JPH03215318A - Oxide powder and its production - Google Patents

Oxide powder and its production

Info

Publication number
JPH03215318A
JPH03215318A JP2038184A JP3818490A JPH03215318A JP H03215318 A JPH03215318 A JP H03215318A JP 2038184 A JP2038184 A JP 2038184A JP 3818490 A JP3818490 A JP 3818490A JP H03215318 A JPH03215318 A JP H03215318A
Authority
JP
Japan
Prior art keywords
powder
indium oxide
surface area
density
ito
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2038184A
Other languages
Japanese (ja)
Inventor
Nobuhiro Ogawa
小川 展弘
Ryoji Yoshimura
吉村 了治
Takashi Mori
隆 毛利
Tetsushi Iwamoto
哲志 岩元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2038184A priority Critical patent/JPH03215318A/en
Publication of JPH03215318A publication Critical patent/JPH03215318A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To make it possible to produce a sintered material having high density by specifying primary granular diameter, BET surface area and specific surface area ratio of indium oxide and indium oxide-tin oxide powder as raw material of the sintered material. CONSTITUTION:Powder of indium oxide and/or indium oxide-tin oxide having high dispersibility thoroughly satisfying the conditions of <=1mu primary granular diameter, >=15m<2>/g BET surface area and >=2m<2>/g specific surface area calcu lated from a granular size distribution is used as raw material of the objective sintered material. By said method, a sintered material inducing a large sintering shrinkage, namely having density of >=75% of theoretical density is obtained. Such a high density ITO-sintered material is used as a target to obtain a trans parent electroconductive film having extremely high quality. The above- mentioned powder is obtained by producing ITO powder having <=1mu primary granular diameter and mechanically crushing using a vibrating crusher having a crushing vessel diameter of <=10 times of vibrating amplitude.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化インジウム粉末及び酸化インジウム・酸化
錫(以下!To ”)粉末及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to indium oxide powder, indium oxide/tin oxide (hereinafter referred to as !To'') powder, and a method for producing the same.

[従来の技術コ 近年、太陽電池や液晶ディスプレーの透明電極やタッチ
パネルなどの用いる透明導電性膜としてITO薄膜の需
要が急増している。このようなITO薄膜を形成する方
法にはITO微粒子を基材に塗布する方法、ITO前駆
体を基材に塗布した後熱分解する方法、又はIT合金タ
ーゲットあるいはJT’)焼結体ターゲットのスパッタ
リングにより基材面にITO膜を形成させる方法等が知
られているが、現在では特にITO焼結体をスパッタリ
ング法が最も一般的である。
[Conventional Technology] In recent years, demand for ITO thin films has rapidly increased as transparent conductive films used in solar cells, transparent electrodes of liquid crystal displays, touch panels, and the like. Methods for forming such an ITO thin film include applying ITO fine particles to a base material, applying an ITO precursor to a base material and then thermally decomposing it, or sputtering an IT alloy target or JT') sintered target. Although methods of forming an ITO film on the surface of a base material are known, currently the most common method is sputtering an ITO sintered body.

本発明による酸化インジウム及びITO粉末は、このよ
うなスパッタリング法によって透明導電膜を作成する際
に用いられるスバタリングターゲット(ITO焼結体)
の原料として、極めて優れた性能を有するものである。
The indium oxide and ITO powder according to the present invention can be used as a sputtering target (ITO sintered body) used when creating a transparent conductive film by such sputtering method.
It has extremely excellent performance as a raw material.

従来、酸化インジウム、酸化錫粉末又はITO粉末は、
各々の金属水酸化物、酸化物水和物、有機金属塩又は無
機金属塩の粉末、あるいはそれぞれのゾル又はゲルを加
熱脱水あるいは熱分解する方法や、インジウム塩とスズ
塩の混合水溶液に沈殿剤を添加して沈殿を生成(特開昭
62−7627 、特開昭80−188418 ) 、
又は加水分解により生成(特開昭58−38925) 
Lた生成物を加熱分解する方法が知られている。また本
発明者等が先に提案したインジウムと錫の混合有機酸水
溶液から得られる混合有機酸塩を熱分解する方法(特開
昭83−195101)も、高純度なITO粉末を提供
する方法である。
Conventionally, indium oxide, tin oxide powder or ITO powder is
A method of heating dehydration or thermal decomposition of each metal hydroxide, oxide hydrate, organic metal salt, or inorganic metal salt powder, or each sol or gel, or a method of heating and decomposing the powder of each metal hydroxide, oxide hydrate, organic metal salt, or inorganic metal salt, or adding a precipitant to a mixed aqueous solution of indium salt and tin salt. to form a precipitate (JP-A-62-7627, JP-A-80-188418),
Or produced by hydrolysis (Japanese Patent Application Laid-Open No. 58-38925)
Methods are known for thermally decomposing L-products. Furthermore, the method of thermally decomposing a mixed organic acid salt obtained from a mixed organic acid aqueous solution of indium and tin (Japanese Unexamined Patent Publication No. 83-195101), which was previously proposed by the present inventors, is also a method for providing high-purity ITO powder. be.

通常ITO焼結体は、上記の方法で得た酸化インジウム
と酸化錫の混合粉末CITO粉末)を加圧成型後焼結し
て製造されているが、ITO粉末は難焼結性のため高密
度な焼結体を得ることは非常に困難であった。従来の粉
末を用いたITO焼結体の多くは焼結密度が理論密度の
65%程度(〜4.6g/cm3)の低密度の焼結体で
しかながく、又電気抵抗も高い。
Normally, ITO sintered bodies are manufactured by press-molding CITO powder, a mixed powder of indium oxide and tin oxide obtained by the above method, and then sintering it, but ITO powder has a high density because it is difficult to sinter. It was very difficult to obtain a sintered body. Most of the conventional ITO sintered bodies using powder are low-density sintered bodies with a sintered density of about 65% of the theoretical density (~4.6 g/cm<3>), and also have high electrical resistance.

尚、JTO焼結体の焼結密度は理論密度100%で約7
.1g/ Cm3である。
The sintered density of the JTO sintered body is approximately 7 at 100% theoretical density.
.. 1g/Cm3.

このような低密度なITO焼結体は割れやすく、又導電
性及び熱伝導性が低いためにこれをターゲットとして用
いてスパッタリング成膜を行う際、投入可能な電力が著
しく小さくなるために成膜速度が遅く、放電状態も不安
定であるという欠点を有していた。さらに低密度なIT
O焼結体ではスパッタリング時に焼結体表面に還元物質
(黒色物質)が生成し、このものが基材表面に生成する
透明導電膜に混在し膜の質低下をもたらすので焼結体表
面に還元性物質が生成する毎に運転を停止してこれを除
去しなければならなかった。そしてこのことがスパッタ
リングの連続運転において著しい障害となっていた。
Such a low-density ITO sintered body is easy to break, and has low electrical and thermal conductivity, so when sputtering film formation is performed using it as a target, the amount of power that can be input is significantly reduced, making it difficult to form a film. The drawbacks were that the speed was slow and the discharge state was unstable. Even lower density IT
In O sintered bodies, reducing substances (black substances) are generated on the surface of the sintered body during sputtering, and this substance mixes with the transparent conductive film formed on the surface of the base material and causes a decrease in the quality of the film. Every time a chemical substance was produced, the operation had to be stopped and removed. This has been a significant obstacle in continuous sputtering operation.

そこで、このような問題を解決するため、高密度なIT
O焼結体の製造を可能とする原料ITO粉末の製造方法
あるいは処理方法がいくつか提案されている。例えば酸
化インジウム又は酸化錫粉末の内、少なくとも酸化イン
ジウム粉末を仮焼し平均粒径が3〜6μmの酸化インジ
ウム又は酸化錫としこれを用いる方法がある(特開昭8
2−21751)。
Therefore, in order to solve such problems, high-density IT
Several methods have been proposed for producing or processing raw material ITO powder that makes it possible to produce an O sintered body. For example, among indium oxide or tin oxide powder, there is a method in which at least indium oxide powder is calcined to produce indium oxide or tin oxide with an average particle size of 3 to 6 μm (Japanese Patent Application Laid-Open No.
2-21751).

しかしこのような比較的大粒径の原料によって得られる
ITO焼結体の密度は、同公開公報記載の実施例から判
るとうり、たかだか5g/ cm1で、十分に高密度と
は言えない。また沈殿剤を使用した共沈JTO粉末を焼
結体原料に用いる方法が提案されている(特開昭62−
12009)。しかしこの方法でも得られる焼結体の焼
結密度は理論密度の70%(5g/ cm’ )程度で
、十分に高密度とは言えない。
However, the density of the ITO sintered body obtained from such a raw material having a relatively large particle size is at most 5 g/cm1, which cannot be called a sufficiently high density, as can be seen from the examples described in the publication. In addition, a method has been proposed in which coprecipitated JTO powder using a precipitant is used as a raw material for a sintered body (Japanese Patent Application Laid-Open No. 1983-1999-
12009). However, the sintered density of the sintered body obtained by this method is about 70% (5 g/cm') of the theoretical density, which cannot be said to be sufficiently high density.

[発明が解決しようとする課題コ 以上説明したように、これまで工業的な方法によって高
密度な焼結体が製造可能な酸化インジウム粉末あるいは
JTO粉末は得られていないのが現状である。本発明の
目的は、理論密度の75%以上すなわち、5−3g1 
cm’以上もの、さらに好ましくは理論密度の85%以
上すなわち、6glcII13以上もの高密度ITO焼
結体が製造可能な酸化インジウム粉末あるいはITO粉
末及びそれらの製造方法を提供することにある。
[Problems to be Solved by the Invention] As explained above, the current situation is that no indium oxide powder or JTO powder capable of producing a high-density sintered body has been obtained by an industrial method. The object of the present invention is to achieve a density of 75% or more of the theoretical density, that is, 5-3g1
The object of the present invention is to provide an indium oxide powder or an ITO powder capable of producing a high-density ITO sintered body having a density of cm' or more, more preferably 85% or more of the theoretical density, that is, 6glcII13 or more, and a method for manufacturing the same.

[問題点を解決する手段コ 本発明者等は、高密度なITO焼結体を製造する際の原
料fTO粉末に関し鋭意検討を重ねた結果、一次粒径が
lμm以下の微細で、BET表面積が15In” /g
以上、粒度分布から求めた比表面積が2+a2/g以上
の分散性の高いITO粉末では、理論密度の75%以上
の焼結密度、即ち、5.3g/ cm3以上の焼結密度
、さらに多くは理論密度の85%以上すなわち、8g/
 cm3以上もの高密度な焼結体が得られること、また
そのような粉末は、一次粒径が1μm以下のITO粉末
を粉砕容器径が振動振幅にの10倍未満の条件を満足す
る振動型粉砕器を用いて粉砕処理することによって得ら
れることを見出だし、本発明を完成するに至ったもので
ある。
[Means for Solving the Problems] As a result of extensive research into the raw material fTO powder for manufacturing high-density ITO sintered bodies, the inventors have found that the primary particle size is fine with a diameter of 1 μm or less, and the BET surface area is small. 15In”/g
As mentioned above, highly dispersible ITO powder with a specific surface area of 2+a2/g or more determined from the particle size distribution has a sintered density of 75% or more of the theoretical density, that is, a sintered density of 5.3 g/cm3 or more, and even more. 85% or more of the theoretical density, i.e. 8g/
A high-density sintered body of cm3 or more can be obtained, and such powder can be produced by vibrating ITO powder with a primary particle size of 1 μm or less, which satisfies the condition that the diameter of the crushing container is less than 10 times the vibration amplitude. They have discovered that it can be obtained by pulverizing using a vessel, and have completed the present invention.

本発明の粉末においてITO粉末の場合、粉末中の酸化
インジウムと酸化錫の比率は、重量比で酸化インジウム
/酸化錫−98:2〜80:20 ,特に92:8〜8
5:15の範囲が好ましい。酸化錫の含有量が2%より
も小又は、20%よりも大では、これを用いて焼結体と
した場合、高い導電性を持つものが得られない。 本発
明の酸化インジウム粉末、あるいはITO粉末の一次粒
径は少なくとも1μm以下でなくではならず、特に0.
5μ■から0.03μ■の範囲のものが好ましい。一次
粒径が0.5μ1以上のものは分散性が高くても焼結性
があまり上がらず、一方一次粒径がO.OSμ層以下で
は凝集を抑制することが極めて困難となり、焼結性の良
い粉末とはなりにくい。
In the case of ITO powder in the powder of the present invention, the ratio of indium oxide to tin oxide in the powder is indium oxide/tin oxide -98:2 to 80:20 by weight, particularly 92:8 to 8.
A range of 5:15 is preferred. If the content of tin oxide is less than 2% or more than 20%, a sintered body using the tin oxide will not have high conductivity. The primary particle size of the indium oxide powder or ITO powder of the present invention must be at least 1 μm or less, especially 0.0 μm or less.
Preferably, the thickness is in the range of 5 μι to 0.03 μι. If the primary particle size is 0.5μ1 or more, the sinterability does not improve much even if the dispersibility is high; Below the OSμ layer, it is extremely difficult to suppress agglomeration and it is difficult to obtain a powder with good sinterability.

従来の技術による粉末でも上記一次粒径を満足するもの
は得られるが、それらは凝集しており、焼結性の良い粉
末ではない。本発明の酸化インジウム粉末及びITO粉
末はこのような一次粒径を有し、なおかつ高分散、すな
わち凝集していないことが特徴である。粉末の分散性を
評価する一般的な手段としては、BET表面積、粒度分
布があるが、本発明の粉末はBET表面積から求めた比
表面積が15 m2/g以上であり、粒度分布から求め
られる比表面積では2IIl2/g以上、さらに好まし
くは3IIl2/g以上である。BET表面積が15 
m2/g未満の粉末は凝集した粉末であり焼結性が悪い
。一方BET表面積が余り大きい粉末は多孔質、あるい
は表面状態の荒い粉末であり、逆に焼結性が悪くなるた
めBET表面積は50 s2/g以下が好ましい。
Although powders satisfying the above primary particle size can be obtained using conventional techniques, they are agglomerated and do not have good sinterability. The indium oxide powder and ITO powder of the present invention have such a primary particle size and are characterized by being highly dispersed, that is, not agglomerated. Common means for evaluating the dispersibility of powders include BET surface area and particle size distribution, but the powder of the present invention has a specific surface area of 15 m2/g or more calculated from BET surface area, and a ratio calculated from particle size distribution. The surface area is 2IIl2/g or more, more preferably 3IIl2/g or more. BET surface area is 15
Powder of less than m2/g is agglomerated powder and has poor sinterability. On the other hand, a powder with too large a BET surface area is porous or has a rough surface, which results in poor sinterability, so the BET surface area is preferably 50 s2/g or less.

これまで上述の条件を全て満足するITO粉末は提案さ
れた例はなく、又これらの条件の内いずれの条件を満た
さなくても粉末の焼結性は・不十分である。
Until now, no ITO powder has been proposed that satisfies all of the above conditions, and even if any of these conditions is not met, the sinterability of the powder is insufficient.

上記したような条件を全て満足するITO粉末を製造す
る方法として、本発明では一次粒径が1μ百以下のIT
O粉末を製造した後に機械的に解砕する方法を提案して
いる。セラミックス粉末の焼結性を向上させる方法とし
て、機械的に粉砕することは一般に公知であるが、特に
酸化インジウム及びITO粉末の場合、どのような粉砕
方法でも焼結性が向上するわけではない。
As a method for producing ITO powder that satisfies all of the above conditions, the present invention uses IT powder with a primary particle size of 1 μm or less.
A method is proposed in which O powder is mechanically crushed after it is produced. Mechanical pulverization is generally known as a method for improving the sinterability of ceramic powders, but especially in the case of indium oxide and ITO powders, no pulverization method improves the sinterability.

酸化物粉末の機械的な粉砕方法としては、一般的にボー
ルミル、ダイノミル、サンドミル、ホモジナイザー、振
動ミル等があるが、本発明の効果が得られる粉末の粉砕
方法としては粉砕効率の高い粉砕機、例えば振動ミル等
を用いて粉砕することが必要である。粉砕効率の低いも
の、例えば回転ボールミル等では、本発明の条件を満足
するものは得られない。
Mechanical methods for pulverizing oxide powder generally include ball mills, dyno mills, sand mills, homogenizers, vibration mills, etc., but methods for pulverizing powder that can achieve the effects of the present invention include pulverizers with high pulverization efficiency, For example, it is necessary to pulverize using a vibrating mill or the like. A product that satisfies the conditions of the present invention cannot be obtained using a product with low pulverization efficiency, such as a rotary ball mill.

本発明における振動粉砕器を用いた粉砕において最も重
要なポイントは、振動粉砕器の振動振幅に対して粉砕容
器径がlθ倍未満のものを用いることである。粉砕容器
の径が振動粉砕器の振幅のlO倍よりも大きくなると、
粉砕容器内部における粉砕媒体の運動が不規則となるだ
けでなく、粉砕媒体の多くが粉砕中に粉砕容器の下部で
小さな振動あるいはしゅう動ずるだけで、粉砕効率は著
しく低下する。このような現象は特に粉砕媒体が小さい
場合、例えば微粉砕に用いる直径21程度の粉砕媒体を
使用した場合に顕著である。さらにこの様な状態で粉末
を粉砕すると、分散より粉末のアモルファス化、すなわ
ち結晶の破壊が選択的に進行するため粉砕処理は粉末の
焼結性をかえって低下させる。
The most important point in pulverization using a vibratory pulverizer in the present invention is to use a pulverizer whose diameter is less than lθ times the vibration amplitude of the vibratory pulverizer. When the diameter of the crushing vessel is larger than lO times the amplitude of the vibratory crusher,
Not only is the movement of the grinding media inside the grinding container irregular, but most of the grinding media even undergoes small vibrations or sliding movements at the bottom of the grinding container during grinding, which significantly reduces the grinding efficiency. This phenomenon is particularly noticeable when the grinding medium is small, for example, when a grinding medium with a diameter of about 21 mm is used for fine grinding. Furthermore, if the powder is pulverized in such a state, the amorphization of the powder, that is, the destruction of the crystals will proceed more selectively than the dispersion, so that the pulverization process will actually reduce the sinterability of the powder.

一方振動粉砕器の振幅に対して粉砕容器の径が10倍未
満のもので粉砕処理を施した場合、粉砕容器内部におけ
る粉砕媒体の運動は極めて均一であり、粉末の凝集の解
砕が効率的に解消される。またこの様な粉砕処理では、
粉砕による粉末の結晶破壊も抑制される。加えて、この
ような効率的な粉砕では粉砕媒体の磨耗が著しく抑制さ
れるため、処理粉末を高純度に保つことも可能である。
On the other hand, when the crushing process is performed using a crushing container whose diameter is less than 10 times the vibration amplitude of the vibration crusher, the movement of the crushing media inside the crushing container is extremely uniform, and the agglomerates of the powder can be broken up efficiently. It will be resolved in In addition, in this kind of crushing process,
Crystal destruction of the powder due to crushing is also suppressed. In addition, such efficient grinding significantly reduces wear of the grinding media, making it possible to maintain a high purity of the treated powder.

また粉砕に用いる粉砕媒体は重要であり、粉砕効率の点
から高比重のものを使用することが好ましい。又このよ
うな粉砕処理の際の粉末への不純物混入は、これを用い
たJTO焼結体の導電性の低下をもたらすため、本発明
で用いる粉砕媒体としては高比重でなおかつ耐磨耗性に
優れたものを用いることが好ましい。高比重で耐磨耗性
に優れた分散媒体として、例えば、ジルコニアビーズや
硬質炭素コーティングビーズ、ダイヤモンドコーティン
グビーズ等が優れている。特に硬質炭素コーティングビ
ーズ、ダイヤモンドコーティングビーズでは仮に磨耗し
ても、ITO粉末の焼結温度において不純物炭素は炭酸
ガスとして除去されるため何等問題を生じない。一方ア
ルミナビーズやガラスビーズでは磨耗による不純物が問
題となり、樹脂ビーズでは軽すぎるために粉砕効果が得
られない。本発明で用いる粉砕媒体の大きさは直径5■
以下、特に微粉砕が可能な直径2mm以下のものを用い
ることが望ましい。また粉砕効率及び粉末の分散性を向
上させるため、粉砕対象となる粉末に液体を添加し、ス
ラリー状態にすることが好ましい。ここで添加する液体
としては水、各種有機溶媒を用いることが考えられるが
、特に分散媒体の耐磨耗性の面で水を用いることが好ま
しい。さらに当該スラリーに各種の分散剤を添加するこ
とも効果的である。上記スラリーとするのに添加する水
の量は、粉砕効率の点からスラリーの粘度が5oepS
から5000 cpsの範囲となるように添加すること
が好ましい。このスラリ〜の粘度がそれ以上でもそれ以
下でも粉砕効率は低下する。このようなスラリーを調製
するために添加する水の量は、被処理粉末の粒度等の性
質及び粉砕に用いる粉砕媒体によって異なるが、一般に
粉末l水−80:20〜10:90の範囲である。また
粉砕時間は1時間から100時間程度で、特に5時間が
ら3o時間の範囲が好ましい。
Further, the grinding medium used for grinding is important, and from the viewpoint of grinding efficiency, it is preferable to use one with a high specific gravity. In addition, since the contamination of impurities into the powder during the pulverization process causes a decrease in the conductivity of the JTO sintered body using the impurity, the pulverizing medium used in the present invention must have a high specific gravity and wear resistance. It is preferable to use an excellent one. Examples of excellent dispersion media with high specific gravity and excellent wear resistance include zirconia beads, hard carbon coated beads, and diamond coated beads. In particular, even if hard carbon-coated beads and diamond-coated beads are worn out, no problem occurs because impurity carbon is removed as carbon dioxide gas at the sintering temperature of ITO powder. On the other hand, with alumina beads and glass beads, impurities due to abrasion are a problem, and resin beads are too light to achieve a crushing effect. The size of the grinding media used in the present invention is 5 cm in diameter.
Hereinafter, it is particularly desirable to use a material with a diameter of 2 mm or less that can be pulverized. Furthermore, in order to improve the pulverization efficiency and the dispersibility of the powder, it is preferable to add a liquid to the powder to be pulverized to form a slurry. As the liquid to be added here, it is possible to use water or various organic solvents, but it is particularly preferable to use water in view of the abrasion resistance of the dispersion medium. Furthermore, it is also effective to add various dispersants to the slurry. The amount of water added to make the above slurry is determined from the viewpoint of pulverization efficiency when the viscosity of the slurry is 5 oepS.
It is preferable to add it in a range from 5000 cps to 5000 cps. If the viscosity of this slurry is higher or lower than that, the pulverization efficiency will decrease. The amount of water added to prepare such a slurry varies depending on the properties of the powder to be treated, such as particle size, and the grinding medium used for grinding, but is generally in the range of 80:20 to 10:90 of powder/water. . Further, the crushing time is about 1 hour to 100 hours, particularly preferably in the range of 5 hours to 3 hours.

上述の粉砕処理をすることによりITO粉末は高度に分
散したものとなり、本発明で限定した条件を満足するI
TO粉末が得られる。即ち、一次粒径が1μ1以下で、
BET表面積が15 m2/g以上、粒度分布から求め
た比表面積が2IQ2/g以上のものとなる。
By performing the above-mentioned pulverization process, the ITO powder becomes highly dispersed, and the ITO powder satisfies the conditions specified in the present invention.
TO powder is obtained. That is, the primary particle size is 1μ1 or less,
The BET surface area is 15 m2/g or more, and the specific surface area determined from the particle size distribution is 2IQ2/g or more.

[発明の効果コ このようなITO粉末を焼結体原料として用いると、焼
結時に焼結体内部の気孔が低減し、焼結収縮の大きい焼
結体、即ち理論密度の75%以上(焼結密度54g/ 
cm3以上)、多くは理論密度の85%以上(焼結密度
6g/ cImm以上)の焼結体形成が可能となる。従
来のITO粉末から得た焼結体はJTO粉末の二次粒子
内で凝集している部分としていない部分で焼結の進行が
不均一であるため、焼結粒子は不定形であり、焼結粒子
間{こ多くの空孔を有しているが、本発明のITO粉末
による焼結体は、均一に焼結が進行するため、緻密に充
填した焼結粒子が形成され高密度となると考えられる。
[Effects of the invention] When such ITO powder is used as a raw material for a sintered body, the pores inside the sintered body are reduced during sintering, and the sintered body has a large sintering shrinkage, that is, 75% or more of the theoretical density (sintered body). Condensation density 54g/
cm3 or more), and in many cases it is possible to form a sintered body with a theoretical density of 85% or more (sintered density of 6 g/cImm or more). In sintered bodies obtained from conventional ITO powder, sintering progresses unevenly between the agglomerated and non-agglomerated parts of the JTO powder secondary particles, so the sintered particles are irregularly shaped, and the sintering process is uneven. Although there are many pores between the particles, it is thought that the sintered body made of the ITO powder of the present invention is sintered uniformly, resulting in the formation of densely packed sintered particles, resulting in high density. It will be done.

このような高密度JTO焼結体をターゲットとして用い
ると、得られる透明導電膜も極めて高品質となるため、
スパッタリングターゲット用焼結体原料粉末として極め
て優れた性能が期待できる。
When such a high-density JTO sintered body is used as a target, the resulting transparent conductive film will also be of extremely high quality.
Extremely excellent performance can be expected as a sintered raw material powder for sputtering targets.

また特に共沈ITOでは焼結体中の錫の分布が均一であ
るため、広い範囲で均一な透明導電膜が得られる。
Furthermore, especially in the case of coprecipitated ITO, since the distribution of tin in the sintered body is uniform, a uniform transparent conductive film can be obtained over a wide range.

[実施例] 以下、実施例に基づき本発明を説明するが、本発明はこ
れに限定されるものではない。
[Examples] The present invention will be described below based on Examples, but the present invention is not limited thereto.

実施例1 インジウムl錫比が90710の割合でこれらを含む酢
酸水溶液を濃縮し、インジウム・錫混合酢酸塩を得、こ
の酢酸塩を熱分解することによりITO粉末を調製した
。この粉末に水を添加して50%スラリーとし、直径2
n+a+の硬質炭素コーティング金属ビーズを粉砕媒体
とした振動ミル(振動振幅10I1粉砕容器径50mm
)で20時間粉砕した。処理後の粉末は電子顕微鏡観察
による粉末の一次粒径は約0.3μ■、BET表面積は
l7IIl2lg1粒度分布から求めた比表面積は3.
5n2/gであり、本発明の特許請求の範囲一項の条件
を全て満足した。
Example 1 An acetic acid aqueous solution containing these at an indium/tin ratio of 90,710 was concentrated to obtain an indium/tin mixed acetate, and this acetate was thermally decomposed to prepare ITO powder. Water was added to this powder to make a 50% slurry, and the diameter was 2
Vibration mill using n+a+ hard carbon coated metal beads as a grinding medium (vibration amplitude 10I1 grinding container diameter 50mm)
) for 20 hours. The powder after the treatment has a primary particle size of about 0.3μ■ as observed by electron microscopy, and a BET surface area of 17IIl2lg1 and a specific surface area of 3.
5n2/g, satisfying all the conditions set forth in claim 1 of the present invention.

当該粉末を金型で加圧成型し、3./g/ cm3の成
型体とした後、常圧大気中で1400”cで焼結させた
Pressure mold the powder with a metal mold; 3. /g/cm3, and then sintered at 1400"c in normal pressure atmosphere.

焼結における昇温速度は100″C/時間、1400’
Cでは10時間保持、降温速度は1oo ”CI時間と
した。
The temperature increase rate during sintering is 100"C/hour, 1400'
In C, the temperature was maintained for 10 hours and the temperature decrease rate was 10'' CI time.

このような焼結条件で、焼結密度5./g/ em’ 
、比抵抗3 XIO−’Ω・cfllの焼結体が得られ
た。
Under these sintering conditions, the sintered density was 5. /g/ em'
, a sintered body with a specific resistance of 3 XIO-'Ω·cfll was obtained.

図1に焼結体の表面の粒子構造を示す走査型電子顕微鏡
写真(2000倍)を示した。
FIG. 1 shows a scanning electron micrograph (2000x magnification) showing the grain structure of the surface of the sintered body.

実施例2 実施例1で得られた焼結体を用い、DCマグネトロンス
パッタリングによる成膜を行った(条件は、投入電力=
4ν/cIIl2、圧カ: 0.6 Pa(5xlOづ
torr)、基板温度:350℃)結果、表1に示した
ように極めて低抵抗な透明導電膜が得られた。
Example 2 Using the sintered body obtained in Example 1, film formation was performed by DC magnetron sputtering (conditions were input power =
(4v/cIIl2, pressure: 0.6 Pa (5xlO torr), substrate temperature: 350°C) As a result, as shown in Table 1, a transparent conductive film with extremely low resistance was obtained.

実施例3 酢酸インジウムと酢酸錫をそれぞれ熱分解し、酸化イン
ジウムと酸化錫をそれぞれ調製した後、酸化インジウム
l酸化錫比が90/10となるように混合した。その後
は実施例1と同様の条件で焼結体を調製し焼結密度5.
4g/ cm3、比抵抗9X10−’Ω・CI1の焼結
体が得られた。
Example 3 Indium acetate and tin acetate were each thermally decomposed to prepare indium oxide and tin oxide, respectively, and then mixed so that the ratio of indium oxide to tin oxide was 90/10. Thereafter, a sintered body was prepared under the same conditions as in Example 1, and the sintered body had a sintered density of 5.
A sintered body with a specific resistance of 4 g/cm3 and a specific resistance of 9×10-'Ω·CI1 was obtained.

当該混合粉末の電子顕微鏡観察による一次粒径は0.3
μm s BET表面積はty ts2/gs粒度分布
から求めた比表面積は3.51Il2/gであった。
The primary particle size of the mixed powder observed under an electron microscope is 0.3.
The μm s BET surface area was ty ts2/gs The specific surface area determined from the particle size distribution was 3.51 Il2/g.

実施例4 実施例3で得られた焼結体を用い、DCマグネトロンス
パッタリングによる成膜を行った(条件は実施例2と同
様)結果、表1に示したように実施例2と同様に極めて
低抵抗な透明導電膜が得られた。
Example 4 Using the sintered body obtained in Example 3, film formation was performed by DC magnetron sputtering (under the same conditions as in Example 2). A transparent conductive film with low resistance was obtained.

比較例1 市販の酸化インジウム粉末と酸化錫粉末(試薬)を)9
0:10となるように混合後、実施例1と同様の条件で
成型、焼結したところ焼結密度4./g/ cm’比抵
抗2X 10−’Ω・crnの焼結体が得られた。
Comparative Example 1 Commercially available indium oxide powder and tin oxide powder (reagent))9
After mixing at a ratio of 0:10, molding and sintering were performed under the same conditions as in Example 1, resulting in a sintered density of 4. /g/cm' A sintered body with a specific resistance of 2X 10-'Ω·crn was obtained.

当該混合粉末の電子顕微鏡観察による一次粒径は0.0
5μmで本発明の条件を満足しているが、粒度分布から
求めた比表面積は2m2/gSBET表面積は8m2/
gであった。
The primary particle size of the mixed powder observed under an electron microscope is 0.0.
5 μm satisfies the conditions of the present invention, but the specific surface area determined from the particle size distribution is 2 m2/gSBET surface area is 8 m2/
It was g.

比較例2 比較例1で得られた焼結体を用い、実施例2と同様の条
件でDCマグネトロンスパッタリングによって成膜を行
った。生成被膜の比抵抗を表1に示す。表1に示した様
に実施例のような低抵抗な透明導電膜は得られなかった
Comparative Example 2 Using the sintered body obtained in Comparative Example 1, film formation was performed by DC magnetron sputtering under the same conditions as in Example 2. Table 1 shows the specific resistance of the produced film. As shown in Table 1, a low-resistance transparent conductive film like the example was not obtained.

表1  比抵抗 ( X 10−’Ω・cl) 実施例22.1 実施例42.2 比較例33.5Table 1 Specific resistance (X 10-'Ω・cl) Example 22.1 Example 42.2 Comparative example 33.5

【図面の簡単な説明】[Brief explanation of drawings]

図1は実施例1で得た焼結体の表面の粒子構造を示す図
面代用の走査型電子顕微鏡写真(2000倍)である。
FIG. 1 is a scanning electron micrograph (2000x magnification) used as a drawing showing the grain structure of the surface of the sintered body obtained in Example 1.

Claims (1)

【特許請求の範囲】 1)一次粒径が1μm以下、BET表面積が15m^2
/g以上、粒度分布から求めた比表面積が2m^2/g
以上の条件を全て満足することを特徴とする酸化インジ
ウム及び/又は酸化インジウム・酸化錫粉末。 2)酸化インジウム・酸化錫粉末が共沈法によって調製
されたものである特許請求の範囲第一項記載の粉末。 3)一次粒径が1μm以下の酸化インジウム・酸化錫粉
末又は酸化インジウム粉末を粉砕容器径が振動振幅の1
0倍未満の振動型粉砕機を用いて用いて機械的に粉砕す
ることを特徴とする酸化インジウム又は酸化インジウム
・酸化錫粉末の粉砕方法。
[Claims] 1) Primary particle size is 1 μm or less, BET surface area is 15 m^2
/g or more, specific surface area determined from particle size distribution is 2m^2/g
An indium oxide and/or indium oxide/tin oxide powder that satisfies all of the above conditions. 2) The powder according to claim 1, wherein the indium oxide/tin oxide powder is prepared by a coprecipitation method. 3) Grind indium oxide/tin oxide powder or indium oxide powder with a primary particle size of 1 μm or less in a container with a diameter of 1 μm or less of vibration amplitude.
A method for pulverizing indium oxide or indium oxide/tin oxide powder, the method comprising mechanically pulverizing indium oxide or indium oxide/tin oxide powder using a vibration type pulverizer of less than 0 times.
JP2038184A 1989-02-28 1990-02-21 Oxide powder and its production Withdrawn JPH03215318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2038184A JPH03215318A (en) 1989-02-28 1990-02-21 Oxide powder and its production

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP4545789 1989-02-28
JP1-45457 1989-02-28
JP1-45458 1989-02-28
JP2038184A JPH03215318A (en) 1989-02-28 1990-02-21 Oxide powder and its production

Publications (1)

Publication Number Publication Date
JPH03215318A true JPH03215318A (en) 1991-09-20

Family

ID=26377382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2038184A Withdrawn JPH03215318A (en) 1989-02-28 1990-02-21 Oxide powder and its production

Country Status (1)

Country Link
JP (1) JPH03215318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051166A (en) * 1995-12-06 2000-04-18 Sumitomo Chemical Corporation, Limited Indium oxide-tin oxide powders and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051166A (en) * 1995-12-06 2000-04-18 Sumitomo Chemical Corporation, Limited Indium oxide-tin oxide powders and method for producing the same

Similar Documents

Publication Publication Date Title
KR950010806B1 (en) Oxide powder sintered body process for preparation thereof and target composed thereof
KR100205556B1 (en) High density ito sintered body ito target and method of manufacture
JP5431424B2 (en) Sputtering target, transparent conductive film and method for producing them
TWI401211B (en) Indium oxide powder and method for producing same
KR100433482B1 (en) Sputtering target using high-density sintered ITO compact and manufacturing method
JP4758697B2 (en) Manufacturing method of IZO sputtering target
JP5233007B2 (en) Paint for transparent conductive material and method for producing transparent conductive film
TWI422699B (en) IZO sputtering target manufacturing method
TW201006946A (en) Sputtering target
JPH03218924A (en) Oxide powder and production thereof
JPH02297813A (en) Sintered body of oxide, manufacture thereof, and target using same
JPH02297812A (en) Sintered body of oxide, manufacture thereof, and target using same
JPH03215318A (en) Oxide powder and its production
JP6885038B2 (en) Oxide sintered body, its manufacturing method and sputtering target
JP2012184158A (en) Low valence titanium oxide powder and zinc oxide-based sintered body
JPH10147862A (en) Indium oxide-tin oxide sintered body
JP3878867B2 (en) Indium hydroxide and oxide
JPH11100660A (en) Ito pellet for vapor deposition and its production
JP2013256425A (en) Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target
JP4755453B2 (en) Manufacturing method of IZO sputtering target
KR100455280B1 (en) Method of preparing indium tin oxide(ITO)
JP3870446B2 (en) ITO sintered body manufacturing method and sputtering target
JP4200564B2 (en) ITO vapor deposition material and manufacturing method thereof
KR20100079321A (en) Metaloxide target for amorphous oxide layer comprising alumium and method for preparing the same
JP2016179910A (en) Production method of mixed powder of indium oxide powder and tin oxide powder, pulverization system of mixed powder of indium oxide powder and tin oxide powder, and production method of sputtering target

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19970515