JP5456291B2 - Method for producing sintered sputtering target for forming ITO film - Google Patents

Method for producing sintered sputtering target for forming ITO film Download PDF

Info

Publication number
JP5456291B2
JP5456291B2 JP2008240752A JP2008240752A JP5456291B2 JP 5456291 B2 JP5456291 B2 JP 5456291B2 JP 2008240752 A JP2008240752 A JP 2008240752A JP 2008240752 A JP2008240752 A JP 2008240752A JP 5456291 B2 JP5456291 B2 JP 5456291B2
Authority
JP
Japan
Prior art keywords
tin oxide
particle size
oxide powder
sputtering target
ito film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008240752A
Other languages
Japanese (ja)
Other versions
JP2009029706A (en
Inventor
充之 古仲
敏也 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2008240752A priority Critical patent/JP5456291B2/en
Publication of JP2009029706A publication Critical patent/JP2009029706A/en
Application granted granted Critical
Publication of JP5456291B2 publication Critical patent/JP5456291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only

Description

この発明は、ITOスパッタリングターゲット用酸化錫粉末及びITO膜形成に好適な焼結体スパッタリングターゲット並びにその製造方法に関する。   The present invention relates to a tin oxide powder for an ITO sputtering target, a sintered body sputtering target suitable for forming an ITO film, and a method for producing the same.

ITO(インジウム−錫の複合酸化物)膜は液晶ディスプレーを中心とする表示デバイスの透明電極(膜)として広く使用されている。
このITO膜を形成する方法として、真空蒸着法やスパッタリング法など、一般に物理蒸着法と言われている手段によって行われるのが普通である。特に、操作性や皮膜の安定性からマグネトロンスパッタリング法を用いて形成することが多い。
An ITO (indium-tin composite oxide) film is widely used as a transparent electrode (film) of a display device centering on a liquid crystal display.
As a method of forming this ITO film, it is usually performed by means generally called physical vapor deposition such as vacuum vapor deposition or sputtering. In particular, the magnetron sputtering method is often used in view of operability and film stability.

スパッタリング法による膜の形成は、陰極に設置したターゲットにArイオンなどの正イオンを物理的に衝突させ、その衝突エネルギーでターゲットを構成する材料を放出させて、対面している陽極側の基板にターゲット材料とほぼ同組成の膜を積層することによって行われる。
スパッタリング法による被覆法は処理時間や供給電力等を調節することによって、安定した成膜速度でオングストローム単位の薄い膜から数十μmの厚い膜まで形成できるという特徴を有している。
A film is formed by sputtering, in which positive ions such as Ar ions are physically collided with a target placed on the cathode, and the material constituting the target is released by the collision energy, and the substrate on the anode side facing the target is released. This is done by stacking films having the same composition as the target material.
The coating method by sputtering has a feature that a thin film in angstrom units to a thick film of several tens of μm can be formed at a stable film formation speed by adjusting the processing time, supply power, and the like.

ITO膜を形成する場合に特に問題となるのは、ITOターゲットのエロージョン部やその周辺にノジュールと呼ばれる突起物が発生する事である。このノジュールが発生するとスパッタレートの低下や異常放電(マイクロアーキング)を引き起こし、著しく生産性を低下させる。
また、ノジュールや異常放電に起因して、スパッタチャンバ内に粗大化した粒子(パーティクル)が浮遊するようになり、これが生成した薄膜に再付着して薄膜の欠陥(ピンホール)や突起物の原因となり、膜の品質が低下するという問題が発生する。
A particular problem when forming an ITO film is that protrusions called nodules are generated in the erosion portion of the ITO target or in the vicinity thereof. When this nodule is generated, the sputtering rate is lowered and abnormal discharge (micro arcing) is caused, and the productivity is remarkably lowered.
In addition, due to nodules and abnormal discharge, coarse particles (particles) float in the sputtering chamber and reattach to the generated thin film, causing thin film defects (pinholes) and protrusions. Thus, there arises a problem that the quality of the film is lowered.

ノジュールの発生を抑える対策としては、一般的にターゲットの密度を上げ、ターゲット中の空孔(ポア)を減少させることが知られている。
また、ターゲット焼結体の原料粉末となる酸化インジウムと酸化錫を微細化し、それぞれの分散性を上げることにより、ターゲット中の組成のばらつきを減少させることが効果的である。特に酸化錫の粒が粗大であると、混合した酸化インジウムに十分に固溶できず、焼結体中に酸化錫の塊として存在するため、スパッタの際にノジュールの起点となってしまう。また、それらは、焼結体中の空孔の原因となり焼結体の高密度化を阻害する要因となる。
As a measure for suppressing the generation of nodules, it is generally known to increase the density of the target and reduce the pores in the target.
In addition, it is effective to reduce variation in composition in the target by refining indium oxide and tin oxide, which are raw material powders of the target sintered body, and increasing their dispersibility. In particular, if the tin oxide grains are coarse, they cannot be sufficiently dissolved in the mixed indium oxide, and are present as a lump of tin oxide in the sintered body, which becomes the starting point of nodules during sputtering. Further, they cause pores in the sintered body and hinder density increase of the sintered body.

酸化錫粉末を微細化するためには、原料粉を機械的に粉砕する方法が最も簡便かつ低コストである。粉砕装置として一般に知られているものとしては、原料の相互衝突又はライナーに衝突させて粉砕するジェットミル、粉砕メディアを使用してメディア間若しくはライナー間との摩砕によって粉砕するビーズミル等がある。しかし、ジェットミル法では、酸化錫粉のように固く凝集性の強い原料をサブミクロン領域の粒径まで粉砕するためには、パス回数の増大など、極端な処理量の低下を招きコスト的に不利となる。   In order to refine the tin oxide powder, the method of mechanically pulverizing the raw material powder is the simplest and the lowest cost. As a pulverizing apparatus, there are a jet mill that pulverizes by mutual collision of raw materials or by colliding with a liner, a bead mill that pulverizes by grinding between media or between liners using a pulverizing medium, and the like. However, in the jet mill method, in order to pulverize a hard and highly cohesive raw material such as tin oxide powder to a particle size in the submicron region, an extreme decrease in the throughput, such as an increase in the number of passes, is caused in terms of cost. Disadvantageous.

このようなことから、ITOターゲットの焼結用粉末はメディア攪拌型の粉砕機を使用することが好ましく、原料の凝集を制御するのに容易な湿式のビーズミルが最適である。
このビーズミル粉砕機において粉砕動力又はパス回数を増すと、より微粉化するが、余り強すぎると粉砕量の制御が難しくなり、また弱すぎるとミル内のビーズとスラリーの動きが悪くなり、粉砕効率が著しく低下するため、適度な強さに制御して粉砕を行うことが要求される。
For this reason, it is preferable to use a media stirring type pulverizer for the sintering powder of the ITO target, and a wet bead mill that is easy to control the aggregation of the raw materials is optimal.
If the grinding power or the number of passes is increased in this bead mill, the powder will become finer. Therefore, the pulverization is required to be controlled to an appropriate strength.

ITOターゲットの原料粉である酸化インジウム粉については、粉砕が容易であり特に問題となることはないが、酸化錫のように固く、凝集性の強い粉は酸化インジウム粉に比べて粉砕が難しくなる。したがって、原料粉としては特に酸化錫の粉砕が問題であり、これをコントロールすることが必要となる。
酸化錫の粉砕に際しては、通常ならば粉砕動力又はパス回数を増すことによって、より細かく粉砕ができると考えられるが、粉砕動力又はパス回数を増すことによる問題以外に、ミル粉砕機内のライナーや硬質ビーズ材料等が酸化錫粉末中にコンタミ(汚染物質)として混入してしまう問題がある。
Indium oxide powder, which is a raw material powder for ITO targets, is easy to grind and does not cause any problems. However, it is harder to grind powders that are hard and cohesive like tin oxide than indium oxide powders. . Therefore, as a raw material powder, pulverization of tin oxide is a problem, and it is necessary to control this.
When tin oxide is pulverized, it can be considered that finer pulverization can be achieved by increasing the pulverization power or the number of passes. However, in addition to the problem caused by increasing the pulverization power or the number of passes, a liner or hard There is a problem that bead materials and the like are mixed in the tin oxide powder as contamination (contaminant).

したがって、細粒化した粉を用いて焼結することによる高密度化と細粒化に伴う焼結材料の汚染の問題は相互に矛盾する問題であり、高密度化を行うための最適な粉末が得られているとは言えないのが現状である。
以上のことから、ITO薄膜形成には、成分が均一でかつ高密度の焼結体ターゲットを得ることが必要であったが、これらの要求に満足できる最適な酸化錫粉末及び高密度の焼結体ターゲットが得られていないという問題があった。
Therefore, the problem of high density due to sintering using finely divided powder and the contamination of sintered material due to fine graining are contradictory problems. It is the present situation that it cannot be said that is obtained.
In view of the above, it was necessary to obtain a sintered compact target with a uniform component and high density for forming an ITO thin film. There was a problem that the body target was not obtained.

本発明は、上記の諸問題点の解決、特にITO薄膜形成に好適な高密度化と成分の均一性に優れた焼結体を得ることができる酸化錫粉末及び該粉末を用いて焼結したITO膜形成用スパッタリングターゲット並びにその製造方法を提供するものであり、これによってITO薄膜形成時に発生するノジュール等やそれに伴う薄膜の品質の低下を抑制できるITO膜形成用酸化錫−酸化インジウムターゲットを低コストで提供することを目的としたものである。   In the present invention, a tin oxide powder capable of obtaining a sintered body excellent in densification and component uniformity suitable for solving the above-described problems, particularly for forming an ITO thin film, and sintered using the powder. The present invention provides a sputtering target for forming an ITO film and a method for producing the same, thereby reducing a tin oxide-indium oxide target for forming an ITO film that can suppress nodules generated during the formation of the ITO thin film and the accompanying deterioration of the quality of the thin film. It is intended to be provided at a cost.

上記問題点を解決するための技術的な手段は、酸化錫粉末の粒径を厳密に管理するものであり、これによってITO透明導電膜等に好適なスパッタリングターゲットを得ることができるとの知見を得た。
この知見に基づき、本発明は
1)粒度分布から求めたメジアン径が0.40〜1.0μmの範囲にあり、
かつ粒度分布から求めた90%粒径が3.0μm以下の範囲にあることを特徴とするITOスパッタリングターゲット用酸化錫粉末
2)粒度分布から求めたメジアン径が0.40〜0.60μmの範囲にあり、かつ粒度分布から求めた90%粒径が1.0μm以下の範囲にあることを特徴とするITOスパッタリングターゲット用酸化錫粉末
3)固形分65%以上の酸化錫粉末のスラリーを湿式ビーズミルにて粉砕することを特徴とする上記1)又は2)に記載のITOスパッタリングターゲット用酸化錫粉末の製造方法、を提供する。
The technical means for solving the above problems is to strictly control the particle size of the tin oxide powder, and the knowledge that a sputtering target suitable for an ITO transparent conductive film or the like can be obtained thereby. Obtained.
Based on this finding, the present invention is 1) the median diameter determined from the particle size distribution is in the range of 0.40 to 1.0 μm,
And the 90% particle diameter obtained from the particle size distribution is in the range of 3.0 μm or less, and the tin oxide powder for ITO sputtering target 2) The median diameter obtained from the particle size distribution is in the range of 0.40 to 0.60 μm And a tin oxide powder for an ITO sputtering target characterized in that the 90% particle size obtained from the particle size distribution is in the range of 1.0 μm or less 3) A slurry of tin oxide powder with a solid content of 65% or more is wet bead mill The method for producing a tin oxide powder for an ITO sputtering target according to 1) or 2) above, wherein the method is pulverized at a temperature.

また、本願発明は、
4)粒度分布から求めたメジアン径が0.40〜1.0μmの範囲にあり、
かつ粒度分布から求めた90%粒径が3.0μm以下の範囲にある酸化錫と酸化インジウム粉末を焼結したことを特徴とするITO膜形成用焼結体スパッタリングターゲット
5)粒度分布から求めたメジアン径が0.40〜0.60μmの範囲にあり、かつ粒度分布から求めた90%粒径が1.0μm以下の範囲にある酸化錫と酸化インジウム粉末を焼結したことを特徴とするITO膜形成用焼結体スパッタリングターゲット
6)7.12g/cm以上の密度を備えていることを特徴とする上記4)又は5)に記載のITO膜形成用スパッタリングターゲット
7)固形分65%以上の酸化錫粉末のスラリーを湿式ビーズミルにて粉砕した酸化錫粉末を用いて焼結することを特徴とする上記4)〜6)のそれぞれに記載のITO膜形成用スパッタリングターゲットの製造方法、を提供する。
In addition, the present invention
4) The median diameter determined from the particle size distribution is in the range of 0.40 to 1.0 μm,
In addition, a sintered sputtering target for forming an ITO film characterized by sintering a tin oxide and indium oxide powder having a 90% particle size in the range of 3.0 μm or less determined from the particle size distribution 5) determined from the particle size distribution ITO characterized by sintering tin oxide and indium oxide powder having a median diameter in the range of 0.40 to 0.60 μm and a 90% particle diameter in the range of 1.0 μm or less determined from the particle size distribution. Sintered sputtering target for film formation 6) A sputtering target for ITO film formation according to 4) or 5) above having a density of 7.12 g / cm 3 or more 7) Solid content of 65% or more The sputter for forming an ITO film according to each of the above 4) to 6), wherein the tin oxide powder slurry is sintered using a tin oxide powder pulverized by a wet bead mill. Manufacturing method of the target.

ITO薄膜形成に好適な高密度化と成分の均一性に優れた焼結体を得ることができるという著しい特徴を有し、これによってITOスパッタリング成膜が均一でない場合に生ずる品質の低下やノジュール等の異常突起物を抑制できるITO膜形成用酸化錫−酸化インジウムターゲットを低コストで得ることができるという優れた効果を有する。   It has a remarkable feature that it can obtain a sintered body excellent in high density and uniformity of components suitable for forming an ITO thin film, and as a result, quality degradation, nodules, etc. that occur when ITO sputtering film formation is not uniform It has the outstanding effect that the tin oxide-indium oxide target for ITO film formation which can suppress this abnormal protrusion can be obtained at low cost.

本発明は、ITOスパッタリングターゲット用酸化錫粉末を、粒度分布から求めたメジアン径が0.40〜1.0μmの範囲にあり、かつ粒度分布から求めた90%粒径が3.0μm以下の範囲とし、好ましくは粒度分布から求めたメジアン径が0.40〜0.60μmの範囲にあり、かつ粒度分布から求めた90%粒径が1.0μm以下の範囲とする。   In the present invention, the tin oxide powder for ITO sputtering target has a median diameter determined from the particle size distribution in the range of 0.40 to 1.0 μm, and the 90% particle diameter determined from the particle size distribution is in the range of 3.0 μm or less. Preferably, the median diameter determined from the particle size distribution is in the range of 0.40 to 0.60 μm, and the 90% particle diameter determined from the particle size distribution is in the range of 1.0 μm or less.

通常(従来)の酸化錫粉末は、粒度分布から求めた積算体積頻度が50%の値=メジアン径が1.5〜2.5μm、粒度分布から求めた積算体積頻度が90%の値=90%粒径が5.0〜10.0μm程度の範囲であった。
上記酸化錫粉末は、酸化インジウム粉末と所定の割合で混合し、湿式ビーズミルにてメジアン径が0.5〜1.0μm程度まで粉砕を行っていた。しかし、混合粉中の酸化錫粉は十分に分散しておらず、一部は5〜10μm程度の粗大粒として存在していた。この様な酸化錫の粗大粒は酸化インジウムに十分に固溶できず、焼結体中の酸化錫塊又はポアの原因となるため、焼結体密度が十分に上がらず、均一かつ高密度の焼結体を得ることができなかった。
そして、このように焼結体ターゲットの成分が均一でなく、また十分な密度が得られていないために、スパッタリング成膜の際にばらつきを生じ、ITO膜の品質の低下を招くという問題があった。
The normal (conventional) tin oxide powder has an integrated volume frequency of 50% obtained from the particle size distribution = median diameter of 1.5 to 2.5 μm, and an integrated volume frequency of 90% obtained from the particle size distribution = 90. The% particle size was in the range of about 5.0 to 10.0 μm.
The tin oxide powder was mixed with indium oxide powder at a predetermined ratio and pulverized to a median diameter of about 0.5 to 1.0 μm by a wet bead mill. However, the tin oxide powder in the mixed powder was not sufficiently dispersed, and some existed as coarse particles of about 5 to 10 μm. Such coarse particles of tin oxide cannot be sufficiently dissolved in indium oxide and cause tin oxide lumps or pores in the sintered body. A sintered body could not be obtained.
In addition, since the components of the sintered body target are not uniform and sufficient density is not obtained in this way, there is a problem that variation occurs during sputtering film formation and the quality of the ITO film is deteriorated. It was.

この原因を究明した結果、上記の酸化錫粉末の粒径が重要であり、原料に含まれる粗大粒が焼結体の密度を低下させていることに着目し、酸化錫粉末の粒度分布から求めたメジアン径が0.40〜1.0μmの範囲にあり、かつ粒度分布から求めた90%粒径が3.0μm以下の範囲とし、好ましくは粒度分布から求めたメジアン径が0.40〜0.60μmの範囲にあり、かつ粒度分布から求めた90%粒径が1.0μm以下の範囲とすることにより、高密度、かつ高品質の焼結体を得ることに成功した。   As a result of investigating the cause, the particle size of the above tin oxide powder is important, and it is determined from the particle size distribution of the tin oxide powder that the coarse particles contained in the raw material reduce the density of the sintered body. The median diameter is in the range of 0.40 to 1.0 μm, and the 90% particle size determined from the particle size distribution is in the range of 3.0 μm or less, preferably the median diameter determined from the particle size distribution is 0.40 to 0. In the range of .60 μm and the 90% particle size determined from the particle size distribution in the range of 1.0 μm or less, a high-density and high-quality sintered body was successfully obtained.

本発明の上記粉末を使用することによって、ITOスパッタリングターゲットに好適な密度7.12g/cm以上、さらには7.13g/cm以上の高密度を備えた焼結体を得ることができる。
粉砕の際、酸化錫の粒径の調整は、原料粉の選択、粉砕動力の調整、パス回数、粉砕ビーズの径や材質の調整、酸化錫粉末スラリーの固形分の調整によって行うが、上記の条件が達成できるように適宜コントロールすることによって行うことができる。
粉砕メディアとしてジルコニアビーズを使用するが、ジルコニウムのコンタミの問題から、固形分65%以上の酸化錫粉末スラリーを使用することにより、コンタミの問題を極力抑制できる。これによって、無理のない粉砕が可能であり、優れた焼結性を持つ焼結粉末を得ることができる。
By using the above powder of the present invention, the preferred density ITO sputtering target 7.12 g / cm 3 or more, it is possible to obtain the sintered body having a 7.13 g / cm 3 or more dense.
During the pulverization, the tin oxide particle size is adjusted by selecting the raw material powder, adjusting the pulverization power, the number of passes, adjusting the diameter and material of the pulverized beads, and adjusting the solid content of the tin oxide powder slurry. It can be performed by appropriately controlling so that the conditions can be achieved.
Although zirconia beads are used as the grinding media, from the problem of zirconium contamination, the problem of contamination can be suppressed as much as possible by using a tin oxide powder slurry having a solid content of 65% or more. This makes it possible to pulverize without difficulty and to obtain a sintered powder having excellent sinterability.

本発明の実施例について説明する。なお、本実施例はあくまで1例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、実施例以外の態様あるいは変形を全て包含するものである。   Examples of the present invention will be described. In addition, a present Example is an example to the last, and is not restrict | limited to this example. That is, all aspects or modifications other than the embodiments are included within the scope of the technical idea of the present invention.

(実施例1)
粒度分布から求めたメジアン径が2.0μm、90%粒径が3.50μm、BET比表面積が4.0m/gの酸化錫粉を純水に混合し固形分65%のスラリーを作製した。なお、粒度分布測定はレーザー回折/散乱式粒度分布計(堀場製作所製LA-920)、BET比表面積は連続流動式表面積計(堀場製作所製SA-6200)を使用した。この時、純水中の酸化錫粉を分散させるため、アンモニア水を添加してスラリーのpHを9.0に調整した。
Example 1
A tin oxide powder having a median diameter of 2.0 μm, a 90% particle diameter of 3.50 μm, and a BET specific surface area of 4.0 m 2 / g obtained from the particle size distribution was mixed with pure water to prepare a slurry having a solid content of 65%. . For the particle size distribution measurement, a laser diffraction / scattering particle size distribution meter (LA-920 manufactured by Horiba, Ltd.) and a continuous flow surface area meter (SA-6200 manufactured by Horiba, Ltd.) were used for the BET specific surface area. At this time, in order to disperse tin oxide powder in pure water, aqueous ammonia was added to adjust the pH of the slurry to 9.0.

次に、作製したスラリーをビーズミルにて粉砕し、粒度分布から求めたメジアン径が1.0μm、90%粒径が2.0μm、BET比表面積が6.0m/gまで粉砕した。この時粉砕ビーズは耐磨耗性を考慮してジルコニアビーズ(YTZ)を使用した。上記により粉砕した酸化錫スラリーと、粒度分布から求めたメジアン径が2.0μm、90%粒径が3.0μm、BET比表面積が8.0m/gの酸化インジウム粉を固形分重量比率で酸化錫1:酸化インジウム9となるよう純水に混合し、固形分50%のスラリーを作製した。 Next, the prepared slurry was pulverized by a bead mill, and pulverized to a median size of 1.0 μm, a 90% particle size of 2.0 μm, and a BET specific surface area of 6.0 m 2 / g determined from the particle size distribution. At this time, zirconia beads (YTZ) were used as the ground beads in consideration of wear resistance. The tin oxide slurry pulverized as described above, and indium oxide powder having a median diameter of 2.0 μm, a 90% particle diameter of 3.0 μm, and a BET specific surface area of 8.0 m 2 / g determined from the particle size distribution in a solid weight ratio. Tin oxide 1: Indium oxide 9 was mixed in pure water to prepare a slurry with a solid content of 50%.

次に、作製した酸化錫、酸化インジウム混合スラリーをビーズミルにて、粉砕・混合し、粒度分布から求めたメジアン径が0.80μm、90%粒径が1.50μm、BET比表面積が10m/gまで粉砕した。
次に、この粉砕スラリーにバインダーを加え、スプレードライヤーにて造粒・乾燥した。この乾燥粉末を金型に充填した後、油圧プレスにて1000kgf/cmの圧力で成形後、さらに冷間等方静水圧プレス(CIP)にて1500kgf/cmの圧力で成形して、密度が4.0g/ccの成形体を得た。
次に、該成形体を焼結温度1550°Cで4時間、酸素雰囲気焼結した結果、得られた焼結体の密度はアルキメデス法で7.128g/cmと高密度の焼結体が得られた。但し、該成形体を焼結温度1500°Cで焼結した場合には、密度7.097g/cmにしか達しなかった。
Next, the prepared tin oxide and indium oxide mixed slurry was pulverized and mixed in a bead mill, and the median diameter determined from the particle size distribution was 0.80 μm, the 90% particle size was 1.50 μm, and the BET specific surface area was 10 m 2 / ground to g.
Next, a binder was added to the pulverized slurry, and granulated and dried with a spray dryer. After filling the dry powder into a mold, after molding at a pressure of 1000 kgf / cm 2 by a hydraulic press, and further molding under a pressure of 1500 kgf / cm 2 with cold isostatic pressing (CIP), the density Of 4.0 g / cc was obtained.
Next, as a result of sintering the molded body in an oxygen atmosphere at a sintering temperature of 1550 ° C. for 4 hours, the density of the obtained sintered body was 7.128 g / cm 3 by Archimedes method. Obtained. However, when the compact was sintered at a sintering temperature of 1500 ° C., the density reached only 7.097 g / cm 3 .

(実施例2)
上記の実施例1と同一の粉砕条件にて、粒度分布から求めたメジアン径が0.5μm、90%粒径が0.80μm、BET比表面積が7.0m/gまで粉砕した。
次に、粉砕した酸化錫スラリーと、粒度分布から求めたメジアン径が2.0μm、90%粒径が3.0μm、BET比表面積が8.0m/gの酸化インジウム粉とを純水に混合し、実施例1と同様の方法でメジアン径が0.80μm、90%粒径が1.50μm、BET比表面積が10m/gまで粉砕した。
(Example 2)
Under the same grinding conditions as in Example 1 above, the median diameter determined from the particle size distribution was 0.5 μm, the 90% particle size was 0.80 μm, and the BET specific surface area was 7.0 m 2 / g.
Next, the pulverized tin oxide slurry, and indium oxide powder having a median diameter of 2.0 μm, a 90% particle diameter of 3.0 μm, and a BET specific surface area of 8.0 m 2 / g obtained from the particle size distribution in pure water After mixing, the median diameter was 0.80 μm, the 90% particle diameter was 1.50 μm, and the BET specific surface area was 10 m 2 / g in the same manner as in Example 1.

該粉砕スラリーを実施例1と同様に造粒・乾燥した。次に得られた粉末を金型に充填した後、油圧プレスにて1000kgf/cmの圧力で成形後、さらに冷間等方静水圧プレス(CIP)にて1500kgf/cmの圧力で成形して、密度が4.0g/ccの成形体を得た。
次に、該成形体を焼結温度1550°Cで4時間、酸素雰囲気焼結した結果、得られた焼結体の密度はアルキメデス法で7.129g/cmと高密度の焼結体が得られた。更に、該成形体を焼結温度1500°Cで焼結した場合にも、密度7.130g/cmの高密度の焼結体が得られた。
The pulverized slurry was granulated and dried in the same manner as in Example 1. After then obtained powder was filled in a mold, after molding at a pressure of 1000 kgf / cm 2 by a hydraulic press at more cold isostatic pressing (CIP) molding at a pressure of 1500 kgf / cm 2 Thus, a molded body having a density of 4.0 g / cc was obtained.
Next, as a result of sintering the molded body in an oxygen atmosphere at a sintering temperature of 1550 ° C. for 4 hours, the density of the obtained sintered body was 7.129 g / cm 3 by Archimedes method. Obtained. Furthermore, when the compact was sintered at a sintering temperature of 1500 ° C., a high-density sintered body having a density of 7.130 g / cm 3 was obtained.

(比較例1)
粒度分布から求めたメジアン径が2.0μm、90%粒径が3.50μm、BET比表面積が4.0m/gの酸化錫粉と、粒度分布から求めたメジアン径が2.0μm、90%粒径が3.0μm、BET比表面積が8.0m/gの酸化インジウム粉を実施例と同様の方法により固形分重量比率で酸化錫1:酸化インジウム9となるよう純水に混合し、固形分50%のスラリーを作製した。
(Comparative Example 1)
The median diameter determined from the particle size distribution is 2.0 μm, the 90% particle size is 3.50 μm, the tin oxide powder has a BET specific surface area of 4.0 m 2 / g, and the median diameter determined from the particle size distribution is 2.0 μm, 90 An indium oxide powder having a% particle size of 3.0 μm and a BET specific surface area of 8.0 m 2 / g was mixed with pure water in the same manner as in the example so that the weight ratio of solid content was tin oxide 1: indium oxide 9. A slurry with a solid content of 50% was prepared.

次に、実施例1と同様の方法により、粒度分布から求めたメジアン径が0.80μm、90%粒径が1.50μm、BET比表面積が10m/gまで粉砕した。
この粉砕スラリーにバインダーを加え、実施例1と同様の方法により、造粒・乾燥した。得られた粉末を金型に充填した後、油圧プレスにて1000kgf/cmの圧力で成形後、さらに冷間等方静水圧プレス(CIP)にて1500kgf/cmの圧力で成形して、密度が4.0g/ccの成形体を得た。
Next, in the same manner as in Example 1, the median diameter determined from the particle size distribution was pulverized to 0.80 μm, the 90% particle size was 1.50 μm, and the BET specific surface area was 10 m 2 / g.
A binder was added to the pulverized slurry, and granulated and dried by the same method as in Example 1. The resulting powder was filled in a mold, after molding at a pressure of 1000 kgf / cm 2 by a hydraulic press, and further molding under a pressure of 1500 kgf / cm 2 with cold isostatic pressing (CIP), A molded body having a density of 4.0 g / cc was obtained.

次に、該成形体を焼結温度1550°Cで4時間、酸素雰囲気焼結した結果、得られた焼結体の密度はアルキメデス法で7.101g/cmにしか到達しなかった。また、焼結温度を1650°Cまで上げた場合でも、焼結体の密度7.108g/cmであった。
上記実施例1、2及び比較例1で作製した焼結体について機械加工を行い、スパッタリングターゲットを作製して、スパッタリング時のノジュール発生量(被覆率)とスパッタリング時の異常放電(マイクロアーキング)回数を測定した。
Next, as a result of sintering the molded body in an oxygen atmosphere at a sintering temperature of 1550 ° C. for 4 hours, the density of the obtained sintered body reached only 7.101 g / cm 3 by Archimedes method. Even when the sintering temperature was increased to 1650 ° C., the density of the sintered body was 7.108 g / cm 3 .
The sintered bodies produced in Examples 1 and 2 and Comparative Example 1 are machined to produce a sputtering target, and the amount of nodule generation (coverage) during sputtering and the number of abnormal discharges (micro arcing) during sputtering. Was measured.

スパッタリングの条件は以下の通りである。
ターゲットサイズ:127×508×6.35mm
スパッタガス:Ar+O
スパッタガス圧:0.5Pa
スパッタガス流量:300SCCM
スパッタガス中の酸素濃度:1Vol%
漏洩磁束密度:0.1T
投入スパッタパワー密度:0.5W/cmでスパッタ開始して成膜
速度を一定に保つように上昇させた。
スパッタ積算電力:〜160WHr/cm
The sputtering conditions are as follows.
Target size: 127 x 508 x 6.35 mm
Sputtering gas: Ar + O 2
Sputtering gas pressure: 0.5Pa
Sputtering gas flow rate: 300 SCCM
Oxygen concentration in sputtering gas: 1 Vol%
Leakage magnetic flux density: 0.1T
Sputtering was started at an input sputtering power density of 0.5 W / cm 2 , and the film formation rate was increased to keep constant.
Sputter integrated power: ~ 160 WHr / cm 2

図1にノジュール発生量、図2にマイクロアーキング回数を示す。ノジュール発生量(被覆率)はターゲットのエロージョン部の画像をコンピュータで2値化し、発生したノジュールの面積をエロージョン面積で除した値として算出した。マイクロアーキングのしきい値は、検出電圧:100V以上、放出エネルギー(アーク放電が発生している時のスパッタ電圧×スパッタ電流×発生時間):10mJ以下とした。  FIG. 1 shows the amount of nodule generation, and FIG. 2 shows the number of micro arcing. The nodule generation amount (coverage) was calculated as a value obtained by binarizing the image of the erosion portion of the target with a computer and dividing the generated nodule area by the erosion area. The threshold for micro arcing was set to detection voltage: 100 V or more, emission energy (sputtering voltage when arc discharge is occurring × sputtering current × generation time): 10 mJ or less.

図1から明らかなように、比較例のターゲットは積算電力40WHr/cmから急激にノジュールが増加し、ライフエンドである積算電力160WHr/cmでは40%以上のノジュール被覆率となっているのに対し、実施例1、2のターゲットは積算電力160WHr/cmまでスパッタリングを行ってもノジュール発生量は0%であり、著しく優れていることが分かる。 As apparent from FIG. 1, the target of the comparative example sharply nodules increases from the integrated power 40WHr / cm 2, has a cumulative power 160WHr / cm 2 in 40% of nodules coverage is life end On the other hand, it can be seen that the targets of Examples 1 and 2 have a nodule generation amount of 0% even when sputtering is performed up to an integrated power of 160 WHr / cm 2 , which is remarkably excellent.

また、図2のマイクロアーキング回数においても、比較例のターゲットは積算電力80WHr/cmから急激にアーキング回数が増加するのに
対し、実施例1、2のターゲットは終始アーキング回数が少なく、安定した成膜条件が得られることが分かる。
実施例1、2で比較すると、ノジュール発生量では両者に差はみられなかったが、アーキング回数で比較すると実施例2の方が優れていることが分かる。
Further, in the micro arcing frequency of FIG. 2, the target of the comparative example suddenly increased the arcing frequency from the integrated power of 80 WHr / cm 2 , whereas the targets of Examples 1 and 2 were stable with a small number of arcing throughout. It can be seen that film formation conditions can be obtained.
When compared in Examples 1 and 2, no difference was found in the amount of nodule generation, but it can be seen that Example 2 is superior when compared in terms of the number of arcing.

(実施例3)
上記実施例1及び2で使用した酸化錫粉を製造する際のジルコニアビーズのコンタミ(不純物)量を調べた。粉砕には上記実施例で使用したビーズミルを使用し、粉砕ビーズはφ0.5mm径のZrビーズ(YTZ)を使用した。
酸化錫粉をそれぞれ固形分重量比率で25%、45%、65%となるように純水に混合した。この時、純水中の酸化錫粉を分散させるため、アンモニア水を添加しpHを8.0〜10.0に調整し、スラリーの粘度を0.1Pa・s以下に調整した。
上記各固形分のスラリーを同一粉砕条件にてパス運転を行い、それぞれの粉砕粒径と混入したZr量を調査した。その結果、図3に示すように、同一粒径で比較した場合、固形分が高いほどZrの混入量が小さくなることが分かった。
(Example 3)
The amount of contamination (impurities) of the zirconia beads when producing the tin oxide powder used in Examples 1 and 2 was examined. For the pulverization, the bead mill used in the above examples was used, and the crushed beads were Zr beads (YTZ) having a diameter of 0.5 mm.
The tin oxide powder was mixed with pure water so that the solid weight ratio would be 25%, 45%, and 65%, respectively. At this time, in order to disperse tin oxide powder in pure water, aqueous ammonia was added to adjust pH to 8.0 to 10.0, and the viscosity of the slurry was adjusted to 0.1 Pa · s or less.
Each solid content slurry was subjected to a pass operation under the same pulverization conditions, and each pulverized particle size and the amount of mixed Zr were investigated. As a result, as shown in FIG. 3, it was found that the amount of mixed Zr was smaller as the solid content was higher when compared with the same particle size.

高密度化と成分の均一性に優れた焼結体を得ることができるという著しい特徴を有し、これによってITOスパッタリング成膜が均一でない場合に生ずる品質の低下やノジュール等の異常突起物を抑制できるITO膜形成用酸化錫−酸化インジウムターゲットを低コストで得ることができるという優れた効果を有するので、ITO膜形成に有用である。   It has the remarkable feature that a sintered body with high density and excellent uniformity of components can be obtained, and this suppresses deterioration of quality and abnormal projections such as nodules that occur when ITO sputtering film formation is not uniform. Since it has the outstanding effect that the tin oxide-indium oxide target for ITO film formation which can be obtained can be obtained at low cost, it is useful for ITO film formation.

実施例1、2及び比較例で作製したスパッタリングターゲットのスパッタ時における、スパッタ積算電力とノジュール被覆率を示す図である。It is a figure which shows sputter | spatter integrated power and a nodule coverage at the time of the sputtering of the sputtering target produced in Example 1, 2 and the comparative example. 実施例1、2及び比較例で作製したスパッタリングターゲットのスパッタ時における、スパッタ積算電力とマイクロアーキング回数を示す図である。It is a figure which shows the sputter | spatter integrated power and the number of times of micro arcing at the time of the sputtering of the sputtering target produced in Example 1, 2 and the comparative example. 実施例3で作製した酸化錫粉末スラリーの各固形分濃度におけるメジアン径とZrコンタミ量を示す図である。It is a figure which shows the median diameter and Zr contamination amount in each solid content density | concentration of the tin oxide powder slurry produced in Example 3. FIG.

Claims (4)

固形分重量比率で65%以上の酸化錫粉末スラリーを、粉砕メディアとしてジルコニアビーズを使用して粉砕し、粒度分布から求めたメジアン径が0.40(0.40を除く)〜1.0μmの範囲にあり、かつ粒度分布から求めた90%粒径が3.0μm以下の酸化錫粉末を作製し、前記酸化錫粉末と酸化インジウム粉末を混合、成形、焼結する、ターゲットの製造方法であって、7.12g/cm3以上の密度を備えていることを特徴とする酸化錫と酸化インジウムからなるITO膜形成用焼結体スパッタリングターゲットの製造方法。 The solid weight ratio of 65% or more of tin oxide powder slurry was milled using zirconia beads as grinding media, (excluding 0.40) median diameter of 0.40 obtained from the particle size distribution ~1.0μm And producing a tin oxide powder having a 90% particle size of 3.0 μm or less determined from the particle size distribution, and mixing, forming and sintering the tin oxide powder and the indium oxide powder. A method for producing a sintered sputtering target for forming an ITO film made of tin oxide and indium oxide, characterized by having a density of 7.12 g / cm 3 or more. ノジュール被覆率が、積算電力量50WHr/cm2で0%であることを特徴とする請求項1記載のITO膜形成用焼結体スパッタリングターゲットの製造方法。なお、ノジュール被覆率はターゲットのエロージョン部の画像をコンピュータで2値化し、発生したノジュールの面積をエロージョン面積で除した値として算出したものである。 2. The method for producing a sintered sputtering target for forming an ITO film according to claim 1, wherein the nodule coverage is 0% at an accumulated electric power of 50 WHr / cm 2 . The nodule coverage is calculated by binarizing an image of the erosion portion of the target with a computer and dividing the area of the generated nodule by the erosion area. ノジュール被覆率が、積算電力量50WHr/cm2で0%、積算電力量160WHr/cm2で40%未満であることを特徴とする請求項1記載のITO膜形成用焼結体スパッタリングターゲットの製造方法。 Nodule coverage, 0% in cumulative power amount 50WHr / cm 2, the production of an ITO film forming sintered sputtering target according to claim 1, wherein the at integrated electricity 160WHr / cm 2 is less than 40% Method. ノジュール被覆率が、積算電力量160WHr/cm2で0%であることを特徴とする請求項1記載のITO膜形成用焼結体スパッタリングターゲットの製造方法。
2. The method for producing a sintered sputtering target for forming an ITO film according to claim 1, wherein the nodule coverage is 0% at an integrated electric energy of 160 WHr / cm 2 .
JP2008240752A 2001-03-12 2008-09-19 Method for producing sintered sputtering target for forming ITO film Expired - Lifetime JP5456291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008240752A JP5456291B2 (en) 2001-03-12 2008-09-19 Method for producing sintered sputtering target for forming ITO film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001068554 2001-03-12
JP2001068554 2001-03-12
JP2008240752A JP5456291B2 (en) 2001-03-12 2008-09-19 Method for producing sintered sputtering target for forming ITO film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002571957A Division JP4190888B2 (en) 2001-03-12 2002-02-15 Tin oxide powder for ITO sputtering target, method for producing the same, and method for producing sintered sputtering target for forming ITO film

Publications (2)

Publication Number Publication Date
JP2009029706A JP2009029706A (en) 2009-02-12
JP5456291B2 true JP5456291B2 (en) 2014-03-26

Family

ID=18926727

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002571957A Expired - Lifetime JP4190888B2 (en) 2001-03-12 2002-02-15 Tin oxide powder for ITO sputtering target, method for producing the same, and method for producing sintered sputtering target for forming ITO film
JP2008240752A Expired - Lifetime JP5456291B2 (en) 2001-03-12 2008-09-19 Method for producing sintered sputtering target for forming ITO film

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2002571957A Expired - Lifetime JP4190888B2 (en) 2001-03-12 2002-02-15 Tin oxide powder for ITO sputtering target, method for producing the same, and method for producing sintered sputtering target for forming ITO film

Country Status (5)

Country Link
JP (2) JP4190888B2 (en)
KR (2) KR100663617B1 (en)
CN (1) CN100537828C (en)
TW (1) TW555875B (en)
WO (1) WO2002072912A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019492A1 (en) 2003-08-20 2005-03-03 Nikko Materials Co., Ltd. Ito sputtering target
KR101302680B1 (en) * 2006-12-19 2013-09-03 삼성코닝정밀소재 주식회사 Indium tin oxide target and manufacturing method of producing the same
JP5625907B2 (en) 2008-07-15 2014-11-19 東ソー株式会社 Composite oxide sintered body, composite oxide sintered body manufacturing method, sputtering target, and thin film manufacturing method
JP5149262B2 (en) * 2009-11-05 2013-02-20 出光興産株式会社 Indium oxide-zinc oxide sintered target and method for producing the same
JP4884561B1 (en) * 2011-04-19 2012-02-29 Jx日鉱日石金属株式会社 Indium target and manufacturing method thereof
JP5890671B2 (en) * 2011-12-06 2016-03-22 Jx金属株式会社 Manufacturing method of ITO sputtering target
US9885108B2 (en) 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
WO2016072441A1 (en) 2014-11-07 2016-05-12 Jx金属株式会社 Ito sputtering target and method for manufacturing same, ito transparent electroconductive film, and method for manufacturing ito transparent electroconductive film
EP3054472A1 (en) * 2015-02-03 2016-08-10 TRUMPF Huettinger Sp. Z o. o. Arc treatment device and method therefor
JP5887625B1 (en) * 2015-03-27 2016-03-16 Jx金属株式会社 Cylindrical sputtering target, cylindrical sintered body, cylindrical molded body, and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033620A (en) * 1995-04-18 2000-03-07 Tosoh Corporation Process of preparing high-density sintered ITO compact and sputtering target
JP3870446B2 (en) * 1996-07-16 2007-01-17 東ソー株式会社 ITO sintered body manufacturing method and sputtering target
JPH10147861A (en) * 1996-11-15 1998-06-02 Sumitomo Metal Mining Co Ltd Production of indium oxide-tin oxide sintered body
JP4081840B2 (en) * 1997-02-28 2008-04-30 東ソー株式会社 Manufacturing method of sputtering target
JPH11228218A (en) * 1998-02-04 1999-08-24 Mitsui Mining & Smelting Co Ltd Production of ito sintered compact
JP3676961B2 (en) * 1999-04-02 2005-07-27 株式会社日鉱マテリアルズ Tin oxide-indium oxide powder for forming ITO film and sputtering target for forming ITO film
JP2001072470A (en) * 1999-08-31 2001-03-21 Sumitomo Metal Mining Co Ltd Production of ito sintered compact
JP2001072468A (en) * 1999-08-31 2001-03-21 Sumitomo Metal Mining Co Ltd Production of ito sintered compact

Also Published As

Publication number Publication date
CN100537828C (en) 2009-09-09
KR100663617B1 (en) 2007-01-05
TW555875B (en) 2003-10-01
CN1633516A (en) 2005-06-29
WO2002072912A1 (en) 2002-09-19
KR100581138B1 (en) 2006-05-16
KR20060033935A (en) 2006-04-20
JPWO2002072912A1 (en) 2004-07-02
JP2009029706A (en) 2009-02-12
JP4190888B2 (en) 2008-12-03
KR20030087185A (en) 2003-11-13

Similar Documents

Publication Publication Date Title
JP5456291B2 (en) Method for producing sintered sputtering target for forming ITO film
KR100492290B1 (en) Manufacture method of sintered thio sinter
US6033620A (en) Process of preparing high-density sintered ITO compact and sputtering target
JP5987105B2 (en) ITO sputtering target and manufacturing method thereof
JP4813182B2 (en) ITO sputtering target
JP4734936B2 (en) ITO granulated powder, ITO sintered body and method for producing the same
JPH10147862A (en) Indium oxide-tin oxide sintered body
JP6885038B2 (en) Oxide sintered body, its manufacturing method and sputtering target
JPH10147861A (en) Production of indium oxide-tin oxide sintered body
JP3715504B2 (en) High-density ITO sintered sputtering target and method for producing the same
JP4234483B2 (en) ITO sputtering target, manufacturing method thereof, and ITO transparent conductive film
KR102188415B1 (en) Sputtering target
JPH03218924A (en) Oxide powder and production thereof
JP3733607B2 (en) Method for producing chromium sputtering target
TWI575094B (en) In-ce-o based sputtering target and method for producing the same
JP2013256425A (en) Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target
JP2007230853A (en) Ito powder, its production method and method for producing ito sputtering target
JP2000345329A (en) Tin oxide-indium oxide powder for forming ito film and sputtering target for forming ito film
JP2001262326A (en) Indium oxide-metallic thin powder mixture, ito sputtering target using the same powdery mixture as raw material and method for producing the same target
JP5890671B2 (en) Manufacturing method of ITO sputtering target
JP2003137546A (en) Method for manufacturing tin oxide powder

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5456291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term