WO2002072912A1 - Tin oxide powder for ito sputtering target, production method of the powder, sintered body sputtering target for ito film fomation and production method of the target - Google Patents

Tin oxide powder for ito sputtering target, production method of the powder, sintered body sputtering target for ito film fomation and production method of the target Download PDF

Info

Publication number
WO2002072912A1
WO2002072912A1 PCT/JP2002/001305 JP0201305W WO02072912A1 WO 2002072912 A1 WO2002072912 A1 WO 2002072912A1 JP 0201305 W JP0201305 W JP 0201305W WO 02072912 A1 WO02072912 A1 WO 02072912A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle size
tin oxide
oxide powder
powder
size distribution
Prior art date
Application number
PCT/JP2002/001305
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuyuki Konaka
Toshiya Kurihara
Original Assignee
Nikko Materials Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Company, Limited filed Critical Nikko Materials Company, Limited
Priority to JP2002571957A priority Critical patent/JP4190888B2/en
Priority to KR1020037011559A priority patent/KR100581138B1/en
Publication of WO2002072912A1 publication Critical patent/WO2002072912A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only

Definitions

  • Tin oxide powder for I T O sputtering target method of manufacturing the same powder, sintered body sputtering target for forming I T O film, and method of manufacturing the same
  • the present invention relates to a tin oxide powder for IT T sputtering target, a sintered body sputtering target suitable for forming an IT0 film for forming an IT0 film, and a method for producing the same.
  • An I T O (complex oxide of indium monotin) film is widely used as a transparent electrode (film) for display devices centered on liquid crystal displays.
  • this I T O film As a method of forming this I T O film, it is common to carry out by means generally called physical vapor deposition such as vacuum vapor deposition and sputtering. In particular, magnetron sputtering is often used for operability and film stability.
  • the coating method by the sputtering method is characterized in that thin films of angstrom unit to thick films of several tens / X m can be formed at stable film forming speed by adjusting processing time, power supply and the like.
  • nodules are occurrence of projections called nodules in the erosion area of the ITO target and its periphery.
  • the generation of nodules causes a decrease in sputtering rate and an abnormal discharge (micro-ring), which significantly lowers productivity.
  • coarse particles particles float in the sputtering chamber, and these particles reattach to the generated thin film, causing defects (pinholes) and protrusions on the thin film.
  • the problem is that the quality of the membrane decreases.
  • the composition in the target is effective to reduce dispersion of the composition in the target by finely dispersing zinc oxide and tin oxide which are raw material powders of the target sintered body and increasing their dispersibility.
  • the particles of tin oxide are coarse, they can not be sufficiently dissolved in mixed indium oxide, and since they are present as a lump of tin oxide in a sintered body, they become the origin of nodules during sparging. . In addition, they cause pores in the sintered body and become a factor that hinders the densification of the sintered body.
  • the method of mechanically pulverizing the raw material powder is the simplest and most inexpensive.
  • Commonly known grinding devices include jet mills in which the raw materials collide with each other or impact on a liner for grinding, and bead mills in which powder media is used for grinding by grinding between media or between liners. .
  • the jet mill method in order to grind a hard and cohesive raw material such as tin oxide powder to the particle size in the submicron range, the number of passes increases and the throughput is extremely reduced, which is costly. It will be a disadvantage.
  • a media stirring type crusher for sintering powder of IT target, and a wet type bead mill that is easy to control the aggregation of the raw material is most suitable.
  • the indium oxide powder which is the raw material powder of the ITO target, is easy to grind and does not pose any problem, but it is hard like tin oxide and powder with strong cohesiveness is harder to grind than indium oxide powder. . Therefore, grinding of tin oxide is particularly problematic as raw material powder, and it is necessary to control this.
  • the present invention solves the above-mentioned problems, and in particular, tin oxide powder capable of obtaining a sintered body excellent in densification and uniformity of components suitable for forming an IT thin film and baking using the powder.
  • a sputtering target for forming an ITO film and a manufacturing method thereof are provided, whereby tin oxide for forming an ITO film can be suppressed which can suppress deterioration of nodules and the like generated at the time of forming an ITO thin film and the film It aims to provide indium oxide targets at low cost.
  • the technical means for solving the above problems is to strictly control the particle size of the tin oxide powder, whereby it is possible to obtain a sputtering alloy suitable for an ITO transparent conductive film or the like. We found that we could do it.
  • the present invention is based on this finding.
  • Sintered tin oxide and zinc oxide powder having a median diameter determined from the particle size distribution in the range of 0.40 to 1.1, and a 90% particle size determined from the particle size distribution in the range of 3.0 or less It is characterized in that it is a sintered body for I TO film formation.
  • a sintered body sputtering target for forming an ITO film characterized in that tin and indium oxide powder are sintered.
  • the sputtering target for forming an ITO film as described in the above 4) or 5) characterized by having a density of 12 g / cm 3 or more.
  • a slurry of tin oxide powder having a solid content of 65% or more is sintered using a tin oxide powder obtained by grinding using a wet bead mill, and the I TO according to each of the above 4) to 6).
  • Method for producing a sputtering target for film formation
  • FIG. 1 is a diagram showing the integrated sputtering power and the nodule coverage at sputtering of sputtering singlets prepared in Examples 1 and 2 and Comparative Example
  • FIG. 2 is a diagram showing Examples 1 and 2 and Comparative Example
  • FIG. 3 is a diagram showing the integrated sputter power and the micro-arcing frequency at the time of sputtering of the sputtering target produced in FIG. 3.
  • FIG. 3 is the median diameter and Z at each solid concentration of the tin oxide powder slurry produced in Example 3. It is a figure which shows r amount of contamination.
  • the tin oxide powder for ITO sputtering target has a median diameter in the range of 0.40 to 1.0 m determined from the particle size distribution, and a 90% particle size determined from the particle size distribution.
  • the median diameter obtained from the particle size distribution is in the range of 0.40 to 0.60 m and the 90% particle size obtained from the particle size distribution is 1.0 or less.
  • % Value 90%
  • the particle size was in the range of 5. 0 to 10 0 m.
  • tin oxide powder was mixed with indium oxide powder at a predetermined ratio, and was pulverized to a median diameter of about 0.5 to 1. 0 m by a wet bead mill.
  • tin oxide powder in the mixed powder is not well dispersed, and some are 5 to 1
  • the particle diameter of the above-mentioned tin oxide powder is important, noticing that coarse particles contained in the raw material reduce the density of the sintered body, the particle size distribution of tin oxide powder
  • the median diameter determined is in the range of 0.40 to 1.O m and the 90% particle diameter determined from the particle size distribution is in the range of 3.0 m or less, and preferably the median diameter determined from the particle size distribution is 0.
  • sintering having a high density of 7.1 2 g / cm 3 or more, further 7.1 3 g / cm 3 or more, which is suitable for I-TO sputtering. You can get the body.
  • adjustment of the particle size of tin oxide is performed by selection of raw material powder, adjustment of grinding power, number of passes, adjustment of material of crushed beads, adjustment of solid content of tin oxide powder slurry, It can be carried out by appropriately controlling such that the above conditions can be achieved.
  • zircon dioxide is used as powder media, the problem of contamination can be minimized by using a tin oxide powder slurry with a solid content of 65% or more because of the problem of zirconium contamination.
  • a tin oxide powder with a median diameter of 2.0 x m, a 90% particle diameter of 3.50 / im, and a BET specific surface area of 4.0 m 2 Zg determined from the particle size distribution is mixed with pure water to have a solid content of 6 5%
  • a slurry was made.
  • the particle size distribution was measured using a laser diffraction / scattering particle size distribution analyzer (LA-920, manufactured by Horiba, Ltd.), and the BET specific surface area was a continuous flow surface area meter (SA-6200, manufactured by Horiba, Ltd.).
  • LA-920 laser diffraction / scattering particle size distribution analyzer
  • SA-6200 continuous flow surface area meter
  • the prepared slurry is crushed by a bead mill, and the median diameter determined from the particle size distribution is 1.0 m, 90% particle diameter is 2.0 zm, and 8 lbs. Specific surface area is 6.0 m 2 Zg. did.
  • the prepared tin oxide / indium oxide mixed slurry is mixed with a bead mill using a bead mill, and the median diameter obtained from the particle size distribution is 0.80 / m, the 90% particle diameter is 1.50 m, the BET specific surface area Powdered to 10 m 2 Zg.
  • a binder was added to the pulverized slurry, and the mixture was granulated and dried by a spray dryer.
  • the dry powder is filled into a mold and molded with a hydraulic press at a pressure of 1000 kgf Zcm 2 and further with a cold isostatic press (CIP) a pressure of 1 500 kgf / cm 2
  • CIP cold isostatic press
  • the density of the obtained sintered body is a high density of 7.12 g / cm 3 according to the Archimedes method. A sintered body was obtained.
  • the median diameter is 0.5 m
  • the 90% particle diameter is 0.80 m
  • the B ET specific surface area is 7.0 m 2 Zg, which are obtained from the particle size distribution. Crushed.
  • powdered tin oxide slurry, and median oxide diameter determined from particle size distribution 2.0 m, 90% particle diameter: 3.0 ⁇ m, B ET specific surface area: 8.0 m 2 / g
  • the powder is mixed with pure water, and the median diameter is 0.80 m, the 90% particle size is 1.50 2 m, and the BET specific surface area is 10 m 2 / g in the same manner as in Example 1. I framed.
  • the ground slurry was granulated and dried in the same manner as in Example 1.
  • the powder obtained is filled into a mold and, after being formed at a pressure of 1000 kgf / cm 2 with a hydraulic press, it is further subjected with a cold isostatic press (CIP). It was molded at a pressure of kgf Zcm 2 to obtain a molded body having a density of 4.0 g / cc.
  • CIP cold isostatic press
  • the density of the obtained sintered body is a high density of 7.12 g zcm 3 by Archimedes method. A sintered body was obtained.
  • Example 2 the particles were milled to a median diameter of 0.80 m, a 90% particle diameter of 1.50 / m, and a BET specific surface area of 10 mg as determined from the particle size distribution.
  • a binder was added to the powdery slurry and granulated and dried in the same manner as in Example 1. After the obtained powder is filled in a mold, it is molded with a hydraulic press at a pressure of 1000 kgf Zcm 2 and further subjected to a cold isostatic press (CIP) 150 500 kgf / cm 2 It shape
  • CIP cold isostatic press
  • the density of the obtained sintered body is only 7.10 g / cm 3 by the Archimedes method. It did not reach. In addition, even when the sintering temperature was raised to 160 ° C. Density of the sintered body was 7. l OS gZc m 3 .
  • the sintered bodies produced in the above-described Examples 1 and 2 and Comparative Example 1 were machined, a sputtering set was produced, and the amount of generation of nodules (coverage) at the time of sputtering and the abnormal discharge at the time of sputtering The number of (micro arching) was measured.
  • the conditions of sputtering are as follows.
  • Target size 1 2 7 x 5 0 8 x 6. 3 5 mm
  • Oxygen concentration in the sputtering gas 1 V o 1%
  • Sputtering power density Sputtering was started at 0.5 W / cm 2 and the film deposition rate was increased to maintain a constant rate.
  • Fig. 1 shows the amount of nodule generation and Fig. 2 shows the number of micro arcing.
  • the amount of generated nodules (coverage) was calculated by binarizing the image of the erosion area of the target with a computer and dividing the area of the generated nodules by the area of the erosion.
  • the threshold value of micro-arcing is set to: detection voltage: 100 V or more; emission energy (sputter voltage when arc discharge occurs X sputtering current X generation time): 10 mJ or less.
  • the target of the comparative example has a rapid increase of nodules from the integrated power of 4 OWH r Z cm 2 , and the life end of integrated power of 1 6 0 WH rZ cm 2 with a nodule coverage of 40% or more
  • the evening get of Examples 1 and 2 is significantly superior, with no accumulation being 0% even when spattering is performed up to an integrated power of 1 6 OWH r "cm 2. I understand.
  • the target of the comparative example rapidly increases the arcing number from the integrated power of 8 OWH r / cm 2 , while the target of the examples 1 and 2 always has the arcing number from time to time. It can be seen that stable film formation conditions can be obtained with less.
  • Example 3 From the comparison of Examples 1 and 2, no difference was found between the two in terms of the amount of nodule generation, but it can be seen that Example 2 is superior in terms of the number of arcings. (Example 3)
  • the amount of contamination (impurities) of zirconavis at the time of producing the tin oxide powder used in the above Examples 1 and 2 was examined.
  • the bead mill used in the above example was used, and powder frame beads used were Zr beads (YTZ) with a diameter of 0.5 mm.
  • Tin oxide powder was mixed with pure water so that the solid content weight ratio was 25%, 45% and 65%, respectively. At this time, in order to disperse tin oxide powder in pure water, ammonia water was added to adjust the pH to 8. 0 to 10. 0, and the viscosity of the slurry was adjusted to 0 l Pa ⁇ s or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Tin oxide powder for ITO sputtering target, characterized in that a median diameter obtained from a particle size distribution ranges from 0.40 to 1.0 νm, and a 90% particle size obtained from a particle size distribution is up to 3.0 νm. Tin oxide powder that can provide a sintered body having excellent density enhancing feature and component uniformity which are suitable for ITO thin film formation, and an ITO film forming sputtering target sintered by using the powder, whereby it is possible to produce at low costs an ITO film forming tin oxide-indium oxide target that can restrict nodules from being generated at ITO thin film forming and their attendant deterioration in thin film quality.

Description

明 細 書  Specification
I T Oスパッタリングターゲット用酸化錫粉末、 同粉末の製造方法、 I T O膜形成用焼結体スパッタリングターゲット及び同ターゲットの製造方法 技術分野 Tin oxide powder for I T O sputtering target, method of manufacturing the same powder, sintered body sputtering target for forming I T O film, and method of manufacturing the same
この発明は、 I T〇スパッタリングタ一ゲット用酸化錫粉末及び I T O 膜形成用 I T O膜形成に好適な焼結体スパッタリングターゲット並びにそ の製造方法に関する。 背景技術 ·  The present invention relates to a tin oxide powder for IT T sputtering target, a sintered body sputtering target suitable for forming an IT0 film for forming an IT0 film, and a method for producing the same. Background ·
I T O (インジウム一錫の複合酸化物) 膜は液晶ディスプレーを中心と する表示デバイスの透明電極 (膜) として広く使用されている。  An I T O (complex oxide of indium monotin) film is widely used as a transparent electrode (film) for display devices centered on liquid crystal displays.
この I T O膜を形成する方法として、 真空蒸着法やスパッタリング法な ど、 一般に物理蒸着法と言われている手段によって行われるのが普通であ る。 特に、 操作性や皮膜の安定性からマグネトロンスパッタリング法を用 いて形成することが多い。  As a method of forming this I T O film, it is common to carry out by means generally called physical vapor deposition such as vacuum vapor deposition and sputtering. In particular, magnetron sputtering is often used for operability and film stability.
スパッタリング法による膜の形成は、.陰極に設置した夕一ゲットに A r イオンなどの正イオンを物理的に衝突させ、 その衝突エネルギーで夕一 ゲットを構成する材料を放出させて、 対面している陽極側の基板に夕一 ゲット材料とほぼ同組成の膜を積層することによって行われる。  In the formation of a film by sputtering, positive ions such as Ar ions are physically collided with the evening getter installed at the cathode, and the collision energy is used to release the material that constitutes the umbrella, and they face each other. It is carried out by laminating a film having substantially the same composition as the target material on the anode side substrate.
スパッタリング法による被覆法は処理時間や供給電力等を調節すること によって、 安定した成膜速度でオングストローム単位の薄い膜から数十/ X mの厚い膜まで形成できるという特徴を有している。  The coating method by the sputtering method is characterized in that thin films of angstrom unit to thick films of several tens / X m can be formed at stable film forming speed by adjusting processing time, power supply and the like.
I T O膜を形成する場合に特に問題となるのは、 I T O夕ーゲットのェ ロージョン部やその周辺にノジュールと呼ばれる突起物が発生する事であ る。 このノジュールが発生するとスパッタレートの低下や異常放電 (マイ クロア一キング) を引き起こし、 著しく生産性を低下させる。 また、 ノジュールや異常放電に起 因して、 スパッ夕チャンバ内に粗大 化した粒子 (パーティクル) が浮遊するようになり、 これが生成した薄膜 に再付着して薄膜の欠陥 (ピンホール) や突起物の原因となり、 膜の品質 が低下するという問題が発生する。 What is particularly problematic when forming an ITO film is the occurrence of projections called nodules in the erosion area of the ITO target and its periphery. The generation of nodules causes a decrease in sputtering rate and an abnormal discharge (micro-ring), which significantly lowers productivity. Also, due to nodules and abnormal discharge, coarse particles (particles) float in the sputtering chamber, and these particles reattach to the generated thin film, causing defects (pinholes) and protrusions on the thin film. The problem is that the quality of the membrane decreases.
ノジュールの発生を抑える対策としては、 一般的にターゲットの密度を 上げ、 夕 ^ "ゲット中の空孔(ポア)を減少させることが知られている。  As a measure to reduce the generation of nodules, it is generally known to increase the density of the target and to reduce the pores in the get.
また、 ターゲット焼結体の原料粉末となる酸化ィンジゥムと酸化錫を微 細化し、 それぞれの分散性を上げることにより、 ターゲット中の組成のば らっきを減少させることが効果的である。 特に酸化錫の粒が粗大であると, 混合した酸化インジウムに十分に固溶できず、 焼結体中に酸化錫の塊とし て存在するため、 スパッ夕の際にノジュールの起点となってしまう。 また, それらは、 焼結体中の空孔の原因となり焼結体の高密度化を阻害する要因 となる。  In addition, it is effective to reduce dispersion of the composition in the target by finely dispersing zinc oxide and tin oxide which are raw material powders of the target sintered body and increasing their dispersibility. In particular, when the particles of tin oxide are coarse, they can not be sufficiently dissolved in mixed indium oxide, and since they are present as a lump of tin oxide in a sintered body, they become the origin of nodules during sparging. . In addition, they cause pores in the sintered body and become a factor that hinders the densification of the sintered body.
酸化錫粉末を微細化するためには、 原料粉を機械的に粉砕する方法が最 も簡便かつ低コストである。 粉砕装置として一般に知られているものとし ては、 原料の相互衝突又はライナーに衝突させて粉砕するジエツトミル、 粉碎メディアを使用してメディァ間若しくはライナ一間との摩砕によって 粉砕するビーズミル等がある。 しかし、 ジェットミル法では、 酸化錫粉の ように固く凝集性の強い原料をサブミクロン領域の粒径まで粉砕するため には、 パス回数の増大など、 極端な処理量の低下を招きコスト的に不利と なる。  In order to refine the tin oxide powder, the method of mechanically pulverizing the raw material powder is the simplest and most inexpensive. Commonly known grinding devices include jet mills in which the raw materials collide with each other or impact on a liner for grinding, and bead mills in which powder media is used for grinding by grinding between media or between liners. . However, in the jet mill method, in order to grind a hard and cohesive raw material such as tin oxide powder to the particle size in the submicron range, the number of passes increases and the throughput is extremely reduced, which is costly. It will be a disadvantage.
このようなことから、 I T〇ターゲッ 卜の焼結用粉末はメディァ攪拌型 の粉砕機を使用することが好ましく、 原料の凝集を制御するのに容易な湿 式のビーズミルが最適である。  From such a thing, it is preferable to use a media stirring type crusher for sintering powder of IT target, and a wet type bead mill that is easy to control the aggregation of the raw material is most suitable.
このビーズミル粉砕機において粉砕動力又はパス回数を増すと、 より微 粉化するが、 余り強すぎると粉砕量の制御が難しくなり、 また弱すぎると ミル内のビーズとスラリーの動きが悪くなり、 粉砕効率が著しく低下する ため、 適度な強さに制御して粉碎を行うことが要求される。 I T Oターゲットの原料粉である 酸化インジウム粉については、 粉砕 が容易であり特に問題となることはないが、 酸化錫のように固く、 凝集性 の強い粉は酸化インジウム粉に比べて粉砕が難しくなる。 したがって、 原 料粉としては特に酸化錫の粉砕が問題であり、 これをコントロールするこ とが必要となる。 If the grinding power or the number of passes is increased in this bead mill grinding machine, it will be further pulverized, but if it is too strong, control of the grinding amount will be difficult, and if it is too weak, the movement of beads and slurry in the mill will deteriorate and grinding will occur. Since the efficiency is significantly reduced, it is required to control with appropriate strength to grind. The indium oxide powder, which is the raw material powder of the ITO target, is easy to grind and does not pose any problem, but it is hard like tin oxide and powder with strong cohesiveness is harder to grind than indium oxide powder. . Therefore, grinding of tin oxide is particularly problematic as raw material powder, and it is necessary to control this.
酸化錫の粉砕に際しては、 通常ならば粉碎動力又はパス回数を増すこと によって、 より細かく粉砕ができると考えられるが、 粉砕動力又はパス回 数を増すことによる問題以外に、 ミル粉砕機内のライナーや硬質ビーズ材 料等が酸化錫粉末中にコンタミ (汚染物質) として混入してしまう問題が ある。  When grinding tin oxide, it is considered that grinding can be made more finely by increasing powder power or pass number, but in addition to the problems caused by increasing grinding power or pass number, liners in mill grinders or There is a problem that hard bead material etc. is mixed in the tin oxide powder as contamination (contaminant).
したがって、 細粒化した粉を用いて焼結することによる高密度化と細粒 化に伴う焼結材料の汚染の問題は相互に矛盾する問題であり、 高密度化を 行うための最適な粉末が得られているとは言えないのが現状である。  Therefore, the problem of contamination of the sintered material due to densification and sintering due to sintering by using finely divided powder is a mutually contradictory problem, and it is an optimum powder for carrying out densification. The current situation is that it can not be said that
以上のことから、 I T O薄膜形成には、 成分が均一でかつ高密度の焼 結体ターゲッ トを得ることが必要であつたが、 これらの要求に満足できる 最適な酸化錫粉末及び高密度の焼結体ターゲットが得られていないという 問題があった。 発明の開示  From the above, it was necessary to obtain a sintered body target with uniform and high density components for forming an ITO thin film, but the optimum tin oxide powder and high density baking that can satisfy these requirements There was a problem that no target was obtained. Disclosure of the invention
本発明は、 上記の諸問題点の解決、 特に I T〇薄膜形成に好適な高密度 化と成分の均一性に優れた焼結体を得ることができる酸化錫粉末及び該粉 末を用いて焼結した I T O膜形成用スパッタリングターゲット並びにその 製造方法を提供するものであり、 これによつて I T O薄膜形成時に発生す るノジュール等やそれに伴う薄膜の品質の低下を抑制できる I T O膜形成 用酸化錫一酸化インジウムターゲットを低コストで提供することを目的と したものである。  The present invention solves the above-mentioned problems, and in particular, tin oxide powder capable of obtaining a sintered body excellent in densification and uniformity of components suitable for forming an IT thin film and baking using the powder. A sputtering target for forming an ITO film and a manufacturing method thereof are provided, whereby tin oxide for forming an ITO film can be suppressed which can suppress deterioration of nodules and the like generated at the time of forming an ITO thin film and the film It aims to provide indium oxide targets at low cost.
上記問題点を解決するための技術的な手段は、 酸化錫粉末の粒径を厳密 に管理するものであり、 これによつて I T O透明導電膜等に好適なスパッ タリング夕一ゲットを得ることができるとの知見を得た。 この知見に基づき、 本発明は The technical means for solving the above problems is to strictly control the particle size of the tin oxide powder, whereby it is possible to obtain a sputtering alloy suitable for an ITO transparent conductive film or the like. We found that we could do it. The present invention is based on this finding.
1) 粒度分布から求めたメジアン径が 0. 40〜 1. O m の範囲にあり かつ粒度分布から求めた 9 0 %粒径が 3. 0 6m以下の範囲にあることを 特徴とする I TOスパッタリングタ一ゲット用酸化錫粉末。  1) It is characterized in that the median diameter obtained from the particle size distribution is in the range of 0.40 to 1. O m and the 90% particle size obtained from the particle size distribution is in the range of 3.06 m or less. Tin oxide powder for sputtering targets.
2) 粒度分布から求めたメジアン径が 0. 40〜0. の範囲にあ り、 かつ粒度分布から求めた 9 0 %粒径が 1. 0 m以下の範囲にあるこ とを特徴とする I T〇スパッタリング夕一ゲット用酸化錫粉末。 2) It is characterized in that the median diameter obtained from the particle size distribution is in the range of 0.40 to 0. 0, and the 90% particle size obtained from the particle size distribution is in the range of 1.0 m or less. Tin oxide powder for sputtering evening get.
3) 固形分 6 5 %以上の酸化錫粉末のスラリーを湿式ビーズミルにて粉砕 することを特徴とする上記 1) 又は 2) に記載の I TOスパッタリング 夕一ゲット用酸化錫粉末の製造方法。  3) A method of producing a tin oxide powder for ITO sputtering according to the above 1) or 2), characterized in that a slurry of tin oxide powder having a solid content of 65% or more is ground by a wet bead mill.
4) 粒度分布から求めたメジアン径が 0. 40〜 1. の範囲にあり かつ粒度分布から求めた 9 0 %粒径が 3. 0 以下の範囲にある酸化錫 と酸化ィンジゥム粉末を焼結したことを特徴とする I TO膜形成用焼結体 スパッ夕リングターゲッ卜。  4) Sintered tin oxide and zinc oxide powder having a median diameter determined from the particle size distribution in the range of 0.40 to 1.1, and a 90% particle size determined from the particle size distribution in the range of 3.0 or less It is characterized in that it is a sintered body for I TO film formation.
5) 粒度分布から求めたメジアン径が 0. 40〜0. 6 0 ^mの範囲にあ り、 かつ粒度分布から求めた 9 0 %粒径が 1. 0 /xm以下の範囲にある酸 化錫と酸化インジウム粉末を焼結したことを特徴とする I TO膜形成用焼 結体スパッタリングターゲット。 5) Oxidation with a median diameter determined from the particle size distribution in the range of 0.40 to 0.60 ^ m and a 90% particle size determined from the particle size distribution in the range of 1.0 / x m or less A sintered body sputtering target for forming an ITO film, characterized in that tin and indium oxide powder are sintered.
6) 7. 1 2 g/cm3以上の密度を備えていることを特徴とする上記 4 ) 又は 5) に記載の I TO膜形成用スパッタリングターゲット。 6) 7. The sputtering target for forming an ITO film as described in the above 4) or 5) characterized by having a density of 12 g / cm 3 or more.
7) 固形分 6 5 %以上の酸化錫粉末のスラリーを湿式ビーズミルにて粉砕 した酸化錫粉末を用いて焼結することを特徴とする上記 4) 〜6) のそれ ぞれに記載の I TO膜形成用スパッタリングターゲッ卜の製造方法。  7) A slurry of tin oxide powder having a solid content of 65% or more is sintered using a tin oxide powder obtained by grinding using a wet bead mill, and the I TO according to each of the above 4) to 6). Method for producing a sputtering target for film formation.
を提供する。 図面の簡単な説明 I will provide a. Brief description of the drawings
図 1は、 実施例 1、 2及び比較例で作製したスパッタリング夕一ゲット のスパッ夕時における、 スパッタ積算電力とノジュール被覆率を示す図で あり、 図 2は、 実施例 1、 2及び比較例で作製したスパッタリングター ゲットのスパッ夕時における、 スパッタ積算電力とマイクロアーキング回 数を示す図であり、 図 3は、 実施例 3で作製した酸化錫粉末スラリーの各 固形分濃度におけるメジアン径と Z rコンタミ量を示す図である。 発明の実施の形態  FIG. 1 is a diagram showing the integrated sputtering power and the nodule coverage at sputtering of sputtering singlets prepared in Examples 1 and 2 and Comparative Example, and FIG. 2 is a diagram showing Examples 1 and 2 and Comparative Example FIG. 3 is a diagram showing the integrated sputter power and the micro-arcing frequency at the time of sputtering of the sputtering target produced in FIG. 3. FIG. 3 is the median diameter and Z at each solid concentration of the tin oxide powder slurry produced in Example 3. It is a figure which shows r amount of contamination. Embodiment of the Invention
本発明は、 I TOスパッタリングターゲット用酸化錫粉末を、 粒度分布 から求めたメジアン径が 0. 40〜 1. 0 mの範囲にあり、 かつ粒度分 布から求めた 9 0 %粒径が 3. O xm以下の範囲とし、 好ましくは粒度分 布から求めたメジアン径が 0. 40〜 0. 6 0 mの範囲にあり、 かつ粒 度分布から求めた 9 0 %粒径が 1. 0 以下の範囲とする。  In the present invention, the tin oxide powder for ITO sputtering target has a median diameter in the range of 0.40 to 1.0 m determined from the particle size distribution, and a 90% particle size determined from the particle size distribution. Preferably, the median diameter obtained from the particle size distribution is in the range of 0.40 to 0.60 m and the 90% particle size obtained from the particle size distribution is 1.0 or less. Range
通常 (従来) の酸化錫粉末は、 粒度分布から求めた積算体積頻度が 5 0 %の値 =メジアン径が 1. 5〜2. 5 /zm、 粒度分布から求めた積算体 積頻度が 9 0 %の値 = 9 0 %粒径が 5. 0〜 1 0. 0 m程度の範囲で あった。  The normal (conventional) tin oxide powder has an integrated volume frequency of 50% obtained from the particle size distribution = median diameter of 1.5 to 2.5 / zm, and an integrated volume frequency of 90% obtained from the particle size distribution. % Value = 90% The particle size was in the range of 5. 0 to 10 0 m.
上記酸化錫粉末は、 酸化インジウム粉末と所定の割合で混合し、 湿式 ビーズミルにてメジアン径が 0. 5〜 1. 0 m程度まで粉碎を行ってい た。 しかし、 混合粉中の酸化錫粉は十分に分散しておらず、 一部は 5〜 1 The above-mentioned tin oxide powder was mixed with indium oxide powder at a predetermined ratio, and was pulverized to a median diameter of about 0.5 to 1. 0 m by a wet bead mill. However, tin oxide powder in the mixed powder is not well dispersed, and some are 5 to 1
0 /m程度の粗大粒として存在していた。 この様な酸化錫の粗大粒は酸化 ィンジゥムに十分に固溶できず、 焼結体中の酸化錫塊又はポアの原因とな るため、 焼結体密度が十分に上がらず、 均一かつ高密度の焼結体を得るこ とができなかった。 It was present as coarse particles of about 0 / m. Such coarse particles of tin oxide can not be sufficiently dissolved in zinc oxide and cause tin oxide lumps or pores in the sintered body, so the density of the sintered body can not be sufficiently increased, and uniform and high density can be obtained. It was not possible to obtain a sintered body of
そして、 このように焼結体ターゲットの成分が均一でなく、 また十分な 密度が得られていないために、 スパッタリング成膜の際にばらつきを生じ. And since the component of a sintered compact target is not uniform like this and sufficient density is not obtained like this, dispersion occurs during sputtering film formation.
1 TO膜の品質の低下を招くという問題があった。 この原因を究明した結果、 上記の 酸化錫粉末の粒径が重要であり、 原 料に含まれる粗大粒が焼結体の密度を低下させていることに着目し、 酸化 錫粉末の粒度分布から求めたメジアン径が 0. 40〜1. O mの範囲に あり、 かつ粒度分布から求めた 90 %粒径が 3. 0 m以下の範囲とし、 好ましくは粒度分布から求めたメジアン径が 0. 40〜0. 60 mの範 囲にあり、 かつ粒度分布から求めた 9 0 %粒径が 1. O im以下の範囲と することにより、 高密度、 かつ高品質の焼結体を得ることに成功した。 本発明の上記粉末を使用することによって、 I TOスパッタリング夕一 ゲットに好適な密度 7. 1 2 g/cm3以上、 さらには 7. 1 3 g/cm 3以上の高密度を備えた焼結体を得ることができる。 There is a problem that the quality of the TO film is reduced. As a result of investigating this cause, the particle diameter of the above-mentioned tin oxide powder is important, noticing that coarse particles contained in the raw material reduce the density of the sintered body, the particle size distribution of tin oxide powder The median diameter determined is in the range of 0.40 to 1.O m and the 90% particle diameter determined from the particle size distribution is in the range of 3.0 m or less, and preferably the median diameter determined from the particle size distribution is 0. By obtaining a sintered body of high density and high quality by setting the particle diameter in the range of 40 to 0.60 m and the 90% particle diameter obtained from the particle size distribution to be within the range of 1. O im or less Successful. By using the above-mentioned powder of the present invention, sintering having a high density of 7.1 2 g / cm 3 or more, further 7.1 3 g / cm 3 or more, which is suitable for I-TO sputtering. You can get the body.
粉碎の際、 酸化錫の粒径の調整は、 原料粉の選択、 粉砕動力の調整、 パ ス回数、 粉砕ビーズの径ゃ材質の調整、 酸化錫粉末スラリーの固形分の調 整によって行うが、 上記の条件が達成できるように適宜コントロールする ことによって行うことができる。  In the case of powder, adjustment of the particle size of tin oxide is performed by selection of raw material powder, adjustment of grinding power, number of passes, adjustment of material of crushed beads, adjustment of solid content of tin oxide powder slurry, It can be carried out by appropriately controlling such that the above conditions can be achieved.
粉碎メディアとしてジルコ二アビ一ズを使用するが、 ジルコニウムのコ ンタミの問題から、 固形分 6 5 %以上の酸化錫粉末スラリーを使用するこ とにより、 コンタミの問題を極力抑制できる。  Although zircon dioxide is used as powder media, the problem of contamination can be minimized by using a tin oxide powder slurry with a solid content of 65% or more because of the problem of zirconium contamination.
れによって、 無理のない粉砕が可能であり、 優れた焼結性を持つ焼 粉末を得ることができる。 [実施例及び比較例]  As a result, it is possible to obtain a fired powder with excellent sinterability, which can be crushed without difficulty. [Examples and Comparative Examples]
本発明の実施例について説明する。 なお、 本実施例はあくまで 1例で あり、 この例に制限されるものではない。 すなわち、 本発明の技術思想の 範囲内で、 実施例以外の態様あるいは変形を全て包含するものである。 (実施例 1 ) An embodiment of the present invention will be described. The present embodiment is merely an example, and the present invention is not limited to this example. That is, within the technical idea of the present invention, all aspects or modifications other than the embodiment are included. (Example 1)
粒度分布から求めたメジアン径が 2. 0 xm、 9 0 %粒径が 3. 50 /im、 BET比表面積が 4. 0m2Zgの酸化錫粉を純水に混合し固形分 6 5 % のスラリーを作製した。 なお、 粒度分布測定はレーザー回折/散乱式粒度 分布計 (堀場製作所製 LA- 920) 、 BET比表面積は連続流動式表面積計 (堀 場製作所製 SA-6200) を使用した。 この時、 純水中の酸化錫粉を分散させ るため、 アンモニア水を添加してスラリーの P Hを 9. 0に調整した。 次に、 作製したスラリーをビーズミルにて粉砕し、 粒度分布から求めた メジアン径が 1. 0 m、 9 0 %粒径が 2. 0 zm、 8 £丁比表面積が6. 0m2Zgまで粉碎した。 この時粉碎ビーズは耐磨耗性を考慮してジルコ 二ァビーズ (YTZ) を使用した。 A tin oxide powder with a median diameter of 2.0 x m, a 90% particle diameter of 3.50 / im, and a BET specific surface area of 4.0 m 2 Zg determined from the particle size distribution is mixed with pure water to have a solid content of 6 5% A slurry was made. The particle size distribution was measured using a laser diffraction / scattering particle size distribution analyzer (LA-920, manufactured by Horiba, Ltd.), and the BET specific surface area was a continuous flow surface area meter (SA-6200, manufactured by Horiba, Ltd.). At this time, in order to disperse tin oxide powder in pure water, ammonia water was added to adjust the pH of the slurry to 9.0. Next, the prepared slurry is crushed by a bead mill, and the median diameter determined from the particle size distribution is 1.0 m, 90% particle diameter is 2.0 zm, and 8 lbs. Specific surface area is 6.0 m 2 Zg. did. At this time, we used zircon beads (YTZ) in consideration of abrasion resistance.
上記により粉砕した酸化錫スラリーと、 粒度分布から求めたメジアン径 が 2. 0 xm、 9 0 %粒径が 3. 0 im、 BET比表面積が 8. 0 m2/ gの酸化ィンジゥム粉を固形分重量比率で酸化錫 1 :酸化ィンジゥム 9と なるよう純水に混合し、 固形分 5 0 %のスラリーを作製した。 The tin oxide slurry pulverized according to the above and a zinc oxide powder having a median diameter of 2.0 xm, a 90% particle diameter of 3.0 im, and a BET specific surface area of 8.0 m 2 / g as determined from the particle size distribution It mixed with the pure water so that it might become tin oxide 1: oxygen oxide 9 by a weight ratio, and the slurry of solid content 50% was produced.
次に、 作製した酸化錫、 酸化インジウム混合スラリーをビーズミルにて, 粉碎 '混合し、 粒度分布から求めたメジアン径が 0. 8 0 / m、 90 %粒 径が 1. 50 m、 BET比表面積が 1 0m2Zgまで粉碎した。 Next, the prepared tin oxide / indium oxide mixed slurry is mixed with a bead mill using a bead mill, and the median diameter obtained from the particle size distribution is 0.80 / m, the 90% particle diameter is 1.50 m, the BET specific surface area Powdered to 10 m 2 Zg.
次に、 この粉砕スラリーにバインダーを加え、 スプレードライヤーにて 造粒 ·乾燥した。 この乾燥粉末を金型に充填した後、 油圧プレスにて 1 0 0 0 k g f Zcm2の圧力で成形後、 さらに冷間等方静水圧プレス (C I P) にて 1 5 00 k g f /cm2の圧力で成形して、 密度が 4. 0 g Z c cの成形体を得た。 Next, a binder was added to the pulverized slurry, and the mixture was granulated and dried by a spray dryer. The dry powder is filled into a mold and molded with a hydraulic press at a pressure of 1000 kgf Zcm 2 and further with a cold isostatic press (CIP) a pressure of 1 500 kgf / cm 2 The resultant was molded at a density of 4.0 g Z cc.
次に、 該成形体を焼結温度 1 5 50 ° Cで 4時間、 酸素雰囲気焼結した 結果、 得られた焼結体の密度はアルキメデス法で 7. 1 28 g/cm3と 高密度の焼結体が得られた。 Next, as a result of sintering the compact at a sintering temperature of 1550 ° C. for 4 hours in an oxygen atmosphere, the density of the obtained sintered body is a high density of 7.12 g / cm 3 according to the Archimedes method. A sintered body was obtained.
但し、 該成形体を焼結温度 1 500 ° Cで焼結した場合には、 密度 7. 0 9 7 g/ c m3にしか達しなかった。 (実施例 2) However, when the compact was sintered at a sintering temperature of 1 500 ° C., the density reached only 7.00 7 g / cm 3 . (Example 2)
上記の実施例 1と同一の粉碎条件にて、 粒度分布から求めたメジアン径 が 0. 5 m、 9 0 %粒径が0. 8 0 m、 B ET比表面積が 7. 0 m2 Zgまで粉砕した。 Under the same powder conditions as Example 1 described above, the median diameter is 0.5 m, the 90% particle diameter is 0.80 m, and the B ET specific surface area is 7.0 m 2 Zg, which are obtained from the particle size distribution. Crushed.
次に、 粉碎した酸化錫スラリーと、 粒度分布から求めたメジアン径が 2. 0 m、 9 0 %粒径が 3. 0 ^m, B ET比表面積が 8. 0m2/gの酸 化ィンジゥム粉とを純水に混合し、 実施例 1と同様の方法でメジアン径が 0. 8 0 m、 9 0 %粒径が1. 5 0 2m、 B E T比表面積が 1 0 m 2 / gまで粉枠した。 Next, powdered tin oxide slurry, and median oxide diameter determined from particle size distribution: 2.0 m, 90% particle diameter: 3.0 ^ m, B ET specific surface area: 8.0 m 2 / g The powder is mixed with pure water, and the median diameter is 0.80 m, the 90% particle size is 1.50 2 m, and the BET specific surface area is 10 m 2 / g in the same manner as in Example 1. I framed.
該粉砕スラリーを実施例 1と同様に造粒 ·乾燥した。 次に得られた粉末 を金型に充填した後、 油圧プレスにて 1 0 0 0 k g f /cm2の圧力で成 形後、 さらに冷間等方静水圧プレス (C I P) にて 1 5 0 0 k g f Zcm 2の圧力で成形して、 密度が 4. 0 g/c cの成形体を得た。 The ground slurry was granulated and dried in the same manner as in Example 1. Next, the powder obtained is filled into a mold and, after being formed at a pressure of 1000 kgf / cm 2 with a hydraulic press, it is further subjected with a cold isostatic press (CIP). It was molded at a pressure of kgf Zcm 2 to obtain a molded body having a density of 4.0 g / cc.
次に、 該成形体を焼結温度 1 5 5 0 ° Cで 4時間、 酸素雰囲気焼結した 結果、 得られた焼結体の密度はアルキメデス法で 7. 1 2 9 gZcm3と 高密度の焼結体が得られた。 Next, as a result of sintering the compact at a sintering temperature of 1550 ° C. for 4 hours in an oxygen atmosphere, the density of the obtained sintered body is a high density of 7.12 g zcm 3 by Archimedes method. A sintered body was obtained.
更に、 該成形体を焼結温度 1 5 0 0 ° Cで焼結した場合にも、 密度 7. 1 3 0 g/ cm3の高密度の焼結体が得られた。 (比較例 1 ) Furthermore, even when the compact was sintered at a sintering temperature of 150 ° C., a high density sintered body with a density of 7.30 g / cm 3 was obtained. (Comparative example 1)
粒度分布から求めたメジアン径が 2. 0 /m、 9 0 %粒径が 3. 5 0 m、 B ET比表面積が 4. 0m2/gの酸化錫粉と、 粒度分布から求めた メジアン径が 2. 0 im, 9 0 %粒径が 3. 0 m, B ET比表面積が 8 , 0m2Zgの酸化ィンジゥム粉を実施例と同様の方法により固形分重量比 率で酸化錫 1 :酸化インジウム 9となるよう純水に混合し、 固形分 5 0 % のスラリーを作製した。 A tin oxide powder having a median diameter of 2.0 / m, a 90% particle diameter of 3.50 m, and a BET specific surface area of 4.0 m 2 / g determined from the particle size distribution, and a median diameter determined from the particle size distribution There 2. 0 im, 9 0% particle size 3. 0 m, tin oxide B ET specific surface area of 8, 0 m 2 Zg solids weight ratios in the same manner as in example oxidation Injiumu powder 1: oxidation It mixed with pure water so that it might become indium 9, and the slurry of solid content 50% was produced.
次に、 実施例 1と同様の方法により、 粒度分布から求めたメジアン径が 0. 8 0 m、 9 0 %粒径が1. 5 0 /m、 BET比表面積が 1 0m gまで粉碎した。 この粉碎スラリーにバインダーを 加え、 実施例 1と同様の方法により, 造粒 .乾燥した。 得られた粉末を金型に充填した後、 油圧プレスにて 1 0 0 0 k g f Zcm2の圧力で成形後、 さらに冷間等方静水圧プレス (C I P) にて 1 5 0 0 k g f /c m2の圧力で成形して、 密度が 4. 0 g/c cの成形体を得た。 Next, according to the same method as in Example 1, the particles were milled to a median diameter of 0.80 m, a 90% particle diameter of 1.50 / m, and a BET specific surface area of 10 mg as determined from the particle size distribution. A binder was added to the powdery slurry and granulated and dried in the same manner as in Example 1. After the obtained powder is filled in a mold, it is molded with a hydraulic press at a pressure of 1000 kgf Zcm 2 and further subjected to a cold isostatic press (CIP) 150 500 kgf / cm 2 It shape | molded by the pressure of, and obtained the molded object whose density is 4.0 g / cc.
次に、 該成形体を焼結温度 1 5 5 0 ° Cで 4時間、 酸素雰囲気焼結した 結果、 得られた焼結体の密度はアルキメデス法で 7. 1 0 1 g/cm3に しか到達しなかった。 また、 娆結温度を 1 6 5 0 ° Cまで上げた場合でも. 焼結体の密度 7. l O S gZc m3であった。 Next, as a result of sintering the compact at a sintering temperature of 1550 ° C. for 4 hours in an oxygen atmosphere, the density of the obtained sintered body is only 7.10 g / cm 3 by the Archimedes method. It did not reach. In addition, even when the sintering temperature was raised to 160 ° C. Density of the sintered body was 7. l OS gZc m 3 .
上記実施例 1、 2及び比較例 1で作製した焼結体について機械加工を行 レ 、 スパッタリング夕一ゲットを作製して、 スパッタリング時のノジュ一 ル発生量 (被覆率) とスパッタリング時の異常放電 (マイクロアーキン グ) 回数を測定した。  The sintered bodies produced in the above-described Examples 1 and 2 and Comparative Example 1 were machined, a sputtering set was produced, and the amount of generation of nodules (coverage) at the time of sputtering and the abnormal discharge at the time of sputtering The number of (micro arching) was measured.
スパッタリングの条件は以下の通りである。  The conditions of sputtering are as follows.
ターゲットサイズ: 1 2 7 X 5 0 8 X 6. 3 5 mm  Target size: 1 2 7 x 5 0 8 x 6. 3 5 mm
スパッ夕ガス : A r + 02 Spatter gas: Ar + 0 2
スパッタガス圧: 0. 5 P a  Sputtering gas pressure: 0.5 P a
スパッ夕ガス流量: 3 0 0 S C CM  Spatter gas flow rate: 3 0 0 S C CM
スパッ夕ガス中の酸素濃度: 1 V o 1 %  Oxygen concentration in the sputtering gas: 1 V o 1%
漏洩磁束密度: 0. I T  Leakage flux density: 0. I T
投入スパッ夕パワー密度: 0. 5 W/cm2でスパッタ開始して成膜 速度を一定に保つように上昇させた。 Sputtering power density: Sputtering was started at 0.5 W / cm 2 and the film deposition rate was increased to maintain a constant rate.
スパッ夕積算電力 :〜 1 6 0 WH r / cm2 Spatula integrated power: ~ 1 6 0 WH r / cm 2
図 1にノジュール発生量、 図 2にマイクロアーキング回数を示す。 ノ ジュール発生量 (被覆率) はターゲットのエロージョン部の画像をコン ピュ一夕で 2値化し、 発生したノジュールの面積をエロ一ジョン面積で除 した値として算出した。 マイクロアーキングのしきい値は、 検出電圧: 1 0 0 V以上、 放出エネルギー (アーク放電が発生している時のスパッ夕電 圧 Xスパッタ電流 X発生時間) : 1 0mJ以下とした。 図 1から明らかなように、 比較例 のターゲットは積算電力 4 OWH r Z cm2から急激にノジュールが増加し、 ライフエンドである積算電力 1 6 0 WH rZcm2では 40 %以上のノジュール被覆率となっているのに 対し、 実施例 1、 2の夕一ゲットは積算電力 1 6 OWH r "cm2までス パッタリングを行ってもノジュ一ル発生量は 0 %であり、 著しく優れてい ることが分かる。 Fig. 1 shows the amount of nodule generation and Fig. 2 shows the number of micro arcing. The amount of generated nodules (coverage) was calculated by binarizing the image of the erosion area of the target with a computer and dividing the area of the generated nodules by the area of the erosion. The threshold value of micro-arcing is set to: detection voltage: 100 V or more; emission energy (sputter voltage when arc discharge occurs X sputtering current X generation time): 10 mJ or less. As apparent from FIG. 1, the target of the comparative example has a rapid increase of nodules from the integrated power of 4 OWH r Z cm 2 , and the life end of integrated power of 1 6 0 WH rZ cm 2 with a nodule coverage of 40% or more In contrast to the above, the evening get of Examples 1 and 2 is significantly superior, with no accumulation being 0% even when spattering is performed up to an integrated power of 1 6 OWH r "cm 2. I understand.
また、 図 2のマイクロアーキング回数においても、 比較例のターゲット は積算電力 8 OWH r /cm2から急激にァ一キング回数が増加するのに 対し、 実施例 1、 2のターゲットは終始アーキング回数が少なく、 安定し た成膜条件が得られることが分かる。 Also in the micro arcing number in FIG. 2, the target of the comparative example rapidly increases the arcing number from the integrated power of 8 OWH r / cm 2 , while the target of the examples 1 and 2 always has the arcing number from time to time. It can be seen that stable film formation conditions can be obtained with less.
実施例 1、 2で比較すると、 ノジュール発生量では両者に差はみられな かったが、 アーキング回数で比較すると実施例 2の方が優れていることが 分かる。 (実施例 3 )  From the comparison of Examples 1 and 2, no difference was found between the two in terms of the amount of nodule generation, but it can be seen that Example 2 is superior in terms of the number of arcings. (Example 3)
上記実施例 1及び 2で使用した酸化錫粉を製造する際のジルコ二アビー ズのコン夕ミ (不純物) 量を調べた。 粉砕には上記実施例で使用したビー ズミルを使用し、 粉枠ビーズは Φ 0. 5mm径の Z rビーズ (YTZ) を 使用した。  The amount of contamination (impurities) of zirconavis at the time of producing the tin oxide powder used in the above Examples 1 and 2 was examined. For grinding, the bead mill used in the above example was used, and powder frame beads used were Zr beads (YTZ) with a diameter of 0.5 mm.
酸化錫粉をそれぞれ固形分重量比率で 2 5 %、 45 %、 6 5 %となるよ うに純水に混合した。 この時、 純水中の酸化錫粉を分散させるため、 アン モニァ水を添加し pHを 8. 0〜 1 0. 0に調整し、 スラリ一の粘度を 0 lPa · s以下に調整した。  Tin oxide powder was mixed with pure water so that the solid content weight ratio was 25%, 45% and 65%, respectively. At this time, in order to disperse tin oxide powder in pure water, ammonia water was added to adjust the pH to 8. 0 to 10. 0, and the viscosity of the slurry was adjusted to 0 l Pa · s or less.
上記各固形分のスラリーを同一粉碎条件にてパス運転を行い、 それぞれ の粉砕粒径と混入した Z r量を調査した。 その結果、 図 3に示すように、 同一粒径で比較した場合、 固形分が高いほど Z rの混入量が小さくなるこ とが分かった。 発明の効果 The slurry of each solid content was subjected to pass operation under the same powdering conditions, and the respective crushed particle sizes and the amount of Zr mixed were investigated. As a result, as shown in FIG. 3, when compared with the same particle size, it was found that the higher the solid content, the smaller the mixing amount of Zr. Effect of the invention
I T O薄膜形成に好適な高密度化と成分の均一性に優れた焼結体を得る ことができるという著しい特徵を有し、 これによつて I T Oスパッ夕リン グ成膜が均一でない場合に生ずる品質の低下ゃノジュール等の異常突起物 を抑制できる I T O膜形成用酸化錫—酸化インジウムターゲットを低コス トで得ることができるという優れた効果を有する。  It has the remarkable property of being able to obtain a sintered body excellent in densification suitable for forming an ITO thin film and uniformity of the component, and thereby the quality that occurs when the ITO sputtering film formation is not uniform. It has an excellent effect of being able to obtain a tin oxide-indium oxide target for forming an ITO film which can suppress abnormal projections such as nodules and the like at low cost.

Claims

請 求 の 範 囲 The scope of the claims
1. 粒度分布から求めたメジアン径が 0. 40〜 1. 0 /xmの範囲にあ り、 かつ粒度分布から求めた 9 0 %粒径が 3. 0 以下の範囲にあるこ とを特徴とする I TOスパッタリング夕ーゲット用酸化錫粉末。 1. It is characterized in that the median diameter obtained from the particle size distribution is in the range of 0.40 to 1.0 / xm, and the 90% particle size obtained from the particle size distribution is in the range of 3.0 or less. It is a tin oxide powder for ITO sputtering target.
2. 粒度分布から求めたメジアン径が 0. 40〜0. 60 mの範囲に あり、 かつ粒度分布から求めた 9 0 %粒径が 1. 0 以下の範囲にある ことを特徴とする I TOスパッタリング夕ーゲット用酸化錫粉末。  2. It is characterized in that the median diameter obtained from the particle size distribution is in the range of 0.40 to 0.60 m, and the 90% particle size obtained from the particle size distribution is in the range of 1.0 or less. Tin oxide powder for sputtering targets.
3. 固形分 6 5 %以上の酸化錫粉末のスラリーを湿式ビーズミルにて粉 碎することを特徴とする上記 1) 又は 2) に記載の I TOスパッタリング ターゲット用酸化錫粉末の製造方法。  3. A method for producing a tin oxide powder for an I-TO sputtering target according to 1) or 2) above, characterized in that a slurry of tin oxide powder having a solid content of 65% or more is milled by a wet bead mill.
4. 粒度分布から求めたメジアン径が 0. 40〜 1. 0 mの範囲にあ り、 かつ粒度分布から求めた 90 %粒径が 3. 0 以下の範囲にある酸 化錫と酸化インジウム粉末を焼結したことを特徴とする I TO膜形成用焼 結体スパッタリングタ一ゲット。  4. Tin oxide and indium oxide powder having a median diameter determined from the particle size distribution in the range of 0.40 to 1.0 m and a 90% particle size determined from the particle size distribution in the range of 3.0 or less And a sintered body sputtering target for forming an I-TO film.
5. 粒度分布から求めたメジアン径が 0. 40〜0. 60 mの範囲に あり、 かつ粒度分布から求めた 90 %粒径が 1. O ^m以下の範囲にある 酸化錫と酸化インジウム粉末を焼結したことを特徴とする I T〇膜形成用 焼結体スパッタリングターゲット。  5. Tin oxide and indium oxide powder having a median diameter determined from the particle size distribution in the range of 0.40 to 0.60 m and a 90% particle size determined from the particle size distribution in the range of 1. O ^ m or less A sintered sputtering target for forming an IT film, characterized in that it is sintered.
6. 7. 1 2 gZcm3以上の密度を備えていることを特徴とする上記 4又は 5に記載の I TO膜形成用スパッタリングターゲット。 6.7.1 A sputtering target for forming an ITO film as described in 4 or 5 above, which has a density of 2 gZ cm 3 or more.
7. 固形分 6 5 %以上の酸化錫粉末のスラリーを湿式ビーズミルにて粉 砕した酸化錫粉末を用いて焼結することを特徴とする上記 4) 〜6) のそ れぞれに記載の I TO膜形成用スパッタリング夕一ゲットの製造方法。  7. A slurry of tin oxide powder having a solid content of 65% or more is sintered using a tin oxide powder obtained by grinding in a wet bead mill, as described in each of 4) to 6) above. Method of producing a sputtering set for ITO film formation.
PCT/JP2002/001305 2001-03-12 2002-02-15 Tin oxide powder for ito sputtering target, production method of the powder, sintered body sputtering target for ito film fomation and production method of the target WO2002072912A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002571957A JP4190888B2 (en) 2001-03-12 2002-02-15 Tin oxide powder for ITO sputtering target, method for producing the same, and method for producing sintered sputtering target for forming ITO film
KR1020037011559A KR100581138B1 (en) 2001-03-12 2002-02-15 Tin oxide powder for ito sputtering target, sintered body sputtering target for ito film fomation and production method of target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-68554 2001-03-12
JP2001068554 2001-03-12

Publications (1)

Publication Number Publication Date
WO2002072912A1 true WO2002072912A1 (en) 2002-09-19

Family

ID=18926727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001305 WO2002072912A1 (en) 2001-03-12 2002-02-15 Tin oxide powder for ito sputtering target, production method of the powder, sintered body sputtering target for ito film fomation and production method of the target

Country Status (5)

Country Link
JP (2) JP4190888B2 (en)
KR (2) KR100581138B1 (en)
CN (1) CN100537828C (en)
TW (1) TW555875B (en)
WO (1) WO2002072912A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005019492A1 (en) * 2003-08-20 2007-11-22 日鉱金属株式会社 ITO sputtering target
US9885108B2 (en) 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
JP2018504760A (en) * 2015-02-03 2018-02-15 トゥルンプフ ヒュッティンガー スプウカ ズ オグラニショナ オドポヴィヂャルノスツィアTRUMPF Huettinger Sp. z o. o. Apparatus for treating arc and method for treating arc

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302680B1 (en) * 2006-12-19 2013-09-03 삼성코닝정밀소재 주식회사 Indium tin oxide target and manufacturing method of producing the same
CN102089257B (en) * 2008-07-15 2016-03-30 东曹株式会社 The manufacture method of the manufacture method of composite oxide sintered body, composite oxide sintered body, sputtering target and film
JP5149262B2 (en) * 2009-11-05 2013-02-20 出光興産株式会社 Indium oxide-zinc oxide sintered target and method for producing the same
JP4884561B1 (en) * 2011-04-19 2012-02-29 Jx日鉱日石金属株式会社 Indium target and manufacturing method thereof
JP5890671B2 (en) * 2011-12-06 2016-03-22 Jx金属株式会社 Manufacturing method of ITO sputtering target
JP6291593B2 (en) 2014-11-07 2018-03-14 Jx金属株式会社 ITO sputtering target, manufacturing method thereof, and manufacturing method of ITO transparent conductive film
JP5887625B1 (en) * 2015-03-27 2016-03-16 Jx金属株式会社 Cylindrical sputtering target, cylindrical sintered body, cylindrical molded body, and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030173A (en) * 1996-07-16 1998-02-03 Tosoh Corp Production of ito sintered body and sputtering target
US6033620A (en) * 1995-04-18 2000-03-07 Tosoh Corporation Process of preparing high-density sintered ITO compact and sputtering target
JP2000345329A (en) * 1999-04-02 2000-12-12 Japan Energy Corp Tin oxide-indium oxide powder for forming ito film and sputtering target for forming ito film
JP2001072468A (en) * 1999-08-31 2001-03-21 Sumitomo Metal Mining Co Ltd Production of ito sintered compact
JP2001072470A (en) * 1999-08-31 2001-03-21 Sumitomo Metal Mining Co Ltd Production of ito sintered compact

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147861A (en) * 1996-11-15 1998-06-02 Sumitomo Metal Mining Co Ltd Production of indium oxide-tin oxide sintered body
JP4081840B2 (en) * 1997-02-28 2008-04-30 東ソー株式会社 Manufacturing method of sputtering target
JPH11228218A (en) * 1998-02-04 1999-08-24 Mitsui Mining & Smelting Co Ltd Production of ito sintered compact

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033620A (en) * 1995-04-18 2000-03-07 Tosoh Corporation Process of preparing high-density sintered ITO compact and sputtering target
JPH1030173A (en) * 1996-07-16 1998-02-03 Tosoh Corp Production of ito sintered body and sputtering target
JP2000345329A (en) * 1999-04-02 2000-12-12 Japan Energy Corp Tin oxide-indium oxide powder for forming ito film and sputtering target for forming ito film
JP2001072468A (en) * 1999-08-31 2001-03-21 Sumitomo Metal Mining Co Ltd Production of ito sintered compact
JP2001072470A (en) * 1999-08-31 2001-03-21 Sumitomo Metal Mining Co Ltd Production of ito sintered compact

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005019492A1 (en) * 2003-08-20 2007-11-22 日鉱金属株式会社 ITO sputtering target
US7504351B2 (en) 2003-08-20 2009-03-17 Nippon Mining & Metals Co., Ltd. ITO sputtering target
JP4813182B2 (en) * 2003-08-20 2011-11-09 Jx日鉱日石金属株式会社 ITO sputtering target
US9885108B2 (en) 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
JP2018504760A (en) * 2015-02-03 2018-02-15 トゥルンプフ ヒュッティンガー スプウカ ズ オグラニショナ オドポヴィヂャルノスツィアTRUMPF Huettinger Sp. z o. o. Apparatus for treating arc and method for treating arc
US10297431B2 (en) 2015-02-03 2019-05-21 Trumpf Huettinger Sp. Z O. O. Treating arcs in a plasma process

Also Published As

Publication number Publication date
JP2009029706A (en) 2009-02-12
TW555875B (en) 2003-10-01
CN1633516A (en) 2005-06-29
KR20030087185A (en) 2003-11-13
JP4190888B2 (en) 2008-12-03
KR20060033935A (en) 2006-04-20
KR100663617B1 (en) 2007-01-05
KR100581138B1 (en) 2006-05-16
JPWO2002072912A1 (en) 2004-07-02
CN100537828C (en) 2009-09-09
JP5456291B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5456291B2 (en) Method for producing sintered sputtering target for forming ITO film
JP4324470B2 (en) Sputtering target, transparent conductive film and method for producing them
TWI433823B (en) Composite oxide sinter, method for producing composite oxide sinter, method for producing sputtering target and thin film
US20110284373A1 (en) Inorganic-Particle-Dispersed Sputtering Target
US20090308740A1 (en) CoCrPt Base Sputtering Target and Production Process for the Same
JP6291593B2 (en) ITO sputtering target, manufacturing method thereof, and manufacturing method of ITO transparent conductive film
US6033620A (en) Process of preparing high-density sintered ITO compact and sputtering target
JP5987105B2 (en) ITO sputtering target and manufacturing method thereof
JP4813182B2 (en) ITO sputtering target
JP4196805B2 (en) Indium oxide target and method for manufacturing the same
JP6885038B2 (en) Oxide sintered body, its manufacturing method and sputtering target
JPH10147862A (en) Indium oxide-tin oxide sintered body
JP2013256425A (en) Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target
JPH10147861A (en) Production of indium oxide-tin oxide sintered body
JP2012184158A (en) Low valence titanium oxide powder and zinc oxide-based sintered body
JPH02297813A (en) Sintered body of oxide, manufacture thereof, and target using same
JP3676961B2 (en) Tin oxide-indium oxide powder for forming ITO film and sputtering target for forming ITO film
JPH03218924A (en) Oxide powder and production thereof
JP3715504B2 (en) High-density ITO sintered sputtering target and method for producing the same
JP4955916B2 (en) Single crystal magnesium oxide sintered body, method for producing the same, and protective film for plasma display panel
JP3733607B2 (en) Method for producing chromium sputtering target
TWI697458B (en) Sputtering target
JP2001262326A (en) Indium oxide-metallic thin powder mixture, ito sputtering target using the same powdery mixture as raw material and method for producing the same target
JP2007230853A (en) Ito powder, its production method and method for producing ito sputtering target
JP2003137546A (en) Method for manufacturing tin oxide powder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002571957

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 028032764

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020037011559

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037011559

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020037011559

Country of ref document: KR