JPWO2002072912A1 - Tin oxide powder for ITO sputtering target, method for producing the same, sintered sputtering target for forming ITO film, and method for producing the same - Google Patents

Tin oxide powder for ITO sputtering target, method for producing the same, sintered sputtering target for forming ITO film, and method for producing the same Download PDF

Info

Publication number
JPWO2002072912A1
JPWO2002072912A1 JP2002571957A JP2002571957A JPWO2002072912A1 JP WO2002072912 A1 JPWO2002072912 A1 JP WO2002072912A1 JP 2002571957 A JP2002571957 A JP 2002571957A JP 2002571957 A JP2002571957 A JP 2002571957A JP WO2002072912 A1 JPWO2002072912 A1 JP WO2002072912A1
Authority
JP
Japan
Prior art keywords
particle size
tin oxide
sputtering target
ito
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002571957A
Other languages
Japanese (ja)
Other versions
JP4190888B2 (en
Inventor
充之 古仲
充之 古仲
敏也 栗原
敏也 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Publication of JPWO2002072912A1 publication Critical patent/JPWO2002072912A1/en
Application granted granted Critical
Publication of JP4190888B2 publication Critical patent/JP4190888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

粒度分布から求めたメジアン径が0.40〜1.0μmの範囲にあり、かつ粒度分布から求めた90%粒径が3.0μm以下の範囲にあることを特徴とするITOスパッタリングターゲット用酸化錫粉末。ITO薄膜形成に好適な高密度化と成分の均一性に優れた焼結体を得ることができる酸化錫粉末及び該粉末を用いて焼結したITO膜形成用スパッタリングターゲットを提供するものであり、これによってITO薄膜形成時に発生するノジュール等やそれに伴う薄膜の品質の低下を抑制できるITO膜形成用酸化錫−酸化インジウムターゲットを低コストで提供する。A tin oxide for an ITO sputtering target, wherein the median diameter determined from the particle size distribution is in the range of 0.40 to 1.0 μm, and the 90% particle size determined from the particle size distribution is in the range of 3.0 μm or less. Powder. It is intended to provide a tin oxide powder capable of obtaining a sintered body having excellent density and uniformity of components suitable for forming an ITO thin film, and a sputtering target for forming an ITO film sintered using the powder. As a result, a tin oxide-indium oxide target for forming an ITO film that can suppress nodules and the like generated during the formation of the ITO thin film and the accompanying deterioration of the quality of the thin film is provided at low cost.

Description

技術分野
この発明は、ITOスパッタリングターゲット用酸化錫粉末及びITO膜形成用ITO膜形成に好適な焼結体スパッタリングターゲット並びにその製造方法に関する。
背景技術
ITO(インジウム−錫の複合酸化物)膜は液晶ディスプレーを中心とする表示デバイスの透明電極(膜)として広く使用されている。
このITO膜を形成する方法として、真空蒸着法やスパッタリング法など、一般に物理蒸着法と言われている手段によって行われるのが普通である。特に、操作性や皮膜の安定性からマグネトロンスパッタリング法を用いて形成することが多い。
スパッタリング法による膜の形成は、陰極に設置したターゲットにArイオンなどの正イオンを物理的に衝突させ、その衝突エネルギーでターゲットを構成する材料を放出させて、対面している陽極側の基板にターゲット材料とほぼ同組成の膜を積層することによって行われる。
スパッタリング法による被覆法は処理時間や供給電力等を調節することによって、安定した成膜速度でオングストローム単位の薄い膜から数十μmの厚い膜まで形成できるという特徴を有している。
ITO膜を形成する場合に特に問題となるのは、ITOターゲットのエロージョン部やその周辺にノジュールと呼ばれる突起物が発生する事である。このノジュールが発生するとスパッタレートの低下や異常放電(マイクロアーキング)を引き起こし、著しく生産性を低下させる。
また、ノジュールや異常放電に起因して、スパッタチャンバ内に粗大化した粒子(パーティクル)が浮遊するようになり、これが生成した薄膜に再付着して薄膜の欠陥(ピンホール)や突起物の原因となり、膜の品質が低下するという問題が発生する。
ノジュールの発生を抑える対策としては、一般的にターゲットの密度を上げ、ターゲット中の空孔(ポア)を減少させることが知られている。
また、ターゲット焼結体の原料粉末となる酸化インジウムと酸化錫を微細化し、それぞれの分散性を上げることにより、ターゲット中の組成のばらつきを減少させることが効果的である。特に酸化錫の粒が粗大であると、混合した酸化インジウムに十分に固溶できず、焼結体中に酸化錫の塊として存在するため、スパッタの際にノジュールの起点となってしまう。また、それらは、焼結体中の空孔の原因となり焼結体の高密度化を阻害する要因となる。
酸化錫粉末を微細化するためには、原料粉を機械的に粉砕する方法が最も簡便かつ低コストである。粉砕装置として一般に知られているものとしては、原料の相互衝突又はライナーに衝突させて粉砕するジェットミル、粉砕メディアを使用してメディア間若しくはライナー間との摩砕によって粉砕するビーズミル等がある。しかし、ジェットミル法では、酸化錫粉のように固く凝集性の強い原料をサブミクロン領域の粒径まで粉砕するためには、パス回数の増大など、極端な処理量の低下を招きコスト的に不利となる。
このようなことから、ITOターゲットの焼結用粉末はメディア攪拌型の粉砕機を使用することが好ましく、原料の凝集を制御するのに容易な湿式のビーズミルが最適である。
このビーズミル粉砕機において粉砕動力又はパス回数を増すと、より微粉化するが、余り強すぎると粉砕量の制御が難しくなり、また弱すぎるとミル内のビーズとスラリーの動きが悪くなり、粉砕効率が著しく低下するため、適度な強さに制御して粉砕を行うことが要求される。
ITOターゲットの原料粉である酸化インジウム粉については、粉砕が容易であり特に問題となることはないが、酸化錫のように固く、凝集性の強い粉は酸化インジウム粉に比べて粉砕が難しくなる。したがって、原料粉としては特に酸化錫の粉砕が問題であり、これをコントロールすることが必要となる。
酸化錫の粉砕に際しては、通常ならば粉砕動力又はパス回数を増すことによって、より細かく粉砕ができると考えられるが、粉砕動力又はパス回数を増すことによる問題以外に、ミル粉砕機内のライナーや硬質ビーズ材料等が酸化錫粉末中にコンタミ(汚染物質)として混入してしまう問題がある。
したがって、細粒化した粉を用いて焼結することによる高密度化と細粒化に伴う焼結材料の汚染の問題は相互に矛盾する問題であり、高密度化を行うための最適な粉末が得られているとは言えないのが現状である。
以上のことから、ITO薄膜形成には、成分が均一でかつ高密度の焼結体ターゲットを得ることが必要であったが、これらの要求に満足できる最適な酸化錫粉末及び高密度の焼結体ターゲットが得られていないという問題があった。
発明の開示
本発明は、上記の諸問題点の解決、特にITO薄膜形成に好適な高密度化と成分の均一性に優れた焼結体を得ることができる酸化錫粉末及び該粉末を用いて焼結したITO膜形成用スパッタリングターゲット並びにその製造方法を提供するものであり、これによってITO薄膜形成時に発生するノジュール等やそれに伴う薄膜の品質の低下を抑制できるITO膜形成用酸化錫−酸化インジウムターゲットを低コストで提供することを目的としたものである。
上記問題点を解決するための技術的な手段は、酸化錫粉末の粒径を厳密に管理するものであり、これによってITO透明導電膜等に好適なスパッタリングターゲットを得ることができるとの知見を得た。
この知見に基づき、本発明は
1)粒度分布から求めたメジアン径が0.40〜1.0μmの範囲にあり、かつ粒度分布から求めた90%粒径が3.0μm以下の範囲にあることを特徴とするITOスパッタリングターゲット用酸化錫粉末。
2)粒度分布から求めたメジアン径が0.40〜0.60μmの範囲にあり、かつ粒度分布から求めた90%粒径が1.0μm以下の範囲にあることを特徴とするITOスパッタリングターゲット用酸化錫粉末。
3)固形分65%以上の酸化錫粉末のスラリーを湿式ビーズミルにて粉砕することを特徴とする上記1)又は2)に記載のITOスパッタリングターゲット用酸化錫粉末の製造方法。
4)粒度分布から求めたメジアン径が0.40〜1.0μmの範囲にあり、かつ粒度分布から求めた90%粒径が3.0μm以下の範囲にある酸化錫と酸化インジウム粉末を焼結したことを特徴とするITO膜形成用焼結体スパッタリングターゲット。
5)粒度分布から求めたメジアン径が0.40〜0.60μmの範囲にあり、かつ粒度分布から求めた90%粒径が1.0μm以下の範囲にある酸化錫と酸化インジウム粉末を焼結したことを特徴とするITO膜形成用焼結体スパッタリングターゲット。
6)7.12g/cm以上の密度を備えていることを特徴とする上記4)又は5)に記載のITO膜形成用スパッタリングターゲット。
7)固形分65%以上の酸化錫粉末のスラリーを湿式ビーズミルにて粉砕した酸化錫粉末を用いて焼結することを特徴とする上記4)〜6)のそれぞれに記載のITO膜形成用スパッタリングターゲットの製造方法。
を提供する。
発明の実施の形態
本発明は、ITOスパッタリングターゲット用酸化錫粉末を、粒度分布から求めたメジアン径が0.40〜1.0μmの範囲にあり、かつ粒度分布から求めた90%粒径が3.0μm以下の範囲とし、好ましくは粒度分布から求めたメジアン径が0.40〜0.60μmの範囲にあり、かつ粒度分布から求めた90%粒径が1.0μm以下の範囲とする。
通常(従来)の酸化錫粉末は、粒度分布から求めた積算体積頻度が50%の値=メジアン径が1.5〜2.5μm、粒度分布から求めた積算体積頻度が90%の値=90%粒径が5.0〜10.0μm程度の範囲であった。
上記酸化錫粉末は、酸化インジウム粉末と所定の割合で混合し、湿式ビーズミルにてメジアン径が0.5〜1.0μm程度まで粉砕を行っていた。しかし、混合粉中の酸化錫粉は十分に分散しておらず、一部は5〜10μm程度の粗大粒として存在していた。この様な酸化錫の粗大粒は酸化インジウムに十分に固溶できず、焼結体中の酸化錫塊又はポアの原因となるため、焼結体密度が十分に上がらず、均一かつ高密度の焼結体を得ることができなかった。
そして、このように焼結体ターゲットの成分が均一でなく、また十分な密度が得られていないために、スパッタリング成膜の際にばらつきを生じ、ITO膜の品質の低下を招くという問題があった。
この原因を究明した結果、上記の酸化錫粉末の粒径が重要であり、原料に含まれる粗大粒が焼結体の密度を低下させていることに着目し、酸化錫粉末の粒度分布から求めたメジアン径が0.40〜1.0μmの範囲にあり、かつ粒度分布から求めた90%粒径が3.0μm以下の範囲とし、好ましくは粒度分布から求めたメジアン径が0.40〜0.60μmの範囲にあり、かつ粒度分布から求めた90%粒径が1.0μm以下の範囲とすることにより、高密度、かつ高品質の焼結体を得ることに成功した。
本発明の上記粉末を使用することによって、ITOスパッタリングターゲットに好適な密度7.12g/cm以上、さらには7.13g/cm以上の高密度を備えた焼結体を得ることができる。
粉砕の際、酸化錫の粒径の調整は、原料粉の選択、粉砕動力の調整、パス回数、粉砕ビーズの径や材質の調整、酸化錫粉末スラリーの固形分の調整によって行うが、上記の条件が達成できるように適宜コントロールすることによって行うことができる。
粉砕メディアとしてジルコニアビーズを使用するが、ジルコニウムのコンタミの問題から、固形分65%以上の酸化錫粉末スラリーを使用することにより、コンタミの問題を極力抑制できる。
これによって、無理のない粉砕が可能であり、優れた焼結性を持つ焼結粉末を得ることができる。
[実施例及び比較例]
本発明の実施例について説明する。なお、本実施例はあくまで1例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、実施例以外の態様あるいは変形を全て包含するものである。
(実施例1)
粒度分布から求めたメジアン径が2.0μm、90%粒径が3.50μm、BET比表面積が4.0m/gの酸化錫粉を純水に混合し固形分65%のスラリーを作製した。なお、粒度分布測定はレーザー回折/散乱式粒度分布計(堀場製作所製LA−920)、BET比表面積は連続流動式表面積計(堀場製作所製SA−6200)を使用した。この時、純水中の酸化錫粉を分散させるため、アンモニア水を添加してスラリーのpHを9.0に調整した。
次に、作製したスラリーをビーズミルにて粉砕し、粒度分布から求めたメジアン径が1.0μm、90%粒径が2.0μm、BET比表面積が6.0m/gまで粉砕した。この時粉砕ビーズは耐磨耗性を考慮してジルコニアビーズ(YTZ)を使用した。
上記により粉砕した酸化錫スラリーと、粒度分布から求めたメジアン径が2.0μm、90%粒径が3.0μm、BET比表面積が8.0m/gの酸化インジウム粉を固形分重量比率で酸化錫1:酸化インジウム9となるよう純水に混合し、固形分50%のスラリーを作製した。
次に、作製した酸化錫、酸化インジウム混合スラリーをビーズミルにて、粉砕・混合し、粒度分布から求めたメジアン径が0.80μm、90%粒径が1.50μm、BET比表面積が10m/gまで粉砕した。
次に、この粉砕スラリーにバインダーを加え、スプレードライヤーにて造粒・乾燥した。この乾燥粉末を金型に充填した後、油圧プレスにて1000kgf/cmの圧力で成形後、さらに冷間等方静水圧プレス(CIP)にて1500kgf/cmの圧力で成形して、密度が4.0g/ccの成形体を得た。
次に、該成形体を焼結温度1550°Cで4時間、酸素雰囲気焼結した結果、得られた焼結体の密度はアルキメデス法で7.128g/cmと高密度の焼結体が得られた。
但し、該成形体を焼結温度1500°Cで焼結した場合には、密度7.097g/cmにしか達しなかった。
(実施例2)
上記の実施例1と同一の粉砕条件にて、粒度分布から求めたメジアン径が0.5μm、90%粒径が0.80μm、BET比表面積が7.0m/gまで粉砕した。
次に、粉砕した酸化錫スラリーと、粒度分布から求めたメジアン径が2.0μm、90%粒径が3.0μm、BET比表面積が8.0m/gの酸化インジウム粉とを純水に混合し、実施例1と同様の方法でメジアン径が0.80μm、90%粒径が1.50μm、BET比表面積が10m/gまで粉砕した。
該粉砕スラリーを実施例1と同様に造粒・乾燥した。次に得られた粉末を金型に充填した後、油圧プレスにて1000kgf/cmの圧力で成形後、さらに冷間等方静水圧プレス(CIP)にて1500kgf/cmの圧力で成形して、密度が4.0g/ccの成形体を得た。
次に、該成形体を焼結温度1550°Cで4時間、酸素雰囲気焼結した結果、得られた焼結体の密度はアルキメデス法で7.129g/cmと高密度の焼結体が得られた。
更に、該成形体を焼結温度1500°Cで焼結した場合にも、密度7.130g/cmの高密度の焼結体が得られた。
(比較例1)
粒度分布から求めたメジアン径が2.0μm、90%粒径が3.50μm、BET比表面積が4.0m/gの酸化錫粉と、粒度分布から求めたメジアン径が2.0μm、90%粒径が3.0μm、BET比表面積が8.0m/gの酸化インジウム粉を実施例と同様の方法により固形分重量比率で酸化錫1:酸化インジウム9となるよう純水に混合し、固形分50%のスラリーを作製した。
次に、実施例1と同様の方法により、粒度分布から求めたメジアン径が0.80μm、90%粒径が1.50μm、BET比表面積が10m/gまで粉砕した。
この粉砕スラリーにバインダーを加え、実施例1と同様の方法により、造粒・乾燥した。得られた粉末を金型に充填した後、油圧プレスにて1000kgf/cmの圧力で成形後、さらに冷間等方静水圧プレス(CIP)にて1500kgf/cmの圧力で成形して、密度が4.0g/ccの成形体を得た。
次に、該成形体を焼結温度1550°Cで4時間、酸素雰囲気焼結した結果、得られた焼結体の密度はアルキメデス法で7.101g/cmにしか到達しなかった。また、焼結温度を1650°Cまで上げた場合でも、焼結体の密度7.108g/cmであった。
上記実施例1、2及び比較例1で作製した焼結体について機械加工を行い、スパッタリングターゲットを作製して、スパッタリング時のノジュール発生量(被覆率)とスパッタリング時の異常放電(マイクロアーキング)回数を測定した。
スパッタリングの条件は以下の通りである。
ターゲットサイズ:127×508×6.35mm
スパッタガス:Ar+O
スパッタガス圧:0.5Pa
スパッタガス流量:300SCCM
スパッタガス中の酸素濃度:1Vol%
漏洩磁束密度:0.1T
投入スパッタパワー密度:0.5W/cmでスパッタ開始して成膜
速度を一定に保つように上昇させた。
スパッタ積算電力:〜160WHr/cm
図1にノジュール発生量、図2にマイクロアーキング回数を示す。ノジュール発生量(被覆率)はターゲットのエロージョン部の画像をコンピュータで2値化し、発生したノジュールの面積をエロージョン面積で除した値として算出した。マイクロアーキングのしきい値は、検出電圧:100V以上、放出エネルギー(アーク放電が発生している時のスパッタ電圧×スパッタ電流×発生時間):10mJ以下とした。
図1から明らかなように、比較例 のターゲットは積算電力40WHr/cmから急激にノジュールが増加し、ライフエンドである積算電力160WHr/cmでは40%以上のノジュール被覆率となっているのに対し、実施例1、2のターゲットは積算電力160WHr/cmまでスパッタリングを行ってもノジュール発生量は0%であり、著しく優れていることが分かる。
また、図2のマイクロアーキング回数においても、比較例のターゲットは積算電力80WHr/cmから急激にアーキング回数が増加するのに対し、実施例1、2のターゲットは終始アーキング回数が少なく、安定した成膜条件が得られることが分かる。
実施例1、2で比較すると、ノジュール発生量では両者に差はみられなかったが、アーキング回数で比較すると実施例2の方が優れていることが分かる。
(実施例3)
上記実施例1及び2で使用した酸化錫粉を製造する際のジルコニアビーズのコンタミ(不純物)量を調べた。粉砕には上記実施例で使用したビーズミルを使用し、粉砕ビーズはφ0.5mm径のZrビーズ(YTZ)を使用した。
酸化錫粉をそれぞれ固形分重量比率で25%、45%、65%となるように純水に混合した。この時、純水中の酸化錫粉を分散させるため、アンモニア水を添加しpHを8.0〜10.0に調整し、スラリーの粘度を0.1Pa・s以下に調整した。
上記各固形分のスラリーを同一粉砕条件にてパス運転を行い、それぞれの粉砕粒径と混入したZr量を調査した。その結果、図3に示すように、同一粒径で比較した場合、固形分が高いほどZrの混入量が小さくなることが分かった。
発明の効果
ITO薄膜形成に好適な高密度化と成分の均一性に優れた焼結体を得ることができるという著しい特徴を有し、これによってITOスパッタリング成膜が均一でない場合に生ずる品質の低下やノジュール等の異常突起物を抑制できるITO膜形成用酸化錫−酸化インジウムターゲットを低コストで得ることができるという優れた効果を有する。
【図面の簡単な説明】
図1は、実施例1、2及び比較例で作製したスパッタリングターゲットのスパッタ時における、スパッタ積算電力とノジュール被覆率を示す図であり、図2は、実施例1、2及び比較例で作製したスパッタリングターゲットのスパッタ時における、スパッタ積算電力とマイクロアーキング回数を示す図であり、図3は、実施例3で作製した酸化錫粉末スラリーの各固形分濃度におけるメジアン径とZrコンタミ量を示す図である。
TECHNICAL FIELD The present invention relates to a tin oxide powder for an ITO sputtering target, a sintered sputtering target suitable for forming an ITO film for forming an ITO film, and a method for producing the same.
BACKGROUND ART ITO (indium-tin composite oxide) films are widely used as transparent electrodes (films) of display devices mainly for liquid crystal displays.
The method of forming the ITO film is generally performed by a means generally called a physical vapor deposition method such as a vacuum vapor deposition method or a sputtering method. In particular, it is often formed using a magnetron sputtering method from the viewpoint of operability and stability of the film.
The formation of the film by the sputtering method involves physically colliding positive ions such as Ar ions with a target placed on the cathode, releasing the material constituting the target with the collision energy, and forming the target on the facing substrate on the anode side. This is performed by stacking films having substantially the same composition as the target material.
The coating method by the sputtering method has a feature that a thin film of angstrom unit to a thick film of several tens of μm can be formed at a stable film forming rate by adjusting a processing time, a supply power and the like.
A particular problem in forming the ITO film is that a projection called a nodule is generated in the erosion portion of the ITO target and its periphery. The generation of this nodule causes a decrease in sputter rate and abnormal discharge (micro arcing), which significantly lowers productivity.
In addition, due to nodules and abnormal discharge, coarse particles (particles) float in the sputtering chamber and reattach to the generated thin film, causing defects (pinholes) and protrusions in the thin film. This causes a problem that the quality of the film is deteriorated.
As a countermeasure for suppressing the generation of nodules, it is generally known to increase the density of the target and reduce the number of pores in the target.
In addition, it is effective to reduce inconsistency in the composition in the target by minimizing indium oxide and tin oxide, which are the raw material powders of the target sintered body, and increasing their dispersibility. In particular, if the tin oxide particles are coarse, they cannot be sufficiently dissolved in the mixed indium oxide and exist as a lump of tin oxide in the sintered body, so that they become a starting point of nodules during sputtering. In addition, they cause voids in the sintered body and become a factor that hinders the densification of the sintered body.
In order to make the tin oxide powder finer, the method of mechanically pulverizing the raw material powder is the simplest and the cheapest. Commonly known pulverizers include a jet mill for pulverizing raw materials by colliding with each other or a liner, and a bead mill for pulverizing the raw material by grinding between media or between liners using a pulverizing media. However, in the jet mill method, in order to pulverize a hard and highly cohesive raw material such as tin oxide powder to a particle diameter in a submicron region, an extremely low processing amount such as an increase in the number of passes is caused, resulting in cost reduction. Disadvantageous.
For this reason, it is preferable to use a media stirring type pulverizer for the powder for sintering the ITO target, and a wet bead mill that is easy to control the aggregation of the raw materials is optimal.
Increasing the grinding power or the number of passes in this bead mill grinder makes the powder finer, but if it is too strong, it will be difficult to control the amount of grinding, and if it is too weak, the movement of beads and slurry in the mill will worsen, and the grinding efficiency will increase. Therefore, it is required to perform pulverization while controlling the strength to an appropriate level.
Indium oxide powder, which is a raw material powder of the ITO target, is easily crushed and does not cause any particular problem, but powder such as tin oxide which is hard and has high cohesiveness is more difficult to crush than indium oxide powder. . Therefore, pulverization of tin oxide is particularly problematic as a raw material powder, and it is necessary to control this.
At the time of pulverizing tin oxide, it is considered that finer pulverization can be achieved by increasing the pulverizing power or the number of passes, but other than the problem caused by increasing the pulverizing power or the number of passes, the liner and the hard material in the mill pulverizer may be used. There is a problem that bead materials and the like are mixed in the tin oxide powder as contaminants (contaminants).
Therefore, the problem of high density by sintering using finely divided powder and the problem of contamination of the sintered material due to the fineness are mutually contradictory problems, and the optimal powder for performing high density At present, it cannot be said that it has been obtained.
From the above, it was necessary to obtain a sintered target having a uniform composition and a high density in order to form an ITO thin film. There was a problem that a body target was not obtained.
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, and in particular, uses a tin oxide powder capable of obtaining a sintered body having high density and excellent component uniformity suitable for forming an ITO thin film, and using the powder. The present invention provides a sintered sputtering target for forming an ITO film and a method for producing the same, whereby a tin oxide-indium oxide for forming an ITO film capable of suppressing nodules or the like generated during the formation of the ITO thin film and the accompanying deterioration of the quality of the thin film. The purpose is to provide the target at low cost.
The technical means for solving the above problem is to strictly control the particle size of the tin oxide powder, and it has been found that a sputtering target suitable for an ITO transparent conductive film or the like can be obtained. Obtained.
Based on this finding, the present invention 1) that the median diameter determined from the particle size distribution is in the range of 0.40 to 1.0 μm, and the 90% particle size determined from the particle size distribution is in the range of 3.0 μm or less. A tin oxide powder for an ITO sputtering target, characterized in that:
2) For an ITO sputtering target, wherein the median diameter determined from the particle size distribution is in the range of 0.40 to 0.60 μm, and the 90% particle size determined from the particle size distribution is in the range of 1.0 μm or less. Tin oxide powder.
3) The method for producing a tin oxide powder for an ITO sputtering target according to the above 1) or 2), wherein a slurry of tin oxide powder having a solid content of 65% or more is pulverized by a wet bead mill.
4) sintering tin oxide and indium oxide powder whose median diameter determined from the particle size distribution is in the range of 0.40 to 1.0 μm and whose 90% particle size determined from the particle size distribution is in the range of 3.0 μm or less. A sintered compact sputtering target for forming an ITO film.
5) Sintering tin oxide and indium oxide powder having a median diameter determined from the particle size distribution in a range of 0.40 to 0.60 μm and a 90% particle size determined from the particle size distribution in a range of 1.0 μm or less. A sintered compact sputtering target for forming an ITO film.
6) The sputtering target for forming an ITO film according to 4) or 5) above, wherein the sputtering target has a density of 7.12 g / cm 3 or more.
7) Sputtering for forming an ITO film as described in each of 4) to 6) above, wherein a slurry of tin oxide powder having a solid content of 65% or more is sintered using tin oxide powder pulverized by a wet bead mill. Target manufacturing method.
I will provide a.
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, a tin oxide powder for an ITO sputtering target has a median diameter determined from a particle size distribution in a range of 0.40 to 1.0 μm, and a 90% particle size determined from a particle size distribution is 3%. 2.0 μm or less, preferably the median diameter determined from the particle size distribution is in the range of 0.40 to 0.60 μm, and the 90% particle size determined from the particle size distribution is in the range of 1.0 μm or less.
Normal (conventional) tin oxide powder has an integrated volume frequency of 50% obtained from the particle size distribution = median diameter of 1.5 to 2.5 μm, and an integrated volume frequency of 90% obtained from the particle size distribution = 90. % Particle size was in the range of about 5.0 to 10.0 μm.
The tin oxide powder was mixed with indium oxide powder at a predetermined ratio, and pulverized by a wet bead mill to a median diameter of about 0.5 to 1.0 μm. However, the tin oxide powder in the mixed powder was not sufficiently dispersed, and a part thereof was present as coarse particles of about 5 to 10 μm. Such coarse particles of tin oxide cannot be sufficiently dissolved in indium oxide and cause tin oxide lumps or pores in the sintered body. A sintered body could not be obtained.
In addition, since the components of the sintered body target are not uniform and a sufficient density is not obtained as described above, there is a problem that a variation occurs at the time of sputtering film formation, and the quality of the ITO film is deteriorated. Was.
As a result of investigating the cause, the particle size of the tin oxide powder is important, and attention is paid to the fact that the coarse particles contained in the raw material decrease the density of the sintered body, and are determined from the particle size distribution of the tin oxide powder. Median diameter is in the range of 0.40 to 1.0 μm, and the 90% particle diameter determined from the particle size distribution is in the range of 3.0 μm or less, and preferably the median diameter determined from the particle size distribution is 0.40 to 0 μm. By setting the 90% particle size determined from the particle size distribution in the range of 0.6 μm to 1.0 μm or less, a high-density and high-quality sintered body was successfully obtained.
By using the above powder of the present invention, the preferred density ITO sputtering target 7.12 g / cm 3 or more, it is possible to obtain the sintered body having a 7.13 g / cm 3 or more dense.
At the time of pulverization, the particle size of tin oxide is adjusted by selecting the raw material powder, adjusting the pulverizing power, the number of passes, adjusting the diameter and material of the pulverized beads, and adjusting the solid content of the tin oxide powder slurry. It can be carried out by appropriately controlling such that the conditions can be achieved.
Although zirconia beads are used as the pulverizing media, the problem of contamination can be suppressed as much as possible by using a tin oxide powder slurry having a solid content of 65% or more due to the problem of zirconium contamination.
As a result, reasonable pulverization is possible, and a sintered powder having excellent sinterability can be obtained.
[Examples and Comparative Examples]
An embodiment of the present invention will be described. Note that this embodiment is merely an example, and the present invention is not limited to this example. That is, within the scope of the technical idea of the present invention, all aspects or modifications other than the examples are included.
(Example 1)
Tin oxide powder having a median diameter of 2.0 μm, a 90% particle diameter of 3.50 μm, and a BET specific surface area of 4.0 m 2 / g determined from the particle size distribution was mixed with pure water to prepare a slurry having a solid content of 65%. . The particle size distribution was measured using a laser diffraction / scattering type particle size distribution meter (LA-920, manufactured by Horiba Ltd.), and the BET specific surface area was measured using a continuous flow type surface area meter (SA-6200, manufactured by Horiba Ltd.). At this time, ammonia water was added to adjust the pH of the slurry to 9.0 in order to disperse the tin oxide powder in the pure water.
Next, the prepared slurry was pulverized with a bead mill, and pulverized to a median diameter of 1.0 μm, a 90% particle size of 2.0 μm, and a BET specific surface area of 6.0 m 2 / g, as determined from the particle size distribution. The crushed beads used were zirconia beads (YTZ) in consideration of abrasion resistance.
The tin oxide slurry pulverized as described above and indium oxide powder having a median diameter of 2.0 μm, a 90% particle diameter of 3.0 μm, and a BET specific surface area of 8.0 m 2 / g, as determined from the particle size distribution, are represented by a solid content weight ratio. Tin oxide 1: Indium oxide 9 was mixed with pure water to prepare a slurry having a solid content of 50%.
Next, the prepared mixed slurry of tin oxide and indium oxide was pulverized and mixed by a bead mill, and the median diameter and the 90% particle size, which were determined from the particle size distribution, were 0.80 μm, 1.50 μm, and 10 m 2 / BET, respectively. g.
Next, a binder was added to the pulverized slurry, and the mixture was granulated and dried with a spray drier. This dry powder was filled in a mold, molded by a hydraulic press at a pressure of 1000 kgf / cm 2 , and further molded by a cold isostatic press (CIP) at a pressure of 1500 kgf / cm 2 to obtain a density Was 4.0 g / cc.
Next, as a result of sintering the compact at a sintering temperature of 1550 ° C. for 4 hours in an oxygen atmosphere, the density of the obtained sintered compact was 7.128 g / cm 3 by Archimedes' method. Obtained.
However, when the molded body was sintered at a sintering temperature of 1500 ° C., the density reached only 7.097 g / cm 3 .
(Example 2)
Under the same pulverization conditions as in Example 1, pulverization was performed until the median diameter determined from the particle size distribution was 0.5 μm, the 90% particle size was 0.80 μm, and the BET specific surface area was 7.0 m 2 / g.
Next, the pulverized tin oxide slurry and indium oxide powder having a median diameter of 2.0 μm, a 90% particle diameter of 3.0 μm, and a BET specific surface area of 8.0 m 2 / g, determined from the particle size distribution, were added to pure water. They were mixed and pulverized in the same manner as in Example 1 until the median diameter was 0.80 μm, the 90% particle diameter was 1.50 μm, and the BET specific surface area was 10 m 2 / g.
The pulverized slurry was granulated and dried in the same manner as in Example 1. Next, the obtained powder was filled in a mold, molded by a hydraulic press at a pressure of 1000 kgf / cm 2 , and further molded by a cold isostatic press (CIP) at a pressure of 1500 kgf / cm 2. Thus, a molded product having a density of 4.0 g / cc was obtained.
Next, as a result of sintering the molded body at a sintering temperature of 1550 ° C. for 4 hours in an oxygen atmosphere, the density of the obtained sintered body was 7.129 g / cm 3 by Archimedes method. Obtained.
Further, even when the compact was sintered at a sintering temperature of 1500 ° C., a high-density sintered body having a density of 7.130 g / cm 3 was obtained.
(Comparative Example 1)
A tin oxide powder having a median diameter of 2.0 μm, a 90% particle size of 3.50 μm, and a BET specific surface area of 4.0 m 2 / g obtained from the particle size distribution, and a median diameter of 2.0 μm, 90 obtained from the particle size distribution. % Indium oxide powder having a BET specific surface area of 8.0 m 2 / g was mixed with pure water so as to be tin oxide 1: indium oxide 9 in a solid content weight ratio in the same manner as in Example. A slurry having a solid content of 50% was prepared.
Next, in the same manner as in Example 1, the particles were pulverized to a median diameter of 0.80 μm, a 90% particle size of 1.50 μm, and a BET specific surface area of 10 m 2 / g, as determined from the particle size distribution.
A binder was added to the pulverized slurry, and the mixture was granulated and dried in the same manner as in Example 1. The obtained powder was filled in a mold, molded by a hydraulic press at a pressure of 1000 kgf / cm 2 , and further molded by a cold isostatic press (CIP) at a pressure of 1500 kgf / cm 2 . A molded article having a density of 4.0 g / cc was obtained.
Next, as a result of sintering the molded body at a sintering temperature of 1550 ° C. for 4 hours in an oxygen atmosphere, the density of the obtained sintered body reached only 7.101 g / cm 3 by Archimedes method. In addition, even when the sintering temperature was increased to 1650 ° C., the density of the sintered body was 7.108 g / cm 3 .
The sintered bodies produced in Examples 1 and 2 and Comparative Example 1 were machined to produce a sputtering target, and the nodule generation amount (coverage) during sputtering and the number of abnormal discharges (micro arcing) during sputtering. Was measured.
The sputtering conditions are as follows.
Target size: 127 x 508 x 6.35mm
Sputtering gas: Ar + O 2
Sputter gas pressure: 0.5Pa
Sputter gas flow rate: 300 SCCM
Oxygen concentration in sputtering gas: 1 Vol%
Leakage magnetic flux density: 0.1T
Sputtering was started at an input sputtering power density of 0.5 W / cm 2 , and was increased so as to keep the film forming rate constant.
Integrated sputtering power: ~ 160 WHr / cm 2
FIG. 1 shows the nodule generation amount, and FIG. 2 shows the number of times of micro arcing. The nodule generation amount (coverage) was calculated as a value obtained by binarizing the image of the erosion portion of the target with a computer and dividing the area of the generated nodule by the erosion area. The threshold value of the micro-arcing was set to a detection voltage: 100 V or more, and an emission energy (sputtering voltage at the time of occurrence of arc discharge × sputtering current × generation time): 10 mJ or less.
As apparent from FIG. 1, the target of the comparative example sharply nodules increases from the integrated power 40WHr / cm 2, has a cumulative power 160WHr / cm 2 in 40% of nodules coverage is life end On the other hand, the targets of Examples 1 and 2 showed a nodule generation amount of 0% even when sputtering was performed up to an integrated power of 160 WHr / cm 2, indicating that the targets were extremely excellent.
Also, in the micro arcing frequency of FIG. 2, the target of the comparative example sharply increases the arcing frequency from the integrated power of 80 WHr / cm 2 , whereas the targets of Examples 1 and 2 have a small number of arcing throughout and are stable. It can be seen that film forming conditions can be obtained.
When compared in Examples 1 and 2, there was no difference between the two in the amount of nodules generated, but it was found that Example 2 was superior when compared in terms of the number of times of arcing.
(Example 3)
The amount of contamination (impurities) of the zirconia beads when producing the tin oxide powder used in Examples 1 and 2 was examined. The bead mill used in the above example was used for the pulverization, and Zr beads (YTZ) having a diameter of 0.5 mm were used as the pulverized beads.
Tin oxide powder was mixed with pure water so that the solid content weight ratio was 25%, 45%, and 65%, respectively. At this time, in order to disperse the tin oxide powder in the pure water, the pH was adjusted to 8.0 to 10.0 by adding aqueous ammonia, and the viscosity of the slurry was adjusted to 0.1 Pa · s or less.
A pass operation was performed on each of the above-mentioned slurries under the same crushing conditions, and the crushed particle size and the amount of mixed Zr were investigated. As a result, as shown in FIG. 3, it was found that the higher the solid content, the smaller the amount of Zr mixed in when comparing with the same particle size.
The present invention has a remarkable feature that a sintered body having a high density suitable for forming an ITO thin film and having excellent uniformity of components can be obtained, thereby deteriorating the quality caused when the ITO sputtering film is not uniform. This has an excellent effect that a tin oxide-indium oxide target for forming an ITO film, which can suppress abnormal projections such as nodules and nodules, can be obtained at low cost.
[Brief description of the drawings]
FIG. 1 is a diagram showing integrated sputter power and nodule coverage at the time of sputtering of the sputtering targets produced in Examples 1 and 2 and Comparative Example, and FIG. 2 was produced in Examples 1 and 2 and Comparative Example. FIG. 3 is a diagram showing the integrated power and the number of times of micro arcing during sputtering of a sputtering target. FIG. 3 is a diagram showing the median diameter and the amount of Zr contamination at each solid content concentration of the tin oxide powder slurry prepared in Example 3. is there.

【0004】
この知見に基づき、本発明は
1)ジルコニウムの混入量が100ppm未満であり、粒度分布から求めたメジアン径が0.40〜1.0μmの範囲にあり、かつ粒度分布から求めた90%粒径が3.0μm以下の範囲にあることを特徴とするITOスパッタリングターゲット用酸化錫粉末。
2)ジルコニウムの混入量が100ppm未満であり、粒度分布から求めたメジアン径が0.40〜0.60μmの範囲にあり、かつ粒度分布から求めた90%粒径が1.0μm以下の範囲にあることを特徴とするITOスパッタリングターゲット用酸化錫粉末。
3)固形分65%以上の酸化錫粉末のスラリーを湿式ビーズミルにて粉砕することを特徴とする上記1)又は2)に記載のITOスパッタリングターゲット用酸化錫粉末の製造方法。
4)ジルコニウムの混入量が100ppm未満であり、粒度分布から求めたメジアン径が0.40〜1.0μmの範囲にあり、かつ粒度分布から求めた90%粒径が3.0μm以下の範囲にある酸化錫と酸化インジウム粉末を焼結したことを特徴とするITO膜形成用焼結体スパッタリングターゲット。
5)ジルコニウムの混入量が100ppm未満であり、粒度分布から求めたメジアン径が0.40〜0.60μmの範囲にあり、かつ粒度分布から求めた90%粒径が1.0μm以下の範囲にある酸化錫と酸化インジウム粉末を焼結したことを特徴とするITO膜形成用焼結体スパッタリングターゲット。
6)7.12g/cm以上の密度を備えていることを特徴とする上記4)又は5)に記載のITO膜形成用スパッタリングターゲット。
7)固形分65%以上の酸化錫粉末のスラリーを湿式ビーズミルにて粉砕した酸化錫粉末を用いて焼結することを特徴とする上記4)〜6)のそれぞれに記載のITO膜形成用スパッタリングターゲットの製造方法。
を提供する。
[0004]
Based on this finding, the present invention provides 1) a zirconium content of less than 100 ppm, a median diameter determined from the particle size distribution in the range of 0.40 to 1.0 μm, and a 90% particle size determined from the particle size distribution. Is in the range of 3.0 μm or less.
2) The zirconium content is less than 100 ppm, the median diameter determined from the particle size distribution is in the range of 0.40 to 0.60 μm, and the 90% particle size determined from the particle size distribution is in the range of 1.0 μm or less. A tin oxide powder for an ITO sputtering target, characterized in that:
3) The method for producing a tin oxide powder for an ITO sputtering target according to the above 1) or 2), wherein a slurry of tin oxide powder having a solid content of 65% or more is pulverized by a wet bead mill.
4) The zirconium content is less than 100 ppm, the median diameter determined from the particle size distribution is in the range of 0.40 to 1.0 μm, and the 90% particle size determined from the particle size distribution is in the range of 3.0 μm or less. A sintered sputtering target for forming an ITO film, wherein a tin oxide and an indium oxide powder are sintered.
5) The zirconium content is less than 100 ppm, the median diameter determined from the particle size distribution is in the range of 0.40 to 0.60 μm, and the 90% particle size determined from the particle size distribution is in the range of 1.0 μm or less. A sintered sputtering target for forming an ITO film, wherein a tin oxide and an indium oxide powder are sintered.
6) The sputtering target for forming an ITO film according to 4) or 5) above, wherein the sputtering target has a density of 7.12 g / cm 3 or more.
7) Sputtering for forming an ITO film as described in each of 4) to 6) above, wherein a slurry of tin oxide powder having a solid content of 65% or more is sintered using tin oxide powder pulverized by a wet bead mill. Target manufacturing method.
I will provide a.

Claims (7)

粒度分布から求めたメジアン径が0.40〜1.0μmの範囲にあり、かつ粒度分布から求めた90%粒径が3.0μm以下の範囲にあることを特徴とするITOスパッタリングターゲット用酸化錫粉末。A tin oxide for an ITO sputtering target, wherein the median diameter determined from the particle size distribution is in the range of 0.40 to 1.0 μm, and the 90% particle size determined from the particle size distribution is in the range of 3.0 μm or less. Powder. 粒度分布から求めたメジアン径が0.40〜0.60μmの範囲にあり、かつ粒度分布から求めた90%粒径が1.0μm以下の範囲にあることを特徴とするITOスパッタリングターゲット用酸化錫粉末。A tin oxide for an ITO sputtering target, wherein the median diameter determined from the particle size distribution is in the range of 0.40 to 0.60 μm, and the 90% particle size determined from the particle size distribution is in the range of 1.0 μm or less. Powder. 固形分65%以上の酸化錫粉末のスラリーを湿式ビーズミルにて粉砕することを特徴とする上記1)又は2)に記載のITOスパッタリングターゲット用酸化錫粉末の製造方法。The method for producing a tin oxide powder for an ITO sputtering target according to the above 1) or 2), wherein a slurry of a tin oxide powder having a solid content of 65% or more is pulverized by a wet bead mill. 粒度分布から求めたメジアン径が0.40〜1.0μmの範囲にあり、かつ粒度分布から求めた90%粒径が3.0μm以下の範囲にある酸化錫と酸化インジウム粉末を焼結したことを特徴とするITO膜形成用焼結体スパッタリングターゲット。Sintering tin oxide and indium oxide powder having a median diameter determined from the particle size distribution in a range of 0.40 to 1.0 μm and a 90% particle size determined from the particle size distribution in a range of 3.0 μm or less. A sintered body sputtering target for forming an ITO film. 粒度分布から求めたメジアン径が0.40〜0.60μmの範囲にあり、かつ粒度分布から求めた90%粒径が1.0μm以下の範囲にある酸化錫と酸化インジウム粉末を焼結したことを特徴とするITO膜形成用焼結体スパッタリングターゲット。Sintering tin oxide and indium oxide powder having a median diameter determined from the particle size distribution in the range of 0.40 to 0.60 μm and a 90% particle size determined from the particle size distribution in the range of 1.0 μm or less A sintered body sputtering target for forming an ITO film. 7.12g/cm以上の密度を備えていることを特徴とする上記4又は5に記載のITO膜形成用スパッタリングターゲット。6. The sputtering target for forming an ITO film according to 4 or 5, wherein the sputtering target has a density of 7.12 g / cm 3 or more. 固形分65%以上の酸化錫粉末のスラリーを湿式ビーズミルにて粉砕した酸化錫粉末を用いて焼結することを特徴とする上記4)〜6)のそれぞれに記載のITO膜形成用スパッタリングターゲットの製造方法。The sputtering target for forming an ITO film according to any one of 4) to 6) above, wherein a slurry of tin oxide powder having a solid content of 65% or more is sintered using tin oxide powder pulverized by a wet bead mill. Production method.
JP2002571957A 2001-03-12 2002-02-15 Tin oxide powder for ITO sputtering target, method for producing the same, and method for producing sintered sputtering target for forming ITO film Expired - Lifetime JP4190888B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001068554 2001-03-12
JP2001068554 2001-03-12
PCT/JP2002/001305 WO2002072912A1 (en) 2001-03-12 2002-02-15 Tin oxide powder for ito sputtering target, production method of the powder, sintered body sputtering target for ito film fomation and production method of the target

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008240752A Division JP5456291B2 (en) 2001-03-12 2008-09-19 Method for producing sintered sputtering target for forming ITO film

Publications (2)

Publication Number Publication Date
JPWO2002072912A1 true JPWO2002072912A1 (en) 2004-07-02
JP4190888B2 JP4190888B2 (en) 2008-12-03

Family

ID=18926727

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002571957A Expired - Lifetime JP4190888B2 (en) 2001-03-12 2002-02-15 Tin oxide powder for ITO sputtering target, method for producing the same, and method for producing sintered sputtering target for forming ITO film
JP2008240752A Expired - Lifetime JP5456291B2 (en) 2001-03-12 2008-09-19 Method for producing sintered sputtering target for forming ITO film

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008240752A Expired - Lifetime JP5456291B2 (en) 2001-03-12 2008-09-19 Method for producing sintered sputtering target for forming ITO film

Country Status (5)

Country Link
JP (2) JP4190888B2 (en)
KR (2) KR100581138B1 (en)
CN (1) CN100537828C (en)
TW (1) TW555875B (en)
WO (1) WO2002072912A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100727242B1 (en) 2003-08-20 2007-06-11 닛코킨조쿠 가부시키가이샤 Ito sputtering target
KR101302680B1 (en) * 2006-12-19 2013-09-03 삼성코닝정밀소재 주식회사 Indium tin oxide target and manufacturing method of producing the same
CN102089257B (en) * 2008-07-15 2016-03-30 东曹株式会社 The manufacture method of the manufacture method of composite oxide sintered body, composite oxide sintered body, sputtering target and film
JP5149262B2 (en) * 2009-11-05 2013-02-20 出光興産株式会社 Indium oxide-zinc oxide sintered target and method for producing the same
JP4884561B1 (en) * 2011-04-19 2012-02-29 Jx日鉱日石金属株式会社 Indium target and manufacturing method thereof
JP5890671B2 (en) * 2011-12-06 2016-03-22 Jx金属株式会社 Manufacturing method of ITO sputtering target
US9885108B2 (en) 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
JP6291593B2 (en) 2014-11-07 2018-03-14 Jx金属株式会社 ITO sputtering target, manufacturing method thereof, and manufacturing method of ITO transparent conductive film
EP3054472A1 (en) * 2015-02-03 2016-08-10 TRUMPF Huettinger Sp. Z o. o. Arc treatment device and method therefor
JP5887625B1 (en) * 2015-03-27 2016-03-16 Jx金属株式会社 Cylindrical sputtering target, cylindrical sintered body, cylindrical molded body, and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033620A (en) * 1995-04-18 2000-03-07 Tosoh Corporation Process of preparing high-density sintered ITO compact and sputtering target
JP3870446B2 (en) * 1996-07-16 2007-01-17 東ソー株式会社 ITO sintered body manufacturing method and sputtering target
JPH10147861A (en) * 1996-11-15 1998-06-02 Sumitomo Metal Mining Co Ltd Production of indium oxide-tin oxide sintered body
JP4081840B2 (en) * 1997-02-28 2008-04-30 東ソー株式会社 Manufacturing method of sputtering target
JPH11228218A (en) * 1998-02-04 1999-08-24 Mitsui Mining & Smelting Co Ltd Production of ito sintered compact
JP3676961B2 (en) * 1999-04-02 2005-07-27 株式会社日鉱マテリアルズ Tin oxide-indium oxide powder for forming ITO film and sputtering target for forming ITO film
JP2001072470A (en) * 1999-08-31 2001-03-21 Sumitomo Metal Mining Co Ltd Production of ito sintered compact
JP2001072468A (en) * 1999-08-31 2001-03-21 Sumitomo Metal Mining Co Ltd Production of ito sintered compact

Also Published As

Publication number Publication date
JP2009029706A (en) 2009-02-12
TW555875B (en) 2003-10-01
CN1633516A (en) 2005-06-29
KR20030087185A (en) 2003-11-13
JP4190888B2 (en) 2008-12-03
KR20060033935A (en) 2006-04-20
WO2002072912A1 (en) 2002-09-19
KR100663617B1 (en) 2007-01-05
KR100581138B1 (en) 2006-05-16
CN100537828C (en) 2009-09-09
JP5456291B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5456291B2 (en) Method for producing sintered sputtering target for forming ITO film
JP4324470B2 (en) Sputtering target, transparent conductive film and method for producing them
US20090242393A1 (en) Nonmagnetic Material Particle Dispersed Ferromagnetic Material Sputtering Target
US20110284373A1 (en) Inorganic-Particle-Dispersed Sputtering Target
US20140001038A1 (en) Ferromagnetic Sputtering Target with Less Particle Generation
JP5987105B2 (en) ITO sputtering target and manufacturing method thereof
JP4813182B2 (en) ITO sputtering target
JPH10147862A (en) Indium oxide-tin oxide sintered body
JP2006206349A (en) Ito granulated powder, ito sintered compact and its manufacturing method
JPH10147861A (en) Production of indium oxide-tin oxide sintered body
JP2005126766A (en) Indium-oxide-based target and manufacturing method therefor
JP2012184158A (en) Low valence titanium oxide powder and zinc oxide-based sintered body
JP3782355B2 (en) ITO sputtering target
JP2013256425A (en) Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target
JP3715504B2 (en) High-density ITO sintered sputtering target and method for producing the same
JP4234483B2 (en) ITO sputtering target, manufacturing method thereof, and ITO transparent conductive film
JPH03218924A (en) Oxide powder and production thereof
JP2001262326A (en) Indium oxide-metallic thin powder mixture, ito sputtering target using the same powdery mixture as raw material and method for producing the same target
JP3733607B2 (en) Method for producing chromium sputtering target
TWI575094B (en) In-ce-o based sputtering target and method for producing the same
JP2000345329A (en) Tin oxide-indium oxide powder for forming ito film and sputtering target for forming ito film
KR102188415B1 (en) Sputtering target
JP2003137546A (en) Method for manufacturing tin oxide powder
JP2007230853A (en) Ito powder, its production method and method for producing ito sputtering target
JP5890671B2 (en) Manufacturing method of ITO sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4190888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term