JPH10291854A - Polycrystalline mgo vapor depositing material and its production - Google Patents
Polycrystalline mgo vapor depositing material and its productionInfo
- Publication number
- JPH10291854A JPH10291854A JP9104281A JP10428197A JPH10291854A JP H10291854 A JPH10291854 A JP H10291854A JP 9104281 A JP9104281 A JP 9104281A JP 10428197 A JP10428197 A JP 10428197A JP H10291854 A JPH10291854 A JP H10291854A
- Authority
- JP
- Japan
- Prior art keywords
- mgo
- ppm
- sintered
- polycrystalline
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Physical Vapour Deposition (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、AC型のプラズマ
ディスプレイパネルのMgO膜の成膜に適した多結晶M
gO蒸着材及びその製造方法に関するものである。The present invention relates to a polycrystalline M suitable for forming an MgO film of an AC type plasma display panel.
The present invention relates to a gO vapor deposition material and a method for producing the same.
【0002】[0002]
【従来の技術】近年、液晶(Liquid Crystal Display :
LCD)をはじめとして、各種の平面ディスプレイの
研究開発と実用化はめざましく、その生産も急増してい
る。カラープラズマディスプレイパネル(PDP)につ
いても、その開発と実用化の動きが最近活発になってい
る。PDPは大型化し易く、ハイビジョン用の大画面壁
掛けテレビの最短距離にあり、既に対角40インチクラ
スのPDPの試作が進められている。PDPは、電極構
造の点で金属電極がガラス誘電体材料で覆われるAC型
と、放電空間に金属電極が露出しているDC型とに分類
される。2. Description of the Related Art In recent years, liquid crystal (Liquid Crystal Display):
Research and development and commercialization of various flat displays, including LCDs, are remarkable, and their production is increasing rapidly. Recently, color plasma display panels (PDPs) have been actively developed and put into practical use. PDPs are easy to increase in size, are at the shortest distance from large screen wall-mounted televisions for high-definition televisions, and prototypes of 40-inch diagonal PDPs have already been developed. PDPs are classified into an AC type in which a metal electrode is covered with a glass dielectric material in terms of an electrode structure, and a DC type in which a metal electrode is exposed in a discharge space.
【0003】このAC型PDPの開発の当初は、ガラス
誘電体層が放電空間に露出していたため、直接放電にさ
らされ、イオン衝撃のスパッタリングにより誘電体層の
表面が変化して放電開始電圧が上昇していた。そのた
め、高い昇華熱を持つ種々の酸化物をこの誘電体層の保
護膜とする試みがなされた。この保護膜は直接放電用の
ガスと接しているために重要な役割を担っている。即
ち、保護膜に求められる特性は、低い放電電圧、放
電時の耐スパッタリング性、速い放電の応答性、及び
絶縁性である。これらの条件を満たす材料として、M
gOが保護膜に用いられる。このMgOからなる保護膜
は、誘電体層の表面を放電時のスパッタリングから守
り、PDPの長寿命化に重要な働きをしている。At the beginning of the development of the AC type PDP, since the glass dielectric layer was exposed to the discharge space, the glass dielectric layer was directly exposed to the discharge, and the surface of the dielectric layer was changed by ion bombardment, and the discharge starting voltage was lowered. Was rising. For this reason, attempts have been made to use various oxides having high sublimation heat as protective films for the dielectric layer. This protective film plays an important role because it is in direct contact with the discharge gas. That is, the characteristics required for the protective film are a low discharge voltage, resistance to sputtering during discharge, fast discharge responsiveness, and insulation. Materials satisfying these conditions include M
gO is used for the protective film. This protective film made of MgO protects the surface of the dielectric layer from sputtering at the time of discharge, and plays an important role in extending the life of the PDP.
【0004】現在、AC型PDPの上記保護膜として、
単結晶MgOの破砕品を蒸着材とする電子ビーム蒸着法
により成膜されたMgO膜が知られている。この電子ビ
ーム蒸着法によるMgO膜は1000オングストローム
/分以上の高速で成膜することができる。また成膜され
たMgO膜の結晶方位は(111)面に配向した膜が最
も低い維持電圧で駆動でき、更に膜中に存在する(11
1)面の量が増えるほど、二次電子の放出比は増大し、
駆動電圧も減少すると言われている。なお上記単結晶M
gOの破砕品は純度が98%以上のMgOクリンカや軽
焼MgO(1000℃以下で焼結されたMgO)を電弧
炉(アーク炉)で溶融することにより、即ち電融により
インゴットとした後、このインゴットから単結晶部を取
出して破砕することにより製造される。At present, as the above protective film of AC type PDP,
An MgO film formed by an electron beam evaporation method using a crushed single crystal MgO as an evaporation material is known. The MgO film formed by the electron beam evaporation method can be formed at a high speed of 1000 Å / min or more. The crystal orientation of the formed MgO film is such that a film oriented in the (111) plane can be driven at the lowest sustaining voltage, and furthermore, exists in the film (11
1) As the amount of surface increases, the emission ratio of secondary electrons increases,
It is said that the driving voltage also decreases. The single crystal M
The crushed product of gO is obtained by melting MgO clinker having a purity of 98% or more or lightly burned MgO (MgO sintered at 1000 ° C. or less) in an electric arc furnace (arc furnace), that is, into an ingot by electromelting. It is manufactured by taking out a single crystal part from this ingot and crushing it.
【0005】[0005]
【発明が解決しようとする課題】しかし、上記従来の単
結晶MgOの破砕品を蒸着材として用いた電子ビーム蒸
着法では、蒸着材に局所的に高エネルギを与えるため、
蒸着材の飛散(スプラッシュ)が発生し、蒸着効率が低
下する不具合があった。このスプラッシュの発生の防止
には蒸着材の大型化が有効であると考えられているが、
単結晶MgOの粉砕品では現行の粒径1〜5mmより大
きな粒子を、歩留り良く安定して確保することが困難で
あった。また上記従来の単結晶MgOの破砕品を蒸着材
として用いた電子ビーム蒸着法では、大面積のガラス誘
電体層に対してMgO膜を均一に成膜することが難し
く、膜厚分布に問題があった。この結果、MgO膜を成
膜したガラス誘電体層をPDPに組込んだ場合に、電気
的特性、例えば放電開始電圧や駆動電圧が、高くなった
り或いは変化したりする問題点があった。However, in the conventional electron beam evaporation method using a crushed single-crystal MgO product as an evaporation material, high energy is locally applied to the evaporation material.
There was a problem that the vapor deposition material was scattered (splash) and the vapor deposition efficiency was reduced. In order to prevent the occurrence of this splash, it is considered that increasing the size of the vapor deposition material is effective.
In the case of a single crystal MgO pulverized product, it has been difficult to stably secure particles having a particle size larger than the current particle size of 1 to 5 mm with good yield. In the conventional electron beam evaporation method using a crushed single crystal MgO product as an evaporation material, it is difficult to uniformly form an MgO film on a large-area glass dielectric layer, and there is a problem in film thickness distribution. there were. As a result, when a glass dielectric layer on which an MgO film is formed is incorporated in a PDP, there is a problem that electric characteristics, for example, a discharge starting voltage and a driving voltage are increased or changed.
【0006】一方、MgOクリンカや軽焼MgOは、海
水から得られるMgCl2を原料としていることが多
く、このMgCl2には比較的多くのCa,Si,Fe
等の不純物が含まれるため、これらの不純物が単結晶M
gO中に残留する。また単結晶MgOの製造過程におけ
るインゴットでは、このインゴットの中心から表面部に
向って連続的に不純物量が増加しており、このため単結
晶部の取出し方によって製品の純度が極めて容易に変動
してしまい、単結晶MgOの純度の安定性や信頼性を欠
く問題点があった。On the other hand, MgO clinker and lightly burned MgO often use MgCl 2 obtained from seawater as a raw material, and this MgCl 2 contains a relatively large amount of Ca, Si, Fe.
And the like, these impurities are contained in the single crystal M
Remains in gO. Further, in the ingot in the production process of the single crystal MgO, the amount of impurities continuously increases from the center of the ingot toward the surface portion. Therefore, the purity of the product varies very easily depending on how the single crystal portion is taken out. As a result, there is a problem that the stability and reliability of the purity of the single crystal MgO are lacking.
【0007】これらの点を解消するために単結晶MgO
に代えて多結晶MgOを用いる方法も考えられる。しか
し種々の焼結助剤の添加により緻密化した高密度の多結
晶MgOでは、組織的に結晶粒界に欠陥が存在する問題
点があり、また純度を高くすると、密度が低くくなる問
題点があった。この結果、これらの多結晶MgO蒸着材
を用いて電子ビーム蒸着法にてガラス誘電体層にMgO
膜を成膜すると、結晶方位の(111)面への配向量が
減少し、このガラス誘電体層をPDPに組込んだときの
電気的特性が低下するため、多結晶MgOを蒸着材とし
て使用できなかった。In order to solve these problems, a single crystal MgO
Alternatively, a method using polycrystalline MgO may be considered. However, high-density polycrystalline MgO densified by the addition of various sintering aids has a problem that defects are systematically present at crystal grain boundaries, and a problem that the density is lowered when the purity is increased. was there. As a result, MgO was added to the glass dielectric layer by electron beam evaporation using these polycrystalline MgO evaporation materials.
When a film is formed, the amount of orientation of the crystal orientation to the (111) plane is reduced, and the electrical characteristics when this glass dielectric layer is incorporated into a PDP are reduced. Therefore, polycrystalline MgO is used as a vapor deposition material. could not.
【0008】本発明の目的は、電子ビーム蒸着法にて蒸
着しても、スプラッシュを発生させずに高速でかつ均一
に成膜できる多結晶MgO蒸着材及びその製造方法を提
供することにある。本発明の別の目的は、成膜されたM
gO膜の膜特性を向上できる多結晶MgO蒸着材及びそ
の製造方法を提供することにある。It is an object of the present invention to provide a polycrystalline MgO vapor deposition material capable of forming a film at high speed and uniformly without generating a splash even when vapor deposition is performed by an electron beam vapor deposition method, and a method for producing the same. Another object of the present invention is to provide a deposited M
An object of the present invention is to provide a polycrystalline MgO vapor deposition material capable of improving the film characteristics of a gO film and a method for producing the same.
【0009】[0009]
【課題を解決するための手段】請求項1に係る発明は、
MgO純度が99.5%以上かつ相対密度が97%以上
の多結晶MgOの焼結体ペレットからなる多結晶MgO
蒸着材である。この請求項1に記載された多結晶MgO
蒸着材では、高純度かつ高密度の多結晶MgO蒸着材を
用いてAC型PDP等のMgO膜を成膜すると、スプラ
ッシュが極めて少なく高速で安定した成膜ができる。ま
た膜厚分布を向上できるので、略均一な膜質を有するM
gO膜を得ることができる。The invention according to claim 1 is
Polycrystalline MgO comprising sintered pellets of polycrystalline MgO having a purity of 99.5% or more and a relative density of 97% or more
It is an evaporation material. The polycrystalline MgO according to claim 1
When a MgO film such as an AC-type PDP is formed using a high-purity and high-density polycrystalline MgO vapor-deposited material, a stable film can be formed at a high speed with little splash. In addition, since the film thickness distribution can be improved, M
A gO film can be obtained.
【0010】請求項2に係る発明は、請求項1に係る発
明であって、更に、多結晶MgOの焼結体ペレットの平
均結晶粒径が1〜100μmであって、焼結体ペレット
の結晶粒内に平均内径2μm以下の丸みを帯びた気孔を
有することを特徴とする。この請求項2に記載された多
結晶MgO蒸着材では、多結晶MgOの焼結体ペレット
が微細な結晶構造を有し、かつその結晶粒界に欠陥が生
じるのを低減できるため、成膜されたMgO膜は優れた
膜特性を有する。A second aspect of the present invention is the invention according to the first aspect, wherein the average crystal grain size of the sintered compact of polycrystalline MgO is 1 to 100 μm, and It is characterized by having rounded pores having an average inner diameter of 2 μm or less in the grains. In the polycrystalline MgO vapor-deposited material according to the second aspect, since the sintered compact of polycrystalline MgO has a fine crystal structure and can reduce the occurrence of defects at the crystal grain boundaries, the film is formed. The MgO film has excellent film properties.
【0011】請求項3に係る発明は、請求項1又は2に
係る発明であって、更に多結晶MgOの焼結体ペレット
に含まれる、Si及びAlの不純物がそれぞれ元素濃度
で150ppm以下であり、Caの不純物が元素濃度で
200ppm以下であり、Feの不純物が元素濃度で5
0ppm以下であり、Cr,V及びNiの不純物がそれ
ぞれ元素濃度で10ppm以下であり、Na及びKの不
純物がそれぞれ元素濃度で20ppm以下であり、Cの
不純物が元素濃度で70ppm以下であり、Zrの不純
物が元素濃度で150ppm以下であることを特徴とす
る。この請求項3に記載された多結晶MgO蒸着材で
は、成膜されたMgO膜に含まれる不純物が極めて少な
くなるので、このMgO膜の膜特性は向上する。[0013] The invention according to claim 3 is the invention according to claim 1 or 2, wherein the impurities of Si and Al contained in the sintered compact of polycrystalline MgO each have an element concentration of 150 ppm or less. , Ca impurities have an element concentration of 200 ppm or less, and Fe impurities have an element concentration of 5 ppm or less.
0 ppm or less, impurities of Cr, V and Ni are respectively 10 ppm or less in element concentration, impurities of Na and K are 20 ppm or less in element concentration, and impurities of C are 70 ppm or less in element concentration. Is characterized by an element concentration of 150 ppm or less. In the polycrystalline MgO vapor deposition material according to the third aspect, the impurities contained in the formed MgO film are extremely small, so that the film characteristics of the MgO film are improved.
【0012】請求項4に係る発明は、純度が99.5%
以上で平均粒径が0.1〜3μmのMgO粉末とバイン
ダと有機溶媒とを混合して濃度が45〜75重量%のス
ラリーを調製する工程と、このスラリーを噴霧乾燥して
平均粒径が50〜300μmの造粒粉末を得る工程と、
この造粒粉末を所定の型に入れて所定の圧力で成形する
工程と、この成形体を所定の温度で焼結する工程とを含
む多結晶MgO蒸着材の製造方法である。この請求項4
に記載された方法で多結晶MgO蒸着材を製造すると、
請求項1に記載されたMgO純度が99.5%以上かつ
相対密度が97%以上の多結晶MgOの焼結体ペレット
からなる多結晶MgO蒸着材を得ることができる。The invention according to claim 4 has a purity of 99.5%.
A step of mixing a MgO powder having an average particle size of 0.1 to 3 μm, a binder and an organic solvent to prepare a slurry having a concentration of 45 to 75% by weight, and spray-drying the slurry to obtain an average particle size of Obtaining a 50-300 μm granulated powder;
This is a method for producing a polycrystalline MgO vapor deposition material, which includes a step of placing the granulated powder in a predetermined mold and molding at a predetermined pressure, and a step of sintering the molded body at a predetermined temperature. Claim 4
When producing a polycrystalline MgO vapor deposition material by the method described in
A polycrystalline MgO vapor deposition material comprising a sintered pellet of polycrystalline MgO having an MgO purity of 99.5% or more and a relative density of 97% or more can be obtained.
【0013】請求項4に係る製造方法のうち、造粒粉末
を750〜2000kg/cm2の圧力で一軸加圧成形
するか或いは造粒粉末を1000〜3000kg/cm
2の圧力でCIP成形することが好ましく、また成形体
を1250〜1350℃の温度で一次焼結した後、昇温
して1500〜1650℃の温度で二次焼結することが
好ましい。In the method according to the fourth aspect, the granulated powder is uniaxially pressed at a pressure of 750 to 2000 kg / cm 2 or the granulated powder is formed at a pressure of 1000 to 3000 kg / cm 2.
It is preferable to perform CIP molding at a pressure of 2 , and it is preferable to perform primary sintering of the molded body at a temperature of 1250 to 1350 ° C., and then increase the temperature to perform secondary sintering at a temperature of 1500 to 1650 ° C.
【0014】[0014]
【発明の実施の形態】次に本発明の実施の形態を詳しく
説明する。本発明の多結晶MgO蒸着材はMgO純度が
99.5%以上、更に好ましくは99.9%以上、かつ
相対密度が97%以上、更に好ましくは98%以上の多
結晶MgOの焼結体ペレットからなる。またこの焼結体
ペレットの平均結晶粒径は1〜100μmであり、焼結
体ペレットの結晶粒内には平均内径2μm以下の丸みを
帯びた気孔を有する。ここで、焼結体ペレットの平均結
晶粒径を1〜100μmと限定したのは、この粒径範囲
であれば、MgOの組織を制御できるからである。また
焼結体ペレットの結晶粒内の気孔の平均内径を2μm以
下としたのは、2μmを越えるとMgOの組織を制御で
きないからである。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail. The polycrystalline MgO vapor deposition material of the present invention has a sintered polycrystalline MgO pellet having an MgO purity of 99.5% or more, more preferably 99.9% or more, and a relative density of 97% or more, and more preferably 98% or more. Consists of The average grain size of the sintered pellet is 1 to 100 μm, and the sintered pellet has rounded pores having an average inner diameter of 2 μm or less. Here, the reason why the average crystal grain size of the sintered compact is limited to 1 to 100 μm is that the MgO structure can be controlled within this grain size range. The reason why the average inner diameter of the pores in the crystal grains of the sintered pellet is 2 μm or less is that if it exceeds 2 μm, the structure of MgO cannot be controlled.
【0015】多結晶MgOの焼結体ペレットに含まれる
不純物(Si,Al,Ca,Fe,Cr,V,Ni,N
a,K,C及びZr)の含有量は合計で850ppm以
下であることが好ましい。また上記不純物の個別的な含
有量は、Si及びAlの不純物がそれぞれ元素濃度で1
50ppm以下であり、Caの不純物が元素濃度で20
0ppm以下であり、Feの不純物が元素濃度で50p
pm以下であり、Cr,V及びNiの不純物がそれぞれ
元素濃度で10ppm以下であり、Na及びKの不純物
がそれぞれ元素濃度で20ppm以下であり、Cの不純
物が元素濃度で70ppm以下であり、Zrの不純物が
元素濃度で150ppm以下であることが好ましい。上
記各不純物が元素濃度で上記値を超えると、MgO蒸着
材を電子ビーム蒸着法で成膜したガラス基板をパネルに
組込んだときに、膜質にばらつきが生じるために、電気
的特性、例えば駆動電圧が高くなったり或いは不安定に
なったりする不具合がある。Impurities (Si, Al, Ca, Fe, Cr, V, Ni, N) contained in the sintered pellet of polycrystalline MgO
It is preferable that the total content of a, K, C and Zr) is 850 ppm or less. The individual content of the above impurities is such that the impurities of Si and Al are each 1 elemental concentration.
50 ppm or less, and the impurity of Ca is 20
0 ppm or less, and the impurity of Fe is 50 p in element concentration.
pm or less, the impurities of Cr, V and Ni are each 10 ppm or less in elemental concentration, the impurities of Na and K are each 20 ppm or less in elemental concentration, and the impurity of C is 70 ppm or less in elemental concentration. Is preferably 150 ppm or less in elemental concentration. If each of the impurities exceeds the above-mentioned value in element concentration, when a glass substrate on which an MgO vapor deposition material is formed by an electron beam vapor deposition method is incorporated into a panel, a variation occurs in the film quality. There is a problem that the voltage becomes high or becomes unstable.
【0016】このように構成された多結晶MgO蒸着材
の製造方法を説明する。先ず純度が99.5%以上のM
gO粉末とバインダと有機溶媒とを混合して、濃度が4
5〜75重量%のスラリーを調製する。スラリーの濃度
を45〜75重量%に限定したのは、75重量%を越え
ると上記スラリーが非水系であるため、安定した造粒が
難しい問題点があり、45重量%未満では均一な組織を
有する緻密なMgO焼結体が得られいないからである。
即ち、スラリー濃度を上記範囲に限定すると、スラリー
の粘度が200〜1000cpsとなり、スプレードラ
イヤによる粉末の造粒を安定して行うことができ、更に
は成形体の密度が高くなって緻密な焼結体の製造が可能
になる。A method of manufacturing the polycrystalline MgO vapor deposition material having the above-described structure will be described. First, M with a purity of 99.5% or more
gO powder, a binder, and an organic solvent are mixed to obtain a concentration of 4
A slurry of 5 to 75% by weight is prepared. The reason why the concentration of the slurry is limited to 45 to 75% by weight is that if it exceeds 75% by weight, the above-mentioned slurry is non-aqueous, so that stable granulation is difficult. This is because a dense MgO sintered body cannot be obtained.
That is, when the slurry concentration is limited to the above range, the viscosity of the slurry becomes 200 to 1000 cps, the granulation of the powder by the spray dryer can be performed stably, and further, the density of the molded body is increased and the dense sintering is performed. Body production becomes possible.
【0017】またMgO粉末の平均粒径は0.1〜3μ
mの範囲内にあることが好ましい。MgO粉末の平均粒
径を0.1〜3μmと限定したのは、0.1μm未満で
は、粉末が細かすぎて凝集するため、粉末のハンドリン
グが悪くなり、45重量%以上の高濃度スラリーを調製
することが困難となるためであり、3μmを越えると、
微細構造の制御が難しく、緻密な焼結体ペレットが得ら
れないからである。またMgO粉末の平均粒径を上記範
囲に限定すると、焼結助剤を用いなくても所望の焼結体
ペレットが得られる利点もある。バインダとしてはポリ
エチレングリコールやポリビニールブチラール等を、有
機溶媒としてはエタノールやプロパノール等を用いるこ
とが好ましい。バインダは0.2〜2.5重量%添加す
ることが好ましい。The average particle size of the MgO powder is 0.1 to 3 μm.
It is preferably within the range of m. The reason why the average particle size of the MgO powder is limited to 0.1 to 3 μm is that when the average particle size is less than 0.1 μm, the powder is too fine and agglomerates, so that the handling of the powder becomes poor and a high concentration slurry of 45% by weight or more is prepared. When the thickness exceeds 3 μm,
This is because it is difficult to control the fine structure, and a dense sintered body pellet cannot be obtained. Further, when the average particle size of the MgO powder is limited to the above range, there is also an advantage that a desired sintered body pellet can be obtained without using a sintering aid. It is preferable to use polyethylene glycol or polyvinyl butyral as a binder, and to use ethanol or propanol as an organic solvent. The binder is preferably added in an amount of 0.2 to 2.5% by weight.
【0018】またMgO粉末とバインダと有機溶媒との
湿式混合、特にMgO粉末と分散媒である有機溶媒との
湿式混合は、湿式ボールミル又は撹拌ミルにより行われ
る。湿式ボールミルでは、ZrO2製ボールを用いる場
合には、直径5〜10mmの多数のZrO2製ボールを
用いて8〜24時間、好ましくは20〜24時間湿式混
合される。ZrO2製ボールの直径を5〜10mmと限
定したのは、5mm未満では混合が不十分となることか
らであり、10mmを越えると不純物が増大する不具合
があるからである。また混合時間が最長24時間と長い
のは、長時間連続混合しても不純物の発生が少ないから
である。一方、湿式ボールミルにおいて、鉄芯入りの樹
脂製ボールを用いる場合には、直径10〜15mmのボ
ールを用いることが好ましい。The wet mixing of the MgO powder, the binder and the organic solvent, particularly the wet mixing of the MgO powder and the organic solvent as a dispersion medium, is performed by a wet ball mill or a stirring mill. In the case of using a ZrO 2 ball in a wet ball mill, a large number of ZrO 2 balls having a diameter of 5 to 10 mm are wet-mixed for 8 to 24 hours, preferably 20 to 24 hours. The reason why the diameter of the ZrO 2 ball is limited to 5 to 10 mm is that if it is less than 5 mm, the mixing becomes insufficient, and if it exceeds 10 mm, there is a problem that impurities increase. The reason why the mixing time is as long as 24 hours is that generation of impurities is small even when mixing is continued for a long time. On the other hand, when a resin ball containing an iron core is used in a wet ball mill, it is preferable to use a ball having a diameter of 10 to 15 mm.
【0019】撹拌ミルでは、直径1〜3mmのZrO2
製ボールを用いて0.5〜1時間湿式混合される。Zr
O2製ボールの直径を1〜3mmと限定したのは、1m
m未満では混合が不十分となることからであり、3mm
を越えると不純物が増える不具合があるからである。ま
た混合時間が最長1時間と短いのは、1時間を越えると
原料の混合のみならず粉砕の仕事をするため、不純物の
発生の原因となり、また1時間もあれば十分に混合でき
るからである。In a stirring mill, ZrO 2 having a diameter of 1 to 3 mm is used.
The mixture is wet-mixed for 0.5 to 1 hour using a ball. Zr
The diameter of the O 2 ball is limited to 1 to 3 mm.
If the diameter is less than 3 mm, the mixing is insufficient.
This is because if the ratio exceeds the limit, impurities increase. The reason why the mixing time is as short as 1 hour at the maximum is that if the time exceeds 1 hour, not only the mixing of the raw materials but also the work of pulverization is performed, which causes the generation of impurities. .
【0020】次に上記スラリーを噴霧乾燥して平均粒径
が50〜300μm、好ましくは50〜200μmの造
粒粉末を得た後、この造粒粉末を所定の型に入れて所定
の圧力で成形する。ここで、平均粒径を50〜300μ
mと限定したのは、50μm未満では成形性が悪い不具
合があり、300μmを越えると成形体密度が低く強度
も低い不具合があるからである。上記噴霧乾燥はスプレ
ードライヤを用いて行われることが好ましく、所定の型
は一軸プレス装置又は冷間静水圧成形装置(CIP(Co
ld Isostatic Press)成形装置)が用いられる。一軸プ
レス装置では、造粒粉末を750〜2000kg/cm
2、好ましくは1000〜1500kg/cm2の圧力で
一軸加圧成形し、CIP成形装置では、造粒粉末を10
00〜3000kg/cm2、好ましくは1500〜2
000kg/cm2の圧力でCIP成形する。圧力を上
記範囲に限定したのは、成形体の密度を高めるとともに
焼結後の変形を防止し、後加工を不要にするためであ
る。Next, the above slurry is spray-dried to obtain a granulated powder having an average particle diameter of 50 to 300 μm, preferably 50 to 200 μm, and then the granulated powder is put into a predetermined mold and molded under a predetermined pressure. I do. Here, the average particle size is 50 to 300 μm.
The reason for limiting to m is that if it is less than 50 μm, there is a problem that the moldability is poor, and if it exceeds 300 μm, there is a problem that the molded body density is low and the strength is low. The spray drying is preferably performed using a spray dryer, and the predetermined mold is a uniaxial press device or a cold isostatic pressing device (CIP (CoP
ld Isostatic Press). In the uniaxial pressing device, the granulated powder is 750-2000 kg / cm
2 , preferably uniaxial pressure molding at a pressure of 1000 to 1500 kg / cm 2 ,
00-3000 kg / cm 2 , preferably 1500-2
CIP molding is performed at a pressure of 000 kg / cm 2 . The reason for limiting the pressure to the above range is to increase the density of the molded body, prevent deformation after sintering, and eliminate post-processing.
【0021】更に成形体を焼結する。焼結する前に成形
体を350〜620℃の温度で脱脂処理することが好ま
しい。この脱脂処理は成形体の焼結後の色むらを防止す
るために行われ、時間をかけて十分に行うことが好まし
い。焼結は1250〜1350℃の温度で1〜5時間行
う一次焼結と、この後に更に昇温して1500〜165
0℃の温度で1〜10時間行う二次焼結とからなる二段
焼結により行われる。Further, the compact is sintered. Before sintering, it is preferable that the molded body is subjected to a degreasing treatment at a temperature of 350 to 620 ° C. This degreasing treatment is performed in order to prevent color unevenness after sintering of the molded body, and it is preferable to perform the degreasing sufficiently over time. Sintering is performed at a temperature of 1250 to 1350 ° C. for 1 to 5 hours, and thereafter, the temperature is further increased to 1500 to 165
The secondary sintering is performed at a temperature of 0 ° C. for 1 to 10 hours.
【0022】成形体を先ず一次焼結するために昇温する
と、1200℃から焼結が始まり、1350℃で焼結は
かなり進む。この温度で一次焼結することにより、粒径
が大きくてもその表面と内部との焼結むら(組織構造の
差)はなく、1500〜1650℃の温度で二次焼結す
ることにより、相対密度が100%に近い焼結体ペレッ
トが得られる。この焼結体ペレットには僅かな気孔が存
在するが、この気孔はMgO焼結体の特性に影響を与え
る結晶粒界ではなく、MgO焼結体の特性に殆ど影響を
与えない結晶粒内に存在する。この結果、本発明の高純
度かつ高密度のMgO焼結体ペレットをプラズマディス
プレイパネルに成膜すると、スプラッシュが少なく、膜
特性の良好なMgO膜を得られる。When the temperature of the compact is first raised for primary sintering, sintering starts at 1200 ° C., and proceeds considerably at 1350 ° C. By performing primary sintering at this temperature, even if the particle size is large, there is no sintering unevenness (difference in microstructure) between the surface and the inside, and secondary sintering at a temperature of 1500 to 1650 ° C. A sintered body pellet having a density close to 100% is obtained. Although there are few pores in the sintered body pellet, these pores are not in the crystal grain boundaries that affect the properties of the MgO sintered body, but in the crystal grains that hardly affect the properties of the MgO sintered body. Exists. As a result, when the high-purity and high-density MgO sintered pellet of the present invention is formed on a plasma display panel, an MgO film having less splash and excellent film characteristics can be obtained.
【0023】なお、形状の大きな成形体を焼結する場合
には、上記二段焼結時の昇温速度を20〜30℃/時間
と遅くすれば更に緻密化を図ることができる。また、常
圧における焼結では、焼結温度が1500℃未満である
と十分に緻密化できないけれども、焼結温度が1500
℃以上であれば高密度の焼結体を得ることができるの
で、熱間静水圧成形法(HIP(Hot Isostatic Pres
s)法)やホットプレス法等の特殊な焼結を行わなくて
も済む。In the case of sintering a compact having a large shape, further densification can be achieved by slowing the heating rate during the two-stage sintering to 20 to 30 ° C./hour. Further, in sintering at normal pressure, if the sintering temperature is less than 1500 ° C., it is not possible to sufficiently densify, but the sintering temperature is 1500 ° C.
C. or more, a high-density sintered body can be obtained, so that hot isostatic pressing (HIP)
s) It is not necessary to perform special sintering such as method) or hot pressing.
【0024】[0024]
【実施例】以下に実施例及び比較例を挙げて、本発明を
より具体的に説明するが、本発明はその要旨を越えない
限り、以下の実施例に限定されるものではない。 <実施例1>先ずMgO粉末(岩谷化学社製MJ−3
0、純度99.9%、平均粒径0.3μm)に対し、バ
インダとしてポリエチレングリコール(三洋化成社製P
EG−200)を1重量%添加し、エタノールを分散媒
とするスラリーを濃度72重量%(粘度400cps)
に調製した。次いでこのスラリーをボールミル(直径5
mmのZrO2製ボール使用)にて20時間湿式混合し
た後、スプレードライヤにて噴霧乾燥して平均粒径80
μmの造粒粉末を得た。噴霧乾燥の条件はアトマイザ
(高速回転円盤)の回転速度を10000rpmに設定
し、高温ガスの入口及び出口温度をそれぞれ100℃及
び60℃に設定した。次に得られた造粒粉末をCIP成
形装置の薄肉円筒状容器(内径155mm、高さ8m
m)に充填し、1500kg/cm2でCIP成形し
た。更にこの成形体を二段焼結した、即ち電気炉(広築
社製)に入れ、大気中1300℃で2時間一次焼結した
後、1600℃で2時間二次焼結した。一次焼結から二
次焼結への昇温速度は30℃/時間であり、二次焼結終
了後の降温速度は50℃/時間であった。この焼結体の
円板を実施例1とした。The present invention will be described in more detail with reference to the following Examples and Comparative Examples. However, the present invention is not limited to the following Examples unless it exceeds the gist thereof. <Example 1> First, MgO powder (MJ-3 manufactured by Iwatani Chemical Co., Ltd.)
0, purity 99.9%, average particle size 0.3 μm), polyethylene glycol (Pan manufactured by Sanyo Chemical Co., Ltd.)
EG-200) was added at 1% by weight, and a slurry containing ethanol as a dispersion medium was concentrated at a concentration of 72% by weight (viscosity: 400 cps).
Was prepared. This slurry was then ball milled (diameter 5).
mm ZrO 2 balls), wet-mixed for 20 hours, and spray-dried with a spray dryer to obtain an average particle size of 80.
A granulated powder of μm was obtained. The spray drying conditions were as follows: the rotation speed of the atomizer (high-speed rotating disk) was set at 10,000 rpm, and the inlet and outlet temperatures of the hot gas were set at 100 ° C. and 60 ° C., respectively. Next, the obtained granulated powder is put into a thin cylindrical container (inner diameter: 155 mm, height: 8 m) of a CIP molding machine.
m) and CIP-molded at 1500 kg / cm 2 . Further, the molded body was sintered in two steps, that is, put in an electric furnace (manufactured by Hiroki Co., Ltd.), primary sintered at 1300 ° C. for 2 hours in the air, and then secondary sintered at 1600 ° C. for 2 hours. The rate of temperature rise from primary sintering to secondary sintering was 30 ° C./hour, and the rate of temperature decrease after completion of secondary sintering was 50 ° C./hour. This sintered disk was used as Example 1.
【0025】<実施例2>実施例1と同様に調製したス
ラリーを実施例1と同一のボールを使用したボールミル
にて24時間湿式混合した後、スプレードライヤにて噴
霧乾燥して平均粒径200μmの造粒粉末を得た。この
造粒粉末を一軸プレス装置の型(内径6mm、深さ3m
m)に充填し、1000kg/cm2で一軸プレス成形
した。上記以外は実施例1と同様に製造した。この焼結
体ペレットを実施例2とした。 <実施例3>実施例1と同様に調製したスラリーを実施
例1と同一のボールを使用したボールミルにて24時間
湿式混合した後、スプレードライヤにて噴霧乾燥して平
均粒径300μmの造粒粉末を得た。この造粒粉末を一
軸プレス装置の型(内径6mm、深さ3mm)に充填
し、1000kg/cm2で一軸プレス成形した。上記
以外は実施例1と同様に製造した。この焼結体ペレット
を実施例3とした。Example 2 A slurry prepared in the same manner as in Example 1 was wet-mixed for 24 hours in a ball mill using the same balls as in Example 1, and then spray-dried with a spray dryer to obtain an average particle diameter of 200 μm. Was obtained. The granulated powder is placed in a uniaxial pressing machine mold (inner diameter 6 mm, depth 3 m).
m) and subjected to uniaxial press molding at 1000 kg / cm 2 . Except for the above, it was manufactured in the same manner as in Example 1. This sintered body pellet was used as Example 2. Example 3 A slurry prepared in the same manner as in Example 1 was wet-mixed in a ball mill using the same balls as in Example 1 for 24 hours, and then spray-dried with a spray dryer to form granules having an average particle diameter of 300 μm. A powder was obtained. The granulated powder was filled in a mold of a uniaxial press device (inner diameter: 6 mm, depth: 3 mm), and subjected to uniaxial press molding at 1000 kg / cm 2 . Except for the above, it was manufactured in the same manner as in Example 1. This sintered compact was used as Example 3.
【0026】<実施例4>実施例1と同様に調製したス
ラリーを実施例1と同一のボールを使用したボールミル
にて24時間湿式混合した後、スプレードライヤにて噴
霧乾燥して平均粒径150μmの造粒粉末を得た。この
造粒粉末をCIP成形装置の薄肉円筒状容器(内径15
5mm、高さ8mm)に充填し、1500kg/cm2
でCIP成形した。上記以外は実施例1と同様に製造し
た。この焼結体の円板を実施例4とした。 <実施例5>実施例1と同様に調製したスラリーを撹拌
ミル(直径2mmのZrO2製ボール使用)にて1時間
湿式混合した後、スプレードライヤにて噴霧乾燥して平
均粒径200μmの造粒粉末を得た。この造粒粉末を一
軸プレス装置の型(内径6mm、深さ3mm)に充填
し、1000kg/cm2で一軸プレス成形した。上記
以外は実施例1と同様に製造した。この焼結体ペレット
を実施例5とした。Example 4 A slurry prepared in the same manner as in Example 1 was wet-mixed for 24 hours in a ball mill using the same balls as in Example 1, and then spray-dried with a spray dryer to obtain an average particle size of 150 μm. Was obtained. This granulated powder is transferred to a thin cylindrical container (with an inner diameter of 15
5 mm, height 8 mm) and 1500 kg / cm 2
Was CIP molded. Except for the above, it was manufactured in the same manner as in Example 1. The disk of this sintered body was used as Example 4. Example 5 The slurry prepared in the same manner as in Example 1 was wet-mixed for 1 hour in a stirring mill (using ZrO 2 balls having a diameter of 2 mm), and then spray-dried with a spray dryer to form an average particle diameter of 200 μm. Granular powder was obtained. The granulated powder was filled in a mold of a uniaxial press device (inner diameter: 6 mm, depth: 3 mm), and subjected to uniaxial press molding at 1000 kg / cm 2 . Except for the above, it was manufactured in the same manner as in Example 1. This sintered compact pellet was used as Example 5.
【0027】<実施例6>実施例1と同様に調製したス
ラリーを実施例5と同一のボールを使用した撹拌ミルに
て1時間湿式混合した後、スプレードライヤにて噴霧乾
燥して平均粒径150μmの造粒粉末を得た。この造粒
粉末を一軸プレス装置の型(内径6mm、深さ3mm)
に充填し、1000kg/cm2で一軸プレス成形し
た。上記以外は実施例1と同様に製造した。上記以外は
実施例1と同様に製造した。この焼結体ペレットを実施
例6とした。 <実施例7>実施例1と同様に調製したスラリーを実施
例5と同一のボールを使用した撹拌ミルにて1時間湿式
混合した後、スプレードライヤにて噴霧乾燥して平均粒
径250μmの造粒粉末を得た。この造粒粉末をCIP
成形装置の薄肉円筒状容器(内径155mm、高さ8m
m)に充填し、1500kg/cm2でCIP成形し
た。上記以外は、実施例1と同様に製造した。この焼結
体の円板を実施例7とした。 <実施例8>実施例1と同様に調製したスラリーを実施
例5と同一のボールを使用した撹拌ミルにて1時間湿式
混合した後、スプレードライヤにて噴霧乾燥して平均粒
径300μmの造粒粉末を得た。この造粒粉末をCIP
成形装置の薄肉円筒状容器(内径155mm、高さ8m
m)に充填し、1500kg/cm2でCIP成形し
た。上記以外は実施例1と同様に製造した。この焼結体
の円板を実施例8とした。Example 6 A slurry prepared in the same manner as in Example 1 was wet-mixed for 1 hour in a stirring mill using the same balls as in Example 5, and then spray-dried with a spray dryer to obtain an average particle size. A granulated powder of 150 μm was obtained. This granulated powder is molded using a uniaxial pressing machine (inner diameter 6 mm, depth 3 mm)
And subjected to uniaxial press molding at 1000 kg / cm 2 . Except for the above, it was manufactured in the same manner as in Example 1. Except for the above, it was manufactured in the same manner as in Example 1. This sintered body pellet was used as Example 6. <Example 7> The slurry prepared in the same manner as in Example 1 was wet-mixed for 1 hour with a stirring mill using the same balls as in Example 5, and then spray-dried with a spray dryer to form an average particle diameter of 250 µm. Granular powder was obtained. This granulated powder is
Thin-walled cylindrical container (155 mm inside diameter, 8 m height)
m) and CIP-molded at 1500 kg / cm 2 . Except for the above, it was manufactured in the same manner as in Example 1. This sintered disk was used as Example 7. <Example 8> A slurry prepared in the same manner as in Example 1 was wet-mixed for 1 hour in a stirring mill using the same balls as in Example 5, and then spray-dried with a spray dryer to form an average particle diameter of 300 µm. Granular powder was obtained. This granulated powder is
Thin-walled cylindrical container (155 mm inside diameter, 8 m height)
m) and CIP-molded at 1500 kg / cm 2 . Except for the above, it was manufactured in the same manner as in Example 1. This sintered disk was used as Example 8.
【0028】<比較例1>実施例1と同様に調製したス
ラリーを実施例1と同一のボールを使用したボールミル
にて48時間湿式混合した後、スプレードライヤにて噴
霧乾燥して平均粒径70μmの造粒粉末を得た。次に得
られた造粒粉末をCIP成形装置の薄肉円筒状容器(内
径155mm、高さ8mm)に充填し、1500kg/
cm2でCIP成形した。更にこの成形体を電気炉(広
築社製)に入れ、大気中1650℃で3時間焼結した。
この焼結体の円板を比較例1とした。 <比較例2>実施例1と同様に調製したスラリーを撹拌
ミル(直径3mmのZrO2製ボール使用)にて8時間
湿式混合した後、スプレードライヤにて噴霧乾燥して平
均粒径40μmの造粒粉末を得た。この造粒粉末を一軸
プレス装置の型(内径6mm、深さ3mm)に充填し、
1000kg/cm2で一軸プレス成形した。焼結は比
較例1と同様に行った。この焼結体ペレットを比較例2
とした。Comparative Example 1 A slurry prepared in the same manner as in Example 1 was wet-mixed for 48 hours in a ball mill using the same balls as in Example 1, and then spray-dried with a spray dryer to obtain an average particle size of 70 μm. Was obtained. Next, the obtained granulated powder is filled in a thin-walled cylindrical container (inner diameter: 155 mm, height: 8 mm) of a CIP molding apparatus, and 1500 kg /
CIP was performed in cm 2 . Further, the molded body was placed in an electric furnace (manufactured by Hirokisha) and sintered at 1650 ° C. in the atmosphere for 3 hours.
This sintered disk was used as Comparative Example 1. <Comparative Example 2> A slurry prepared in the same manner as in Example 1 was wet-mixed in a stirring mill (using a ZrO 2 ball having a diameter of 3 mm) for 8 hours, and then spray-dried with a spray dryer to form an average particle diameter of 40 µm. Granular powder was obtained. This granulated powder is filled in a mold (inner diameter 6 mm, depth 3 mm) of a uniaxial press machine,
Uniaxial press molding was performed at 1000 kg / cm 2 . Sintering was performed in the same manner as in Comparative Example 1. Comparative Example 2
And
【0029】<比較例3>実施例1と同様に調製したス
ラリーを撹拌ミル(直径10mmのZrO2製ボール使
用)にて1時間湿式混合した後、スプレードライヤにて
噴霧乾燥して平均粒径100μmの造粒粉末を得た。こ
の造粒粉末をCIP成形装置の薄肉円筒状容器(内径1
55mm、高さ8mm)に充填し、1500kg/cm
2でCIP成形した。焼結は比較例1と同様に行った。
この焼結体の円板を比較例3とした。 <比較例4>実施例1と同様に調製したスラリーをボー
ルミル(直径15mmのZrO2製ボール使用)にて4
8時間湿式混合した後、スプレードライヤにて噴霧乾燥
して平均粒径200μmの造粒粉末を得た。この造粒粉
末をCIP成形装置の薄肉円筒状容器(内径155m
m、高さ8mm)に充填し、1500kg/cm2でC
IP成形した。焼結は比較例1と同様に行った。この焼
結体の円板を比較例4とした。 <比較例5>市販の電融により製造された単結晶MgO
(純度99.3%)の破砕品を比較例5とした。この破
砕品の直径は3〜5mmであった。Comparative Example 3 The slurry prepared in the same manner as in Example 1 was wet-mixed for 1 hour in a stirring mill (using a ZrO 2 ball having a diameter of 10 mm), and then spray-dried with a spray dryer to obtain an average particle size. A granulated powder of 100 μm was obtained. This granulated powder is transferred to a thin cylindrical container (inner diameter 1
55mm, height 8mm), 1500kg / cm
CIP molding was carried out at 2 . Sintering was performed in the same manner as in Comparative Example 1.
The disc of this sintered body was used as Comparative Example 3. <Comparative Example 4> A slurry prepared in the same manner as in Example 1 was applied to a ball mill (using ZrO 2 balls having a diameter of 15 mm).
After wet mixing for 8 hours, the mixture was spray-dried with a spray dryer to obtain a granulated powder having an average particle size of 200 μm. The granulated powder is transferred to a thin cylindrical container (155 m inside diameter) of a CIP molding machine.
m, height 8mm) and C at 1500kg / cm 2
IP molded. Sintering was performed in the same manner as in Comparative Example 1. This sintered disk was used as Comparative Example 4. Comparative Example 5 Commercially available single-crystal MgO produced by electrofusion
A crushed product having a purity of 99.3% was used as Comparative Example 5. The diameter of this crushed product was 3 to 5 mm.
【0030】<比較試験と評価> (a) 相対密度及び破壊強度試験 実施例1〜8及び比較例1〜5で得られた焼結体の円
板、ペレット及び破砕品の純度、相対密度をそれぞれ測
定した。また実施例1、4、7、8及び比較例1、3及
び4で得られた焼結体の円板をそれぞれ切り出し、研削
・研磨加工して、JIS R1601に準じた3mm×
4mm×40mmの3点曲げ試験片の大きさとし、破壊
強度(曲げ強度)を調べた。これらの結果を表1に示
す。なお、純度は不純物の分析値より算出し、相対密度
はトルエン中、アルキメデス法で測定し、破壊強度は3
点曲げ試験により測定した。また表1には実施例1〜8
及び比較例1〜4の焼結体の円板及びペレットの製造条
件、即ちスラリーの混合処理、造粒粉末の平均粒径及び
成形体の焼結条件を記載した。<Comparison Test and Evaluation> (a) Relative Density and Breaking Strength Test Purity and relative density of the discs, pellets and crushed products of the sintered bodies obtained in Examples 1 to 8 and Comparative Examples 1 to 5 were determined. Each was measured. Further, the discs of the sintered bodies obtained in Examples 1, 4, 7, 8 and Comparative Examples 1, 3, and 4 were cut out, ground and polished, and 3 mm × according to JIS R1601.
The size of a four-point bending test specimen of 4 mm × 40 mm was determined, and the breaking strength (bending strength) was examined. Table 1 shows the results. The purity was calculated from the analytical value of the impurity, the relative density was measured by the Archimedes method in toluene, and the breaking strength was 3
It was measured by a point bending test. Table 1 shows Examples 1 to 8.
The production conditions of the discs and pellets of the sintered bodies of Comparative Examples 1 to 4, that is, the slurry mixing treatment, the average particle size of the granulated powder, and the sintering conditions of the compact were described.
【0031】[0031]
【表1】 [Table 1]
【0032】表1から明らかなように、実施例1〜8で
は製造工程での不純物の混入はなく、MgO焼結体の純
度は出発原料のMgO粉末に相応して全て99.9%以
上であり、相対密度は99%以上まで緻密化した。一
方、比較例4では、純度が99.4%であったが、原料
の分散が悪く、焼結体に変形が生じた。また比較例1〜
3では、ボールミルや撹拌ミルで混合する時間やメディ
ア径が不適切なために、製造工程で不純物が混入した。
更に実施例1、4、7及び8と比較例1〜4から、相対
密度に関して二段焼結の方が一段焼結より好ましいこと
が判った。即ち1回だけの焼結で製造した比較例1、3
及び4の焼結体の試験片の曲げ強度は290〜470M
Paであったのに対し、二段焼結で製造した実施例1、
4、7及び8の焼結体の試験片の曲げ強度は比較例の約
2倍強の750〜785MPaに達した。As is clear from Table 1, in Examples 1 to 8, no impurities were mixed in the manufacturing process, and the purity of the MgO sintered body was 99.9% or more, corresponding to the starting material MgO powder. Yes, the relative density was densified to 99% or more. On the other hand, in Comparative Example 4, although the purity was 99.4%, the dispersion of the raw materials was poor, and the sintered body was deformed. Comparative Examples 1 to
In No. 3, impurities were mixed in the manufacturing process due to improper mixing time and media diameter in a ball mill or a stirring mill.
Further, from Examples 1, 4, 7 and 8, and Comparative Examples 1 to 4, it was found that the two-stage sintering was more preferable than the one-stage sintering with respect to the relative density. That is, Comparative Examples 1 and 3 manufactured by only one sintering
And the bending strength of the test piece of the sintered body of 4 were 290-470M.
Example 1 produced by two-stage sintering,
The bending strength of the test pieces of the sintered bodies 4, 7, and 8 reached 750 to 785 MPa, which was about twice as large as that of the comparative example.
【0033】(b) 不純物の分析 実施例4の焼結体の試験片と、比較例1の焼結体の試験
片と、比較例5の単結晶MgOの破砕品とに含まれる不
純物を、原子吸光及びICP(誘導結合形プラズマ分析
法、Inductively Coupled Plasma emission spectroche
mical analysis)によりそれぞれ分析した。その結果を
表2に示す。(B) Analysis of impurities Impurities contained in the test piece of the sintered body of Example 4, the test piece of the sintered body of Comparative Example 1, and the crushed single-crystal MgO product of Comparative Example 5 were Atomic absorption and ICP (Inductively Coupled Plasma emission spectroche
mical analysis). Table 2 shows the results.
【0034】[0034]
【表2】 [Table 2]
【0035】表2から明らかなように、実施例4では不
純物の濃度が40ppm未満であったのに対し、比較例
1ではZr以外の不純物の濃度が60ppm以下であっ
たが、不純物Zrの濃度がかなり高い11800ppm
(1.18%)を示した。また比較例5では不純物Ca
の濃度が5820ppmと極めて高い値を示した。これ
は、比較例5の原料中にAl,Ca,Feが多量に含ま
れており、特にCaが多量に含まれているためである。As is clear from Table 2, while the concentration of the impurities in Example 4 was less than 40 ppm, the concentration of the impurities other than Zr in Comparative Example 1 was 60 ppm or less. Is considerably higher at 11800 ppm
(1.18%). In Comparative Example 5, the impurity Ca
Was extremely high at 5820 ppm. This is because the raw material of Comparative Example 5 contains a large amount of Al, Ca, and Fe, and particularly contains a large amount of Ca.
【0036】(c) 成膜したMgO膜の特性試験及びその
放電性試験 実施例2、5及び6の焼結体ペレットと、比較例2の焼
結体ペレットと、比較例5の単結晶MgOの破砕品と
を、電子ビーム蒸着法によりガラス基板に成膜して5種
類のTEG(Test Element Group)基板を作製した。図
1に示すようにTEG基板10は、厚さ1mmのガラス
基板(コーニング#7059ガラス製)11上にフォト
リソグラフィによりInSn複合酸化膜からなる下地電
極12を100μmの間隔で厚さ1μm、幅100μm
に形成し、これらの下地電極12を覆うように反応性D
Cスパッタリングで厚さ3μmのガラス層13を形成し
た後、上記電子ビーム蒸着法により同一の成膜条件で厚
さ7000オングストロームのMgO膜14を成膜する
ことにより作られた。なお、MgO膜の成膜条件は、加
速電圧が15kV、蒸着圧力が1×10-2Pa、蒸着距
離が600mmであった。(C) Characteristic test of formed MgO film and discharge test thereof The sintered pellets of Examples 2, 5 and 6, the sintered pellet of Comparative Example 2, and the single crystal MgO of Comparative Example 5 And 5 pieces of TEG (Test Element Group) substrates were prepared by forming a film of the crushed product on a glass substrate by an electron beam evaporation method. As shown in FIG. 1, a TEG substrate 10 has a thickness of 1 μm and a width of 100 μm on a glass substrate (made of Corning # 7059 glass) 11 having a thickness of 1 mm, and an underlying electrode 12 made of an InSn composite oxide film formed at intervals of 100 μm by photolithography.
And reactive D so as to cover these base electrodes 12.
After forming a glass layer 13 having a thickness of 3 μm by C sputtering, an MgO film 14 having a thickness of 7000 Å was formed by the electron beam evaporation method under the same film forming conditions. The conditions for forming the MgO film were as follows: an acceleration voltage of 15 kV, a deposition pressure of 1 × 10 −2 Pa, and a deposition distance of 600 mm.
【0037】先ず上記MgO膜の屈折率及び吸収係数を
測定した。MgO膜の屈折率と吸収係数は、He−Ne
レーザ(波長6238オングストローム)により、膜に
対し1波長、2入射角(55°、70°)のエリプソ測
定を行い、解析ソフトを用いて求めた。次に上記MgO
膜の放電開始電圧を以下の方法で測定した。5種類のT
EG基板をTEG基板毎に図2に示す装置のNe−5%
Xeで500Torrの真空ベルジャー15内に配置し
た加熱サンプル台16に載せ、下地電極19(図1)を
パルス電源17に接続し、TEG基板10を熱電対18
で測定しながら一定の温度に制御して、電源電圧を上昇
して行き、放電を開始する電圧を測定した。パルス電源
17は0〜300Vの範囲で電圧可変であって、周波数
66kHzでパルス幅10μsecのパルスを発生するよ
うになっている。MgO膜の屈折率、吸収係数及び放電
開始電圧を表3に示す。First, the refractive index and the absorption coefficient of the MgO film were measured. The refractive index and absorption coefficient of the MgO film are He-Ne.
Ellipsometry was performed on the film at one wavelength and two angles of incidence (55 °, 70 °) with a laser (wavelength: 6238 Å), and the value was obtained using analysis software. Next, the above MgO
The firing voltage of the film was measured by the following method. 5 types of T
Ne-5% of the apparatus shown in FIG.
Xe is placed on a heating sample table 16 arranged in a vacuum bell jar 15 of 500 Torr, a base electrode 19 (FIG. 1) is connected to a pulse power source 17, and the TEG substrate 10 is connected to a thermocouple 18.
The power supply voltage was increased while controlling the temperature at a constant value while measuring the above, and the voltage at which discharge was started was measured. The pulse power supply 17 is variable in voltage in the range of 0 to 300 V, and generates a pulse having a frequency of 66 kHz and a pulse width of 10 μsec. Table 3 shows the refractive index, absorption coefficient, and discharge starting voltage of the MgO film.
【0038】[0038]
【表3】 [Table 3]
【0039】表3から明らかなように、比較例2及び5
では屈折率が1.65及び1.62であったのに対し、
実施例2、5及び6では屈折率が約1.8と向上した。
また比較例2及び5では吸収係数が約0.01であった
のに対し、実施例2、5及び6では吸収係数が0.00
1以下と向上した。また放電開始電圧は、実施例2、5
及び6では比較例2、3及び5と比べて10〜20V程
度低いことが判った。更に実施例の成膜速度は比較例の
約3倍の値が得られた。これは電子ビームが当ったとき
に、比較例5の単結晶MgOの破砕品では配向性がある
が、実施例の多結晶MgOの焼結体ペレットでは配向性
がないために効率的な成膜が可能となったためである。
なお、実施例2、5及び6を用いてMgO膜を成膜した
基板をPDPに組込んだときの耐スパッタ性も良好で駆
動電圧も低下した。As is clear from Table 3, Comparative Examples 2 and 5
Had refractive indexes of 1.65 and 1.62,
In Examples 2, 5, and 6, the refractive index was improved to about 1.8.
In Comparative Examples 2 and 5, the absorption coefficient was about 0.01, while in Examples 2, 5, and 6, the absorption coefficient was 0.00.
It improved to 1 or less. In addition, the discharge starting voltage was determined in Examples 2 and 5.
And 6, it was found to be about 10 to 20 V lower than Comparative Examples 2, 3, and 5. Further, the film forming rate of the example was about three times the value of the comparative example. This is because when the electron beam is applied, the single crystal MgO crushed product of Comparative Example 5 has orientation, but the polycrystalline MgO sintered pellet of Example does not have orientation, so that efficient film formation is performed. This is because it became possible.
In addition, when the substrate on which the MgO film was formed using Examples 2, 5, and 6 was incorporated into a PDP, the sputter resistance was good and the driving voltage was lowered.
【0040】(d) MgO膜の膜厚分布 実施例2の焼結体ペレットと、比較例2の試験片と、比
較例5の単結晶MgOの破砕品とを、上記と同様に電子
ビーム蒸着法によりガラス基板に成膜した。このMgO
膜の膜厚分布をHe−Neレーザ(6328A)のエリ
プソにより測定した。この結果を表4に示す。なお、表
4において各部の膜厚をガラス基板中心の膜厚に対する
比で示した。即ち、ガラス基板中心の膜厚を1.0と
し、各部の膜厚はこれに対する比で示した。(D) Film thickness distribution of MgO film The sintered pellet of Example 2, the test piece of Comparative Example 2, and the crushed single crystal MgO of Comparative Example 5 were subjected to electron beam evaporation in the same manner as described above. A film was formed on a glass substrate by a method. This MgO
The film thickness distribution of the film was measured by an ellipsometer of a He-Ne laser (6328A). Table 4 shows the results. In Table 4, the thickness of each part is shown as a ratio to the thickness of the center of the glass substrate. That is, the film thickness at the center of the glass substrate was set to 1.0, and the film thickness of each part was shown by a ratio to this.
【0041】[0041]
【表4】 [Table 4]
【0042】表4から明らかなように、実施例2と、比
較例2及び5のいずれもガラス基板中心から離れるに従
って膜厚が次第に減少するが、実施例2の減少率は比較
例2及び5より小さかった。As is clear from Table 4, the film thickness of Example 2 and Comparative Examples 2 and 5 both gradually decrease as the distance from the center of the glass substrate increases. It was smaller.
【0043】[0043]
【発明の効果】以上述べたように、本発明によれば、多
結晶MgO蒸着材をMgO純度が99.5%以上かつ相
対密度が97%以上の多結晶MgOの焼結体ペレットか
ら構成したので、この高純度かつ高密度の多結晶MgO
蒸着材を用いてAC型PDP等のMgO膜を成膜する
と、スプラッシュが少なく効率的に成膜でき、略均一な
膜厚を有するMgO膜を得ることができる。この結果、
MgO膜の成膜面積が大きくても、略均一に成膜するこ
とができるので、例えばMgO膜を成膜したガラス誘電
体層をPDPに組込んだ場合に、放電開始電圧や駆動電
圧を低く一定にでき、PDPの電気的特性を向上でき
る。As described above, according to the present invention, the polycrystalline MgO vapor-deposited material is formed from sintered pellets of polycrystalline MgO having an MgO purity of 99.5% or more and a relative density of 97% or more. Therefore, this high-purity and high-density polycrystalline MgO
When an MgO film such as an AC type PDP is formed using a vapor deposition material, the film can be formed efficiently with little splash, and an MgO film having a substantially uniform film thickness can be obtained. As a result,
Even when the film area of the MgO film is large, the film can be formed substantially uniformly. For example, when a glass dielectric layer on which an MgO film is formed is incorporated in a PDP, the discharge starting voltage and the driving voltage are reduced. It can be constant, and the electrical characteristics of the PDP can be improved.
【0044】また多結晶MgOの焼結体ペレットの平均
結晶粒径を1〜100μmに形成し、焼結体ペレット内
の気孔を結晶粒内に丸みを帯びかつ平均内径2μm以下
に形成すれば、多結晶MgOの焼結体ペレットは微細な
結晶構造を有し、かつその結晶粒界に欠陥が生じるのを
低減できる。この結果、成膜されたMgO膜は優れた膜
特性を有する。また多結晶MgOの焼結体ペレットに含
まれる、Si及びAlの不純物をそれぞれ元素濃度で1
50ppm以下に、Caの不純物を元素濃度で200p
pm以下に、Feの不純物を元素濃度で50ppm以下
に、Cr,V及びNiの不純物をそれぞれ元素濃度で1
0ppm以下に、Na及びKの不純物をそれぞれ元素濃
度で20ppm以下に、Cの不純物を元素濃度で70p
pm以下に、Zrの不純物を元素濃度で150ppm以
下にすれば、成膜されたMgO膜に含まれる不純物が極
めて少なくなるので、このMgO膜の膜特性は向上す
る。If the average crystal grain size of the sintered compact of polycrystalline MgO is 1 to 100 μm and the pores in the sintered pellet are rounded in the crystal grain and have an average inner diameter of 2 μm or less, The sintered pellet of polycrystalline MgO has a fine crystal structure and can reduce the occurrence of defects at the crystal grain boundaries. As a result, the formed MgO film has excellent film properties. In addition, the impurities of Si and Al contained in the sintered pellet of polycrystalline MgO are each 1 element concentration.
Reduce the impurity of Ca to an element concentration of 200
pm or less, Fe impurities at an element concentration of 50 ppm or less, and Cr, V and Ni impurities at an element concentration of 1 ppm or less.
0 ppm or less, Na and K impurities at an element concentration of 20 ppm or less, and C impurity at an element concentration of 70 ppm or less.
If the impurity concentration of Zr is set to 150 ppm or less and the element concentration is set to 150 ppm or less, the impurities contained in the formed MgO film become extremely small, so that the film characteristics of the MgO film are improved.
【0045】更に純度が99.5%以上で平均粒径が
0.1〜3μmのMgO粉末とバインダと有機溶媒とを
混合して濃度が45〜75重量%のスラリーを調製し、
スラリーを噴霧乾燥して平均粒径が50〜300μmの
造粒粉末を得た後、この造粒粉末を所定の型に入れて所
定の圧力で成形し、この成形体を所定の温度で焼結すれ
ば、上記MgO純度が99.5%以上かつ相対密度が9
7%以上の多結晶MgOの焼結体ペレットからなる多結
晶MgO蒸着材を得ることができる。Further, a slurry having a concentration of 45 to 75% by weight is prepared by mixing MgO powder having a purity of 99.5% or more and an average particle diameter of 0.1 to 3 μm, a binder and an organic solvent,
After the slurry is spray-dried to obtain a granulated powder having an average particle size of 50 to 300 μm, the granulated powder is placed in a predetermined mold, molded at a predetermined pressure, and sintered at a predetermined temperature. Then, the MgO purity is 99.5% or more and the relative density is 9%.
It is possible to obtain a polycrystalline MgO vapor deposition material composed of sintered pellets of polycrystalline MgO of 7% or more.
【図1】本発明の多結晶MgO蒸着材を用いて真空蒸着
法で成膜したMgO膜を有するTEG基板の断面図。FIG. 1 is a cross-sectional view of a TEG substrate having an MgO film formed by a vacuum evaporation method using a polycrystalline MgO evaporation material of the present invention.
【図2】図1に示すTEG基板の放電開始電圧を測定す
る装置の構成図。FIG. 2 is a configuration diagram of an apparatus for measuring a discharge starting voltage of the TEG substrate shown in FIG.
【手続補正書】[Procedure amendment]
【提出日】平成9年5月29日[Submission date] May 29, 1997
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0030[Correction target item name] 0030
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0030】<比較試験と評価> (a) MgO焼結体の純度、相対密度及び破壊強度試験 実施例1〜8及び比較例1〜5で得られた焼結体の円
板、ペレット及び破砕品の純度、相対密度をそれぞれ測
定した。また実施例1、4、7、8及び比較例1、3及
び4で得られた焼結体の円板をそれぞれ切り出し、研削
・研磨加工して、JIS R1601に準じた3mm×
4mm×40mmの3点曲げ試験片の大きさとし、破壊
強度(曲げ強度)を調べた。これらの結果を表1に示
す。なお、純度は不純物の分析値より算出し、相対密度
はトルエン中、アルキメデス法で測定し、破壊強度は3
点曲げ試験により測定した。また表1には実施例1〜8
及び比較例1〜4の焼結体の円板及びペレットの製造条
件、即ちスラリーの混合処理、造粒粉末の平均粒径及び
成形体の焼結条件を記載した。<Comparative Test and Evaluation> (a) Purity, relative density and fracture strength test of MgO sintered body Discs, pellets and crushed sintered bodies obtained in Examples 1 to 8 and Comparative Examples 1 to 5 The purity and relative density of the product were measured. Further, the discs of the sintered bodies obtained in Examples 1, 4, 7, 8 and Comparative Examples 1, 3, and 4 were cut out, ground and polished, and 3 mm × according to JIS R1601.
The size of a four-point bending test specimen of 4 mm × 40 mm was determined, and the breaking strength (bending strength) was examined. Table 1 shows the results. The purity was calculated from the analytical value of the impurity, the relative density was measured by the Archimedes method in toluene, and the breaking strength was 3
It was measured by a point bending test. Table 1 shows Examples 1 to 8.
The production conditions of the discs and pellets of the sintered bodies of Comparative Examples 1 to 4, that is, the slurry mixing treatment, the average particle size of the granulated powder, and the sintering conditions of the compact were described.
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0037[Correction target item name] 0037
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0037】先ず上記MgO膜の屈折率及び吸収係数を
測定した。MgO膜の屈折率と吸収係数は、He−Ne
レーザ(波長6238オングストローム)により、膜に
対し1波長、2入射角(55°、70°)のエリプソ測
定を行い、解析ソフトを用いて求めた。次に上記MgO
膜の放電開始電圧を以下の方法で測定した。5種類のT
EG基板をTEG基板毎に図2に示す装置のNe−5%
Xeで500Torrの真空ベルジャー15内に配置し
た加熱サンプル台16に載せ、下地電極12(図1)を
パルス電源17に接続し、TEG基板10を熱電対18
で測定しながら一定の温度に制御して、電源電圧を上昇
して行き、放電を開始する電圧を測定した。パルス電源
17は0〜300Vの範囲で電圧可変であって、周波数
66kHzでパルス幅10μsecのパルスを発生するよ
うになっている。MgO膜の屈折率、吸収係数及び放電
開始電圧を表3に示す。 ─────────────────────────────────────────────────────
First, the refractive index and the absorption coefficient of the MgO film were measured. The refractive index and absorption coefficient of the MgO film are He-Ne.
Ellipsometry was performed on the film at one wavelength and two angles of incidence (55 °, 70 °) with a laser (wavelength: 6238 Å), and the value was obtained using analysis software. Next, the above MgO
The firing voltage of the film was measured by the following method. 5 types of T
Ne-5% of the apparatus shown in FIG.
Xe is placed on a heating sample table 16 placed in a vacuum bell jar 15 of 500 Torr, the base electrode 12 (FIG. 1) is connected to a pulse power source 17, and the TEG substrate 10 is connected to a thermocouple 18.
The power supply voltage was increased while controlling the temperature at a constant value while measuring the above, and the voltage at which discharge was started was measured. The pulse power supply 17 is variable in voltage in the range of 0 to 300 V, and generates a pulse having a frequency of 66 kHz and a pulse width of 10 μsec. Table 3 shows the refractive index, absorption coefficient, and discharge starting voltage of the MgO film. ────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成9年10月27日[Submission date] October 27, 1997
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0037[Correction target item name] 0037
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0037】先ず上記MgO膜の屈折率及び吸収係数を
測定した。MgO膜の屈折率と吸収係数は、He−Ne
レーザ(波長6238オングストローム)により、膜に
対し1波長、2入射角(55°、70°)のエリプソ測
定を行い、解析ソフトを用いて求めた。次に上記MgO
膜の放電開始電圧を以下の方法で測定した。5種類のT
EG基板をTEG基板毎に図2に示す装置のNe−5%
Xeで500Torrの真空ベルジャー15内に配置し
た加熱サンプル台16に載せ、下地電極12(図1)を
パルス電源17に接続し、TEG基板10を熱電対18
で測定しながら一定の温度に制御して、電源電圧を上昇
して行き、放電を開始する電圧を測定した。パルス電源
17は0〜300Vの範囲で電圧可変であって、周波数
66kHzでパルス幅10μsecのパルスを発生するよ
うになっている。MgO膜の屈折率、吸収係数、放電開
始電圧、成膜速度及び成膜時のスプラッシュの有無を表
3に示す。First, the refractive index and the absorption coefficient of the MgO film were measured. The refractive index and absorption coefficient of the MgO film are He-Ne.
Ellipsometry was performed on the film at one wavelength and two angles of incidence (55 °, 70 °) with a laser (wavelength: 6238 Å), and the value was obtained using analysis software. Next, the above MgO
The firing voltage of the film was measured by the following method. 5 types of T
Ne-5% of the apparatus shown in FIG.
Xe is placed on a heating sample table 16 arranged in a vacuum bell jar 15 of 500 Torr, the underlying electrode 12 (FIG. 1) is connected to a pulse power source 17, and the TEG substrate 10 is connected to a thermocouple 18.
The power supply voltage was increased while controlling the temperature at a constant value while measuring the above, and the voltage at which discharge was started was measured. The pulse power supply 17 is variable in voltage in the range of 0 to 300 V, and generates a pulse having a frequency of 66 kHz and a pulse width of 10 μsec. Table 3 shows the refractive index of the MgO film, the absorption coefficient , the discharge starting voltage , the film formation speed, and the presence or absence of splash during film formation .
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0039[Correction target item name] 0039
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0039】表3から明らかなように、比較例2及び5
では屈折率が1.65及び1.62であったのに対し、
実施例2、5及び6では屈折率が約1.8と向上した。
また比較例2及び5では吸収係数が約0.01であった
のに対し、実施例2、5及び6では吸収係数が0.00
1以下と向上した。また放電開始電圧は、実施例2、5
及び6では比較例2及び5と比べて10〜20V程度低
いことが判った。更に実施例の成膜速度は比較例の約3
倍の値が得られた。これは電子ビームが当ったときに、
比較例5の単結晶MgOの破砕品では配向性があるが、
実施例の多結晶MgOの焼結体ペレットでは配向性がな
いために効率的な成膜が可能となったためである。な
お、実施例2、5及び6を用いてMgO膜を成膜した基
板をPDPに組込んだときの耐スパッタ性も良好で駆動
電圧も低下した。As is clear from Table 3, Comparative Examples 2 and 5
Had refractive indexes of 1.65 and 1.62,
In Examples 2, 5, and 6, the refractive index was improved to about 1.8.
In Comparative Examples 2 and 5, the absorption coefficient was about 0.01, while in Examples 2, 5, and 6, the absorption coefficient was 0.00.
It improved to 1 or less. In addition, the discharge starting voltage was determined in Examples 2 and 5.
And it was found approximately 10~20V lower compared with Comparative Example 2及 beauty 5, 6. Furthermore, the film forming rate of the example is about 3 times that of the comparative example.
A doubled value was obtained. This is when the electron beam hits
Although the single crystal MgO crushed product of Comparative Example 5 has orientation,
This is because the polycrystalline MgO sintered pellet of the example has no orientation, and thus efficient film formation is possible. In addition, when the substrate on which the MgO film was formed using Examples 2, 5, and 6 was incorporated into a PDP, the sputter resistance was good and the driving voltage was lowered.
Claims (7)
度が97%以上の多結晶MgOの焼結体ペレットからな
る多結晶MgO蒸着材。1. A polycrystalline MgO vapor deposition material comprising sintered pellets of polycrystalline MgO having an MgO purity of 99.5% or more and a relative density of 97% or more.
晶粒径が1〜100μmであって、前記焼結体ペレット
の結晶粒内に平均内径2μm以下の丸みを帯びた気孔を
有する請求項1記載の多結晶MgO蒸着材。2. The sintered pellet of polycrystalline MgO has an average crystal grain size of 1 to 100 μm, and the sintered pellet has rounded pores having an average inner diameter of 2 μm or less. 2. The polycrystalline MgO vapor deposition material according to 1.
る、Si及びAlの不純物がそれぞれ元素濃度で150
ppm以下であり、Caの不純物が元素濃度で200p
pm以下であり、Feの不純物が元素濃度で50ppm
以下であり、Cr,V及びNiの不純物がそれぞれ元素
濃度で10ppm以下であり、Na及びKの不純物がそ
れぞれ元素濃度で20ppm以下であり、Cの不純物が
元素濃度で70ppm以下であり、Zrの不純物が元素
濃度で150ppm以下である請求項1又は2記載の多
結晶MgO蒸着材。3. The Si and Al impurities contained in the polycrystalline MgO sintered compact pellets each have an element concentration of 150%.
ppm or less, and the impurity of Ca is 200 p
pm or less, and the impurity of Fe is 50 ppm in elemental concentration.
The impurities of Cr, V and Ni are each 10 ppm or less in elemental concentration, the impurities of Na and K are each 20 ppm or less in elemental concentration, the impurity of C is 70 ppm or less in elemental concentration, and the content of Zr is 3. The polycrystalline MgO vapor deposition material according to claim 1, wherein the impurity has an element concentration of 150 ppm or less.
1〜3μmのMgO粉末とバインダと有機溶媒とを混合
して濃度が45〜75重量%のスラリーを調製する工程
と、 前記スラリーを噴霧乾燥して平均粒径が50〜300μ
mの造粒粉末を得る工程と、 前記造粒粉末を所定の型に入れて所定の圧力で成形する
工程と、 前記成形体を所定の温度で焼結する工程とを含む多結晶
MgO蒸着材の製造方法。4. A composition having a purity of 99.5% or more and an average particle size of 0.5%.
Preparing a slurry having a concentration of 45 to 75% by weight by mixing MgO powder of 1 to 3 μm, a binder, and an organic solvent; and spray-drying the slurry to obtain an average particle size of 50 to 300 μm.
m, a step of placing the granulated powder in a predetermined mold and molding at a predetermined pressure, and a step of sintering the molded body at a predetermined temperature. Manufacturing method.
2の圧力で一軸加圧成形する請求項4記載の多結晶Mg
O蒸着材の製造方法。5. The granulated powder is 750-2000 kg / cm.
5. The polycrystalline Mg according to claim 4, which is formed by uniaxial pressing under a pressure of 2.
Manufacturing method of O vapor deposition material.
m2の圧力でCIP成形する請求項4記載の多結晶Mg
O蒸着材の製造方法。6. A granulated powder of 1000 to 3000 kg / c.
5. The polycrystalline Mg according to claim 4, wherein the CIP is formed at a pressure of m 2.
Manufacturing method of O vapor deposition material.
一次焼結した後、昇温して1500〜1650℃の温度
で二次焼結する請求項4記載の多結晶MgO蒸着材の製
造方法。7. The method for producing a polycrystalline MgO vapor-deposited material according to claim 4, wherein the molded body is firstly sintered at a temperature of 1250 to 1350 ° C., and then heated and secondarily sintered at a temperature of 1500 to 1650 ° C. .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9104281A JPH10291854A (en) | 1997-04-22 | 1997-04-22 | Polycrystalline mgo vapor depositing material and its production |
KR1019970074442A KR19980079548A (en) | 1997-04-22 | 1997-12-26 | Mg deposition material and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9104281A JPH10291854A (en) | 1997-04-22 | 1997-04-22 | Polycrystalline mgo vapor depositing material and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10291854A true JPH10291854A (en) | 1998-11-04 |
Family
ID=14376552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9104281A Pending JPH10291854A (en) | 1997-04-22 | 1997-04-22 | Polycrystalline mgo vapor depositing material and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10291854A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003109511A (en) * | 2001-09-27 | 2003-04-11 | Matsushita Electric Ind Co Ltd | Plasma display panel |
WO2003097895A1 (en) * | 2002-05-20 | 2003-11-27 | Mitsubishi Materials Corporation | MATERIAL SUBJECTED TO VACUUM EVAPORATION, MgO MATERIAL SUBJECTED TO VACUUM EVAPORATION, PROCESS FOR PRODUCING THE SAME AND METHOD OF FORMING FILM |
JP2004084016A (en) * | 2002-08-27 | 2004-03-18 | Ube Material Industries Ltd | Magnesium oxide vapor deposition material |
JP2004084017A (en) * | 2002-08-27 | 2004-03-18 | Ube Material Industries Ltd | Magnesium oxide powder for raw material of magnesium oxide vapor deposition material |
JP2004273452A (en) * | 2003-03-04 | 2004-09-30 | Samsung Sdi Co Ltd | Plasma display panel |
JP2005005086A (en) * | 2003-06-11 | 2005-01-06 | Matsushita Electric Ind Co Ltd | Plasma display panel and its manufacturing method |
JP2005019391A (en) * | 2003-05-30 | 2005-01-20 | Pioneer Plasma Display Corp | Vapor deposition material, manufacturing method of plasma display panel using the same, and manufacturing method of plasma display device |
JP2005029418A (en) * | 2003-07-11 | 2005-02-03 | Mitsubishi Materials Corp | Lithium fluoride vapor deposition material and method of manufacturing the same |
US6879107B2 (en) | 2001-07-18 | 2005-04-12 | Nec Corporation | Plasma display panel and fabrication method of the same |
JP2005097724A (en) * | 2003-08-29 | 2005-04-14 | Mitsubishi Materials Corp | MgO VAPOR-DEPOSITING MATERIAL, MgO FILM AND MANUFACTURING METHOD THEREFOR |
JP2005330574A (en) * | 2003-10-21 | 2005-12-02 | Ube Material Industries Ltd | Magnesium oxide vapor-deposition material |
JP2005330589A (en) * | 2003-10-21 | 2005-12-02 | Ube Material Industries Ltd | Method for producing magnesium oxide vapor-deposition material |
JP2008255480A (en) * | 2007-03-09 | 2008-10-23 | Mitsubishi Materials Corp | Vapor deposition material and manufacturing method therefor |
JP2011146194A (en) * | 2010-01-13 | 2011-07-28 | Ube Material Industries Ltd | Vapor deposition material for manufacturing oxide film containing strontium and calcium |
JP2012092428A (en) * | 2010-09-29 | 2012-05-17 | Mitsubishi Materials Corp | Vapor deposition material for thin film deposition, thin film sheet provided with the thin film, and laminated sheet |
-
1997
- 1997-04-22 JP JP9104281A patent/JPH10291854A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6879107B2 (en) | 2001-07-18 | 2005-04-12 | Nec Corporation | Plasma display panel and fabrication method of the same |
JP2003109511A (en) * | 2001-09-27 | 2003-04-11 | Matsushita Electric Ind Co Ltd | Plasma display panel |
WO2003097895A1 (en) * | 2002-05-20 | 2003-11-27 | Mitsubishi Materials Corporation | MATERIAL SUBJECTED TO VACUUM EVAPORATION, MgO MATERIAL SUBJECTED TO VACUUM EVAPORATION, PROCESS FOR PRODUCING THE SAME AND METHOD OF FORMING FILM |
JP2004084016A (en) * | 2002-08-27 | 2004-03-18 | Ube Material Industries Ltd | Magnesium oxide vapor deposition material |
JP2004084017A (en) * | 2002-08-27 | 2004-03-18 | Ube Material Industries Ltd | Magnesium oxide powder for raw material of magnesium oxide vapor deposition material |
JP2004273452A (en) * | 2003-03-04 | 2004-09-30 | Samsung Sdi Co Ltd | Plasma display panel |
JP2005019391A (en) * | 2003-05-30 | 2005-01-20 | Pioneer Plasma Display Corp | Vapor deposition material, manufacturing method of plasma display panel using the same, and manufacturing method of plasma display device |
JP2005005086A (en) * | 2003-06-11 | 2005-01-06 | Matsushita Electric Ind Co Ltd | Plasma display panel and its manufacturing method |
JP2005029418A (en) * | 2003-07-11 | 2005-02-03 | Mitsubishi Materials Corp | Lithium fluoride vapor deposition material and method of manufacturing the same |
JP2005097724A (en) * | 2003-08-29 | 2005-04-14 | Mitsubishi Materials Corp | MgO VAPOR-DEPOSITING MATERIAL, MgO FILM AND MANUFACTURING METHOD THEREFOR |
JP2005330574A (en) * | 2003-10-21 | 2005-12-02 | Ube Material Industries Ltd | Magnesium oxide vapor-deposition material |
JP2005330589A (en) * | 2003-10-21 | 2005-12-02 | Ube Material Industries Ltd | Method for producing magnesium oxide vapor-deposition material |
JP4611138B2 (en) * | 2003-10-21 | 2011-01-12 | 宇部マテリアルズ株式会社 | Method for producing magnesium oxide vapor deposition material |
JP4627652B2 (en) * | 2003-10-21 | 2011-02-09 | 宇部マテリアルズ株式会社 | Magnesium oxide vapor deposition material |
JP2008255480A (en) * | 2007-03-09 | 2008-10-23 | Mitsubishi Materials Corp | Vapor deposition material and manufacturing method therefor |
JP2013057124A (en) * | 2007-03-09 | 2013-03-28 | Mitsubishi Materials Corp | ZnO VAPOR DEPOSITION MATERIAL, AND METHOD FOR MANUFACTURING ZnO FILM USING THE SAME |
JP2011146194A (en) * | 2010-01-13 | 2011-07-28 | Ube Material Industries Ltd | Vapor deposition material for manufacturing oxide film containing strontium and calcium |
JP2012092428A (en) * | 2010-09-29 | 2012-05-17 | Mitsubishi Materials Corp | Vapor deposition material for thin film deposition, thin film sheet provided with the thin film, and laminated sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3314728B2 (en) | Polycrystalline MgO deposited material | |
EP1929063B1 (en) | Siox:si sputtering targets and method of making and using such targets | |
US9005487B2 (en) | Tablet for ion plating, production method therefor and transparent conductive film | |
JPH10291854A (en) | Polycrystalline mgo vapor depositing material and its production | |
JP5224073B2 (en) | Oxide deposition material and method for producing the same | |
JP2013507526A (en) | Tin oxide ceramic sputtering target and method for producing the same | |
JP3893793B2 (en) | MgO vapor deposition material and method for producing the same | |
JP3470633B2 (en) | Deposition material containing MgO as a main component and method for producing the same | |
JPH10297955A (en) | Material having evaporated magnesium oxide layer and its production | |
JP3331584B2 (en) | Polycrystalline MgO deposited material | |
JPH10130827A (en) | Mgo target and its production | |
JPH1129857A (en) | Polycrystalline magnesium oxide vapor deposition material and its production | |
JP5381724B2 (en) | Method for producing ZnO vapor deposition material | |
JP5381725B2 (en) | Method for producing ZnO vapor deposition material | |
JP3494205B2 (en) | Target material containing MgO as a main component and method for producing the same | |
JP2004043955A (en) | MgO VAPOR DEPOSITION MATERIAL AND ITS MANUFACTURING PROCESS, MANUFACTURING PROCESS OF MgO DEPOSITION FILM | |
JPH10158826A (en) | Mgo target and its production | |
JP2004169098A (en) | Vapor depositing material, and optical thin film and optical component obtained by using the same | |
JP5428872B2 (en) | Method for producing ZnO vapor deposition material | |
JP4823475B2 (en) | Vapor deposition material, MgO vapor deposition material, manufacturing method thereof, and film formation method | |
JPH1129355A (en) | Polycrystalline magnesium oxide vacuum-deposition material and its production | |
JPH10237636A (en) | Target essentially consisting of mgo and its production | |
JP3417457B2 (en) | Target containing MgO as main component and method for producing the same | |
JP2003226960A (en) | MgO VAPOR DEPOSITION MATERIAL AND PRODUCTION METHOD THEREFOR | |
US20150206615A1 (en) | Oxide sintered body and tablet obtained by processing same |