JP6397869B2 - Cylindrical sputtering target and manufacturing method thereof - Google Patents

Cylindrical sputtering target and manufacturing method thereof Download PDF

Info

Publication number
JP6397869B2
JP6397869B2 JP2016214323A JP2016214323A JP6397869B2 JP 6397869 B2 JP6397869 B2 JP 6397869B2 JP 2016214323 A JP2016214323 A JP 2016214323A JP 2016214323 A JP2016214323 A JP 2016214323A JP 6397869 B2 JP6397869 B2 JP 6397869B2
Authority
JP
Japan
Prior art keywords
cylindrical
sintered body
oxygen
cylinder
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016214323A
Other languages
Japanese (ja)
Other versions
JP2017197425A (en
Inventor
諭 館野
諭 館野
幸三 長田
幸三 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to TW107109686A priority Critical patent/TWI699444B/en
Priority to TW109119026A priority patent/TWI704243B/en
Priority to TW108132861A priority patent/TWI698542B/en
Priority to TW106106359A priority patent/TWI635194B/en
Priority to KR1020170025870A priority patent/KR20170113075A/en
Priority to CN201710112294.0A priority patent/CN107236934A/en
Priority to CN201910536944.3A priority patent/CN110257782B/en
Priority to JP2017104785A priority patent/JP6967372B2/en
Publication of JP2017197425A publication Critical patent/JP2017197425A/en
Priority to KR1020180054070A priority patent/KR102524402B1/en
Application granted granted Critical
Publication of JP6397869B2 publication Critical patent/JP6397869B2/en
Priority to KR1020190070769A priority patent/KR102001363B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas

Description

本発明は、円筒型スパッタリングターゲット及びその製造方法に関する。特に、円筒型スパッタリングターゲットを構成する円筒型焼結体の製造方法に関する。   The present invention relates to a cylindrical sputtering target and a method for manufacturing the same. In particular, the present invention relates to a method for manufacturing a cylindrical sintered body constituting a cylindrical sputtering target.

近年、フラットパネルディスプレイ(FPD:Flat Panel Display)や太陽電池の製造技術が急速に発展し、大型化が進んでいる。またこれらの市場の拡大に伴い、大型ガラス基板の需要が増えている。   In recent years, manufacturing technology for flat panel displays (FPDs) and solar cells has been rapidly developed, and the size is increasing. With the expansion of these markets, demand for large glass substrates is increasing.

特に、大型のガラス基板に金属薄膜や酸化金属薄膜を形成するスパッタリング装置では、従来の平板型スパッタリングターゲットに替えて円筒型(ロータリー型又は回転型ともいう)スパッタリングターゲットが使用されてきている。円筒型スパッタリングターゲットは平板型スパッタリングターゲットに比べて、ターゲットの使用効率が高い、エロージョンの発生が少ない、堆積物の剥離によるパーティクルの発生が少ないという利点がある。   In particular, in a sputtering apparatus for forming a metal thin film or a metal oxide thin film on a large glass substrate, a cylindrical (also referred to as a rotary type or rotary type) sputtering target has been used instead of a conventional flat plate type sputtering target. Cylindrical sputtering targets have advantages in that the use efficiency of the target is high, erosion is less generated, and particles are not generated due to peeling of deposits, compared to flat plate sputtering targets.

上記のように大型のガラス基板に薄膜を形成するスパッタリング装置に使用する円筒型スパッタリングターゲットは、3000mm以上の長さが必要である。このような長さの円筒型スパッタリングターゲットを一体形成で製造し、研削加工することは技術的に現実的ではない。したがって、通常は数10mmから数100mmの複数の円筒型焼結体が連結された分割スパッタリングターゲットが構成される。   As described above, the cylindrical sputtering target used in the sputtering apparatus for forming a thin film on a large glass substrate needs to have a length of 3000 mm or more. It is technically impractical to manufacture and grind a cylindrical sputtering target having such a length by integral formation. Therefore, a divided sputtering target in which a plurality of cylindrical sintered bodies having a size of several tens to several hundreds of millimeters are connected is generally configured.

ここで、上記の円筒型の焼結体に限らず、一般的な焼結体の連結には機械的な強度向上及びその焼結体を使用した薄膜の膜質向上が要求される。複数の焼結体を基材に接合させる場合、焼結体同士の間は一定の間隔をあけて配置する。焼結体を隙間なく配置して基材に接合すると、スパッタ中の熱により焼結体が伸縮し、焼結体同士がぶつかるなどして割れや欠けが生じてしまうおそれがあるためである。一方、焼結体間の隙間は、本来スパッタされるべき焼結体が存在しない。したがって、基材の構成材料がスパッタされるなどの問題を発生させ、所望の組成の薄膜が成膜できないという問題が存在する。さらには、複数の焼結体が連結した分割スパッタリングターゲットでは、隣接する焼結体間の相対密度の差(つまり焼結体密度の「固体間ばらつき」)はその分割スパッタリングターゲットを使用した薄膜の質に影響を及ぼす。このように、連結する焼結体が短いほどスパッタリングターゲットは多分割されることになり、スパッタリング特性に影響を及ぼすリスクが高まる。   Here, not only the cylindrical sintered body described above but also a general sintered body connection is required to improve mechanical strength and improve the quality of a thin film using the sintered body. When joining a several sintered compact to a base material, it arrange | positions with a fixed space | interval between sintered compacts. This is because if the sintered bodies are arranged without gaps and bonded to the base material, the sintered bodies may expand and contract due to heat during sputtering, and the sintered bodies may collide with each other, thereby causing cracks and chipping. On the other hand, there is no sintered body to be sputtered in the gap between the sintered bodies. Therefore, there is a problem that the constituent material of the base material is sputtered and a thin film having a desired composition cannot be formed. Furthermore, in a split sputtering target in which a plurality of sintered bodies are connected, the difference in relative density between adjacent sintered bodies (that is, the “sinter density of the sintered bodies”) Affects quality. Thus, the shorter the sintered bodies to be connected, the more the sputtering target is divided, and the risk of affecting the sputtering characteristics increases.

少しでも前記問題を回避するため、スパッタリングターゲットの少分割化に対応できるより長い円筒型焼結体の製造技術が要求される。長尺円筒型焼結体の製造における問題点は、焼結体内の相対密度の差(つまり焼結体密度の「固体内ばらつき」)および機械的な強度である。例えば、特許文献1には、ITOターゲットの焼結では雰囲気の酸素濃度が品質安定化(密度および強度)に大きく影響することが開示されている。通常、ITOに使用される焼結炉は炉壁側から酸素が供給されている。   In order to avoid the above problem as much as possible, a longer cylindrical sintered body manufacturing technique that can cope with the smaller division of the sputtering target is required. Problems in the production of a long cylindrical sintered body are a difference in relative density within the sintered body (that is, “in-solid variation” of the sintered body density) and mechanical strength. For example, Patent Document 1 discloses that in the sintering of an ITO target, the oxygen concentration in the atmosphere greatly affects the quality stabilization (density and strength). Usually, the sintering furnace used for ITO is supplied with oxygen from the furnace wall side.

特開平8−144056JP-A-8-144056

しかしながら長尺円筒型焼結体の場合、焼結時の円筒内のガス対流が十分でないことから円筒内に酸素不足が生じる。本発明の課題は、複数の焼結体を基材に接合して得られる分割スパッタリングターゲットにおいて少分割化に対応するため、円筒軸方向の長さが470mm以上の円筒型焼結体、円筒型スパッタリングターゲット及びそれらの製造方法を提供することを目的とする。または、本発明は、固体内および個体間における均質性の高い円筒型焼結体、円筒型スパッタリングターゲット、及びそれらの製造方法を提供することを目的とする。   However, in the case of a long cylindrical sintered body, oxygen shortage occurs in the cylinder because gas convection in the cylinder during sintering is not sufficient. The subject of the present invention is a cylindrical sintered body having a length in the cylindrical axis direction of 470 mm or more, cylindrical type in order to cope with the small division in a divided sputtering target obtained by joining a plurality of sintered bodies to a substrate. It aims at providing a sputtering target and those manufacturing methods. Alternatively, an object of the present invention is to provide a cylindrical sintered body, a cylindrical sputtering target, and a method for producing the same, which are highly homogenous in a solid and between solids.

本発明の一実施形態による円筒型スパッタリングターゲットの製造方法は、円筒型焼結体を有する円筒型スパッタリングターゲットの製造方法において、酸素を供給するための配管と接続する酸素供給口を設けたステージ上に円筒軸方向の長さが600mm以上の円筒型成形体を配置し、円筒型成形体の円筒内側に設けられた円筒内周より小さい酸素供給口から円筒軸方向に酸素を供給しながら焼結する。   A method of manufacturing a cylindrical sputtering target according to an embodiment of the present invention is a method of manufacturing a cylindrical sputtering target having a cylindrical sintered body, on a stage provided with an oxygen supply port connected to a pipe for supplying oxygen. A cylindrical molded body having a length in the cylindrical axis direction of 600 mm or more is arranged in the cylinder, and sintered while supplying oxygen in the cylindrical axial direction from an oxygen supply port smaller than the inner circumference of the cylinder provided inside the cylindrical molded body. To do.

また、別の態様において、ステージはチャンバーの中に配置され、酸素を供給するための配管はチャンバーの外から酸素供給口に接続されてもよい。   In another aspect, the stage may be disposed in the chamber, and a pipe for supplying oxygen may be connected to the oxygen supply port from the outside of the chamber.

また、別の態様において、酸素は円筒型成形体の円筒内側中空部に向けて供給しながら焼結してもよい。   Moreover, in another aspect, you may sinter while supplying oxygen toward the cylindrical inside hollow part of a cylindrical molded object.

また、別の態様において、酸素は円筒型成形体の円筒軸方向の下方から上方に向けて供給しながら焼結してもよい。   Moreover, in another aspect, you may sinter while supplying oxygen toward the upper direction from the downward direction of the cylindrical axis direction of a cylindrical molded object.

本発明の一実施形態による円筒型スパッタリングターゲットに用いる円筒型焼結体は、円筒軸方向の長さが470mm以上の円筒型焼結体であって、円筒軸方向における相対密度差が0.1%以内である。   The cylindrical sintered body used for the cylindrical sputtering target according to an embodiment of the present invention is a cylindrical sintered body having a length in the cylindrical axis direction of 470 mm or more, and a relative density difference in the cylindrical axis direction is 0.1. %.

本発明の一実施形態による円筒型スパッタリングターゲットに用いる円筒型焼結体は、円筒軸方向の長さが470mm以上の円筒型焼結体であって、円筒内側面に観察される孔における面積の円相当径が平均1μm以下である。   The cylindrical sintered body used for the cylindrical sputtering target according to an embodiment of the present invention is a cylindrical sintered body having a length in the cylindrical axis direction of 470 mm or more, and has an area in the hole observed on the inner surface of the cylinder. The equivalent circle diameter is 1 μm or less on average.

本発明の一実施形態による円筒型スパッタリングターゲットに用いる円筒型焼結体は、円筒軸方向の長さが470mm以上の円筒型焼結体であって、円筒内側面に観察される孔の数が平均4.25×10-5個/μm2以下である。 The cylindrical sintered body used for the cylindrical sputtering target according to an embodiment of the present invention is a cylindrical sintered body having a length in the cylindrical axis direction of 470 mm or more, and the number of holes observed on the inner surface of the cylinder is The average is 4.25 × 10 −5 pieces / μm 2 or less.

また、別の態様において、円筒内側面に観察される孔は、円筒軸方向の中央部において少なくとも独立した5か所の視野1.176mm2当たりに観察される孔であってもよい。 In another aspect, the hole observed on the inner surface of the cylinder may be a hole observed per field of 1.176 mm 2 in at least five independent areas in the central portion in the cylinder axis direction.

本発明によれば、円筒軸方向の長さが470mm以上の円筒型焼結体、円筒型スパッタリングターゲット及びそれらの製造方法を提供することができる。または、固体内および個体間における均質性の高い円筒型焼結体、円筒型スパッタリングターゲット、及びそれらの製造方法を提供することができる。   According to the present invention, it is possible to provide a cylindrical sintered body having a length in the cylindrical axis direction of 470 mm or more, a cylindrical sputtering target, and a manufacturing method thereof. Alternatively, it is possible to provide a cylindrical sintered body, a cylindrical sputtering target, and a manufacturing method thereof having high homogeneity within a solid and between individuals.

本発明の一実施形態に係る円筒型スパッタリングターゲットを構成する円筒型焼結体の一例を示す斜視図である。It is a perspective view which shows an example of the cylindrical sintered compact which comprises the cylindrical sputtering target which concerns on one Embodiment of this invention. 本発明の一実施形態に係る組み立て後の円筒型スパッタリングターゲットの構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the cylindrical sputtering target after the assembly which concerns on one Embodiment of this invention. 本発明の一実施形態に係る円筒型焼結体の製造方法を示すプロセスフローである。It is a process flow which shows the manufacturing method of the cylindrical sintered compact which concerns on one Embodiment of this invention. 本発明の一実施形態に係る円筒型焼結体の製造方法において、円筒型成形体を焼結する工程を示す斜視図である。It is a perspective view which shows the process of sintering a cylindrical molded object in the manufacturing method of the cylindrical sintered compact which concerns on one Embodiment of this invention. 本発明の一実施形態に係る円筒型焼結体の製造方法において、円筒型成形体を焼結する工程を示す断面図である。It is sectional drawing which shows the process of sintering a cylindrical molded object in the manufacturing method of the cylindrical sintered compact which concerns on one Embodiment of this invention. 本発明の一実施形態に係る円筒型焼結体の製造方法において、円筒型成形体を焼結する工程を示す平面図である。It is a top view which shows the process of sintering a cylindrical molded object in the manufacturing method of the cylindrical sintered compact which concerns on one Embodiment of this invention. 本発明の一実施形態の変形例1に係る円筒型焼結体の製造方法において、円筒型成形体を焼結する工程を示す平面図である。It is a top view which shows the process of sintering a cylindrical molded object in the manufacturing method of the cylindrical sintered compact which concerns on the modification 1 of one Embodiment of this invention. 本発明の一実施形態の変形例2に係る円筒型焼結体の製造方法において、円筒型成形体を焼結する工程を示す断面図である。It is sectional drawing which shows the process of sintering a cylindrical molded object in the manufacturing method of the cylindrical sintered compact which concerns on the modification 2 of one Embodiment of this invention. 本発明の実施例および比較例に係る円筒型焼結体において、円筒軸方向における測定サンプルの採取位置を示す図である。It is a figure which shows the collection position of the measurement sample in a cylindrical-axis direction in the cylindrical sintered compact which concerns on the Example and comparative example of this invention. 本発明の実施例および比較例に係る円筒型焼結体の密度、固体内密度差、相対密度、及び固体内の最大相対密度差を示す表である。It is a table | surface which shows the density of the cylindrical sintered compact which concerns on the Example of this invention, and a density difference in a solid, a relative density, and the largest relative density difference in a solid. 本発明の実施例および比較例に係る円筒型焼結体の長さと最小酸素供給量の関係を示す図である。It is a figure which shows the relationship between the length of the cylindrical sintered compact concerning the Example and comparative example of this invention, and the minimum oxygen supply amount. 本発明の実施例および比較例に係る円筒型焼結体のバルク抵抗、及び固体内バルク抵抗値差を示す表である。It is a table | surface which shows the bulk resistance of the cylindrical sintered compact concerning the Example of this invention, and a bulk resistance value difference in a solid. 本発明の実施例および比較例に係る円筒型焼結体において、円筒内側面、および外側面における測定サンプルの採取位置を示す図である。It is a figure which shows the collection position of the measurement sample in a cylindrical inner surface and an outer surface in the cylindrical sintered compact which concerns on the Example and comparative example of this invention. 本発明の実施例および比較例に係る円筒型焼結体の円筒内側面における電子顕微鏡(SEM、1000倍)写真である。It is an electron microscope (SEM, 1000 times) photograph in the cylindrical inner surface of the cylindrical sintered compact which concerns on the Example and comparative example of this invention. 本発明の実施例および比較例に係る円筒型焼結体の円筒外側面における電子顕微鏡(SEM、1000倍)写真である。It is an electron microscope (SEM, 1000 times) photograph in the cylindrical outer surface of the cylindrical sintered compact which concerns on the Example and comparative example of this invention. 本発明の実施例および比較例に係る円筒型焼結体の円筒内側面における電子顕微鏡(SEM、5000倍または2000倍)写真である。It is an electron microscope (SEM, 5000 times or 2000 times) photograph in the cylindrical inner surface of the cylindrical sintered compact which concerns on the Example and comparative example of this invention. 本発明の実施例および比較例に係る円筒型焼結体の円筒外側面における電子顕微鏡(SEM、5000倍)写真である。It is an electron microscope (SEM, 5000 times) photograph in the cylindrical outer surface of the cylindrical sintered compact which concerns on the Example and comparative example of this invention. 本発明の実施例および比較例に係る円筒型焼結体の円筒内側面における孔における面積の円相当径、および数の平均を示す表である。Is a table showing the average actual施例and equivalent circle diameter of the area of holes in the cylindrical inner surface of the cylindrical sintered body according to the comparative example, and the number of the present invention.

以下、図面を参照して本発明に係る円筒型スパッタリングターゲット及びその製造方法について説明する。但し、本発明の円筒型スパッタリングターゲット及びその製造方法は多くの異なる態様で実施することが可能であり、以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、本実施の形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。   Hereinafter, a cylindrical sputtering target and a manufacturing method thereof according to the present invention will be described with reference to the drawings. However, the cylindrical sputtering target and the manufacturing method thereof according to the present invention can be implemented in many different modes, and are not construed as being limited to the description of the embodiments described below. Note that in the drawings referred to in this embodiment, the same portions or portions having similar functions are denoted by the same reference numerals, and repetitive description thereof is omitted.

〈実施形態〉
図1及び図2を用いて、本発明の実施形態に係る円筒型スパッタリングターゲット及び円筒型焼結体の構成及び構造の概要を説明する。
<Embodiment>
The outline of the configuration and structure of the cylindrical sputtering target and the cylindrical sintered body according to the embodiment of the present invention will be described with reference to FIGS. 1 and 2.

[円筒型スパッタリングターゲットの概要]
図1は、本発明の実施形態に係る円筒型スパッタリングターゲットを構成する円筒型焼結体の一例を示す斜視図である。図1に示すように、円筒型スパッタリングターゲット100は、中空構造の複数の円筒型焼結体110を有する。上記複数の円筒型焼結体110は一定のスペースを介して互いに隣接して配置される。ここで、図1においては、説明の便宜上、隣接する円筒型焼結体110のスペースを大きくして図示した。円筒型焼結体110の円筒内側中空部には、詳細を図2に示すように、円筒型焼結体110を保持するための円筒基材130が導入される。
[Outline of cylindrical sputtering target]
FIG. 1 is a perspective view showing an example of a cylindrical sintered body constituting a cylindrical sputtering target according to an embodiment of the present invention. As shown in FIG. 1, the cylindrical sputtering target 100 includes a plurality of cylindrical sintered bodies 110 having a hollow structure. The plurality of cylindrical sintered bodies 110 are disposed adjacent to each other through a certain space. Here, in FIG. 1, for convenience of explanation, the space between the adjacent cylindrical sintered bodies 110 is shown enlarged. As shown in detail in FIG. 2, a cylindrical base material 130 for holding the cylindrical sintered body 110 is introduced into the hollow portion inside the cylindrical sintered body 110.

また、円筒型焼結体110の厚さは6.0mm以上20.0mm以下とすることができる。また、円筒型焼結体110の円筒軸方向の長さは470mm以上1500mm以下とすることができる。また、円筒型焼結体110の外径は147mm以上175mm以下とすることができる。また、円筒型焼結体110の内径は135mm以下とすることができる。また、隣接する円筒型焼結体110間の円筒軸方向のスペースは0.1mm以上0.4mm以下とすることができる。   The thickness of the cylindrical sintered body 110 can be 6.0 mm or more and 20.0 mm or less. The length of the cylindrical sintered body 110 in the cylindrical axis direction can be set to 470 mm or more and 1500 mm or less. Moreover, the outer diameter of the cylindrical sintered body 110 can be set to 147 mm or more and 175 mm or less. The inner diameter of the cylindrical sintered body 110 can be set to 135 mm or less. Further, the space in the cylindrical axis direction between adjacent cylindrical sintered bodies 110 can be set to 0.1 mm or more and 0.4 mm or less.

円筒型焼結体110の材料は、例えば、インジウム、スズ及び酸素からなるITO焼結体(Indium Tin Oxide)、インジウム、亜鉛及び酸素からなるIZO焼結体(Indium Zinc Oxide)、インジウム、ガリウム、亜鉛、及び酸素からなるIGZO焼結体(Indium Gallium Zinc Oxide)、亜鉛、アルミニウム及び酸素からなるAZO焼結体(Aluminium Zinc Oxide)、酸化亜鉛(ZnO)、TiO2等の焼結体である。ただし、本発明にかかる円筒形スパッタリングターゲットの円筒型焼結体は酸素を含むセラミック焼結体であれば、上記組成に限定されない。 The material of the cylindrical sintered body 110 is, for example, an ITO sintered body (Indium Tin Oxide) made of indium, tin and oxygen, an IZO sintered body (Indium Zinc Oxide) made of indium, zinc and oxygen, indium, gallium, An IGZO sintered body made of zinc and oxygen (Indium Gallium Zinc Oxide), an AZO sintered body made of zinc, aluminum and oxygen (Aluminum Zinc Oxide), a sintered body made of zinc oxide (ZnO), TiO 2 or the like. However, the cylindrical sintered body of the cylindrical sputtering target according to the present invention is not limited to the above composition as long as it is a ceramic sintered body containing oxygen.

ここで、本実施形態における円筒型焼結体110の密度は、99.5%以上であるとよい。円筒型焼結体110の密度は、より好ましくは99.6%以上であるとよい。また、円筒型焼結体110の固体内の円筒軸方向における相対密度の差は、0.1%以下であるとよい。円筒型焼結体110の円筒軸方向における相対密度の差は、より好ましくは0.05%以下であるとよく、さらに好ましくは0.03%以下であるとよい。また、隣接する円筒型焼結体110aと110bとの間の相対密度の差、つまり円筒型焼結体の固体間の相対密度の差は、好ましくは0.1%以下であるとよい。   Here, the density of the cylindrical sintered body 110 in the present embodiment is preferably 99.5% or more. The density of the cylindrical sintered body 110 is more preferably 99.6% or more. The difference in relative density in the cylindrical axis direction in the solid of the cylindrical sintered body 110 is preferably 0.1% or less. The difference in relative density in the cylindrical axis direction of the cylindrical sintered body 110 is more preferably 0.05% or less, and further preferably 0.03% or less. Further, the relative density difference between the adjacent cylindrical sintered bodies 110a and 110b, that is, the relative density difference between the solid bodies of the cylindrical sintered bodies is preferably 0.1% or less.

尚、焼結体の密度は相対密度で示す。相対密度は、測定された密度及び理論密度によって、相対密度=(測定密度/理論密度)×100(%)で表される。相対密度差は、各測定された密度の差及び理論密度によって、相対密度差=(測定密度差/理論密度)×100(%)で表される。理論密度とは、焼結体の各構成元素において、酸素を除いた元素の酸化物の理論密度から算出される密度の値である。例えば、ITOターゲットであれば、各構成元素であるインジウム、スズ、酸素のうち、酸素を除いたインジウム、スズの酸化物として、酸化インジウム(In23)と酸化スズ(SnO2)を理論密度の算出に用いる。ここで、焼結体中のインジウムとスズの元素分析値(at%、又は質量%)から、酸化インジウム(In23)と酸化スズ(SnO2)の質量比に換算する。例えば、換算の結果、酸化インジウムが90質量%、酸化スズが10質量%のITOターゲットの場合、理論密度は、(In23の密度(g/cm3)×90+SnO2の密度(g/cm3)×10)/100(g/cm3)として算出する。In23の理論密度は7.18g/cm3、SnO2の理論密度は6.95g/cm3として計算し、理論密度は7.157(g/cm3)と算出される。また、各構成元素がZnであればZnO、GaであればGa23の酸化物として算出することができる。ZnOの理論密度は5.67g/cm3、Ga23の理論密度は5.95g/cm3として計算する。一方、測定密度とは、重量を体積で割った値である。焼結体の場合は、アルキメデス法により体積を求めて算出する。円筒型焼結体110の固体内の円筒軸方向における相対密度の差は、円筒型焼結体110の円筒軸方向において150mmおきに40〜50mm幅の円筒型測定サンプルを切り出し、それぞれのサンプルの相対密度を算出することで評価することができる。 In addition, the density of a sintered compact is shown by a relative density. The relative density is expressed by relative density = (measured density / theoretical density) × 100 (%) according to the measured density and the theoretical density. The relative density difference is represented by the relative density difference = (measured density difference / theoretical density) × 100 (%) by the difference in the measured density and the theoretical density. The theoretical density is a density value calculated from the theoretical density of an oxide of an element excluding oxygen in each constituent element of the sintered body. For example, in the case of an ITO target, indium oxide (In 2 O 3 ) and tin oxide (SnO 2 ) are theoretically considered as oxides of indium and tin excluding oxygen among indium, tin, and oxygen as constituent elements Used for density calculation. Here, indium and elemental analysis values of the tin in the sintered body (at%, or mass%) from converted to mass ratio of indium oxide (In 2 O 3) and tin oxide (SnO 2). For example, in the case of an ITO target with 90% by mass of indium oxide and 10% by mass of tin oxide as a result of conversion, the theoretical density is (density of In 2 O 3 (g / cm 3 ) × 90 + SnO 2 (g / cm 3 ) × 10) / 100 (g / cm 3 ) The theoretical density of In 2 O 3 is calculated as 7.18 g / cm 3 , the theoretical density of SnO 2 is calculated as 6.95 g / cm 3 , and the theoretical density is calculated as 7.157 (g / cm 3 ). Further, when each constituent element is Zn, it can be calculated as ZnO, and when it is Ga, it can be calculated as a Ga 2 O 3 oxide. The calculation is performed assuming that the theoretical density of ZnO is 5.67 g / cm 3 and the theoretical density of Ga 2 O 3 is 5.95 g / cm 3 . On the other hand, the measured density is a value obtained by dividing weight by volume. In the case of a sintered body, the volume is calculated by the Archimedes method. The difference in relative density in the cylindrical axis direction in the solid of the cylindrical sintered body 110 is determined by cutting out a cylindrical measurement sample having a width of 40 to 50 mm every 150 mm in the cylindrical axis direction of the cylindrical sintered body 110. It can be evaluated by calculating the relative density.

以上のように、円筒形焼結体の長さ、および相対密度を上記の範囲にすることで、円筒型焼結体の機械的強度の向上及びその円筒型焼結体を使用するときノジュールの発生やアーキングに伴うパーティクルの発生を抑制することができ、薄膜の不純物の低減や膜密度の向上の効果を得ることができる。また、円筒型焼結体の固体内及び固体間の相対密度の差をそれぞれ上記の範囲にすることで、複数の円筒型焼結体を有する分割スパッタリングターゲットにおいて電界の歪みを抑制することができる。その結果、スパッタリング時に安定した放電特性を得ることができ、膜質の面内均一性が非常に高い薄膜を1つの円筒型焼結体のサイズを超すような大型の基板に形成することができる。   As described above, by making the length and relative density of the cylindrical sintered body within the above range, the mechanical strength of the cylindrical sintered body is improved and nodules are improved when the cylindrical sintered body is used. Generation of particles due to generation and arcing can be suppressed, and the effect of reducing impurities in the thin film and improving the film density can be obtained. Further, by setting the difference in relative density within and between the solid bodies of the cylindrical sintered body within the above ranges, the electric field distortion can be suppressed in the split sputtering target having a plurality of cylindrical sintered bodies. . As a result, stable discharge characteristics can be obtained during sputtering, and a thin film with very high in-plane uniformity of film quality can be formed on a large substrate exceeding the size of one cylindrical sintered body.

円筒型焼結体110の固体内の差とは、円筒型焼結体110の円筒内側面および外側面の差も含まれる。円筒型焼結体110の円筒内側面および外側面の状態は電子顕微鏡(SEM)観察によって評価することができる。本実施形態における円筒型焼結体110の円筒軸方向中央部における円筒内側面および外側面に観察される孔に大きな差は見られない。本実施形態における円筒型焼結体110の円筒内側面および外側面に観察される孔の形は不規則な粒形であり、結晶粒界および結晶内の何れにも観察される。別言すると、本実施形態における円筒型焼結体110の円筒内側面および外側面には、不規則な気泡状の孔が、結晶粒界および結晶内の何れにも観察される。一方で、円筒軸方向の長さが470mm以上である比較例における円筒型焼結体の円筒内側面には、比較例における円筒外側面や、本実施形態における円筒型焼結体110の円筒内側面および外側面と比べて、より大きい不規則な粒形の孔が観察される。別言すると、円筒軸方向の長さが470mm以上である比較例における円筒型焼結体の円筒内側面には、不規則な結晶粒状の孔が観察される。このような比較例における円筒型焼結体の円筒内側面に観察される孔は、主に結晶粒界に観察される。比較例における円筒型焼結体の円筒外側面は、本実施形態における円筒型焼結体110の円筒内側面および外側面と大きな差が見られない。比較例における円筒型焼結体の円筒外側面に観察される孔の形は、円筒内側面の孔と比べて小さく不規則な粒形であり、結晶粒界および結晶内の何れにも観察される。 The difference in the solid of the cylindrical sintered body 110 includes the difference between the cylindrical inner surface and the outer surface of the cylindrical sintered body 110. The state of the cylindrical inner surface and the outer surface of the cylindrical sintered body 110 can be evaluated by observation with an electron microscope (SEM). There is no significant difference in the holes observed on the inner and outer surfaces of the cylindrical sintered body 110 in the cylindrical axial direction in the present embodiment. The shape of the holes observed in the cylindrical inner surface and the outer surface of the cylindrical sintered body 110 in this embodiment is an irregular grain shape, and is observed both in the crystal grain boundary and in the crystal. In other words, irregular bubble-like holes are observed in both the crystal grain boundary and the crystal on the inner surface and the outer surface of the cylindrical sintered body 110 in the present embodiment. On the other hand, the cylindrical inner surface of the cylindrical sintered body in the comparative example having a length in the cylindrical axis direction of 470 mm or more includes the cylindrical outer surface in the comparative example and the cylindrical inner surface of the cylindrical sintered body 110 in the present embodiment. Larger irregularly shaped pores are observed compared to the lateral and lateral surfaces. In other words, irregular crystal grain holes are observed on the inner surface of the cylindrical sintered body in the comparative example having a length in the cylindrical axis direction of 470 mm or more. The holes observed on the cylindrical inner surface of the cylindrical sintered body in such a comparative example are mainly observed at the grain boundaries. The cylindrical outer surface of the cylindrical sintered body in the comparative example is not significantly different from the inner and outer surfaces of the cylindrical sintered body 110 in the present embodiment. The shape of the holes observed on the cylindrical outer surface of the cylindrical sintered body in the comparative example is a small and irregular grain shape as compared with the holes on the inner surface of the cylinder, and is observed at both the grain boundary and the crystal. The

本実施形態および比較例における円筒型焼結体の円筒内側面および円筒外側面に観察される各々の孔の形は不規則である。このため、孔の大きさは、連続する1つの孔を平面視したときの面積を算出し、相当する面積を有する円の直径(以降、孔における面積の円相当径という)で評価してもよい。孔の数は、観察する面において連続する1つの孔を1として算出してもよい。本実施形態における円筒型焼結体110の円筒内側面に観察される孔における面積の円相当径の平均は1μm以下であるとよい。円筒型焼結体110の円筒内側面に観察される孔における面積の円相当径の平均は、より好ましくは0.5μm以下であるとよい。また、本実施形態における円筒型焼結体110の円筒内側面に観察される孔の数の平均は、4.25×10-5個/μm2以下であるとよい。円筒型焼結体110の円筒内側面に観察される孔の数の平均は、より好ましくは2.125×10-5個/μm2以下であるとよい。なお本実施形態における円筒型焼結体110の円筒外側面に観察される孔における面積の円相当径の平均は1μm以下であるとよい。円筒型焼結体110の円筒外側面に観察される孔における面積の円相当径の平均は、より好ましくは0.5μm以下であるとよい。また、本実施形態における円筒型焼結体110の円筒外側面に観察される孔の数の平均は、4.25×10-5個/μm2以下であるとよい。円筒型焼結体110の円筒外側面に観察される孔の数の平均は、より好ましくは2.125×10-5個/μm2以下であるとよい。 The shape of each hole observed in the cylindrical inner surface and the cylindrical outer surface of the cylindrical sintered body in this embodiment and the comparative example is irregular. For this reason, the size of the hole can be evaluated by calculating the area when one continuous hole is viewed in plan and evaluating the diameter of a circle having a corresponding area (hereinafter referred to as the equivalent circle diameter of the area of the hole). Good. The number of holes may be calculated assuming that one continuous hole on the surface to be observed is 1. The average of the equivalent circle diameters of the areas in the holes observed on the cylindrical inner surface of the cylindrical sintered body 110 in this embodiment is preferably 1 μm or less. The average of the equivalent circle diameters of the areas in the holes observed on the cylindrical inner surface of the cylindrical sintered body 110 is more preferably 0.5 μm or less. In addition, the average number of holes observed on the cylindrical inner surface of the cylindrical sintered body 110 in this embodiment is preferably 4.25 × 10 −5 holes / μm 2 or less. The average of the number of holes observed on the inner surface of the cylindrical sintered body 110 is more preferably 2.125 × 10 −5 / μm 2 or less. In addition, the average of the equivalent circle diameter of the area in the hole observed on the cylindrical outer surface of the cylindrical sintered body 110 in this embodiment is preferably 1 μm or less. The average of the equivalent circle diameters of the areas in the holes observed on the cylindrical outer surface of the cylindrical sintered body 110 is more preferably 0.5 μm or less. Moreover, the average of the number of holes observed on the cylindrical outer surface of the cylindrical sintered body 110 in this embodiment is preferably 4.25 × 10 −5 holes / μm 2 or less. The average number of holes observed on the cylindrical outer surface of the cylindrical sintered body 110 is more preferably 2.125 × 10 −5 holes / μm 2 or less.

尚、円筒型焼結体110の円筒内側面および外側面の状態の評価は、各サンプルの円筒軸方向の中央部において980μm×1200μmの視野を5つ観察し、孔の数および孔における面積の円相当径の平均値を評価する。孔における面積Sの円相当径Lは、まず連続する1つの孔の投影面積Sを算出し、相当する面積を有する円の直径Lを以下の式で算出することで得ることができる。
The cylindrical inner surface 110 and the outer surface of the cylindrical sintered body 110 are evaluated by observing five fields of view of 980 μm × 1200 μm at the center in the cylindrical axis direction of each sample, and determining the number of holes and the area of the holes. Evaluate the average equivalent circle diameter. The equivalent circle diameter L of the area S in the hole can be obtained by first calculating the projected area S of one continuous hole and calculating the diameter L of the circle having the corresponding area by the following formula.

本実施形態における円筒型焼結体110の円筒軸方向中央部における円筒内側面および外側面に観察される結晶粒子に大きな差は見られない。本実施形態における円筒型焼結体110の円筒内側面および外側面に観察される結晶粒子は、大きく成長している。一方で、円筒軸方向の長さが957mm以上である比較例における円筒型焼結体の円筒内側面には、外側面と比べて、結晶粒子がより小さく、成長初期段階の結晶粒子が観察される。このような比較例における円筒型焼結体の円筒内側面の結晶粒子は成長初期段階であることから、小さく、不均一であり、平滑性に欠ける。 There is no significant difference in crystal grains observed on the inner and outer surfaces of the cylindrical sintered body 110 in the cylindrical axial direction in the present embodiment. Crystal grains observed on the inner and outer cylindrical surfaces of the cylindrical sintered body 110 in the present embodiment are greatly grown. On the other hand, on the cylindrical inner surface of the cylindrical sintered body in the comparative example having a length in the cylindrical axis direction of 957 mm or more, the crystal particles are smaller than the outer surface, and crystal grains in the initial stage of growth are observed. The Since the crystal particles on the inner surface of the cylindrical sintered body in the comparative example are in the initial stage of growth, they are small, non-uniform, and lack smoothness.

詳細は製造方法で説明するが、円筒型成形体を円筒軸方向に酸素を供給しながら焼結することにより、上記の円筒型焼結体を得ることができる。   Although the details will be described in the manufacturing method, the above cylindrical sintered body can be obtained by sintering the cylindrical molded body while supplying oxygen in the direction of the cylindrical axis.

図2は、本発明の実施形態に係る組み立て後の円筒型スパッタリングターゲットの構成の一例を示す断面図である。図2に示すように、組み立て後の円筒型スパッタリングターゲット100は、図1に示した円筒型焼結体110の円筒内側中空部に円筒基材130が配置されている。円筒基材130と円筒型焼結体110とは、ろう材140によってろう付けされており、隣接する円筒型焼結体110はスペース120を介して配置されている。   FIG. 2 is a cross-sectional view showing an example of the configuration of the assembled cylindrical sputtering target according to the embodiment of the present invention. As shown in FIG. 2, in the assembled cylindrical sputtering target 100, a cylindrical base material 130 is disposed in the hollow portion inside the cylindrical sintered body 110 shown in FIG. The cylindrical base material 130 and the cylindrical sintered body 110 are brazed by the brazing material 140, and the adjacent cylindrical sintered bodies 110 are arranged via the space 120.

円筒基材130の材料は、ターゲットをスパッタリングする際に電子やイオンがターゲットに衝突することで発生する熱を効率的に放出できるように熱伝導率が高く、ターゲットにバイアス電圧を印加できる程度の導電性を有する金属材料を使用することができる。具体的に、銅(Cu)、チタン(Ti)これらを含む合金、及びステンレス(SUS)を使用することができる。   The material of the cylindrical base material 130 has a high thermal conductivity so that electrons and ions collide with the target when the target is sputtered can be efficiently released, and a bias voltage can be applied to the target. A conductive metal material can be used. Specifically, copper (Cu), titanium (Ti), an alloy containing these, and stainless steel (SUS) can be used.

ろう材140の材料は、円筒基材130と同様に熱伝導率が高く、導電性を有し、円筒基材130が円筒型焼結体110を保持するのに十分な密着力と強度を有する材料を使用することができる。ただし、ろう材140の熱伝導率は円筒基材130の熱伝導率よりも低い材料であってもよい。また、ろう材140の導電性は円筒基材130の導電性よりも低い材料であってもよい。ろう材140としては、例えばインジウム(In)、スズ(Sn)、及びこれらを含む合金を使用することができる。   The material of the brazing filler metal 140 has high thermal conductivity and conductivity as in the cylindrical base material 130, and the cylindrical base material 130 has sufficient adhesion and strength to hold the cylindrical sintered body 110. Material can be used. However, the heat conductivity of the brazing material 140 may be a material lower than the heat conductivity of the cylindrical base material 130. Further, the conductivity of the brazing material 140 may be a material lower than the conductivity of the cylindrical base material 130. As the brazing material 140, for example, indium (In), tin (Sn), and an alloy containing these can be used.

以上のように、本実施形態に係るスパッタリングターゲットによると、円筒形焼結体の長さ、および相対密度を上記の範囲にすることで、円筒型焼結体の機械的強度の向上及びその円筒型焼結体を使用した薄膜の不純物の低減や膜密度の向上の効果を得ることができる。また、円筒型焼結体の固体内及び固体間の相対密度の差をそれぞれ上記の範囲にすることで、複数の円筒型焼結体を有する分割スパッタリングターゲットにおいて電界の歪みを抑制することができる。その結果、スパッタリング時に安定した放電特性を得ることができ、膜質の面内均一性が非常に高い薄膜を1つの円筒型焼結体のサイズを超すような大型の基板に形成することができる。さらに、円筒型焼結体の円筒内側面および円筒外側面の状態をそれぞれ上記の範囲にすることで、円筒型焼結体を有する分割スパッタリングターゲットにおいてターゲットライフを通じて安定した品質を維持することができる。すなわちターゲットを継続使用している途中で特性変化が生じず、密度不良によるノジュールやパーティクルの発生を抑制することができる。   As described above, according to the sputtering target according to the present embodiment, the length and relative density of the cylindrical sintered body are within the above ranges, thereby improving the mechanical strength of the cylindrical sintered body and its cylinder. The effect of reducing impurities and improving the film density of the thin film using the mold sintered body can be obtained. Further, by setting the difference in relative density within and between the solid bodies of the cylindrical sintered body within the above ranges, the electric field distortion can be suppressed in the split sputtering target having a plurality of cylindrical sintered bodies. . As a result, stable discharge characteristics can be obtained during sputtering, and a thin film with very high in-plane uniformity of film quality can be formed on a large substrate exceeding the size of one cylindrical sintered body. Furthermore, by setting the state of the cylindrical inner surface and the outer surface of the cylindrical sintered body within the above ranges, stable quality can be maintained throughout the target life in the split sputtering target having the cylindrical sintered body. . That is, characteristic changes do not occur during continuous use of the target, and generation of nodules and particles due to poor density can be suppressed.

[円筒型焼結体の製造方法]
次に、本発明に係る円筒型スパッタリングターゲットの円筒型焼結体の製造方法について、図3を用いて詳細に説明する。図3は、本発明の実施形態に係る円筒型焼結体の製造方法を示すプロセスフローである。図3では、ITO焼結体の製造方法を例示するが、焼結体の材料はITOに限定されず、IGZOなどのその他の酸化金属焼結体にも使用することができる。
[Manufacturing method of cylindrical sintered body]
Next, the manufacturing method of the cylindrical sintered compact of the cylindrical sputtering target which concerns on this invention is demonstrated in detail using FIG. FIG. 3 is a process flow showing a method for manufacturing a cylindrical sintered body according to an embodiment of the present invention. In FIG. 3, the manufacturing method of an ITO sintered body is illustrated, but the material of the sintered body is not limited to ITO, and can be used for other metal oxide sintered bodies such as IGZO.

まず始めに、原料を準備する。混合に用いる原料は、例えば酸化物や合金などに含有される金属元素を使用する。原料は粉末状のものを使用することができ、目的とするスパッタリングターゲットの組成によって適宜選択することができる。例えばITOの場合は、酸化インジウムの粉末及び酸化スズの粉末を準備する(ステップS301及びS302)。これらの原料の純度は、通常2N(99質量%)以上、好ましくは3N(99.9質量%)以上、さらに好ましくは4N(99.99質量%)以上であるとよい。純度が2Nより低いと円筒型焼結体に不純物が多く含まれてしまうため、所望の物性を得られなくなる(例えば、透過率の減少、膜の抵抗値の増加、局所的に異物が含まれるとアーキングに伴うパーティクルの発生)という問題がある。   First, prepare the raw materials. As a raw material used for mixing, for example, a metal element contained in an oxide or an alloy is used. The raw material can be used in powder form and can be appropriately selected depending on the composition of the target sputtering target. For example, in the case of ITO, indium oxide powder and tin oxide powder are prepared (steps S301 and S302). The purity of these raw materials is usually 2N (99% by mass) or more, preferably 3N (99.9% by mass) or more, more preferably 4N (99.99% by mass) or more. If the purity is lower than 2N, the cylindrical sintered body contains a large amount of impurities, so that desired physical properties cannot be obtained (for example, a decrease in transmittance, an increase in the resistance value of the film, and a foreign matter is included locally). And generation of particles due to arcing).

次に、これらの原料粉末を粉砕し混合する(ステップS303)。原料粉末の粉砕混合処理は、ジルコニア、アルミナ、ナイロン樹脂等のボールやビーズを用いた乾式法や、上記のボールやビーズを用いたメディア撹拌型ミル、メディアレスの容器回転式、機械撹拌式、気流式の湿式法を使用することができる。ここで、一般的に湿式法は乾式法に比べて粉砕及び混合能力に優れているため、湿式法を用いて混合を行うことが好ましい。   Next, these raw material powders are pulverized and mixed (step S303). The raw material powder is pulverized and mixed by a dry method using balls and beads such as zirconia, alumina, and nylon resin, a media stirring mill using the above balls and beads, a medialess container rotating type, a mechanical stirring type, An air flow type wet method can be used. Here, since the wet method is generally superior in pulverization and mixing ability compared to the dry method, it is preferable to perform the mixing using the wet method.

原料組成については特に制限はないが、目的とするスパッタリングターゲットの組成比に応じて適宜調整することが望ましい。   Although there is no restriction | limiting in particular about a raw material composition, It is desirable to adjust suitably according to the composition ratio of the target sputtering target.

ここで、細かい粒子径の原料粉末を使用すると焼結体の高密度化は可能となる。また、粉砕条件を強化して細かい原料粉末を得ることは可能だが、粉砕時に使用するメディア(ジルコニアなど)の混入量も増加し、製品内の不純物濃度は上昇してしまう。このように焼結体の高密度化と製品内の不純物濃度のバランスを見ながら、粉砕時の条件は適正な範囲を設ける必要がある。   Here, if the raw material powder having a fine particle diameter is used, the sintered body can be densified. Although it is possible to obtain fine raw material powder by strengthening the pulverization conditions, the amount of media (such as zirconia) used during pulverization increases and the impurity concentration in the product increases. As described above, it is necessary to set an appropriate range for the pulverization conditions while observing the balance between the density of the sintered body and the impurity concentration in the product.

次に、原料粉末のスラリーを乾燥・造粒する(ステップS304)。ここで、スラリーを急速乾燥する急速乾燥造粒を行ってもよい。急速乾燥造粒は、スプレードライヤを使用し、熱風温度、風量を調整することで行われてもよい。急速乾燥造粒をすることで、原料粉末の比重差による沈降速度の違いによって酸化インジウム粉末と酸化スズ粉末とが分離することを抑制することができる。このように造粒することで、配合成分の比率が均一化され、原料粉末のハンドリング性が向上する。また、造粒する前後に仮焼成を行ってもよい。   Next, the raw material powder slurry is dried and granulated (step S304). Here, rapid drying granulation for rapidly drying the slurry may be performed. The rapid drying granulation may be performed by using a spray dryer and adjusting the hot air temperature and the air volume. By performing rapid drying granulation, it is possible to suppress separation of the indium oxide powder and the tin oxide powder due to the difference in sedimentation speed due to the difference in specific gravity of the raw material powder. By granulating in this way, the ratio of the blending components is made uniform, and the handling property of the raw material powder is improved. Moreover, you may perform temporary baking before and after granulation.

次に、上述した混合及び造粒の工程によって得られた混合物(仮焼成工程を設けた場合には仮焼成されたもの)を加圧成形して円筒型成形体を形成する(S305)。この工程によって、目的とするスパッタリングターゲットに好適な形状に成形する。円筒型成形体の円筒軸方向の長さは600mm以上とすることができる。成形処理としては、例えば、金型成形、鋳込み成形、射出成形等が挙げられるが、円筒型のように複雑な形状を得るためには、冷間静水圧(CIP)等で成形することが好ましい。CIPによる成形は、まず所定の重量に秤量した原料粉をゴム型に充填する。この際、ゴム型を揺動もしくタッピングしながら充填することで、型内の原料粉の充填ムラや空隙を無くすことができる。CIPによる成形の圧力は、好ましくは100MPa以上200MPa以下であるとよい。上記のように成形の圧力を調整することによって、本実施形態では54.5%以上58.0%以下の相対密度を有する円筒型成形体を形成することができる。より好ましくは、CIPの成形圧力を150MPa以上180MPa以下に調整することで、55.0%以上57.5%以下の相対密度の円筒型成形体を得るとよい。   Next, the mixture obtained by the above-described mixing and granulating steps (the one that has been pre-baked when the pre-baking step is provided) is pressure-molded to form a cylindrical molded body (S305). By this step, the material is formed into a shape suitable for the target sputtering target. The length of the cylindrical molded body in the cylindrical axis direction can be 600 mm or more. Examples of the molding process include mold molding, cast molding, injection molding, and the like, but in order to obtain a complicated shape such as a cylindrical mold, it is preferable to mold by cold isostatic pressure (CIP) or the like. . In molding by CIP, first, a raw material powder weighed to a predetermined weight is filled into a rubber mold. At this time, by filling the rubber mold while swinging or tapping, filling irregularities and voids of the raw material powder in the mold can be eliminated. The molding pressure by CIP is preferably 100 MPa or more and 200 MPa or less. By adjusting the molding pressure as described above, a cylindrical molded body having a relative density of 54.5% or more and 58.0% or less can be formed in this embodiment. More preferably, a CIP molding pressure is adjusted to 150 MPa or more and 180 MPa or less to obtain a cylindrical molded body having a relative density of 55.0% or more and 57.5% or less.

次に、成形工程で得られた円筒型成形体を焼結する(ステップS306)。ここで、円筒型成形体を焼結する方法について、図4から図6を用いて詳しく説明する。図4は、本発明の実施形態に係る円筒型焼結体の製造方法において、円筒型成形体を焼結する工程を示す斜視図である。図5は、本発明の実施形態に係る円筒型焼結体の製造方法において、円筒型成形体を焼結する工程を示す断面図である。また、図6は、本発明の実施形態に係る円筒型焼結体の製造方法において、円筒型成形体を焼結する工程を示す平面図である。   Next, the cylindrical molded body obtained in the molding process is sintered (step S306). Here, a method of sintering the cylindrical molded body will be described in detail with reference to FIGS. FIG. 4 is a perspective view showing a step of sintering a cylindrical molded body in the method for manufacturing a cylindrical sintered body according to the embodiment of the present invention. FIG. 5 is a cross-sectional view showing a step of sintering a cylindrical molded body in the method for manufacturing a cylindrical sintered body according to the embodiment of the present invention. Moreover, FIG. 6 is a top view which shows the process of sintering a cylindrical molded object in the manufacturing method of the cylindrical sintered compact concerning embodiment of this invention.

まず、図4に示すように、ステップS305の成形工程で得られた円筒型成形体111は、平板状の焼結ステージ200上に円筒軸方向が焼結ステージ200に対して略垂直になるよう立てた状態で配置される。ただし円筒型成形体111が焼結ステージ200上に安定して配置することができるかぎり、これに限定されない。例えば、焼結ステージ200に対して円筒型成形体111が傾いた状態で配置されてもよい。また、図4では省略したが、円筒型成形体111を焼結する際に、円筒型成形体111と焼結ステージ200との間にスペーサを配置してもよい。この場合、スペーサは、円筒型成形体111の底面150よりも小さい面積で底面150と接するように配置するとよい。スペーサを配置することによって、焼結工程に円筒型成形体111の体積が縮小しても、移動で生じる摩擦係数を抑制することができる。したがって、焼結後の円筒型焼結体に発生する内部応力の発生を抑制することができる。   First, as shown in FIG. 4, the cylindrical molded body 111 obtained in the molding process of step S <b> 305 has a cylindrical axis direction substantially perpendicular to the sintering stage 200 on the flat plate-shaped sintering stage 200. Arranged upright. However, the present invention is not limited to this as long as the cylindrical molded body 111 can be stably disposed on the sintering stage 200. For example, the cylindrical molded body 111 may be disposed in an inclined state with respect to the sintering stage 200. Although omitted in FIG. 4, a spacer may be disposed between the cylindrical molded body 111 and the sintering stage 200 when the cylindrical molded body 111 is sintered. In this case, the spacer may be disposed so as to be in contact with the bottom surface 150 with an area smaller than the bottom surface 150 of the cylindrical molded body 111. By disposing the spacer, the friction coefficient generated by the movement can be suppressed even if the volume of the cylindrical molded body 111 is reduced in the sintering process. Therefore, it is possible to suppress the generation of internal stress generated in the sintered cylindrical sintered body.

図5および図6に示すように、ステップS305の成形工程で得られた円筒型成形体111は、チャンバー300に備えられる焼結ステージ200上に配置される。円筒型成形体111は、板状の焼結ステージ200に設けられた酸素供給口230を円筒中心に配置された状態で焼結される。酸素供給口230は、焼結工程による縮小を考慮して円筒型成形体111の内周より小さく、円筒内側面に酸素を供給することを可能とする。また、酸素供給口230は、円筒型成形体111の円筒軸方向の下方から上方に向かって配置している。焼結ステージ200に設けられた開口部は、酸素供給口230だけであってもよい。1つの酸素供給口230は、酸素を供給する1つの配管240と直接接続される。配管240は、例えば、コントローラー、バルブなどを介してチャンバー300の外から酸素供給口230に接続される。すなわち、配管240から供給される酸素は、焼結ステージ200のその他の領域から漏れることなく、酸素供給口230から円筒内側面に選択的に酸素を供給する。このような構成をとることによって、酸素供給口230から供給する酸素量は、円筒型成形体111の円筒軸方向における長さ、厚さ、および円筒内部空間の大きさに応じて適宜調節することができる。例えば、円筒軸方向の長さが長いほど、酸素供給口230から供給する酸素の量は多くてもよい。しかしながらこれに限定されず、例えば、円筒型成形体111の厚さが厚い場合、酸素供給口230から供給する酸素量はさらに多くてもよい。また例えば、円筒型焼結体の内径が大きく、円筒内部空間が大きい場合、酸素供給口230から供給する酸素量はさらに多くてもよい。   As shown in FIGS. 5 and 6, the cylindrical molded body 111 obtained in the molding process of step S <b> 305 is disposed on the sintering stage 200 provided in the chamber 300. The cylindrical molded body 111 is sintered in a state where the oxygen supply port 230 provided in the plate-like sintering stage 200 is arranged at the center of the cylinder. The oxygen supply port 230 is smaller than the inner periphery of the cylindrical molded body 111 in consideration of reduction due to the sintering process, and can supply oxygen to the inner surface of the cylinder. The oxygen supply port 230 is arranged from the lower side to the upper side in the cylindrical axis direction of the cylindrical molded body 111. The opening provided in the sintering stage 200 may be only the oxygen supply port 230. One oxygen supply port 230 is directly connected to one pipe 240 that supplies oxygen. The piping 240 is connected to the oxygen supply port 230 from the outside of the chamber 300 via, for example, a controller, a valve, or the like. That is, oxygen supplied from the pipe 240 selectively supplies oxygen from the oxygen supply port 230 to the inner surface of the cylinder without leaking from other regions of the sintering stage 200. By adopting such a configuration, the amount of oxygen supplied from the oxygen supply port 230 is appropriately adjusted according to the length and thickness of the cylindrical molded body 111 in the cylindrical axis direction and the size of the cylindrical internal space. Can do. For example, as the length in the cylindrical axis direction is longer, the amount of oxygen supplied from the oxygen supply port 230 may be larger. However, the present invention is not limited to this. For example, when the cylindrical molded body 111 is thick, the amount of oxygen supplied from the oxygen supply port 230 may be larger. Further, for example, when the cylindrical sintered body has a large inner diameter and a large cylindrical internal space, the amount of oxygen supplied from the oxygen supply port 230 may be further increased.

酸素供給口230から供給する酸素量の上限は、特に限定しないが150L/min以下であってもよい。1つの酸素供給口230から多量の酸素を供給することで、酸素による冷却効果から、焼結中の円筒型焼結体の変形、割れや、焼結後の円筒型焼結体の密度の低下などの問題が生じることがある。このため、酸素供給口230からの酸素の進行方向には、邪魔板などを配置してもよい。酸素供給口230から供給される酸素は、邪魔板などに衝突させて、円筒内部空間において拡散させてもよい。さらに酸素供給口230から供給する酸素は、配管などを循環中に予備加熱してから供給してもよい。 The upper limit of the amount of oxygen supplied from the oxygen supply port 230 is not particularly limited, but may be 150 L / min or less. By supplying a large amount of oxygen from one oxygen supply port 230, due to the cooling effect of oxygen, the cylindrical sintered body is deformed and cracked during sintering, and the density of the cylindrical sintered body after sintering is reduced. Such problems may occur. For this reason, a baffle plate or the like may be arranged in the traveling direction of oxygen from the oxygen supply port 230. Oxygen supplied from the oxygen supply port 230 may collide with a baffle plate or the like and diffuse in the cylindrical internal space. Further, the oxygen supplied from the oxygen supply port 230 may be supplied after preheating the piping or the like during circulation.

空気雰囲気下で円筒内側中空部に酸素を供給する場合、窒素より重い酸素は円筒軸方向の下方から徐々に充満される。したがって、焼結中の円筒型成形体の円筒内側面にむらなく酸素を供給することができる。円筒型成形体の円筒内側中空部が酸素で充満されると、さらに供給される酸素は円筒内側中空部を介して円筒成形体の上方から円筒外側に流出する。流出した酸素は、チャンバー300の天井部分で下方に流れ、チャンバー300内を循環する酸素の流れが生じる。このためチャンバー300内の酸素濃度が均一化されていてもよい。なお別途、チャンバー300の壁部から円筒外側への酸素の供給があってもよい。この場合、円筒内側中空部への酸素の供給量と、円筒外側への酸素の供給量とをそれぞれ調節することによって、焼結中の円筒型成形体の円筒内側面、および外側面の酸素濃度を均一にすることもできる。 When oxygen is supplied to the hollow portion inside the cylinder under an air atmosphere, oxygen heavier than nitrogen is gradually filled from below in the cylinder axis direction. Therefore, oxygen can be supplied evenly to the cylindrical inner surface of the cylindrical molded body being sintered. When the cylindrical inner hollow portion of the cylindrical molded body is filled with oxygen, further oxygen supplied flows out in a cylindrical outer side from the top of the cylindrical molded body via a cylindrical inner hollow portion. The outflowing oxygen flows downward in the ceiling portion of the chamber 300, and an oxygen flow circulating in the chamber 300 is generated. For this reason, the oxygen concentration in the chamber 300 may be made uniform. Separately, oxygen may be supplied from the wall portion of the chamber 300 to the outside of the cylinder. In this case, the oxygen concentration of the cylindrical inner surface and outer surface of the cylindrical molded body during sintering is adjusted by adjusting the amount of oxygen supplied to the hollow portion inside the cylinder and the amount of oxygen supplied to the outside of the cylinder, respectively. Can be made uniform.

ここで図4では円筒型成形体111の円筒内側中空部に下方から酸素を供給する方法を例示したが、この方法に限定されない。例えば、円筒軸方向の下方または上方から酸素を供給してもよい。円筒型成形体111の円筒軸方向に酸素を供給することによって、焼中の円筒軸方向における酸素濃度を均一に保つことができる。 Here, although FIG. 4 illustrates a method of supplying oxygen from below into the cylindrical hollow portion of the cylindrical molded body 111, the method is not limited to this method. For example, oxygen may be supplied from below or above in the cylindrical axis direction. By supplying oxygen to the cylindrical axis of the cylindrical shaped body 111, it can be kept uniform oxygen concentration in the cylinder axis direction during the sintering.

また図4では円筒型成形体111の円筒中心に1つ配置した酸素供給口230から酸素を供給する方法を例示したが、この方法に限定されない。円筒内側中空部において均一に酸素が供給されるかぎり、酸素供給口230は円筒中心に限定されない。酸素供給口230は複数であってもよい。また、酸素が円筒内側だけではなく、円筒外側に供給されてもよい。このとき、それぞれの酸素供給口230は独立して酸素供給量を制御できるよう、酸素を供給する配管240とそれぞれ直接接続される。これによって、それぞれの酸素供給口230から供給される酸素の量は、円筒型成形体111の円筒軸方向における長さ、厚さ、円筒内部空間の大きさ、および酸素供給口230に対する円筒型成形体111の位置などに応じて適宜調節することができる。   4 illustrates a method of supplying oxygen from one oxygen supply port 230 arranged at the center of the cylinder of the cylindrical molded body 111, the present invention is not limited to this method. As long as oxygen is uniformly supplied in the hollow portion inside the cylinder, the oxygen supply port 230 is not limited to the center of the cylinder. There may be a plurality of oxygen supply ports 230. Moreover, oxygen may be supplied not only inside the cylinder but also outside the cylinder. At this time, each oxygen supply port 230 is directly connected to the oxygen supply pipe 240 so that the oxygen supply amount can be controlled independently. Thereby, the amount of oxygen supplied from each oxygen supply port 230 is determined by the length and thickness of the cylindrical molded body 111 in the cylindrical axis direction, the size of the cylindrical internal space, and the cylindrical molding for the oxygen supply port 230. It can be appropriately adjusted according to the position of the body 111 and the like.

一般的なITO焼結においては、酸素雰囲気下での焼結が焼結体の高密度化には必須である。酸素雰囲気下での焼結においても、長さが600mm以上である円筒型成形体111を焼結する工程においては、円筒内側中空部のガス対流が十分でないことから円筒内側中空部に酸素不足が生じる。円筒内側中空部の酸素不足によって、焼結中の円筒型焼結体の変形、割れや、焼結後の円筒型焼結体の密度の低下、円筒型焼結体の円筒軸方向における相対密度差、円筒型焼結体の円筒内側面において観察される孔の大きさ、若しくは孔の数の増大が生じる。内側中空部の酸素不足による影響を阻止するため、本実施形態においては、上記構成のように、円筒型成形体111を焼結する際に、円筒型成形体111の円筒内側中空部に酸素供給口230から酸素を供給することで、600mm以上の円筒型成形体111の円筒内側中空部を酸素で均一に満たすことができる。さらに円筒内側中空部への酸素の供給と、円筒外側への酸素の供給とを組み合わせることで、焼結中の円筒型成形体111の円筒内側面、および外側面の酸素濃度を均一にすることもできる。その結果、焼結中の円筒型焼結体の変形、割れを防ぐことができる。また、焼結後の円筒型焼結体の密度を向上することができる。さらに、円筒型焼結体の固体内の円筒軸方向における相対密度差を低減することができる。円筒内側面における孔の大きさと数を低減することができる。   In general ITO sintering, sintering in an oxygen atmosphere is essential for increasing the density of the sintered body. Even in the sintering under an oxygen atmosphere, in the step of sintering the cylindrical molded body 111 having a length of 600 mm or more, gas convection in the hollow portion inside the cylinder is not sufficient, so that there is insufficient oxygen in the hollow portion inside the cylinder. Arise. Oxygen deficiency in the hollow part inside the cylinder causes deformation and cracking of the cylindrical sintered body during sintering, a decrease in the density of the cylindrical sintered body after sintering, and the relative density in the axial direction of the cylindrical sintered body The difference, the size of the holes observed on the cylindrical inner surface of the cylindrical sintered body, or the increase in the number of holes occurs. In order to prevent the influence of oxygen deficiency in the inner hollow part, in the present embodiment, when the cylindrical molded body 111 is sintered as described above, oxygen is supplied to the cylindrical inner hollow part of the cylindrical molded body 111. By supplying oxygen from the opening 230, the hollow portion inside the cylindrical molded body 111 of 600 mm or more can be uniformly filled with oxygen. Further, by combining the supply of oxygen to the hollow portion inside the cylinder and the supply of oxygen to the outside of the cylinder, the oxygen concentration on the cylindrical inner surface and outer surface of the cylindrical molded body 111 during sintering is made uniform. You can also. As a result, deformation and cracking of the cylindrical sintered body during sintering can be prevented. Moreover, the density of the cylindrical sintered body after sintering can be improved. Furthermore, the relative density difference in the cylindrical axis direction in the solid of the cylindrical sintered body can be reduced. The size and number of holes in the inner surface of the cylinder can be reduced.

図3に戻って、円筒型焼結体の製造方法の説明を続ける。上記に詳細を説明したステップS306の焼結は電気炉、熱間静水圧(HIP)、又はマイクロ波焼成を使用することができる。焼結条件は焼結体の組成によって適宜選択することができるが、例えばSnO2を10wt.%含有するITOであれば、酸素ガス雰囲気、1500℃以上1600℃以下、10時間以上20時間以下の条件で焼結することができる。焼結温度が1500℃未満の場合、ターゲットの密度が低下してしまう。一方、1600℃を超えると電気炉や炉材へのダメージが大きく適時メンテナンスが必要となるため、作業効率が著しく低下する。また、焼結時間が10時間未満であるとターゲットの密度が低下してしまい、20時間より長いと焼結工程における保持時間が長くなり、電気炉の稼働率が悪化してしまう。また、焼結工程において使用する酸素ガスの消費量及び電気炉を稼働するための電力が増加してしまう。また、焼結時の圧力は大気圧であってもよく、減圧又は加圧雰囲気であってもよい。 Returning to FIG. 3, the description of the manufacturing method of the cylindrical sintered body will be continued. For the sintering in step S306 described in detail above, an electric furnace, hot isostatic pressure (HIP), or microwave firing can be used. The sintering conditions can be appropriately selected depending on the composition of the sintered body. For example, SnO 2 is 10 wt. If it is contained, it can be sintered under the conditions of oxygen gas atmosphere, 1500 ° C. or higher and 1600 ° C. or lower and 10 hours or longer and 20 hours or shorter. When the sintering temperature is less than 1500 ° C., the density of the target is lowered. On the other hand, when the temperature exceeds 1600 ° C., damage to the electric furnace and the furnace material is great, and timely maintenance is required, so that work efficiency is remarkably lowered. Moreover, if the sintering time is less than 10 hours, the density of the target will decrease, and if it is longer than 20 hours, the holding time in the sintering process will become longer, and the operating rate of the electric furnace will deteriorate. In addition, the consumption of oxygen gas used in the sintering process and the electric power for operating the electric furnace increase. Further, the pressure during sintering may be atmospheric pressure, or a reduced pressure or pressurized atmosphere.

ここで、電気炉で焼結する場合、焼結の昇温速度及び降温速度を調整することでクラックの発生を抑制することができる。具体的には、焼結時の電気炉の昇温速度は300℃/時間以下が好ましく、180℃/時間以下であることがより好ましい。また、焼結時の電気炉の降温速度は、600℃/時間以下が好ましい。なお、昇温速度又は降温速度は段階的に変化するように調整されてもよい。   Here, when sintering by an electric furnace, generation | occurrence | production of a crack can be suppressed by adjusting the temperature increase rate and temperature decrease rate of sintering. Specifically, the heating rate of the electric furnace during sintering is preferably 300 ° C./hour or less, and more preferably 180 ° C./hour or less. Moreover, the temperature lowering rate of the electric furnace during sintering is preferably 600 ° C./hour or less. Note that the rate of temperature increase or the rate of temperature decrease may be adjusted to change stepwise.

焼結工程によって円筒型成形体は収縮するが、全ての材料に共通して熱収縮の始まる温度域に入る前に、炉内の温度を均一にするため、昇温の途中で温度保持を行う。これによって炉内の温度ムラが解消され、炉内に設置したすべての焼結体が均一に収縮する。また到達温度や保持時間は各材料ごとに適正な条件を設定することで、安定な焼結体密度を得ることができる。円筒軸方向の長さが600mm以上である円筒型成形体を焼結することで、円筒軸方向の長さがおおよそ470mm以上の円筒型焼結体となる。   The cylindrical molded body shrinks during the sintering process, but before entering the temperature range where thermal shrinkage starts in common with all materials, the temperature is maintained during the temperature rise in order to make the temperature inside the furnace uniform. . This eliminates temperature unevenness in the furnace, and all the sintered bodies installed in the furnace shrink uniformly. Moreover, the stable sintered body density can be obtained by setting appropriate conditions for the temperature and holding time for each material. By sintering a cylindrical molded body having a length in the cylindrical axis direction of 600 mm or more, a cylindrical sintered body having a length in the cylindrical axis direction of approximately 470 mm or more is obtained.

次に、形成された円筒型焼結体を、平面研削盤、円筒研削盤、旋盤、切断機、マシニングセンター等の機械加工機を用いて、円筒型の所望の形状に機械加工する(ステップS307)。機械加工は、上記の円筒型焼結体をスパッタリング装置への装着に適した形状にするように行われ、また、所望の表面粗さとなるよう行われる。ここで、スパッタリング中に電界が集中して異常放電が発生しない程度の平坦性を得るために、円筒型焼結体の平均面粗さ(Ra)は0.5μm以下とすることが好ましい。以上の工程によって、高密度で均質性の高い円筒型焼結体を得ることができる。   Next, the formed cylindrical sintered body is machined into a cylindrical desired shape by using a machining machine such as a surface grinding machine, a cylindrical grinding machine, a lathe, a cutting machine, or a machining center (step S307). . The machining is performed so that the cylindrical sintered body has a shape suitable for mounting on a sputtering apparatus, and a desired surface roughness is obtained. Here, it is preferable that the average surface roughness (Ra) of the cylindrical sintered body be 0.5 μm or less in order to obtain flatness that does not cause abnormal discharge due to concentration of electric field during sputtering. Through the above steps, a cylindrical sintered body with high density and high homogeneity can be obtained.

次に、機械加工された円筒型焼結体を基材にボンディングする(ステップS308)。特に円筒型スパッタリングターゲットの場合は、バッキングチューブと呼ばれる円筒型基材にろう材を接着剤として円筒型焼結体がボンディングされる。以上の工程によって、上記の円筒型焼結体を使用した円筒型スパッタリングターゲットを得ることができる。   Next, the machined cylindrical sintered body is bonded to the base material (step S308). Particularly in the case of a cylindrical sputtering target, a cylindrical sintered body is bonded to a cylindrical substrate called a backing tube using a brazing material as an adhesive. Through the above steps, a cylindrical sputtering target using the above cylindrical sintered body can be obtained.

以上のように、実施形態に係る円筒型スパッタリングターゲットの製造方法によると、焼結工程において円筒型成形体の円筒内側中空部に酸素を供給することで、焼結中の円筒型焼結体の変形、割れを防ぐことができる。また、焼結後の円筒型焼結体の密度を向上することができる。さらに、焼結後の円筒型焼結体の円筒軸方向における相対密度差を低減することができる。焼結後の円筒型焼結体の円筒内側面において観察される孔の大きさを低減することができる。さらに、焼結後の円筒型焼結体の円筒内側面において観察される孔の数を低減することができる。これによって、固体内および個体間における均質性の高い円筒型焼結体および円筒型スパッタリングターゲットを提供することができる。   As described above, according to the manufacturing method of the cylindrical sputtering target according to the embodiment, by supplying oxygen to the cylindrical inner hollow portion of the cylindrical molded body in the sintering process, Deformation and cracking can be prevented. Moreover, the density of the cylindrical sintered body after sintering can be improved. Furthermore, the relative density difference in the cylindrical axis direction of the cylindrical sintered body after sintering can be reduced. It is possible to reduce the size of the holes observed on the inner surface of the cylindrical sintered body after sintering. Furthermore, the number of holes observed on the cylindrical inner surface of the cylindrical sintered body after sintering can be reduced. Thereby, it is possible to provide a cylindrical sintered body and a cylindrical sputtering target with high homogeneity within a solid and between solid bodies.

〈変形例1〉
図7を用いて、本発明の実施形態の変形例1に係る円筒型焼結体の焼結方法について説明する。
<Modification 1>
A method for sintering a cylindrical sintered body according to Modification 1 of the embodiment of the present invention will be described with reference to FIG.

図7は、本発明の実施形態の変形例1に係る円筒型焼結体の製造方法において、円筒型成形体を焼結する工程を示す平面図である。図7では、円筒型成形体111を焼結する工程において、16個の酸素供給口230が配置されている。このとき、それぞれの酸素供給口230は独立して酸素供給量を制御できるよう、酸素を供給する配管240とそれぞれ直接接続される。これによって、それぞれの酸素供給口230から供給される酸素量は、円筒型成形体111の円筒軸方向における長さ、厚さ、円筒内部空間の大きさ、および円筒型成形体111に対する酸素供給口230の位置などに応じて適宜調節することができる。   FIG. 7 is a plan view showing a step of sintering the cylindrical molded body in the method for manufacturing a cylindrical sintered body according to Modification 1 of the embodiment of the present invention. In FIG. 7, 16 oxygen supply ports 230 are arranged in the step of sintering the cylindrical molded body 111. At this time, each oxygen supply port 230 is directly connected to the oxygen supply pipe 240 so that the oxygen supply amount can be controlled independently. As a result, the amount of oxygen supplied from each oxygen supply port 230 depends on the length and thickness of the cylindrical molded body 111 in the cylindrical axis direction, the size of the cylindrical inner space, and the oxygen supply port for the cylindrical molded body 111. The position can be appropriately adjusted according to the position of 230.

図7において、8対の酸素供給口230は、円筒型成形体111の壁を介して均等に配置されている。言い換えると、円筒型成形体111の円筒内側面および外側面に沿って8個の酸素供給口230がそれぞれ配置されている。図7において、8個の酸素供給口230aが円筒型成形体111の円筒内側に位置し、8個の酸素供給口230bが円筒型成形体111の円筒外側に位置するように円筒型成形体111を配置した(以降、酸素供給口230aおよび酸素供給口230bを区別しない場合は酸素供給口230という。)。しかしながらこれに限定されず、酸素供給口230の数、サイズ、および配置は、円筒型成形体111を焼結ステージ200上に安定して配置することができるかぎり限定されない。また酸素供給口230は、円筒型成形体111の円筒内側だけではなく、円筒外側に配置されてもよい。言い換えると、酸素が円筒内側面だけではなく、円筒外側面に供給されてもよい。   In FIG. 7, the eight pairs of oxygen supply ports 230 are evenly arranged through the wall of the cylindrical molded body 111. In other words, eight oxygen supply ports 230 are arranged along the cylindrical inner surface and outer surface of the cylindrical molded body 111, respectively. In FIG. 7, the cylindrical molded body 111 has eight oxygen supply ports 230 a positioned on the inner side of the cylindrical molded body 111 and eight oxygen supply ports 230 b positioned on the outer side of the cylindrical molded body 111. (Hereinafter, when the oxygen supply port 230a and the oxygen supply port 230b are not distinguished, they are referred to as the oxygen supply port 230). However, the present invention is not limited to this, and the number, size, and arrangement of the oxygen supply ports 230 are not limited as long as the cylindrical molded body 111 can be stably arranged on the sintering stage 200. Further, the oxygen supply port 230 may be arranged not only inside the cylinder of the cylindrical molded body 111 but also outside the cylinder. In other words, oxygen may be supplied not only to the inner surface of the cylinder but also to the outer surface of the cylinder.

例えば、円筒型成形体111の長さが長い場合、対流の悪い円筒内側に位置する酸素供給口230aからの酸素供給量を、円筒外側の酸素供給口230bからの酸素供給量より多くすることで、最終的に円筒内側面および外側面の酸素濃度が均一になるよう調整してもよい。また、円筒内側に位置する酸素供給口230aからのみ酸素を供給してもよい。それぞれの酸素供給口230aが供給する酸素量は、例えば、本発明の実施形態における1つの酸素供給口230から酸素を供給するときの供給量の1/8ずつであってもよい。また、それぞれの酸素供給口230aが供給する酸素量は、均等でなくてもよく、それぞれ異なってもよい。すなわち、複数の酸素供給口230aからの酸素の供給量の総和は、本発明の実施形態における1つの酸素供給口230から酸素を供給するときの供給量であってもよい。また、円筒軸方向の長さが長いほど、酸素供給口230から供給する酸素の量の総和は多くてもよい。しかしながらこれに限定されず、例えば、円筒型成形体111の厚さが厚い場合、酸素供給口230aから供給する酸素量の総和はさらに多くてもよい。また例えば、円筒型焼結体の内径が大きく、円筒内部空間が大きい場合、酸素供給口230aから供給する酸素量の総和はさらに多くてもよい。 For example, when the length of the cylindrical molded body 111 is long, the oxygen supply amount from the oxygen supply port 230a located inside the cylinder with poor convection is made larger than the oxygen supply amount from the oxygen supply port 230b outside the cylinder. Finally, the oxygen concentration on the inner and outer surfaces of the cylinder may be adjusted to be uniform. Further, oxygen may be supplied only from the oxygen supply port 230a located inside the cylinder. The amount of oxygen supplied from each oxygen supply port 230a may be, for example, 1/8 of the supply amount when oxygen is supplied from one oxygen supply port 230 in the embodiment of the present invention. Further, the amount of oxygen supplied by each oxygen supply port 230a may not be equal and may be different. That is, the sum of the oxygen supply amounts from the plurality of oxygen supply ports 230a may be the supply amount when oxygen is supplied from one oxygen supply port 230 in the embodiment of the present invention. Also, as the length of the cylindrical axis direction is long, the amount of total oxygen supplied from the oxygen supply port 230 a may be greater. However, the present invention is not limited to this. For example, when the cylindrical molded body 111 is thick, the total amount of oxygen supplied from the oxygen supply port 230a may be larger. For example, when the cylindrical sintered body has a large inner diameter and a large cylindrical internal space, the total amount of oxygen supplied from the oxygen supply port 230a may be further increased.

酸素供給口230から供給する酸素量の上限は、特に限定しないが150L/min以下であってもよい。複数の酸素供給口230aから酸素を供給することで、酸素の供給量を分散することができ、円筒内側中空部のガス対流を制御することができる。また酸素による冷却効果による焼結中の円筒型焼結体の変形、割れや、焼結後の円筒型焼結体の密度の低下などの問題を抑制することができる。しかしながら複数の酸素供給口230aから供給した酸素は、さらに邪魔板などを介して、円筒内部空間において拡散させてもよい。さらに酸素供給口230から供給する酸素は、配管などを循環中に予備加熱してから供給してもよい。   The upper limit of the amount of oxygen supplied from the oxygen supply port 230 is not particularly limited, but may be 150 L / min or less. By supplying oxygen from the plurality of oxygen supply ports 230a, the supply amount of oxygen can be dispersed, and gas convection in the hollow portion inside the cylinder can be controlled. In addition, it is possible to suppress problems such as deformation and cracking of the cylindrical sintered body during sintering due to a cooling effect by oxygen, and a decrease in density of the cylindrical sintered body after sintering. However, the oxygen supplied from the plurality of oxygen supply ports 230a may be further diffused in the cylindrical internal space via a baffle plate or the like. Further, the oxygen supplied from the oxygen supply port 230 may be supplied after preheating the piping or the like during circulation.

一般的なITO焼結においては、酸素雰囲気下での焼結が焼結体の高密度化には必須である。酸素雰囲気下での焼結においても、長さが600mm以上である円筒型成形体111を焼結する工程においては、円筒内側中空部のガス対流が十分でないことから円筒内に酸素不足が生じる。円筒内の酸素不足によって、焼結中の円筒型焼結体の変形、割れや、焼結後の円筒型焼結体の密度の低下、円筒型焼結体の円筒軸方向における相対密度差、円筒型焼結体の円筒内側面において観察される孔の大きさ、若しくは孔の数の増大が生じる。円筒内の酸素不足による影響を阻止するため、本実施形態においては、円筒内側に位置する酸素供給口230aからの酸素供給量を、円筒外側の酸素供給口230bからの酸素供給量より多くすることで、最終的に円筒内側面および外側面の酸素濃度が均一になるよう調整してもよい。円筒内側に位置する酸素供給口230aからの酸素供給量をさらに多くすることで、最終的に円筒内側面の酸素濃度が円筒外側面の酸素濃度より高くなるよう調整してもよい。さらに、円筒内側に位置する酸素供給口230aからのみ酸素を供給し、円筒外側の酸素供給口230bからの酸素の供給はないよう調整してもよい。それぞれの酸素供給口230は独立して酸素供給量を制御できるよう、酸素を供給する配管240とそれぞれ直接接続される。複数の酸素供給口230aから酸素を供給することで、円筒内側面においてより均一に酸素を供給することができる。この結果、焼結中の円筒型成形体の円筒内側面、および外側面の酸素濃度を調節することができ、焼結中の円筒型焼結体の変形、割れを防ぐことができる。また、焼結後の円筒型焼結体の密度を向上することができる。さらに、焼結後の円筒型焼結体の円筒軸方向における相対密度差を低減することができる。焼結後の円筒型焼結体の円筒内側面において観察される孔における面積の円相当径を低減することができる。さらに、焼結後の円筒型焼結体の円筒内側面において観察される孔の数を低減することができる。   In general ITO sintering, sintering in an oxygen atmosphere is essential for increasing the density of the sintered body. Even in the sintering under an oxygen atmosphere, in the step of sintering the cylindrical molded body 111 having a length of 600 mm or more, the gas convection in the hollow portion inside the cylinder is not sufficient, resulting in insufficient oxygen in the cylinder. Due to lack of oxygen in the cylinder, deformation and cracking of the cylindrical sintered body during sintering, decrease in density of the cylindrical sintered body after sintering, relative density difference in the cylindrical axis direction of the cylindrical sintered body, There is an increase in the size of the holes or the number of holes observed on the inner surface of the cylindrical sintered body. In order to prevent the influence of oxygen shortage in the cylinder, in this embodiment, the oxygen supply amount from the oxygen supply port 230a located inside the cylinder is made larger than the oxygen supply amount from the oxygen supply port 230b outside the cylinder. Thus, the oxygen concentration on the inner and outer surfaces of the cylinder may be finally adjusted to be uniform. By further increasing the amount of oxygen supplied from the oxygen supply port 230a located inside the cylinder, the oxygen concentration on the inner surface of the cylinder may finally be adjusted to be higher than the oxygen concentration on the outer surface of the cylinder. Further, it may be adjusted so that oxygen is supplied only from the oxygen supply port 230a located inside the cylinder and is not supplied from the oxygen supply port 230b outside the cylinder. Each oxygen supply port 230 is directly connected to an oxygen supply pipe 240 so that the oxygen supply amount can be controlled independently. By supplying oxygen from the plurality of oxygen supply ports 230a, oxygen can be supplied more uniformly on the inner surface of the cylinder. As a result, the oxygen concentration of the cylindrical inner surface and the outer surface of the cylindrical molded body during sintering can be adjusted, and deformation and cracking of the cylindrical sintered body during sintering can be prevented. Moreover, the density of the cylindrical sintered body after sintering can be improved. Furthermore, the relative density difference in the cylindrical axis direction of the cylindrical sintered body after sintering can be reduced. It is possible to reduce the equivalent circle diameter of the area of the hole observed on the inner surface of the cylindrical sintered body after sintering. Furthermore, the number of holes observed on the cylindrical inner surface of the cylindrical sintered body after sintering can be reduced.

〈変形例2〉
図8を用いて、本発明の実施形態の変形例2に係る円筒型焼結体の焼結方法について説明する。本変形例において、邪魔板260以外は本発明の実施形態と同様であることから、その詳しい説明は省略する。
<Modification 2>
A method for sintering a cylindrical sintered body according to Modification 2 of the embodiment of the present invention will be described with reference to FIG. Since this modification is the same as the embodiment of the present invention except for the baffle plate 260, detailed description thereof will be omitted.

図8は、本発明の実施形態の変形例2に係る円筒型焼結体の製造方法において、円筒型成形体を焼結する工程を示す断面図である。図8では、円筒型成形体111を焼結する工程において、1個の酸素供給口230が配置されている。酸素供給口230は独立して酸素供給量を制御できるよう、酸素を供給する配管240と直接接続される。酸素供給口230からの酸素の進行方向には、邪魔板260が配置されている。本変形例において、邪魔板260は、酸素供給口230を囲うようにキャップ状の形状を有する。邪魔板260は、キャップ形状の側壁部に複数の開口部280を有する。このため酸素供給口230から供給された酸素は、邪魔板260の内側天井部に当たり、散らされた状態で邪魔板260の複数の開口部280から流出する。邪魔板260の複数の開口部280から流出する酸素は、円筒成形体内側中空部において、円筒軸方向の下方から徐々に充満し、円筒軸方向に上昇する。しかしながら邪魔板260の形状はこれに限定されず、邪魔板260は酸素供給口230から供給される酸素を、円筒内部空間において拡散させる形状であればよい。邪魔板260は、例えば、酸素の進行方向側から見て、少なくとも一部酸素供給口230と重畳していればよい。これによって、1つの酸素供給口230から多量の酸素を供給することで生じる、冷却効果による焼結中の円筒型焼結体の変形、割れや、焼結後の円筒型焼結体の密度の低下などを抑制することができる。   FIG. 8 is a cross-sectional view showing a step of sintering a cylindrical molded body in the method for manufacturing a cylindrical sintered body according to Modification 2 of the embodiment of the present invention. In FIG. 8, one oxygen supply port 230 is disposed in the step of sintering the cylindrical molded body 111. The oxygen supply port 230 is directly connected to the piping 240 for supplying oxygen so that the oxygen supply amount can be controlled independently. A baffle plate 260 is disposed in the direction of oxygen travel from the oxygen supply port 230. In this modification, the baffle plate 260 has a cap shape so as to surround the oxygen supply port 230. The baffle plate 260 has a plurality of openings 280 in a cap-shaped side wall. Therefore, oxygen supplied from the oxygen supply port 230 hits the inner ceiling portion of the baffle plate 260 and flows out from the plurality of openings 280 of the baffle plate 260 in a scattered state. The oxygen flowing out from the plurality of openings 280 of the baffle plate 260 gradually fills from below in the cylindrical axis direction and rises in the cylindrical axis direction in the hollow portion inside the cylindrical molded body. However, the shape of the baffle plate 260 is not limited to this, and the baffle plate 260 may have any shape that diffuses oxygen supplied from the oxygen supply port 230 in the cylindrical internal space. For example, the baffle plate 260 may be at least partially overlapped with the oxygen supply port 230 when viewed from the oxygen traveling direction side. As a result, the deformation of the cylindrical sintered body during sintering due to the cooling effect, cracking, and the density of the cylindrical sintered body after sintering caused by supplying a large amount of oxygen from one oxygen supply port 230 A decrease or the like can be suppressed.

なお本発明は上記の実施形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the spirit of the present invention.

[円筒型焼結体の製造]
[実施例1]
実施例1では、円筒型ITOターゲット材(円筒型焼結体)を製造する方法について説明する。まず、原料粉末としてBET(Brunauer, Emmet and Teller’s equation)比表面積が4.0〜6.0m2/gの4Nの酸化インジウムと、BET比表面積が4.0〜5.7m2gの4Nの酸化スズとを準備した。ここで、BET比表面積とは、BET法で求めた表面積を表すものである。BET法とは、窒素、アルゴン、クリプトン、酸化炭素などの気体分子を固体粒子に吸着させ、吸着した気体分子の量から固体粒子の比表面積を測定する気体吸着法である。ここでは、酸化インジウムが90質量%、酸化スズが10質量%となるように原料を秤量した。次にこれらの原料粉末を湿式のボールミルで粉砕し混合した。ここで粉砕メディアとしてジルコニアボールを使用した。混合されたスラリーはスプレードライヤによって急速乾燥造粒した。
[Manufacture of cylindrical sintered body]
[Example 1]
In Example 1, a method for producing a cylindrical ITO target material (cylindrical sintered body) will be described. First, 4N indium oxide having a BET (Brunauer, Emmet and Teller's equation) specific surface area of 4.0 to 6.0 m 2 / g and a BET specific surface area of 4.0 to 5.7 m 2 / g as raw material powders. Of 4N tin oxide. Here, the BET specific surface area represents the surface area obtained by the BET method. The BET method is a gas adsorption method in which gas molecules such as nitrogen, argon, krypton, and carbon oxide are adsorbed on solid particles, and the specific surface area of the solid particles is measured from the amount of adsorbed gas molecules. Here, the raw materials were weighed so that indium oxide was 90% by mass and tin oxide was 10% by mass. Next, these raw material powders were pulverized and mixed with a wet ball mill. Here, zirconia balls were used as the grinding media. The mixed slurry was rapidly dried and granulated by a spray dryer.

次に、上記の造粒工程によって得られた混合物をCIPによる成形によって円筒型に成形した。CIPによる成形時の圧力は176MPaであった。   Next, the mixture obtained by the above granulation step was molded into a cylindrical shape by molding with CIP. The pressure during molding by CIP was 176 MPa.

上記の成形工程によって得た実施例1の円筒型成形体の各パラメータは以下の通りである。
・円筒外径(直径)=194.0mm
・円筒内径(直径)=158.7mm
・円筒の厚さ=17.65mm
・円筒軸方向の長さ=600mm
Each parameter of the cylindrical molded body of Example 1 obtained by the above molding process is as follows.
・ Cylinder outer diameter (diameter) = 194.0 mm
・ Cylinder inner diameter (diameter) = 158.7 mm
・ Cylinder thickness = 17.65 mm
・ Length in cylindrical axis direction = 600 mm

次に、CIPによって得られた円筒型成形体を、電気炉を使用して焼結した。焼結の条件は以下の通りである。
・昇温速度=300℃/時間
・高温保持温度=1560℃
・高温保持時間=20hr
・焼結時雰囲気=酸素雰囲気
・焼結時圧力=大気圧
・円筒内側中空部への酸素導入=50L/min
・円筒外側への酸素導入=0L/min
Next, the cylindrical molded body obtained by CIP was sintered using an electric furnace. The sintering conditions are as follows.
・ Temperature increase rate = 300 ° C./hour ・ High temperature holding temperature = 1560 ° C.
・ High temperature holding time = 20 hr
-Atmosphere during sintering = Oxygen atmosphere-Pressure at sintering = Atmospheric pressure-Oxygen introduction into the hollow part inside the cylinder = 50 L / min
・ Oxygen introduction to the outside of the cylinder = 0 L / min

上記の焼結工程によって得た円筒型焼結体の各パラメータは以下の通りである。
・円筒外径(直径)=155.2mm
・円筒内径(直径)=127.0mm
・円筒の厚さ=14.1mm
・円筒軸方向の長さ=478mm
・焼結体密度=7.134g/cm3
・焼結体の相対密度=99.68%
・焼結体のバルク抵抗値=0.11mΩ・cm
Each parameter of the cylindrical sintered body obtained by the above-described sintering process is as follows.
・ Cylinder outer diameter (diameter) = 155.2mm
・ Cylinder inner diameter (diameter) = 127.0 mm
・ Cylinder thickness = 14.1 mm
・ Cylinder axis length = 478mm
・ Sintered body density = 7.134 g / cm 3
-Relative density of sintered body = 99.68%
-Bulk resistance value of sintered body = 0.11 mΩ · cm

[実施例2]
実施例2では、実施例1より円筒軸方向に長い円筒型成形体を焼結した円筒型焼結体について説明する。円筒型成形体の成形工程は実施例1と同様であるので、説明を省略する。
[Example 2]
In Example 2, a cylindrical sintered body obtained by sintering a cylindrical molded body that is longer in the cylindrical axis direction than Example 1 will be described. Since the molding process of the cylindrical molded body is the same as that in Example 1, the description thereof is omitted.

実施例1と同様の成形工程によって得た実施例2の円筒型成形体の各パラメータは以下の通りである。
・円筒外径(直径)=193.8mm
・円筒内径(直径)=158.2mm
・円筒の厚さ=17.8mm
・円筒軸方向の長さ=1200mm
The parameters of the cylindrical molded body of Example 2 obtained by the same molding process as in Example 1 are as follows.
・ Cylinder outer diameter (diameter) = 193.8 mm
・ Cylinder inner diameter (diameter) = 158.2 mm
・ Cylinder thickness = 17.8mm
・ Length in cylindrical axis direction = 1200mm

次に、円筒型成形体を電気炉を使用して焼結した。実施例2の焼結条件は、円筒型成形体内側中空部への酸素導入のパラメータ以外は実施例1と同様であるので、説明を省略する。
・円筒内側中空部への酸素導入=100L/min
・円筒外側への酸素導入=0L/min
Next, the cylindrical molded body was sintered using an electric furnace. Since the sintering conditions of Example 2 are the same as those of Example 1 except for the parameters for introducing oxygen into the hollow portion inside the cylindrical molded body, description thereof will be omitted.
・ Introduction of oxygen into the hollow part inside the cylinder = 100 L / min
・ Oxygen introduction to the outside of the cylinder = 0 L / min

上記の焼結工程によって得た円筒型焼結体の各パラメータは以下の通りである。
・円筒外径(直径)=155.0mm
・円筒内径(直径)=126.6mm
・円筒の厚さ=14.2mm
・円筒軸方向の長さ=948mm
・焼結体密度=7.132g/cm3
・焼結体の相対密度=99.65%
・焼結体のバルク抵抗値=0.12mΩ・cm
Each parameter of the cylindrical sintered body obtained by the above-described sintering process is as follows.
・ Cylinder outer diameter (diameter) = 155.0mm
・ Cylinder inner diameter (diameter) = 126.6 mm
・ Cylinder thickness = 14.2 mm
・ Length in cylindrical axis direction = 948mm
・ Sintered body density = 7.132 g / cm 3
-Relative density of sintered body = 99.65%
-Bulk resistance value of sintered body = 0.12 mΩ · cm

[実施例3]
実施例3では、実施例1および実施例2より円筒軸方向にさらに長い円筒型成形体を焼結した円筒型焼結体について説明する。円筒型成形体の成形工程は実施例1と同様であるので、説明を省略する。
[Example 3]
In Example 3, a cylindrical sintered body obtained by sintering a cylindrical molded body that is longer in the cylindrical axis direction than in Example 1 and Example 2 will be described. Since the molding process of the cylindrical molded body is the same as that in Example 1, the description thereof is omitted.

実施例1と同様の成形工程によって得た実施例3の円筒型成形体の各パラメータは以下の通りである。
・円筒外径(直径)=194.2mm
・円筒内径(直径)=158.5mm
・円筒の厚さ=17.85mm
・円筒軸方向の長さ=1755mm
The parameters of the cylindrical molded body of Example 3 obtained by the same molding process as Example 1 are as follows.
・ Cylinder outer diameter (diameter) = 194.2 mm
・ Cylinder inner diameter (diameter) = 158.5 mm
・ Cylinder thickness = 17.85 mm
・ Cylinder axis length = 1755mm

次に、円筒型成形体を電気炉を使用して焼結した。実施例3の焼結条件は、円筒型成形体内側中空部への酸素導入のパラメータ以外は実施例1と同様であるので、説明を省略する。
・円筒内側中空部への酸素導入=150L/min
・円筒外側への酸素導入=0L/min
Next, the cylindrical molded body was sintered using an electric furnace. Since the sintering conditions of Example 3 are the same as those of Example 1 except for the parameters for introducing oxygen into the hollow portion inside the cylindrical molded body, description thereof will be omitted.
・ Introduction of oxygen into the hollow part inside the cylinder = 150 L / min
・ Oxygen introduction to the outside of the cylinder = 0 L / min

上記の焼結工程によって得た円筒型焼結体の各パラメータは以下の通りである。
・円筒外径(直径)=155.4mm
・円筒内径(直径)=126.8mm
・円筒の厚さ=14.3mm
・円筒軸方向の長さ=1386mm
・焼結体密度=7.130g/cm3
・焼結体の相対密度=99.62%
・焼結体のバルク抵抗値=0.12mΩ・cm
Each parameter of the cylindrical sintered body obtained by the above-described sintering process is as follows.
・ Cylinder outer diameter (diameter) = 155.4mm
・ Cylinder inner diameter (diameter) = 126.8 mm
・ Cylinder thickness = 14.3 mm
・ Length in cylindrical axis direction = 1386mm
・ Sintered body density = 7.130 g / cm 3
-Relative density of sintered body = 99.62%
-Bulk resistance value of sintered body = 0.12 mΩ · cm

次に上記、実施例1乃至3に示した円筒型成形体及び円筒型焼結体に対する比較例について、以下に説明する。以下の比較例では、実施例とは異なり、円筒型成形体内側中空部への酸素導入が無い条件で焼結した円筒型焼結体について説明する。なお比較例においては、円筒型成形体内側中空部への酸素導入の代わりに、チャンバー壁部から円筒型成形体外側への酸素導入条件下で焼結した。円筒型成形体の成形工程は実施例1と同様であるので、説明を省略する。   Next, comparative examples for the cylindrical molded body and the cylindrical sintered body shown in Examples 1 to 3 will be described below. In the following comparative example, unlike the example, a cylindrical sintered body that is sintered under the condition that no oxygen is introduced into the hollow portion inside the cylindrical molded body will be described. In the comparative example, instead of introducing oxygen into the hollow portion inside the cylindrical molded body, sintering was performed under the condition of introducing oxygen from the chamber wall portion to the outside of the cylindrical molded body. Since the molding process of the cylindrical molded body is the same as that in Example 1, the description thereof is omitted.

[比較例1]
実施例1と同様の成形工程によって得た比較例1の円筒型成形体の各パラメータは以下の通りである。
・円筒外径(直径)=194.9mm
・円筒内径(直径)=159.0mm
・円筒の厚さ=17.95mm
・円筒軸方向の長さ=480mm
[Comparative Example 1]
The parameters of the cylindrical molded body of Comparative Example 1 obtained by the same molding process as in Example 1 are as follows.
・ Cylinder outer diameter (diameter) = 194.9 mm
・ Cylinder inner diameter (diameter) = 159.0 mm
・ Cylinder thickness = 17.95 mm
・ Length in cylindrical axis direction = 480 mm

次に、円筒型成形体を電気炉を使用して焼結した。比較例1の焼結条件は、円筒型成形体への酸素導入のパラメータ以外は実施例1と同様であるので、説明を省略する。
・円筒内側中空部への酸素導入=0L/min
・円筒外側への酸素導入=100L/min
Next, the cylindrical molded body was sintered using an electric furnace. Since the sintering conditions of Comparative Example 1 are the same as those of Example 1 except for the parameters for introducing oxygen into the cylindrical molded body, description thereof will be omitted.
・ Introduction of oxygen into the hollow part inside the cylinder = 0 L / min
・ Oxygen introduction to the outside of the cylinder = 100 L / min

上記の焼結工程によって得た円筒型焼結体の各パラメータは以下の通りである。
・円筒外径(直径)=155.9mm
・円筒内径(直径)=127.2mm
・円筒の厚さ=14.35mm
・円筒軸方向の長さ=385mm
・焼結体密度=7.133g/cm3
・焼結体の相対密度=99.66%
・焼結体のバルク抵抗値=0.11mΩ・cm
Each parameter of the cylindrical sintered body obtained by the above-described sintering process is as follows.
・ Cylinder outer diameter (diameter) = 155.9mm
・ Cylinder inner diameter (diameter) = 127.2 mm
・ Cylinder thickness = 14.35 mm
・ Length in cylindrical axis direction = 385 mm
・ Sintered body density = 7.133 g / cm 3
-Relative density of sintered body = 99.66%
-Bulk resistance value of sintered body = 0.11 mΩ · cm

[比較例2]
実施例1と同様の成形工程によって得た比較例2の円筒型成形体の各パラメータは以下の通りである。
・円筒外径(直径)=193.5mm
・円筒内径(直径)=158.2mm
・円筒の厚さ=17.65mm
・円筒軸方向の長さ=600mm
[Comparative Example 2]
Each parameter of the cylindrical molded body of Comparative Example 2 obtained by the same molding process as in Example 1 is as follows.
・ Cylinder outer diameter (diameter) = 193.5mm
・ Cylinder inner diameter (diameter) = 158.2 mm
・ Cylinder thickness = 17.65 mm
・ Length in cylindrical axis direction = 600 mm

次に、円筒型成形体を電気炉を使用して焼結した。比較例2の焼結条件は、円筒型成形体への酸素導入のパラメータ以外は実施例1と同様であるので、説明を省略する。
・円筒内側中空部への酸素導入=0L/min
・円筒外側への酸素導入=100L/min
Next, the cylindrical molded body was sintered using an electric furnace. Since the sintering conditions of Comparative Example 2 are the same as those of Example 1 except for the parameters for introducing oxygen into the cylindrical molded body, description thereof will be omitted.
・ Introduction of oxygen into the hollow part inside the cylinder = 0 L / min
・ Oxygen introduction to the outside of the cylinder = 100 L / min

上記の焼結工程によって得た円筒型焼結体の各パラメータは以下の通りである。
・円筒外径(直径)=156.7mm
・円筒内径(直径)=128.1mm
・円筒の厚さ=14.3mm
・円筒軸方向の長さ=485mm
・焼結体密度=7.041g/cm3
・焼結体の相対密度=98.38%
・焼結体のバルク抵抗値=0.12mΩ・cm
Each parameter of the cylindrical sintered body obtained by the above-described sintering process is as follows.
・ Cylinder outer diameter (diameter) = 156.7 mm
・ Cylinder inner diameter (diameter) = 128.1 mm
・ Cylinder thickness = 14.3 mm
・ Length in cylindrical axis direction = 485 mm
・ Sintered body density = 7.041 g / cm 3
-Relative density of sintered body = 98.38%
-Bulk resistance value of sintered body = 0.12 mΩ · cm

[比較例3]
実施例1と同様の成形工程によって得た比較例3の円筒型成形体の各パラメータは以下の通りである。
・円筒外径(直径)=194.1mm
・円筒内径(直径)=158.2mm
・円筒の厚さ=17.95mm
・円筒軸方向の長さ=1200mm
[Comparative Example 3]
The parameters of the cylindrical molded body of Comparative Example 3 obtained by the same molding process as in Example 1 are as follows.
・ Cylinder outer diameter (diameter) = 194.1 mm
・ Cylinder inner diameter (diameter) = 158.2 mm
・ Cylinder thickness = 17.95 mm
・ Length in cylindrical axis direction = 1200mm

次に、円筒型成形体を電気炉を使用して焼結した。比較例3の焼結条件は、円筒型成形体への酸素導入のパラメータ以外は実施例1と同様であるので、説明を省略する。
・円筒内側中空部への酸素導入=0L/min
・円筒外側への酸素導入=100L/min
Next, the cylindrical molded body was sintered using an electric furnace. Since the sintering conditions of Comparative Example 3 are the same as those of Example 1 except for the parameters for introducing oxygen into the cylindrical molded body, description thereof will be omitted.
・ Introduction of oxygen into the hollow part inside the cylinder = 0 L / min
・ Oxygen introduction to the outside of the cylinder = 100 L / min

上記の焼結工程によって得た円筒型焼結体の各パラメータは以下の通りである。
・円筒外径(直径)=157.2mm
・円筒内径(直径)=128.1mm
・円筒の厚さ=14.55mm
・円筒軸方向の長さ=957mm
・焼結体密度=7.038g/cm3
・焼結体の相対密度=98.34%
・焼結体のバルク抵抗値=0.12mΩ・cm
なお比較例3は、焼結による変形が確認された。
Each parameter of the cylindrical sintered body obtained by the above-described sintering process is as follows.
・ Cylinder outer diameter (diameter) = 157.2 mm
・ Cylinder inner diameter (diameter) = 128.1 mm
・ Cylinder thickness = 14.55mm
・ Length in cylindrical axis direction = 957 mm
・ Sintered body density = 7.038 g / cm 3
-Relative density of sintered body = 98.34%
-Bulk resistance value of sintered body = 0.12 mΩ · cm
In Comparative Example 3, deformation due to sintering was confirmed.

[比較例4]
実施例1と同様の成形工程によって得た比較例4の円筒型成形体の各パラメータは以下の通りである。
・円筒外径(直径)=194.2mm
・円筒内径(直径)=158.4mm
・円筒の厚さ=17.9mm
・円筒軸方向の長さ=1410mm
[Comparative Example 4]
The parameters of the cylindrical molded body of Comparative Example 4 obtained by the same molding process as in Example 1 are as follows.
・ Cylinder outer diameter (diameter) = 194.2 mm
・ Cylinder inner diameter (diameter) = 158.4 mm
・ Cylinder thickness = 17.9mm
・ Length in cylindrical axis direction = 1410 mm

次に、円筒型成形体を電気炉を使用して焼結した。比較例4の焼結条件は、円筒型成形体への酸素導入のパラメータ以外は実施例1と同様であるので、説明を省略する。
・円筒内側中空部への酸素導入=0L/min
・円筒外側への酸素導入=100L/min
Next, the cylindrical molded body was sintered using an electric furnace. Since the sintering conditions of Comparative Example 4 are the same as those of Example 1 except for the parameters for introducing oxygen into the cylindrical molded body, description thereof will be omitted.
・ Introduction of oxygen into the hollow part inside the cylinder = 0 L / min
・ Oxygen introduction to the outside of the cylinder = 100 L / min

上記の焼結工程によって得た円筒型焼結体の各パラメータは以下の通りである。
・円筒外径(直径)=155.3mm
・円筒内径(直径)=127.8mm
・円筒の厚さ=13.75mm
・円筒軸方向の長さ=1145mm
・焼結体密度=7.042g/cm3
・焼結体の相対密度=98.39%
・焼結体のバルク抵抗値=0.12mΩ・cm
Each parameter of the cylindrical sintered body obtained by the above-described sintering process is as follows.
・ Cylinder outer diameter (diameter) = 155.3mm
・ Cylinder inner diameter (diameter) = 127.8 mm
・ Cylinder thickness = 13.75 mm
・ Cylinder axis length = 1145mm
・ Sintered body density = 7.042 g / cm 3
-Relative density of sintered body = 98.39%
-Bulk resistance value of sintered body = 0.12 mΩ · cm

[比較例5]
実施例1と同様の成形工程によって得た比較例5の円筒型成形体の各パラメータは以下の通りである。
・円筒外径(直径)=193.6mm
・円筒内径(直径)=158.3mm
・円筒の厚さ=17.65mm
・円筒軸方向の長さ=1754mm
[Comparative Example 5]
The parameters of the cylindrical molded body of Comparative Example 5 obtained by the same molding process as in Example 1 are as follows.
・ Cylinder outer diameter (diameter) = 193.6 mm
・ Cylinder inner diameter (diameter) = 158.3 mm
・ Cylinder thickness = 17.65 mm
・ Length in cylindrical axis direction = 1754mm

次に、円筒型成形体を電気炉を使用して焼結した。比較例5の焼結条件は、円筒型成形体への酸素導入のパラメータ以外は実施例1と同様であるので、説明を省略する。
・円筒内側中空部への酸素導入=0L/min
・円筒外側への酸素導入=100L/min
Next, the cylindrical molded body was sintered using an electric furnace. Since the sintering conditions of Comparative Example 5 are the same as those of Example 1 except for the parameters for introducing oxygen into the cylindrical molded body, description thereof will be omitted.
・ Introduction of oxygen into the hollow part inside the cylinder = 0 L / min
・ Oxygen introduction to the outside of the cylinder = 100 L / min

上記の焼結工程によって得た円筒型焼結体の各パラメータは以下の通りである。
・円筒外径(直径)=157.8mm
・円筒内径(直径)=128.5mm
・円筒の厚さ=14.65mm
・円筒軸方向の長さ=1394mm
・焼結体密度=7.044g/cm3
・焼結体の相対密度=98.42%
・焼結体のバルク抵抗値=0.12mΩ・cm
Each parameter of the cylindrical sintered body obtained by the above-described sintering process is as follows.
・ Cylinder outer diameter (diameter) = 157.8 mm
・ Cylinder inner diameter (diameter) = 128.5mm
・ Cylinder thickness = 14.65 mm
・ Length in cylindrical axis direction = 1394mm
・ Sintered body density = 7.044 g / cm 3
-Relative density of sintered body = 98.42%
-Bulk resistance value of sintered body = 0.12 mΩ · cm

[測定サンプルの準備]
上述した実施例1〜実施例3及び比較例1〜比較例5の円筒型焼結体について、密度およびバルク抵抗の固体内ばらつきを評価するための測定サンプルを準備した。図9に示すように、円筒型焼結体110は、焼結時における円筒軸方向の下方から上方にむかって150mmずつ分断する。さらにそれぞれの円筒軸方向中央部40〜50mm幅の円筒型測定サンプルを切り出し、円筒軸方向の下方より測定サンプル110−1(150mm)、110−2(300mm)、110−3(450mm)とする(後述の表における名称)。
[Preparation of measurement sample]
For the cylindrical sintered bodies of Examples 1 to 3 and Comparative Examples 1 to 5 described above, measurement samples for evaluating the in-solid variation in density and bulk resistance were prepared. As shown in FIG. 9, the cylindrical sintered body 110 is divided by 150 mm from the lower side to the upper side in the cylindrical axis direction during sintering. Furthermore, a cylindrical measurement sample having a width of 40 to 50 mm in each central portion in the cylindrical axis direction is cut out, and measured samples 110-1 (150 mm), 110-2 (300 mm), and 110-3 (450 mm) from below in the cylindrical axis direction. (Name in the table below).

[相対密度の評価]
上述した実施例1〜実施例3及び比較例1〜比較例5の円筒型焼結体および各測定サンプルについて、相対密度を評価した。円筒型焼結体および各測定サンプルの密度は、アルキメデス法を用いて測定した。円筒型焼結体および各測定サンプルの相対密度および相対密度差は、理論密度に基づいて算出した。実施例1〜実施例3及び比較例1〜比較例5の円筒型焼結体および各測定サンプルにおいて、密度、相対密度、及び円筒型焼結体内の最大相対密度差を図10に示す。
[Relative density evaluation]
The relative densities were evaluated for the cylindrical sintered bodies and the respective measurement samples of Examples 1 to 3 and Comparative Examples 1 to 5 described above. The density of the cylindrical sintered body and each measurement sample was measured using the Archimedes method. The relative density and the relative density difference between the cylindrical sintered body and each measurement sample were calculated based on the theoretical density. FIG. 10 shows the density, relative density, and maximum relative density difference in the cylindrical sintered bodies of the cylindrical sintered bodies and the measurement samples of Examples 1 to 3 and Comparative Examples 1 to 5.

図10の結果から、焼結時に円筒型成形体の内側中空部への酸素導入を行った実施例1〜実施例3の円筒型焼結体では、円筒型成形体の内側中空部への酸素導入が無い比較例2〜比較例5の円筒型焼結体より相対密度が向上した。円筒軸方向の長さが470mm以下である比較例1は、円筒型成形体の内側中空部への酸素導入が無くても相対密度が向上した。実施例1〜実施例3の各測定サンプルでは、比較例2〜比較例5の各測定サンプルより相対密度差を低減することができた。円筒軸方向の長さが470mm以下である比較例1は、円筒型成形体の内側中空部への酸素導入が無くても相対密度差を低減することができた。また、焼結工程において円筒型成形体の円筒内側面に酸素を供給することで、円筒軸方向の長さが1200mm以上の円筒型成形体も、焼結中の変形、割れなどを防ぐことができた。   From the results of FIG. 10, in the cylindrical sintered bodies of Examples 1 to 3 in which oxygen was introduced into the inner hollow part of the cylindrical molded body during sintering, oxygen to the inner hollow part of the cylindrical molded body was obtained. The relative density was improved from the cylindrical sintered bodies of Comparative Examples 2 to 5 without introduction. In Comparative Example 1 in which the length in the cylindrical axis direction is 470 mm or less, the relative density was improved even if oxygen was not introduced into the inner hollow portion of the cylindrical molded body. In each measurement sample of Examples 1 to 3, the relative density difference could be reduced as compared with each measurement sample of Comparative Examples 2 to 5. In Comparative Example 1 in which the length in the cylindrical axis direction was 470 mm or less, the relative density difference could be reduced without introducing oxygen into the inner hollow portion of the cylindrical molded body. In addition, by supplying oxygen to the cylindrical inner surface of the cylindrical molded body in the sintering process, the cylindrical molded body having a length in the cylindrical axis direction of 1200 mm or more can also be prevented from being deformed or cracked during sintering. did it.

[最小酸素供給量の評価]
上述した実施例および比較例における円筒型成形体の焼結方法によって、密度7.130g/cm3以上の円筒型焼結体が得られる最小酸素供給量を求めた。具体的には、焼結時における円筒内側中空部への酸素導入の量を段階的に変化させ、円筒軸方向の長さが390、480、950、1200、または1400mmの円筒型焼結体を得た。それぞれの円筒型焼結体の密度は、アルキメデス法を用いて測定した。密度7.130g/cm3以上である円筒型焼結体のうち、それぞれの円筒軸方向の長さ別に、焼結時の酸素導入の量が最も小さい値を最小酸素供給量とする。円筒型焼結体の円筒軸方向の長さに対する最小酸素供給量の関係を図11に示す。
[Evaluation of minimum oxygen supply]
The minimum oxygen supply amount for obtaining a cylindrical sintered body having a density of 7.130 g / cm 3 or more was determined by the method for sintering cylindrical molded bodies in the above-described Examples and Comparative Examples. Specifically, the amount of oxygen introduced into the hollow portion inside the cylinder at the time of sintering is changed stepwise to obtain a cylindrical sintered body having a length in the cylindrical axis direction of 390, 480, 950, 1200, or 1400 mm. Obtained. The density of each cylindrical sintered body was measured using Archimedes method. Of the cylindrical sintered bodies having a density of 7.130 g / cm 3 or more, the smallest oxygen supply amount is set to the smallest amount of oxygen introduced during sintering for each length in the cylindrical axis direction. FIG. 11 shows the relationship between the minimum oxygen supply amount and the length in the cylindrical axis direction of the cylindrical sintered body.

図11に示すように、円筒型焼結体の円筒軸方向の長さが390mmまでは、酸素導入がなくても、密度7.130g/cm3以上である円筒型焼結体が得られた。480mmの円筒型焼結体を形成する場合、最小酸素供給量は5L/min以上であった。950mmの円筒型焼結体を形成する場合、最小酸素供給量は20L/min以上であった。1200mmの円筒型焼結体を形成する場合、最小酸素供給量は30L/min以上であった。1400mmの円筒型焼結体を形成する場合、最小酸素供給量は35L/min以上であった。図11の結果から、円筒軸方向の長さが長いほど、密度7.130g/cm3以上の円筒型焼結体を得るのに必要な酸素の量は増加することがわかる。密度7.130g/cm3以上の円筒型焼結体の軸方向の長さX(mm)と、酸素供給口230から供給する最小酸素供給量Y(L/min)は比例関係にあり、以下の式で示すことができる。
Y=0.0345X−12.508
As shown in FIG. 11, a cylindrical sintered body having a density of 7.130 g / cm 3 or more was obtained even when oxygen was not introduced up to a length of 390 mm in the cylindrical axis direction of the cylindrical sintered body. . In the case of forming a 480 mm cylindrical sintered body, the minimum oxygen supply amount was 5 L / min or more. When forming a cylindrical sintered body of 950 mm, the minimum oxygen supply amount was 20 L / min or more. When a 1200 mm cylindrical sintered body was formed, the minimum oxygen supply amount was 30 L / min or more. In the case of forming a 1400 mm cylindrical sintered body, the minimum oxygen supply amount was 35 L / min or more. From the result of FIG. 11, it can be seen that as the length in the cylinder axis direction is longer, the amount of oxygen necessary to obtain a cylindrical sintered body having a density of 7.130 g / cm 3 or more increases. The axial length X (mm) of the cylindrical sintered body having a density of 7.130 g / cm 3 or more and the minimum oxygen supply amount Y (L / min) supplied from the oxygen supply port 230 are in a proportional relationship. It can be shown by the following formula.
Y = 0.0345X-12.508

[バルク抵抗の評価]
上述した実施例1〜実施例3及び比較例1〜比較例5の円筒型焼結体および各測定サンプルについて、バルク抵抗を評価した。円筒型焼結体および各測定サンプルのバルク抵抗値は、円筒外側面を四探針法を用いて測定した。実施例1〜実施例3及び比較例1〜比較例5の円筒型焼結体および各測定サンプルにおける、バルク抵抗値を図12に示す。
[Evaluation of bulk resistance]
Bulk resistance was evaluated for the cylindrical sintered bodies and the respective measurement samples of Examples 1 to 3 and Comparative Examples 1 to 5 described above. The bulk resistance value of the cylindrical sintered body and each measurement sample was measured on the outer surface of the cylinder using the four-probe method. The bulk resistance values in the cylindrical sintered bodies and the measurement samples of Examples 1 to 3 and Comparative Examples 1 to 5 are shown in FIG.

図12の結果から、実施例1〜実施例3及び比較例1〜比較例5の円筒型焼結体および各測定サンプルにおいて、円筒外側面におけるバルク抵抗値は殆ど変らなかった。円筒外側面においては十分に酸素が供給されることから、円筒型成形体の円筒内側中空部への酸素導入を行った実施例でも、円筒内側中空部への酸素導入が無い比較例でも円筒外側面におけるバルク抵抗値には殆ど影響しないことが考えられる。   From the results of FIG. 12, in the cylindrical sintered bodies and the measurement samples of Examples 1 to 3 and Comparative Examples 1 to 5, the bulk resistance value on the outer surface of the cylinder hardly changed. Since oxygen is sufficiently supplied from the outer surface of the cylinder, even in the examples in which oxygen was introduced into the hollow part inside the cylinder of the cylindrical molded body, the comparative example in which no oxygen was introduced into the hollow part inside the cylinder was out of the cylinder. It is considered that the bulk resistance value on the side surface is hardly affected.

[電子顕微鏡観察用サンプルの準備]
上述した実施例1、2及び比較例2、3の円筒型焼結体について、電子顕微鏡による観察をするためのサンプルを準備した。図13に示すように、円筒型焼結体110は、円筒軸方向中央部10mm幅の円筒型サンプル110−4を切り出し、円筒内側面110−4aおよび円筒外側面110−4bから電子顕微鏡観察用サンプルを切り出し、0.5mm研削した状態で鏡面研磨を行った。
[Preparation of sample for electron microscope observation]
About the cylindrical sintered compact of Examples 1 and 2 and Comparative Examples 2 and 3 mentioned above, the sample for observing with an electron microscope was prepared. As shown in FIG. 13, the cylindrical sintered body 110 cuts out a cylindrical sample 110-4 having a width of 10 mm in the center in the cylindrical axial direction, and is used for electron microscope observation from the cylindrical inner side surface 110-4 a and the cylindrical outer side surface 110-4 b. A sample was cut out and mirror-polished in a state of 0.5 mm grinding.

[電子顕微鏡による観察]
上述した実施例1、2及び比較例2、3の円筒型焼結体について、円筒焼結体の円筒内側面および外側面の電子顕微鏡観察用サンプルを電子顕微鏡(SEM)で観察した。各サンプルにおいて、電子顕微鏡(SEM)を用いて1000倍の視野で観察した写真を図14(円筒内側)および図15(円筒外側)に示す。また各サンプルにおいて、電子顕微鏡(SEM)を用いて2000倍または5000倍の視野で観察した写真を図16(円筒内側)および図17(円筒外側)に示す。図14から図17において(a)実施例1、(b)実施例2、(c)比較例2、(d)比較例3の円筒焼結体の円筒内側面および外側面の電子顕微鏡観察用サンプルを電子顕微鏡(SEM)で観察した。
[Observation with electron microscope]
For cylindrical sintered body of the above-mentioned Examples 1 and 2 and Comparative Examples 2 and 3 were observed electron microscopy sample cylindrical inner surface and an outer surface of the cylindrical sintered body with an electron microscope (SEM). In each sample, photographs taken with a 1000 × field of view using an electron microscope (SEM) are shown in FIG. 14 (cylindrical inside) and FIG. 15 (cylindrical outside). In addition, in each sample, photographs observed with a 2000 × or 5000 × field of view using an electron microscope (SEM) are shown in FIG. 16 (cylindrical inside) and FIG. 17 (cylindrical outside). 17 from FIG. 14 (a) Example 1, (b) Example 2, (c) Comparative Example 2, (d) electron microscopy of the cylindrical inner surface and an outer surface of the cylindrical sintered body of Comparative Example 3 Samples were observed with an electron microscope (SEM).

図14(a)および(b)は、実施例1および実施例2における円筒型焼結体内側面の電子顕微鏡写真である。図15(a)および(b)は、実施例1および実施例2における円筒型焼結体外側面の電子顕微鏡写真である。図14(c)および(d)は、比較例2および比較例3における円筒型焼結体内側面の電子顕微鏡写真である。図15(c)および(d)は、比較例2および比較例3における円筒型焼結体外側面の電子顕微鏡写真である。図14および図15に示すように、焼結時に円筒型成形体の円筒内側中空部への酸素導入を行った実施例1および実施例2では、円筒型焼結体内側面(図14(a)および(b))および外側面(図15(a)および(b))の電子顕微鏡写真に大きな差は観られなかった。一方で、焼結時に円筒型成形体の円筒内側中空部への酸素導入が無い比較例2および比較例3では、円筒型焼結体外側面(図15(c)および(d))と比較して円筒型焼結体内側面(図14(c)および(d))の電子顕微鏡写真において大きな孔(写真、黒の不規則な形態)が数多く観察された。比較例2および比較例3における円筒型焼結体の円筒内側面には、不規則な粒形(結晶粒状)の孔が数多く観察された。比較例2および比較例3における円筒型焼結体の円筒内側面に観察される孔は、主に結晶粒界に観察された。   14A and 14B are electron micrographs of the side surfaces of the cylindrical sintered body in Example 1 and Example 2. FIG. 15 (a) and 15 (b) are electron micrographs of the outer surface of the cylindrical sintered body in Example 1 and Example 2. FIG. 14C and 14D are electron micrographs of the side surfaces of the cylindrical sintered bodies in Comparative Example 2 and Comparative Example 3. FIG. FIGS. 15C and 15D are electron micrographs of the outer surface of the cylindrical sintered body in Comparative Example 2 and Comparative Example 3. FIG. As shown in FIGS. 14 and 15, in Example 1 and Example 2 in which oxygen was introduced into the cylindrical inner hollow portion of the cylindrical molded body during sintering, the side surface of the cylindrical sintered body (FIG. 14A) And (b)) and the electron micrographs on the outer surface (FIGS. 15 (a) and (b)), no significant difference was observed. On the other hand, in Comparative Example 2 and Comparative Example 3 in which no oxygen is introduced into the cylindrical inner hollow portion of the cylindrical molded body during sintering, compared with the outer surface of the cylindrical sintered body (FIGS. 15 (c) and (d)). Many large pores (photographs, black irregular shapes) were observed in the electron micrographs of the side surfaces of the cylindrical sintered body (FIGS. 14C and 14D). Many irregular grain-shaped (crystal grain) holes were observed on the inner surface of the cylindrical sintered body in Comparative Examples 2 and 3. The holes observed on the cylindrical inner surface of the cylindrical sintered bodies in Comparative Example 2 and Comparative Example 3 were mainly observed at the grain boundaries.

次に、結晶粒子の状態を観察するため、比較例においては、特に、図14(c)および(d)で観察された大きな孔がない領域を2000倍または5000倍の視野で観察した。図16(a)および(b)は、実施例1および実施例2における円筒型焼結体内側面の電子顕微鏡写真である。図17(a)および(b)は、実施例1および実施例2における円筒型焼結体外側面の電子顕微鏡写真である。図16(c)および(d)は、比較例2および比較例3における円筒型焼結体内側面の電子顕微鏡写真である。図17(c)および(d)は、比較例2および比較例3における円筒型焼結体外側面の電子顕微鏡写真である。図16および図17に示すように、焼結時に円筒型成形体の円筒内側中空部への酸素導入を行った実施例1および実施例2では、円筒型焼結体内側面(図16(a)および(b))および外側面(図17(a)および(b))の電子顕微鏡写真に大きな差は観られず、結晶粒子が大きく成長していた。焼結時に円筒型成形体の円筒内側中空部への酸素導入がなく、比較例3と比べて円筒軸方向の長さが短い比較例2では、円筒型焼結体内側面(図16(c))および外側面(図17(c))の電子顕微鏡写真に大きな差は観られず、結晶粒子が大きく成長していた。一方で、焼結時に円筒型成形体の円筒内側中空部への酸素導入が無く、比較例2と比べて円筒軸方向の長さが長い比較例3では、円筒型焼結体外側面(図17(d))と比較して円筒型焼結体内側面(図16(d))の電子顕微鏡写真において、小さく、成長初期段階の結晶粒子が観察された。比較例3における円筒型焼結体内側面の結晶粒子は成長初期段階であることから、小さく、不均一であり、平滑性に欠けていた。   Next, in order to observe the state of the crystal particles, in the comparative example, in particular, the region having no large pores observed in FIGS. 14C and 14D was observed with a 2000 × or 5000 × visual field. FIGS. 16A and 16B are electron micrographs of the side surfaces of the cylindrical sintered body in Example 1 and Example 2. FIG. FIGS. 17A and 17B are electron micrographs of the outer surface of the cylindrical sintered body in Example 1 and Example 2. FIG. FIGS. 16C and 16D are electron micrographs of the side surfaces of the cylindrical sintered bodies in Comparative Example 2 and Comparative Example 3. FIG. FIGS. 17C and 17D are electron micrographs of the outer surface of the cylindrical sintered body in Comparative Example 2 and Comparative Example 3. FIG. As shown in FIGS. 16 and 17, in Example 1 and Example 2 in which oxygen was introduced into the cylindrical inner hollow portion of the cylindrical molded body during sintering, the side surface of the cylindrical sintered body (FIG. 16A). And (b)) and the electron micrographs on the outer surface (FIGS. 17A and 17B), no significant difference was observed, and the crystal grains grew greatly. In the comparative example 2 in which no oxygen is introduced into the hollow portion inside the cylinder of the cylindrical molded body during sintering and the length in the cylindrical axial direction is shorter than that in the comparative example 3, the side surface of the cylindrical sintered body (FIG. 16C). ) And the outer side surface (FIG. 17 (c)), a large difference was not observed, and crystal grains grew greatly. On the other hand, in the comparative example 3 in which no oxygen is introduced into the hollow portion inside the cylindrical molded body during sintering and the length in the cylindrical axis direction is longer than that in the comparative example 2, the outer surface of the cylindrical sintered body (FIG. 17). Compared with (d)), in the electron micrograph of the side surface of the cylindrical sintered body (FIG. 16 (d)), small crystal grains at the initial stage of growth were observed. Since the crystal particles on the side surface of the cylindrical sintered body in Comparative Example 3 were in the initial stage of growth, they were small, non-uniform, and lacked smoothness.

実施例1および実施例2における円筒型焼結体の円筒内側面および外側面においては、小さく不規則な粒形(気泡状)の孔が観察された(例えば、図17(b)の左上の孔)。比較例2および比較例3における円筒型焼結体の円筒外側面にも、同様の小さく不規則な粒形(気泡状)の孔が観察された。実施例1および実施例2における円筒型焼結体の円筒内側面、並びに実施例1、実施例2、比較例2、および比較例3における円筒型焼結体の円筒外側面に観察される孔は、結晶粒界および結晶内の何れにも観察された。   In the cylindrical inner surface and the outer surface of the cylindrical sintered body in Example 1 and Example 2, small irregular-shaped (bubble-shaped) holes were observed (for example, upper left in FIG. 17B). Hole). Similar small and irregular pores (bubbles) were also observed on the cylindrical outer surface of the cylindrical sintered bodies in Comparative Examples 2 and 3. Holes observed on the cylindrical inner surface of the cylindrical sintered body in Example 1 and Example 2 and on the cylindrical outer surface of the cylindrical sintered body in Example 1, Example 2, Comparative Example 2, and Comparative Example 3 Was observed both at the grain boundaries and within the crystals.

[円筒焼結体内側面の孔の評価]
実施例1〜3及び比較例1〜5の円筒型焼結体について、上述した方法を用いて円筒焼結体の円筒軸方向中央部における円筒内側面および外側面の組織を電子顕微鏡(SEM)で観察し、孔の数および孔における面積の円相当径を測定した。各サンプルは円筒型サンプル110−4の円筒内側面110−4aにおいて、円周方向に電子顕微鏡観察用サンプルを5つ切り出した。それぞれの電子顕微鏡観察用サンプルから、980μm×1200μmの視野を観察し、孔の数および孔における面積の円相当径の平均値を算出した。円筒型焼結体の孔における面積Sの円相当径Lは、以下の式より算出される。
実施例1〜実施例3及び比較例1〜比較例5の円筒型焼結体の円筒内側面における、孔の数および孔における面積の円相当径の平均値を図18に示す。

[Evaluation of cylindrical sintered body side surface of the hole]
For cylindrical sintered body of Examples 1-3 and Comparative Examples 1-5, the tissues electron microscope of the cylindrical inner surface and an outer surface in the cylindrical axial direction central portion of the cylindrical sintered body using the method described above (SEM The number of holes and the equivalent circle diameter of the area of the holes were measured. In each sample, five samples for electron microscope observation were cut out in the circumferential direction on the cylindrical inner surface 110-4a of the cylindrical sample 110-4. From each electron microscope observation sample, a field of view of 980 μm × 1200 μm was observed, and the average value of the number of holes and the equivalent circle diameter of the area of the holes was calculated. The equivalent circle diameter L of the area S in the hole of the cylindrical sintered body is calculated by the following equation.
FIG. 18 shows the average number of equivalent circle diameters of the number of holes and the area of the holes in the cylindrical inner surface of the cylindrical sintered bodies of Examples 1 to 3 and Comparative Examples 1 to 5.

図18の結果から、焼結時に円筒型成形体の円筒内側中空部への酸素導入を行った実施例1〜実施例3の円筒型焼結体では、円筒内側中空部への酸素導入が無い比較例2〜比較例5の円筒型焼結体より円筒内側面における孔の数が少なかった。円筒軸方向の長さが470mm以下である比較例1は、円筒型成形体の内側中空部への酸素導入が無くても円筒内側面における孔の数が少なかった。実施例1〜3の円筒型焼結体の円筒内側面では、孔における面積の円相当径の平均が1μm以下であった。一方、比較例2〜5の円筒型焼結体の円筒内側面では、孔における面積の円相当径の平均が4μm以上であった。円筒軸方向の長さが470mm以下である比較例1は、円筒型成形体の内側中空部への酸素導入が無くても円筒内側面の孔における面積の円相当径の平均が1μm以下であった。なお図18に示すように、実施例1〜3及び比較例1〜5の円筒型焼結体の円筒外側面における孔の数は何れも4.25×10-5個/μm2以下であり、孔における面積の円相当径の平均は1μm以下であった。 From the results of FIG. 18, in the cylindrical sintered bodies of Examples 1 to 3 in which oxygen was introduced into the cylindrical inner hollow portion of the cylindrical molded body during sintering, there was no oxygen introduction into the cylindrical inner hollow portion. The number of holes on the inner surface of the cylinder was smaller than those of the cylindrical sintered bodies of Comparative Examples 2 to 5. In Comparative Example 1 in which the length in the cylindrical axis direction was 470 mm or less, the number of holes on the inner surface of the cylinder was small even without introducing oxygen into the inner hollow part of the cylindrical molded body. On the cylindrical inner surface of the cylindrical sintered bodies of Examples 1 to 3, the average of the equivalent circle diameters of the areas in the holes was 1 μm or less. On the other hand, on the cylindrical inner surface of the cylindrical sintered bodies of Comparative Examples 2 to 5, the average of the equivalent circle diameters of the areas in the holes was 4 μm or more. In Comparative Example 1 in which the length in the cylinder axis direction is 470 mm or less, the average equivalent circle diameter of the area in the hole on the inner surface of the cylinder is 1 μm or less even without oxygen introduction into the inner hollow part of the cylindrical molded body. It was. As shown in FIG. 18, the number of holes on the cylindrical outer surface of the cylindrical sintered bodies of Examples 1 to 3 and Comparative Examples 1 to 5 are all 4.25 × 10 −5 holes / μm 2 or less. The average equivalent circle diameter of the area in the hole was 1 μm or less.

実施例1〜3では、ITOの結果を示したが、IZO、IGZO、AZOの各組成で構成される円筒軸方向の長さが600mm以上の円筒型成形体においても同様に、本発明の製造方法を用いて焼結した。なお、組成毎に本発明の範囲内で製造条件を適宜変更することができる。この結果、焼結中の円筒型焼結体の変形、割れを防ぐことができた。また、焼結後の円筒型焼結体の密度を向上することができ、さらに、焼結後の円筒型焼結体の円筒軸方向における相対密度差を低減することができた。焼結後の円筒型焼結体の円筒内側面において観察される孔における面積の円相当径を低減することができ、さらに、焼結後の円筒型焼結体の円筒内側面において観察される孔の数を低減することができた。   In Examples 1 to 3, the result of ITO was shown. Similarly, in the case of a cylindrical molded body having a length in the cylindrical axis direction of 600 mm or more constituted by each composition of IZO, IGZO, and AZO, the production of the present invention Sintered using the method. In addition, manufacturing conditions can be suitably changed for every composition within the scope of the present invention. As a result, deformation and cracking of the cylindrical sintered body during sintering could be prevented. Moreover, the density of the cylindrical sintered body after sintering could be improved, and further, the relative density difference in the cylindrical axis direction of the cylindrical sintered body after sintering could be reduced. It is possible to reduce the equivalent circle diameter of the area of the hole observed on the cylindrical inner surface of the sintered cylindrical body after sintering, and to be observed on the inner cylinder surface of the sintered cylindrical body after sintering. The number of holes could be reduced.

なお、本発明は上記の実施形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the spirit of the present invention.

100:円筒型スパッタリングターゲット
110:円筒型焼結体
111:円筒型成形体
120:スペース
130:円筒基材
140:ろう材
150:底面
200:焼結ステージ
230:酸素供給口
240:配管
260:邪魔板
280:開口部
300:チャンバー
100: Cylindrical sputtering target 110: Cylindrical sintered body 111: Cylindrical molded body 120: Space 130: Cylindrical base material 140: Brazing material 150: Bottom surface 200: Sintering stage 230: Oxygen supply port 240: Pipe 260: Disturbance Plate 280: Opening 300: Chamber

Claims (4)

円筒軸方向の長さが948mm以上の円筒型ITO焼結体であって、
前記円筒軸方向における相対密度差が0.1%以内であり、
前記円筒軸方向の円筒内側面中央部および円筒外側面中央部において少なくとも独立した5か所の視野1.176mm2当たりに観察される孔における面積の円相当径が平均1μm以下であることを特徴とする円筒型ITO焼結体。
A cylindrical ITO sintered body having a length in the cylindrical axis direction of 948 mm or more,
The relative density difference in the cylindrical axis direction is within 0.1%;
The average equivalent circle diameter of the holes observed per field of view of 1.176 mm 2 in at least five independent areas at the center of the cylinder inner surface and the center of the cylinder outer surface in the cylinder axis direction is 1 μm or less on average. A cylindrical ITO sintered body.
円筒軸方向の長さが948mm以上の円筒型ITO焼結体であって、
前記円筒軸方向における相対密度差が0.1%以内であり、
前記円筒軸方向の円筒内側面中央部および円筒外側面中央部に観察される孔の数が平均4.25×10-5個/μm2以下であることを特徴とする円筒型ITO焼結体。
A cylindrical ITO sintered body having a length in the cylindrical axis direction of 948 mm or more,
The relative density difference in the cylindrical axis direction is within 0.1%;
The cylindrical ITO sintered body characterized in that the average number of holes observed in the central portion of the inner surface of the cylinder and the central portion of the outer surface of the cylinder in the axial direction is 4.25 × 10 −5 holes / μm 2 or less. .
前記円筒内側面および前記円筒内外側面に観察される孔は、少なくとも独立した5か所の視野1.176mm2当たりに観察される孔であることを特徴とする請求項2に記載の円筒型ITO焼結体。 Holes observed in the cylindrical inner surface and said cylindrical inner and outer sides, cylindrical according to claim 2, characterized in that the holes observed in five fields of view 1.176Mm 2 per independent even without least Type ITO sintered body. 請求項1乃至請求項3の何れか1項に記載された円筒型ITO焼結体と、円筒内側中空部に配置された基材と、を有するスパッタリングターゲット。



A sputtering target comprising: the cylindrical ITO sintered body according to any one of claims 1 to 3; and a base material disposed in a hollow portion inside the cylinder.



JP2016214323A 2016-03-28 2016-11-01 Cylindrical sputtering target and manufacturing method thereof Active JP6397869B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
TW109119026A TWI704243B (en) 2016-03-28 2017-02-24 Cylindrical sputtering target and manufacturing method thereof
TW108132861A TWI698542B (en) 2016-03-28 2017-02-24 Cylindrical sputtering target and its manufacturing method
TW106106359A TWI635194B (en) 2016-03-28 2017-02-24 Cylindrical sputtering target and manufacturing method thereof
TW107109686A TWI699444B (en) 2016-03-28 2017-02-24 Cylindrical sputtering target and manufacturing method thereof
CN201710112294.0A CN107236934A (en) 2016-03-28 2017-02-28 Cylinder type sputtering target and its manufacture method
CN201910536944.3A CN110257782B (en) 2016-03-28 2017-02-28 Cylindrical sputtering target and method for producing same
KR1020170025870A KR20170113075A (en) 2016-03-28 2017-02-28 Cylindrical sputtering target and manufacturing method of cylindrical sputtering target
JP2017104785A JP6967372B2 (en) 2016-03-28 2017-05-26 Cylindrical sputtering target and its manufacturing method
KR1020180054070A KR102524402B1 (en) 2016-03-28 2018-05-11 Cylindrical sputtering target and manufacturing method of cylindrical sputtering target
KR1020190070769A KR102001363B1 (en) 2016-03-28 2019-06-14 Cylindrical sputtering target and manufacturing method of cylindrical sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016064132 2016-03-28
JP2016064132 2016-03-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2017104785A Division JP6967372B2 (en) 2016-03-28 2017-05-26 Cylindrical sputtering target and its manufacturing method
JP2017179069A Division JP7244989B2 (en) 2016-03-28 2017-09-19 Cylindrical sputtering target and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017197425A JP2017197425A (en) 2017-11-02
JP6397869B2 true JP6397869B2 (en) 2018-09-26

Family

ID=60004925

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016214323A Active JP6397869B2 (en) 2016-03-28 2016-11-01 Cylindrical sputtering target and manufacturing method thereof
JP2017104785A Active JP6967372B2 (en) 2016-03-28 2017-05-26 Cylindrical sputtering target and its manufacturing method
JP2017179069A Active JP7244989B2 (en) 2016-03-28 2017-09-19 Cylindrical sputtering target and manufacturing method thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2017104785A Active JP6967372B2 (en) 2016-03-28 2017-05-26 Cylindrical sputtering target and its manufacturing method
JP2017179069A Active JP7244989B2 (en) 2016-03-28 2017-09-19 Cylindrical sputtering target and manufacturing method thereof

Country Status (3)

Country Link
JP (3) JP6397869B2 (en)
KR (1) KR102001363B1 (en)
TW (4) TWI635194B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6523510B1 (en) * 2018-03-30 2019-06-05 Jx金属株式会社 Sputtering target
BE1028481B1 (en) * 2020-07-14 2022-02-14 Soleras Advanced Coatings Bv High Density Sputtering Target
BE1028482B1 (en) * 2020-07-14 2022-02-14 Soleras Advanced Coatings Bv Manufacture and refill of sputtering targets

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776672B2 (en) * 1986-08-26 1995-08-16 川崎重工業株式会社 Dispersion plate nozzle for fluidized bed furnace
JPH08144056A (en) * 1994-11-22 1996-06-04 Mitsubishi Materials Corp Production of sputtering target material for forming thin ito film having high strength
JP4227227B2 (en) * 1998-10-30 2009-02-18 Dowaホールディングス株式会社 Manufacturing method of ITO sputtering target
JP2005069668A (en) * 2003-08-01 2005-03-17 Asahi Glass Co Ltd Baking container for silicon nitride-based ceramic
KR20060043427A (en) * 2004-03-05 2006-05-15 토소가부시키가이샤 Cylindrical sputtering target, ceramic sintered body, and process for producing sintered body
JP5299415B2 (en) * 2010-12-13 2013-09-25 住友金属鉱山株式会社 Oxide sintered body for cylindrical sputtering target and method for producing the same
JP5750060B2 (en) * 2012-01-18 2015-07-15 三井金属鉱業株式会社 Ceramic cylindrical sputtering target material and manufacturing method thereof
WO2014021334A1 (en) * 2012-07-30 2014-02-06 東ソー株式会社 Sintered oxide body and sputtering target
JP6186649B2 (en) * 2013-07-09 2017-08-30 株式会社大一商会 Game machine
JP5799154B2 (en) * 2013-12-13 2015-10-21 Jx日鉱日石金属株式会社 Sputtering target and manufacturing method thereof
JP5887391B1 (en) * 2014-08-22 2016-03-16 三井金属鉱業株式会社 Method for producing target material for sputtering target and claw member
JP6464776B2 (en) * 2014-10-29 2019-02-06 住友金属鉱山株式会社 Cylindrical ceramic sintered body and manufacturing method thereof
JP2016117950A (en) 2014-12-22 2016-06-30 住友化学株式会社 Production method of cylindrical target material, and cylindrical target material
JP5887625B1 (en) * 2015-03-27 2016-03-16 Jx金属株式会社 Cylindrical sputtering target, cylindrical sintered body, cylindrical molded body, and manufacturing method thereof
JP6532287B2 (en) * 2015-05-14 2019-06-19 キヤノン株式会社 Medical diagnostic support apparatus, information processing method and program
JP2016014191A (en) * 2015-07-21 2016-01-28 三井金属鉱業株式会社 Ceramic cylindrical type sputtering target material, and method of manufacturing the same

Also Published As

Publication number Publication date
JP7244989B2 (en) 2023-03-23
KR20190071656A (en) 2019-06-24
TW202014543A (en) 2020-04-16
TW202035740A (en) 2020-10-01
TW201734240A (en) 2017-10-01
TWI635194B (en) 2018-09-11
TWI698542B (en) 2020-07-11
JP2018009251A (en) 2018-01-18
TWI699444B (en) 2020-07-21
TWI704243B (en) 2020-09-11
JP2017197425A (en) 2017-11-02
KR102001363B1 (en) 2019-07-17
JP6967372B2 (en) 2021-11-17
JP2017178784A (en) 2017-10-05
TW201819660A (en) 2018-06-01

Similar Documents

Publication Publication Date Title
KR102493208B1 (en) Cylindrical sputtering target, cylindrical compact, manufacturing method of cylindrical sputtering target, manufacturing method of cylindrical sintered compact and manufacturing method of cylindrical compact
KR102001363B1 (en) Cylindrical sputtering target and manufacturing method of cylindrical sputtering target
KR102030892B1 (en) Ito sputtering target and method for manufacturing same, ito transparent electroconductive film, and method for manufacturing ito transparent electroconductive film
KR102524402B1 (en) Cylindrical sputtering target and manufacturing method of cylindrical sputtering target
JP6884126B2 (en) Cylindrical ceramics-based sputtering target Consists of joining one or more cylindrical ceramics-based sputtering target materials and cylindrical ceramics-based sputtering target materials to a backing tube.
JP3988411B2 (en) ITO sintered body, method for producing the same, and ITO sputtering target using the same
JP5969146B1 (en) Manufacturing method of cylindrical sputtering target and manufacturing method of cylindrical molded body
WO2016129622A1 (en) Sputtering target and method for producing same
TWI651268B (en) Oxide sintered body, method for producing the same, sputtering target and film
TWI697458B (en) Sputtering target
WO2016129621A1 (en) Sputtering target and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161101

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161101

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170919

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20170919

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20171003

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171109

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20171114

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180112

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20180116

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20180227

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20180420

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20180424

C30 Protocol of an oral hearing

Free format text: JAPANESE INTERMEDIATE CODE: C30

Effective date: 20180621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20180724

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20180821

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6397869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250