 μm to 1.8 μm, the particle size including 90% of the total particles determined from the particle size distribution is 5.0 μm or less, and the BET specific surface area is 11.0 m 2 / g or more. It is preferable to use the powder which is.

さらに、本発明のITOスパッタリングターゲット用酸化スズおよび酸化インジウムの混合粉末は、上記本発明の製造方法により得られ、粒度分布から求めたメジアン径が0.4μmを超えて0.5μm以下の範囲にあり、粒度分布から求めた粒子全体の90%を含む粒径が1.0μm以下であり、かつ、BET比表面積が12.3m2/g以上であることを特徴とする。 Furthermore, the mixed powder of tin oxide and indium oxide for the ITO sputtering target of the present invention is obtained by the production method of the present invention, and the median diameter obtained from the particle size distribution is in the range of 0.4 μm to 0.5 μm. Yes, the particle size including 90% of the whole particle determined from the particle size distribution is 1.0 μm or less, and the BET specific surface area is 12.3 m 2 / g or more.

本発明のITOスパッタリングターゲット用酸化スズおよび酸化インジウムの混合粉末を成形し、焼結することにより、質量と体積から計算した密度で、7.140g/cm3以上と高密度である、本発明のITOスパッタリングターゲット用焼結体が得られる。 By molding and sintering the mixed powder of tin oxide and indium oxide for ITO sputtering target of the present invention, the density calculated from the mass and volume is 7.140 g / cm 3 or more, which is a high density. A sintered body for ITO sputtering target is obtained.

本発明の酸化スズ粉末を用いることにより、ITO膜の形成に好適な、より高密度で、かつ、成分の均一性に優れたITO焼結体を得ることができる。このように優れた特性を備えたITO焼結体をITOターゲットとして用いることにより、ITO膜の成膜時において、ITOターゲットの不均一性に起因するノジュールの発生、このノジュールの発生によるスパッタリングレートの低下や異常放電の発生、さらにはこれらの発生の基づくITO膜の品質の低下を抑制することが可能となる。   By using the tin oxide powder of the present invention, it is possible to obtain an ITO sintered body having a higher density and excellent component uniformity suitable for forming an ITO film. By using an ITO sintered body having such excellent characteristics as an ITO target, the generation of nodules due to the non-uniformity of the ITO target during the formation of the ITO film, and the sputtering rate due to the generation of the nodules It is possible to suppress the occurrence of degradation and abnormal discharge, and further the degradation of the quality of the ITO film based on these occurrences.

本発明のITOスパッタリングターゲット用酸化スズ粉末は、粒度分布から求めたメジアン径(D50)が0.4μmを超えて1.1μm以下の範囲にあり、粒度分布から求めた粒子全体の90%を含む粒径(D90)が2.5μm以下であり、かつ、BET比表面積が13m2/g以上であることを特徴とする。好ましくは、D50が0.4μmを超えて0.5μm以下の範囲にあり、D90が2.4μm以下であり、かつ、BET比表面積が15m2/g以上である。 The tin oxide powder for ITO sputtering target of the present invention has a median diameter (D50) determined from the particle size distribution in the range of more than 0.4 μm and 1.1 μm or less, and includes 90% of the entire particles determined from the particle size distribution. The particle size (D90) is 2.5 μm or less, and the BET specific surface area is 13 m 2 / g or more. Preferably, D50 is in the range of more than 0.4 μm and 0.5 μm or less, D90 is 2.4 μm or less, and the BET specific surface area is 15 m 2 / g or more.

従来のITOスパッタリングターゲットの製造では、酸化インジウム粉末と酸化スズ粉末を所定の割合で混合し、得られた混合粉末を、湿式ビーズミルにて、所望の粒度になるまで粉砕することが行われていた。しかしながら、混合粉末スラリーの状態では、酸化インジウムと酸化スズの粉砕具合が判別できないため、相対的な粉砕の困難性に起因して、酸化スズの方が、粒径が大きい状態で存在していると考えられる。この粒径差が焼結時に空孔の原因となり、得られるITO焼結体の密度の上昇を阻害しているものと考えられる。そして、このようにITO焼結体が十分な密度を得られていないために、このITO焼結体をスパッタリングターゲットとして用いたスパッタリング成膜の際にばらつきを生じ、ITO膜の品質の低下を招いているといえる。   In the production of a conventional ITO sputtering target, indium oxide powder and tin oxide powder are mixed at a predetermined ratio, and the obtained mixed powder is pulverized to a desired particle size by a wet bead mill. . However, in the state of the mixed powder slurry, since the degree of pulverization of indium oxide and tin oxide cannot be determined, tin oxide is present in a larger particle size due to relative pulverization difficulty. it is conceivable that. It is considered that this particle size difference causes pores during sintering, and hinders an increase in density of the obtained ITO sintered body. In addition, since the ITO sintered body does not have a sufficient density as described above, variations occur in the sputtering film formation using the ITO sintered body as a sputtering target, resulting in a decrease in the quality of the ITO film. It can be said that

一方、特開2009−29706号公報では、最初に酸化スズ粉末スラリーを単独でビーズミルを用いて粉砕し、その後、粉砕後の酸化スズ粉末スラリーを酸化インジウム粉末と混合し、得られた混合スラリーを用いて、混合粉末をさらに混合および粉砕することにより、7.130g/cm3(相対密度99.5%〜99.6%)という高密度、かつ、高品質のITO焼結体を得ているが、本発明者が検討したところ、当該実証値が密度の上限値であった。 On the other hand, in Japanese Patent Application Laid-Open No. 2009-29706, a tin oxide powder slurry is first pulverized using a bead mill alone, and then the pulverized tin oxide powder slurry is mixed with indium oxide powder. The mixed powder is further mixed and pulverized to obtain a high-quality ITO sintered body having a high density of 7.130 g / cm 3 (relative density 99.5% to 99.6%). However, when this inventor examined, the said proof value was the upper limit of the density.

本発明者は、酸化スズ粉末のBET比表面積に着目し、鋭意検討したところ、酸化インジウム粉末と混合する際における酸化スズ粉末のBET比表面積を13m2/g以上とすることにより、この酸化スズ粉末を原材料として用いて得られるITO焼結体において、7.13g/cm3(相対密度99.5%〜99.6%)を超える、具体的には7.140g/cm3以上という高密度(相対密度99.7%〜99.8%)、かつ、高品質のITO焼結体が得られるとの知見を得ることができたのである。これは、酸化スズ粉末のBET比表面積を厳格に制御することにより、原料粉末同士の凝集を抑えつつ微細化することができたためと考えられる。すなわち、微細な原料粉は焼結性を向上させるが凝集しやすく、焼結時に空孔となって焼結体の密度を低下させるが、本発明では、上述したようにBET比表面積を厳格に制御することで凝集体の発生を抑え、これにより、焼結時に凝集体起因で発生する空孔を抑えることができ、高密度化のさらなる向上が図られたものと考えられる。 The present inventor paid attention to the BET specific surface area of the tin oxide powder and intensively studied. By mixing the tin oxide powder with the indium oxide powder, the tin oxide powder has a BET specific surface area of 13 m 2 / g or more. In an ITO sintered body obtained by using powder as a raw material, a high density exceeding 7.13 g / cm 3 (relative density 99.5% to 99.6%), specifically 7.140 g / cm 3 or more. It was possible to obtain knowledge that a high-quality ITO sintered body was obtained (relative density 99.7% to 99.8%). This is thought to be because the BET specific surface area of the tin oxide powder can be finely controlled while suppressing the aggregation of the raw material powders. That is, fine raw material powder improves the sinterability but tends to agglomerate and becomes pores during sintering to reduce the density of the sintered body. In the present invention, however, the BET specific surface area is strictly limited as described above. By controlling this, it is considered that the generation of aggregates can be suppressed, and as a result, pores generated due to the aggregates during sintering can be suppressed, and further improvement in density can be achieved.

酸化スズ粉末の特性について、D50が0.4μmを超えて0.5μm以下の範囲、D90が2.4μm以下、かつ、BET比表面積が15m2/g以上と好適な範囲となるように調整することにより、原料粉末同士の凝集を抑制できることから、ITO焼結体における高密度化のみならず、より高い成分の均一性を達成することができる。 The characteristics of the tin oxide powder are adjusted so that D50 is in the range of more than 0.4 μm to 0.5 μm or less, D90 is 2.4 μm or less, and the BET specific surface area is 15 m 2 / g or more. By this, since aggregation of raw material powders can be suppressed, not only high density in the ITO sintered body but also higher uniformity of components can be achieved.

なお、このような特性を備える酸化スズ粉末は、市販の酸化スズ粉末を、D50が0.4μmを超えて0.5μm以下の範囲となるように制御して、粉砕することにより得られるが、その際に、本発明では、BET比表面積についても厳密に制御している。すなわち、本発明では、粉砕前の前記酸化スズ原料粉末として、粒度分布から求めたメジアン径が1.5μm〜1.8μmの範囲にあり、粒度分布から求めた粒子全体の90%を含む粒径が5.0μm以下であり、かつ、BET比表面積が11.0m2/g以上である粉末を用いる。 In addition, tin oxide powder having such characteristics can be obtained by pulverizing commercially available tin oxide powder so that D50 is in a range of more than 0.4 μm to 0.5 μm or less, At that time, in the present invention, the BET specific surface area is also strictly controlled. That is, in the present invention, as the tin oxide raw material powder before pulverization, the median diameter obtained from the particle size distribution is in the range of 1.5 μm to 1.8 μm, and the particle size includes 90% of the whole particles obtained from the particle size distribution. Is a powder having a BET specific surface area of 11.0 m 2 / g or more.

粉砕には、湿式ビーズミルを用いることが好ましい。湿式ビーズミルは、乾式に比べて取り扱いやすく、分散剤やPVA(ポリビニルアルコール)などと均一に混合することができ、さらには、スプレードライヤを用いることにより、流動性のよい均一な球形の混合原料を作製することができる。また、微粉砕に適したビーズミルを用いることにより、原料粉を本発明の粉砕状態に容易に調整できる。この粉砕の際、酸化スズ粒子の粒径の調整は、粉砕時の回転数調整、パス回数、粉砕に使用するビーズの径や材質の調整、酸化スズ粉末スラリー濃度の調整によって行うが、上記の条件が達成できるように適宜コントロールすることによって行うことができる。   It is preferable to use a wet bead mill for the pulverization. The wet bead mill is easier to handle than the dry type and can be uniformly mixed with a dispersant, PVA (polyvinyl alcohol), etc. Furthermore, by using a spray dryer, a uniform spherical mixed raw material with good fluidity can be obtained. Can be produced. Further, by using a bead mill suitable for fine pulverization, the raw material powder can be easily adjusted to the pulverized state of the present invention. During the pulverization, the tin oxide particle size is adjusted by adjusting the number of rotations during pulverization, the number of passes, adjusting the diameter and material of beads used for pulverization, and adjusting the tin oxide powder slurry concentration. It can be performed by appropriately controlling so that the conditions can be achieved.

なお、本発明では、湿式ビーズミルのキャリアとしてジルコニアビーズを使用する。特開2009−29706号に記載されているように、ジルコニウムのコンタミの問題から、スラリー濃度65%以上の酸化スズ粉末スラリーを使用することが、コンタミの問題を極力抑制でき、これにより無理のない粉砕が可能となり、優れた焼結性を持つ焼結粉末を得ることができることから好ましい。   In the present invention, zirconia beads are used as a carrier for a wet bead mill. As described in JP-A-2009-29706, due to the problem of zirconium contamination, it is possible to suppress the contamination problem as much as possible by using a tin oxide powder slurry having a slurry concentration of 65% or more. It is preferable because pulverization is possible and a sintered powder having excellent sinterability can be obtained.

本発明では、酸化スズ原料粉末スラリーを、湿式ビーズミルを用いて粉砕することにより得られ、上記特性を備えた酸化スズ粉末と、酸化インジウム粉末とを混合してスラリーとし、湿式ビーズミルを用いて、得られた混合粉末スラリーを、混合粉末の粒度分布から求めたメジアン径が0.4μmを超えて0.5μm以下の範囲、粒度分布から求めた粒子全体の90%を含む粒径が1.0μm以下、かつ、BET比表面積が12.3m2/g以上、となるまで粉砕する。 In the present invention, the tin oxide raw material powder slurry is obtained by pulverizing using a wet bead mill, and a tin oxide powder having the above characteristics and an indium oxide powder are mixed to form a slurry, using a wet bead mill, The obtained mixed powder slurry has a median diameter determined from the particle size distribution of the mixed powder in the range of more than 0.4 μm to 0.5 μm or less, and a particle size including 90% of the total particles determined from the particle size distribution is 1.0 μm. Then, it grind | pulverizes until a BET specific surface area will be 12.3 m < 2 > / g or more.

すなわち、ITOスパッタリングターゲットの原材料としての酸化スズおよび酸化インジウムの混合粉末の焼結性に関しても、微細な粒子であるほど焼結性は良好となる傾向にあるが、粒子が微細すぎると原料粉末同士が凝集してしまい、焼結時に空孔を発生させる原因となる。本発明では、混合スラリー状態で追加粉砕を行うことにより、得られる粉末の特性が上記範囲内となるように制御して、粒径が均一な状態で造粒を行うことにより、高密度の得られる原料粉末としている。   That is, regarding the sinterability of the mixed powder of tin oxide and indium oxide as the raw material of the ITO sputtering target, the finer the particles, the better the sinterability. However, if the particles are too fine, Agglomerate and cause pores during sintering. In the present invention, by performing additional pulverization in a mixed slurry state, the properties of the obtained powder are controlled to be within the above range, and granulation is performed in a state where the particle size is uniform, thereby obtaining a high density. Raw material powder.

本発明のITOスパッタリングターゲット用焼結体は、本発明のITOスパッタリングターゲット用酸化スズおよび酸化インジウムの混合粉末を成形し、焼結することにより、得ることができる。成形は、冷間静水等方圧プレス(CIP)機を用いて、前記混合粉末をゴム型に充填し、98MPa〜294MPaの圧力で加圧成形することにより行う。また、焼結は、得られた成形体を、電気炉を用いて、1400℃〜1550℃で、酸素雰囲気中で、20時間〜30時間の焼成することにより行う。   The sintered body for ITO sputtering target of the present invention can be obtained by molding and sintering a mixed powder of tin oxide and indium oxide for ITO sputtering target of the present invention. Molding is performed by filling the mixed powder into a rubber mold using a cold isostatic press (CIP) machine, and press-molding the mixture at a pressure of 98 MPa to 294 MPa. Moreover, sintering is performed by baking the obtained molded object for 20 to 30 hours in 1400 degreeC-1550 degreeC in oxygen atmosphere using an electric furnace.

(実施例1)
D50が1.8μm、D90が5.0μm、BET比表面積が11.4m2/gの酸化スズ原料粉末を用意した。なお、粒度分布測定は、レーザ回折式粒度分布測定装置(株式会社島津製作所製、SALD−2200)、BET比表面積は、全自動比表面積測定装置(株式会社マウンテック製、Maacsorb(登録商標) HM model−1208)を使用した。
Example 1
A tin oxide raw material powder having a D50 of 1.8 μm, a D90 of 5.0 μm, and a BET specific surface area of 11.4 m 2 / g was prepared. In addition, the particle size distribution measurement is a laser diffraction particle size distribution measuring device (manufactured by Shimadzu Corporation, SALD-2200), and the BET specific surface area is a fully automatic specific surface area measuring device (manufactured by Mountec Co., Ltd., Maacsorb (registered trademark) HM model). -1208) was used.

得られた酸化スズ原料粉末を純水に混合し、固形分65%の酸化スズ粉末スラリーを作製した。この時、純水中の酸化スズ原料粉末を分散させるため、分散剤(三明化成株式会社、バンスターX754B)を添加した。   The obtained tin oxide raw material powder was mixed with pure water to produce a tin oxide powder slurry having a solid content of 65%. At this time, in order to disperse the tin oxide raw material powder in pure water, a dispersant (Sanmei Kasei Co., Ltd., Banster X754B) was added.

作製した酸化スズ粉末スラリーを、ビーズミルにて、パス回数を15とし、D50が0.41μm、D90が2.0μm、BET値が16.0m2/gとなるように粉砕し、酸化スズ粉末を得た。この時、粉砕ビーズは耐磨耗性を考慮して、φ0.5mmジルコニアビーズ(YTZ)を使用した。このように粉砕した酸化スズ粉末が含まれるスラリーと、D50が0.43μm、D90が0.7μm、BET比表面積が11.2m2/gの酸化インジウム粉末とを、固形分重量比率で酸化スズ:酸化インジウムが1:9となるよう、純水に混合し、固形分70%の酸化スズと酸化インジウムの混合スラリーを作製した。 The prepared tin oxide powder slurry was pulverized with a bead mill so that the number of passes was 15, D50 was 0.41 μm, D90 was 2.0 μm, and the BET value was 16.0 m 2 / g. Obtained. At this time, φ0.5 mm zirconia beads (YTZ) were used as the ground beads in consideration of wear resistance. The slurry containing the pulverized tin oxide powder and the indium oxide powder having a D50 of 0.43 μm, a D90 of 0.7 μm, and a BET specific surface area of 11.2 m 2 / g in a solid content weight ratio. : Mixed with pure water so that indium oxide was 1: 9, a mixed slurry of tin oxide and indium oxide having a solid content of 70% was prepared.

作製した酸化スズと酸化インジウムの混合スラリーを、ビーズミルにて、パス回数を5とし、この混合スラリーに含まれる混合粉末が、D50が0.41μm、D90が0.64μmとなるように粉砕した。なお、このときのBET値は12.4m2/gであった。 The prepared mixed slurry of tin oxide and indium oxide was pulverized by a bead mill so that the number of passes was 5, and the mixed powder contained in this mixed slurry had a D50 of 0.41 μm and a D90 of 0.64 μm. The BET value at this time was 12.4 m 2 / g.

次に、粉砕後の酸化スズと酸化インジウムの混合スラリーに、バインダ(PVA)を加え、スプレードライヤを用いて造粒および乾燥を行い、酸化スズと酸化インジウムの混合粉末を得た。この混合粉末を、硬度40度のシリコンゴム型に充填した後、冷間等方静水圧プレス(CIP)を用いて294MPaの圧力で成形し、得られた成形体を、焼結温度1550℃で30時間、常圧酸素雰囲気で焼結させた。得られた焼結体の密度は、質量と体積から計算した密度で7.144g/cm3であった。 Next, a binder (PVA) was added to the mixed slurry of tin oxide and indium oxide after pulverization, and granulation and drying were performed using a spray dryer to obtain a mixed powder of tin oxide and indium oxide. After filling this mixed powder into a silicon rubber mold having a hardness of 40 degrees, it was molded at a pressure of 294 MPa using a cold isostatic press (CIP), and the resulting molded body was sintered at 1550 ° C. Sintering was performed for 30 hours in a normal pressure oxygen atmosphere. The density of the obtained sintered body was 7.144 g / cm 3 as calculated from the mass and volume.

(実施例2)
実施例1と同様にして得た酸化スズ原料粉末を、実施例1と同様に、酸化スズ粉末スラリーとして、ビーズミルを用い、パス回数を4とし、D50が1.06μm、D90が2.33μm、BET値が13.5m2/gとなるまで粉砕した。
(Example 2)
The tin oxide raw material powder obtained in the same manner as in Example 1 was used as a tin oxide powder slurry in the same manner as in Example 1, using a bead mill, the number of passes was 4, D50 was 1.06 μm, D90 was 2.33 μm, It grind | pulverized until the BET value was set to 13.5 m < 2 > / g.

次に、この酸化スズ粉末が含まれるスラリーと、実施例1で用いた酸化インジウム粉末とを、実施例1と同様にして純水に混合し、酸化スズと酸化インジウムの混合スラリーとして、ビーズミルを用い、パス回数を5とし、この混合スラリーに含まれる混合粉末が、D50が0.41μm、D90が0.65μmとなるよう粉砕した。なお、このときのBET値は12.3m2/gであった。このスラリーにバインダ(PVA)を加え、スプレードライヤを用いて、実施例1と同様に、造粒および乾燥を行い、酸化スズと酸化インジウムの混合粉末を得た。 Next, the slurry containing the tin oxide powder and the indium oxide powder used in Example 1 were mixed with pure water in the same manner as in Example 1, and a bead mill was prepared as a mixed slurry of tin oxide and indium oxide. The number of passes was set to 5, and the mixed powder contained in this mixed slurry was pulverized so that D50 was 0.41 μm and D90 was 0.65 μm. The BET value at this time was 12.3 m 2 / g. A binder (PVA) was added to the slurry, and granulation and drying were performed in the same manner as in Example 1 using a spray dryer to obtain a mixed powder of tin oxide and indium oxide.

さらに、得られた混合粉末を、実施例1と同様の条件で、成形および焼結を行った結果、得られた焼結体の密度は、質量と体積から計算した密度で7.140g/cm3であった。 Further, the obtained mixed powder was molded and sintered under the same conditions as in Example 1. As a result, the density of the obtained sintered body was 7.140 g / cm as calculated from mass and volume. It was 3 .

(実施例3)
実施例1と同様にして得た酸化スズ原料粉末を、実施例1と同様に、酸化スズ粉末スラリーとして、ビーズミルを用い、パス回数を5とし、D50が0.90μm、D90が2.33μm、BET値が15.5m2/gとなるまで粉砕した。
(Example 3)
The tin oxide raw material powder obtained in the same manner as in Example 1 was used as a tin oxide powder slurry in the same manner as in Example 1, using a bead mill, the number of passes was 5, D50 was 0.90 μm, D90 was 2.33 μm, Grinding was performed until the BET value was 15.5 m 2 / g.

次に、この酸化スズ粉末が含まれるスラリーと、実施例1で用いた酸化インジウム粉末とを、実施例1と同様にして純水に混合し、酸化スズと酸化インジウムの混合スラリーとして、ビーズミルを用い、パス回数を5とし、この混合スラリーに含まれる混合粉末が、D50が0.41μm、D90が0.50μmとなるよう粉砕した。なお、このときのBET値は12.4m2/gであった。このスラリーにバインダ(PVA)を加え、スプレードライヤを用いて、実施例1と同様に、造粒および乾燥を行い、酸化スズと酸化インジウムの混合粉末を得た。 Next, the slurry containing the tin oxide powder and the indium oxide powder used in Example 1 were mixed with pure water in the same manner as in Example 1, and a bead mill was prepared as a mixed slurry of tin oxide and indium oxide. The number of passes was set to 5, and the mixed powder contained in this mixed slurry was pulverized so that D50 was 0.41 μm and D90 was 0.50 μm. The BET value at this time was 12.4 m 2 / g. A binder (PVA) was added to the slurry, and granulation and drying were performed in the same manner as in Example 1 using a spray dryer to obtain a mixed powder of tin oxide and indium oxide.

さらに、得られた混合粉末を、実施例1と同様の条件で、成形および焼結を行った結果、得られた焼結体の密度は、質量と体積から計算した密度で7.141g/cm3であった。 Further, the obtained mixed powder was molded and sintered under the same conditions as in Example 1. As a result, the density of the obtained sintered body was 7.141 g / cm as the density calculated from the mass and volume. It was 3 .

(実施例4)
実施例1と同様にして得た酸化スズ原料粉末を、実施例1と同様に、酸化スズ粉末スラリーとして、ビーズミルを用い、パス回数を3とし、D50が1.08μm、D90が2.50μm、BET値が13.5m2/gとなるまで粉砕した。
Example 4
The tin oxide raw material powder obtained in the same manner as in Example 1 was used as a tin oxide powder slurry in the same manner as in Example 1, using a bead mill, the number of passes was 3, D50 was 1.08 μm, D90 was 2.50 μm, It grind | pulverized until the BET value was set to 13.5 m < 2 > / g.

次に、この酸化スズ粉末が含まれるスラリーと、実施例1で用いた酸化インジウム粉末とを、実施例1と同様にして純水に混合し、酸化スズと酸化インジウムの混合スラリーとして、ビーズミルを用い、パス回数を5とし、この混合スラリーに含まれる混合粉末が、D50が0.50μm、D90が0.70μmとなるよう粉砕した。なお、このときのBET値は12.4m2/gであった。このスラリーにバインダ(PVA)を加え、スプレードライヤを用いて、実施例1と同様に、造粒および乾燥を行い、酸化スズと酸化インジウムの混合粉末を得た。 Next, the slurry containing the tin oxide powder and the indium oxide powder used in Example 1 were mixed with pure water in the same manner as in Example 1, and a bead mill was prepared as a mixed slurry of tin oxide and indium oxide. The number of passes was set to 5, and the mixed powder contained in this mixed slurry was pulverized so that D50 was 0.50 μm and D90 was 0.70 μm. The BET value at this time was 12.4 m 2 / g. A binder (PVA) was added to the slurry, and granulation and drying were performed in the same manner as in Example 1 using a spray dryer to obtain a mixed powder of tin oxide and indium oxide.

さらに、得られた混合粉末を、実施例1と同様の条件で、成形および焼結を行った結果、得られた焼結体の密度は、質量と体積から計算した密度で7.140g/cm3であった。 Further, the obtained mixed powder was molded and sintered under the same conditions as in Example 1. As a result, the density of the obtained sintered body was 7.140 g / cm as calculated from mass and volume. It was 3 .

(比較例1)
D50が1.8μm、D90が6.0μm、BET比表面積が11.1m2/gの酸化スズ原料粉末を用意した。
(Comparative Example 1)
A tin oxide raw material powder having a D50 of 1.8 μm, a D90 of 6.0 μm, and a BET specific surface area of 11.1 m 2 / g was prepared.

この酸化スズ原料粉末と、実施例1で用いた酸化インジウム粉末とを、固形分重量比率で酸化スズ:酸化インジウムが1:9となるよう、純水に混合し、固形分70%の酸化スズと酸化インジウムの混合スラリーを作製し、ビーズミルを用いて、パス回数を5とし、酸化スズと酸化インジウムの混合粉末のD50が、実施例1と同様の0.41μmとなるように粉砕した結果、D50が0.40μm、D90が0.70μmの混合粉末からなるスラリーを得た。なお、このときのBET値は12.1m2/gであった。このスラリーにバインダ(PVA)を加え、スプレードライヤを用いて、実施例1と同様に、造粒および乾燥を行い、酸化スズと酸化インジウムの混合粉末を得た。 This tin oxide raw material powder and the indium oxide powder used in Example 1 were mixed with pure water so that the weight ratio of tin oxide: indium oxide was 1: 9, and tin oxide having a solid content of 70%. And a mixed slurry of indium oxide, the number of passes was set to 5 using a bead mill, and the mixed powder of tin oxide and indium oxide was pulverized so as to be 0.41 μm as in Example 1, A slurry made of a mixed powder having a D50 of 0.40 μm and a D90 of 0.70 μm was obtained. The BET value at this time was 12.1 m 2 / g. A binder (PVA) was added to the slurry, and granulation and drying were performed in the same manner as in Example 1 using a spray dryer to obtain a mixed powder of tin oxide and indium oxide.

さらに、得られた混合粉末を、実施例1と同様の条件で、成形および焼結を行った結果、得られた焼結体の密度は、質量と体積から計算した密度で7.124g/cm3であった。 Further, the obtained mixed powder was molded and sintered under the same conditions as in Example 1. As a result, the density of the obtained sintered body was 7.124 g / cm as a density calculated from mass and volume. It was 3 .

(比較例2)
D50が2.0μm、D90が5.0μm、BET比表面積が6.0m2/gの酸化スズ原料粉末を用意した。
(Comparative Example 2)
A tin oxide raw material powder having a D50 of 2.0 μm, a D90 of 5.0 μm, and a BET specific surface area of 6.0 m 2 / g was prepared.

この酸化スズ原料粉末と、実施例1で用いた酸化インジウム粉末とを用いて、比較例1と同様にして、混合粉末を得た結果、D50が0.40μm、D90が0.70μmの混合粉末からなるスラリーを得た。なお、このときのBET値は12.0m2/gであった。このスラリーにバインダ(PVA)を加え、スプレードライヤを用いて、実施例1と同様に、造粒および乾燥を行い、酸化スズと酸化インジウムの混合粉末を得た。 Using this tin oxide raw material powder and the indium oxide powder used in Example 1, a mixed powder was obtained in the same manner as in Comparative Example 1. As a result, a mixed powder having a D50 of 0.40 μm and a D90 of 0.70 μm was obtained. A slurry consisting of The BET value at this time was 12.0 m 2 / g. A binder (PVA) was added to the slurry, and granulation and drying were performed in the same manner as in Example 1 using a spray dryer to obtain a mixed powder of tin oxide and indium oxide.

さらに、得られた混合粉末を、実施例1と同様の条件で、成形および焼結を行った結果、得られた焼結体の密度は、質量と体積から計算した密度で7.120g/cm3であった。 Further, the obtained mixed powder was molded and sintered under the same conditions as in Example 1. As a result, the density of the obtained sintered body was 7.120 g / cm as a density calculated from mass and volume. It was 3 .

(比較例3)
D50が1.0μm、D90が2.0μm、BET比表面積が6.0m2/gの酸化スズ原料粉末を用意した。
(Comparative Example 3)
A tin oxide raw material powder having a D50 of 1.0 μm, a D90 of 2.0 μm, and a BET specific surface area of 6.0 m 2 / g was prepared.

この酸化スズ原料粉末と、実施例1で用いた酸化インジウム粉末とを用いて、比較例1と同様にして、混合粉末を得た結果、D50が0.42μm、D90が0.70μmの混合粉末からなるスラリーを得た。なお、このときのBET値は11.8m2/gであった。このスラリーにバインダ(PVA)を加え、スプレードライヤを用いて、実施例1と同様に、造粒および乾燥を行い、酸化スズと酸化インジウムの混合粉末を得た。 Using this tin oxide raw material powder and the indium oxide powder used in Example 1, a mixed powder was obtained in the same manner as in Comparative Example 1. As a result, D50 was 0.42 μm and D90 was 0.70 μm. A slurry consisting of The BET value at this time was 11.8 m 2 / g. A binder (PVA) was added to the slurry, and granulation and drying were performed in the same manner as in Example 1 using a spray dryer to obtain a mixed powder of tin oxide and indium oxide.

さらに、得られた混合粉末を、実施例1と同様の条件で、成形および焼結を行った結果、得られた焼結体の密度は、質量と体積から計算した密度で7.127g/cm3であった。 Further, the obtained mixed powder was molded and sintered under the same conditions as in Example 1. As a result, the density of the obtained sintered body was 7.127 g / cm as a density calculated from mass and volume. It was 3 .

(比較例4)
D50が0.3μm、D90が1.0μm、BET比表面積が11.0m2/gの酸化スズ原料粉末を用意した。
(Comparative Example 4)
A tin oxide raw material powder having a D50 of 0.3 μm, a D90 of 1.0 μm, and a BET specific surface area of 11.0 m 2 / g was prepared.

この酸化スズ原料粉末と、実施例1で用いた酸化インジウム粉末とを用いて、比較例1と同様にして、混合粉末を得た結果、D50が0.42μm、D90が0.70μmの混合粉末からなるスラリーを得た。なお、このときのBET値は12.2m2/gであった。このスラリーにバインダ(PVA)を加え、スプレードライヤを用いて、実施例1と同様に、造粒および乾燥を行い、酸化スズと酸化インジウムの混合粉末を得た。 Using this tin oxide raw material powder and the indium oxide powder used in Example 1, a mixed powder was obtained in the same manner as in Comparative Example 1. As a result, D50 was 0.42 μm and D90 was 0.70 μm. A slurry consisting of The BET value at this time was 12.2 m 2 / g. A binder (PVA) was added to the slurry, and granulation and drying were performed in the same manner as in Example 1 using a spray dryer to obtain a mixed powder of tin oxide and indium oxide.

さらに、得られた混合粉末を、実施例1と同様の条件で、成形および焼結を行った結果、得られた焼結体の密度は、質量と体積から計算した密度で7.125g/cm3であった。 Further, the obtained mixed powder was molded and sintered under the same conditions as in Example 1. As a result, the density of the obtained sintered body was 7.125 g / cm as a density calculated from mass and volume. It was 3 .

(比較例5)
D50が1.8μm、D90が6.0μm、BET比表面積が11.0m2/gの酸化スズ原料粉末を用意した。
(Comparative Example 5)
A tin oxide raw material powder having a D50 of 1.8 μm, a D90 of 6.0 μm, and a BET specific surface area of 11.0 m 2 / g was prepared.

この酸化スズ原料粉末と、実施例1で用いた酸化インジウム粉末とを用いて、比較例1と同様にして、混合粉末を得た結果、D50が0.42μm、D90が1.20μmの混合粉末からなるスラリーを得た。なお、このときのBET値は12.2m2/gであった。このスラリーにバインダ(PVA)を加え、スプレードライヤを用いて、実施例1と同様に、造粒および乾燥を行い、酸化スズと酸化インジウムの混合粉末を得た。 Using this tin oxide raw material powder and the indium oxide powder used in Example 1, a mixed powder was obtained in the same manner as in Comparative Example 1. As a result, D50 was 0.42 μm and D90 was 1.20 μm. A slurry consisting of The BET value at this time was 12.2 m 2 / g. A binder (PVA) was added to the slurry, and granulation and drying were performed in the same manner as in Example 1 using a spray dryer to obtain a mixed powder of tin oxide and indium oxide.

さらに、得られた混合粉末を、実施例1と同様の条件で、成形および焼結を行った結果、得られた焼結体の密度は、質量と体積から計算した密度で7.120g/cm3であった。 Further, the obtained mixed powder was molded and sintered under the same conditions as in Example 1. As a result, the density of the obtained sintered body was 7.120 g / cm as a density calculated from mass and volume. It was 3 .

Figure 2013256425
Figure 2013256425

高密度化と成分の均一性に優れた焼結体を得ることができるという優れた特徴を有し、これによってITOスパッタリング成膜が均一でない場合に生ずる品質の低下やノジュールなどの異常突起物を抑制でき、使用末期まで安定した使用が可能なため、ITO膜形成用酸化スズ−酸化インジウムターゲットを低コストで得ることができるという優れた効果を有する。   It has an excellent feature that it can obtain a sintered body excellent in densification and uniformity of components, thereby reducing abnormal projections such as quality deterioration and nodules that occur when ITO sputtering film formation is not uniform. Since it can suppress and can be used stably until the end of use, it has the outstanding effect that the tin oxide-indium oxide target for ITO film formation can be obtained at low cost.

Claims (5)

粒度分布から求めたメジアン径が0.4μmを超えて1.1μm以下の範囲にあり、粒度分布から求めた粒子全体の90%を含む粒径が2.5μm以下であり、かつ、BET比表面積が13m2/g以上であることを特徴とする、ITOスパッタリングターゲット用酸化スズ粉末。 The median diameter determined from the particle size distribution is in the range of more than 0.4 μm to 1.1 μm, the particle size including 90% of the total particles determined from the particle size distribution is 2.5 μm or less, and the BET specific surface area Is a tin oxide powder for ITO sputtering target, characterized by being 13 m 2 / g or more. 酸化スズ原料粉末を、湿式ビーズミルを用いて、粒度分布から求めたメジアン径が0.4μmを超えて1.1μm以下の範囲、粒度分布から求めた粒子全体の90%を含む粒径が2.5μm以下、かつ、BET比表面積が13m2/g以上となるまで粉砕し、得られた酸化スズ粉末と、酸化インジウム粉末とを混合してスラリーとし、湿式ビーズミルを用いて、得られた混合粉末スラリーを、混合粉末の粒度分布から求めたメジアン径が0.4μmを超えて0.5μm以下の範囲、粒度分布から求めた粒子全体の90%を含む粒径が1.0μm以下、かつ、BET比表面積が12.3m2/g以上となるまで粉砕することを特徴とする、ITOスパッタリングターゲット用酸化スズおよび酸化インジウムの混合粉末の製造方法。 A tin oxide raw material powder having a median diameter determined from a particle size distribution of more than 0.4 μm and 1.1 μm or less using a wet bead mill has a particle size including 90% of the total particles determined from the particle size distribution. Grinding until the BET specific surface area becomes 5 m or less and the BET specific surface area becomes 13 m 2 / g or more, the obtained tin oxide powder and indium oxide powder are mixed to form a slurry, and the obtained mixed powder is obtained using a wet bead mill. The slurry has a median diameter determined from the particle size distribution of the mixed powder in the range of more than 0.4 μm to 0.5 μm or less, a particle size including 90% of the total particles determined from the particle size distribution is 1.0 μm or less, and BET A method for producing a mixed powder of tin oxide and indium oxide for an ITO sputtering target, characterized by grinding until the specific surface area becomes 12.3 m 2 / g or more. 前記酸化スズ原料粉末として、金属スズを硝酸に反応させて、水酸化スズを沈澱させ、得られた沈殿物を濾別回収して乾燥し、焼成することにより得られた、粒度分布から求めたメジアン径が1.5μm〜1.8μmの範囲にあり、粒度分布から求めた粒子全体の90%を含む粒径が5.0μm以下であり、かつ、BET比表面積が11.0m2/g以上である粉末を用いる、請求項2に記載のITOスパッタリングターゲット用酸化スズおよび酸化インジウムの混合粉末の製造方法。 As the tin oxide raw material powder, metal tin was reacted with nitric acid to precipitate tin hydroxide, and the obtained precipitate was collected by filtration, dried, and calcined, and obtained from the particle size distribution. The median diameter is in the range of 1.5 μm to 1.8 μm, the particle size including 90% of the total particles determined from the particle size distribution is 5.0 μm or less, and the BET specific surface area is 11.0 m 2 / g or more. The manufacturing method of the mixed powder of the tin oxide for ITO sputtering targets and indium oxide of Claim 2 using the powder which is. 請求項2または3に記載の製造方法により得られ、粒度分布から求めたメジアン径が0.4μmを超えて0.5μm以下の範囲にあり、粒度分布から求めた粒子全体の90%を含む粒径が1.0μm以下であり、かつ、BET比表面積が12.3m2/g以上であることを特徴とする、ITOスパッタリングターゲット用酸化スズおよび酸化インジウムの混合粉末。 A particle obtained by the production method according to claim 2 or 3, wherein the median diameter determined from the particle size distribution is in the range of more than 0.4 μm and not more than 0.5 μm, and comprising 90% of the total particles determined from the particle size distribution. A mixed powder of tin oxide and indium oxide for an ITO sputtering target, having a diameter of 1.0 μm or less and a BET specific surface area of 12.3 m 2 / g or more. 請求項4に記載のITOスパッタリングターゲット用酸化スズおよび酸化インジウムの混合粉末を成形し、焼結することにより得られ、質量と体積から計算した密度で、7.140g/cm3以上である、ITOスパッタリングターゲット用焼結体。 An ITO obtained by molding and sintering a mixed powder of tin oxide and indium oxide for an ITO sputtering target according to claim 4, and having a density calculated from mass and volume of 7.140 g / cm 3 or more. Sintered body for sputtering target.
JP2012134616A 2012-06-14 2012-06-14 Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target Pending JP2013256425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012134616A JP2013256425A (en) 2012-06-14 2012-06-14 Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012134616A JP2013256425A (en) 2012-06-14 2012-06-14 Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target

Publications (1)

Publication Number Publication Date
JP2013256425A true JP2013256425A (en) 2013-12-26

Family

ID=49953199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012134616A Pending JP2013256425A (en) 2012-06-14 2012-06-14 Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target

Country Status (1)

Country Link
JP (1) JP2013256425A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6159867B1 (en) * 2016-12-22 2017-07-05 Jx金属株式会社 Transparent conductive film forming target, transparent conductive film forming target manufacturing method, and transparent conductive film manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029744A (en) * 2000-07-17 2002-01-29 Sumitomo Chem Co Ltd Method for manufacturing tin oxide powder
JP2003277053A (en) * 2002-03-22 2003-10-02 Samsung Corning Co Ltd Tin oxide powder and method for manufacturing the same, and method for manufacturing high-density indium tin oxide target using the same
JP2004143484A (en) * 2002-10-22 2004-05-20 Sumitomo Metal Mining Co Ltd High concentration tin oxide ito target, and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029744A (en) * 2000-07-17 2002-01-29 Sumitomo Chem Co Ltd Method for manufacturing tin oxide powder
JP2003277053A (en) * 2002-03-22 2003-10-02 Samsung Corning Co Ltd Tin oxide powder and method for manufacturing the same, and method for manufacturing high-density indium tin oxide target using the same
JP2004143484A (en) * 2002-10-22 2004-05-20 Sumitomo Metal Mining Co Ltd High concentration tin oxide ito target, and production method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6159867B1 (en) * 2016-12-22 2017-07-05 Jx金属株式会社 Transparent conductive film forming target, transparent conductive film forming target manufacturing method, and transparent conductive film manufacturing method
KR20180073507A (en) * 2016-12-22 2018-07-02 제이엑스금속주식회사 Target for forming transparent conductive film, transparent conductive film, method of manufacturing target for forming transparent conductive film and method of manufacturing transparent conductive film
JP2018104743A (en) * 2016-12-22 2018-07-05 Jx金属株式会社 Target for transparent conductive film deposition, method for manufacturing the same and method for manufacturing transparent conductive film
KR102089842B1 (en) 2016-12-22 2020-03-16 제이엑스금속주식회사 Target for forming transparent conductive film, transparent conductive film, method of manufacturing target for forming transparent conductive film and method of manufacturing transparent conductive film

Similar Documents

Publication Publication Date Title
KR102322184B1 (en) Indium zinc oxide (izo) based sputtering target, and method for producing same
JP6078189B1 (en) IZO sintered compact sputtering target and manufacturing method thereof
JP6291593B2 (en) ITO sputtering target, manufacturing method thereof, and manufacturing method of ITO transparent conductive film
JP5456291B2 (en) Method for producing sintered sputtering target for forming ITO film
CN103717779A (en) Zn-sn-o type oxide sintered body and method for producing same
WO2011043235A1 (en) Indium oxide sintered body, indium oxide transparent conductive film, and method for manufacturing the transparent conductive film
JP5987105B2 (en) ITO sputtering target and manufacturing method thereof
JP6159867B1 (en) Transparent conductive film forming target, transparent conductive film forming target manufacturing method, and transparent conductive film manufacturing method
WO2009128495A1 (en) Sputtering target
JP4734936B2 (en) ITO granulated powder, ITO sintered body and method for producing the same
JP2013256425A (en) Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target
JP6885038B2 (en) Oxide sintered body, its manufacturing method and sputtering target
JP2016121057A (en) Oxide sintered body and sputtering target
TWI575094B (en) In-ce-o based sputtering target and method for producing the same
JPH03218924A (en) Oxide powder and production thereof
JP2001072470A (en) Production of ito sintered compact
TWI697458B (en) Sputtering target
JP5890671B2 (en) Manufacturing method of ITO sputtering target
JP2007230853A (en) Ito powder, its production method and method for producing ito sputtering target
JP2013067538A (en) Oxide sintered body and oxide transparent conductive film
JP2013112833A (en) Sputtering target material and method for manufacturing the same
JPH03215318A (en) Oxide powder and its production
KR20080056974A (en) Indium tin oxide target and manufacturing method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151027