JP2004169098A - Vapor depositing material, and optical thin film and optical component obtained by using the same - Google Patents

Vapor depositing material, and optical thin film and optical component obtained by using the same Download PDF

Info

Publication number
JP2004169098A
JP2004169098A JP2002335591A JP2002335591A JP2004169098A JP 2004169098 A JP2004169098 A JP 2004169098A JP 2002335591 A JP2002335591 A JP 2002335591A JP 2002335591 A JP2002335591 A JP 2002335591A JP 2004169098 A JP2004169098 A JP 2004169098A
Authority
JP
Japan
Prior art keywords
vapor deposition
deposition material
material particles
particles
depositing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002335591A
Other languages
Japanese (ja)
Other versions
JP4445193B2 (en
Inventor
Koichi Watanabe
光一 渡邊
Yukinobu Suzuki
幸伸 鈴木
Takashi Ishigami
隆 石上
Takashi Yamanobe
尚 山野辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002335591A priority Critical patent/JP4445193B2/en
Publication of JP2004169098A publication Critical patent/JP2004169098A/en
Application granted granted Critical
Publication of JP4445193B2 publication Critical patent/JP4445193B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor depositing material in which the reduction of splashes is attained, the yield of a product can be improved, and the reduction of a time required for electron beam melting is made possible, and to provide an optical thin film and an optical component obtained by using the same. <P>SOLUTION: The vapor depositing material consists of vapor depositing material grains, and at least a part of the surface of each vapor depositing material grain is provided with a spherical face. Further, the vapor depositing material grain has a sphere or elliptic shape, and a projection part projecting to the outward is preferably formed at the equatorial part of the vapor depositing material grain. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ブラウン管や液晶ディスプレイ、PDP(プラズマディスプレイパネル)、フィルム等の情報技術(IT)分野や光ファイバー分野、その他光学部品などの分野に用いられる反射防止膜等の薄膜を形成すための蒸着材料に係り、特に蒸着材料の溶融物の飛散が少なく欠陥の発生が少なく製品の製造歩留りを大幅に改善できる蒸着材料およびそれを用いて形成した光学薄膜および光学部品に関する。
【0002】
【従来の技術】
近年のディスプレイ技術分野における要素機器の進展には、著しいものがある。その初期から今日まで要素機器の基本を支えてきたものは、無論ブラウン管である。一方、最近では、新しいディスプレイ機器として液晶表示素子が、その存在感を大きく示しており、携帯電話やパソコンのモニター、更には家庭用テレビや携帯電話、携帯端末などのモバイル機器のモニターとして需要分野を急速に拡大している。また、ディスプレイ画面の大型化も指向され、PDPと呼ばれるプラズマディスプレイパネルでは、32インチ以上の大型サイズ画面の実用化も進んでいる。これらのディスプレイ機器に共通する要求特性として、軽量で薄型化が可能である特徴が挙げられる。ブラウン管の場合には、電子ビームを変向走査させる構造上、薄型化した平面構造が採用できないため、ある程度の設置スペースが必要となる難点があるが、上記液晶表示機器用ディスプレイでは、薄型化した平面構造が採用できるため、壁にかけることも可能であり、いわゆる壁掛けテレビも実用化されている。
【0003】
上記ディスプレイ機器においては、利用者が表示画面を視認して情報を読み取るものであるから、当然見やすさが基本特性として要求される。しかしながら、表示画面に背景からの光線が入射し表示画面表面で反射して利用者の視覚に入ることから、いわゆる背景の映り込みが生じ、表示画面でのコントラストが低下して見易さを損なう場合が多い。
【0004】
この背景の映り込みを防止するため、画面の表面反射を抑制する手段として、ディスプレイの表面に反射防止膜を形成する処理が、一般に施工されている。この反射防止膜の構造としては、表示ガラス上に直接成膜するタイプやあらかじめフィルムに反射防止膜を形成したものを表示ガラス上に張り付けるタイプがあり、後者の反射防止膜構造が広く使用されている。
【0005】
上記反射防止膜は、高低と屈折率が異なる薄膜を光学設計により交互に積層することで、反射光を干渉させて反射率を減衰させるメカニズムを利用している。上記反射防止膜の成膜方法としては、蒸着材料を加熱溶融せしめ蒸気化した材料を基板表面に蒸着させる蒸着法やゾル・ゲル状の蒸着材料を基板表面にコーティングした後に乾燥固化させるゾル・ゲル法が主な手法となっているが、最近では、生産能力と膜厚の制御容易性との観点からスパッタ法も一部採用されてきている。
【0006】
上記蒸着法の典型例としての真空蒸着では、真空容器内で蒸着材料を電子銃や抵抗加熱によって溶融せしめて気体とし、基板などの対象物面に反射防止膜などの蒸着膜を一体に形成するものである。高屈折率の材料としては、Ti,Ta,Nb,Zrなどの酸化物が使用される一方、低屈折率の材料としてはSiOなどが挙げられる。また、蒸着時間の短縮および基板への熱的影響を防止したり、前記スプラッシュ現象を防止したりするために、五酸化タンタルに対して4〜55重量%の割合の金属タンタルを含む成形体を焼結した蒸着材料も用いられている(例えば、特許文献1参照。)。
【0007】
【特許文献1】
特開平4−325669号公報(第2−3頁)
現在、蒸着法による反射防止膜の成膜方法では、一般に蒸着源として、ペレット状または微小円板状に形成された酸化物粉末の圧紛体やそれを焼結した蒸着材料、またはそれらを粉砕した蒸着材料が広く使用されている。中でも粉砕された不定形状の蒸着材料を用いている成膜方法が大半である。この蒸着材料をCuや高融点金属製のルツボに投入して、真空中で電子ビーム(EB)溶解し、蒸気化した蒸着材料をガラス基板などの表面上に蒸着させて反射防止膜等を形成している。これらの工程を数度繰り返して緻密な溶融蒸着源を形成して、実際に反射防止膜等の成膜を実施している。
【0008】
【発明が解決しようとする課題】
しかしながら、従来のペレット状または微小円板状に形成された蒸着材料をルツボ中に充填して溶解した場合には、この溶融蒸着源内に溶け残りが発生し易く溶解効率が低い問題点があった。また、従来の粉砕された不定形状の蒸着材料を用いた場合においても、ルツボに対する蒸着材料の充填効率が低下し溶融相中に気相部分が多くなり、効率的な溶解作業が困難となり電子ビーム(EB)溶解に要する時間が長大化する上に、溶融物が飛散し易いという問題がある。すなわち、この溶融蒸着源内に溶け残りや、気孔などが存在すると、成膜操作中に溶融蒸着材が飛散して基板に付着して汚損する、いわゆるスプラッシュと称する現象が発生しやすくなり製品の歩留まりを低下させてしまう問題点が解決すべき技術的課題として提起されていた。
【0009】
本発明は、このような課題に対処するためになされたもので、上記スプラッシュの低減化を図り、製品歩留まりを向上させることができ、かつ、電子ビーム(EB)溶解に要する時間の短縮も可能にした蒸着材料およびそれを用いた光学薄膜並びに光学部品を提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明者らは、上記目的を達成するため、スプラッシュの発生メカニズムについて、種々検討した。その結果、蒸着材粒子の形状、溶融した状態でのガス成分量と蒸着材料の密度、不純物含有量がスプラッシュ発生に重大な影響を与えていることが判明した。すなわち、蒸着操作時に発生するスプラッシュは、予め溶解した蒸着材料中に残存したガス成分が、電子ビーム(EB)等の加熱用エネルギーによる熱影響を受け膨張し、この電子ビーム等を照射し続けることでガス成分を含んだ気孔が溶融体表面に浮上した際に破裂して、溶融した微粒子が対向する基板に飛散する現象である。
【0011】
そこで、本発明者らは、蒸着材料を溶解した状態で可及的にガス成分を取り除くことができる方法を鋭意検討した。その結果、蒸着材料表面に吸着したガス成分を低減することと、ルツボ等の溶解槽に投入する蒸着材料の充填率を高めることが重要なポイントであることを見出した。
【0012】
現在、一般的に粒子状蒸着源として使用されている蒸着材料は、酸化物のインゴットを粉砕した粉砕粉である。しかし当然ながら、粉砕したものの形状は、不定形であり様々な形状を有し、いびつで凹凸が多数存在する材料である。つまり、このような材料は、表面積が非常に大きいことから、それに比例して吸着ガス成分量も増加してしまう。また、上記のようないびつな形状である蒸着材料をルツボに充填しても、充填密度は高くならず、隣接する蒸着材料粒子の隙間が多数存在するため、溶解時の熱伝導も悪くなり、溶解が効率的に進行せず、結果的に溶け残り箇所が形成されてしまう。
【0013】
そこで、蒸着材料を構成する蒸着材粒子としては、球体もしくは楕円体または球体か楕円体の中央部(赤道部)に外方向に突出する突起部が形成されている蒸着材料を用いることが好ましい。これは、蒸着材料の表面積を可及的に小さくし、吸着ガス成分を低減する上に、ルツボに充填した際の充填密度を高くすることができる。楕円体や、突起部付き球状体は、転動性および流動性が球体に比較して劣るため、取扱い性を改善する観点からは逆に有効である。
【0014】
すなわち、蒸着材料を構成する蒸着材粒子の形状を球状体や楕円体のように、少なくとも一部に球面を具備する形状に形成することにより、ルツボに対する蒸着材の充填率が高まり溶融体内部に気相部分が取り残されないように蒸着材料を効率的に溶融させることができ、スプラッシュの発生を効果的に防止することができた。また蒸着材料の相対密度を所定範囲以上に設定することにより、蒸着材料中の気孔に起因するスプラッシュの発生を効果的に抑制できるという知見を得た。さらに、ある種の不純物軽元素の含有量を所定範囲に削減することにより、上記スプラッシュの発生を効果的に抑制できるという知見も得た。本発明はこれらの知見に基づいて完成されたものである。
【0015】
すなわち、本発明に係る蒸着材料は、蒸着材粒子からなり、この蒸着材粒子の表面の少なくとも一部に球面を具備することを特徴とする。このように、蒸着材粒子の表面の少なくとも一部に球面を具備する形状に形成することにより、るつぼなどの蒸着源容器(溶解槽)に高い充填効率で蒸着材を充填することができ、溶融体内部に気相部分が取り残されないように蒸着材料を効率的に溶融させることができ、スプラッシュの発生を効果的に防止することができる。
【0016】
また上記蒸着材料において、蒸着材粒子の形状が球体または楕円体であり、この蒸着材粒子の赤道部に、外方向に突出する突起部が形成されていることが好ましい。すなわち、図3に示すように、蒸着材粒子1の赤道部に、外方向に突出する突起部2を形成することにより、蒸着材粒子1の転動が効果的に規制され、平面上に展開した場合に転動による逸散が効果的に防止でき、この蒸着材粒子1の集合体である蒸着材料の取扱い性が大幅に改善される。
【0017】
なお、図3に示すように、上記突起部2は、蒸着材粒子1の外表面の円周方向に一周するように赤道部全体に形成してもよいが、赤道部の一部に部分的に形成しても良い。
【0018】
上記突起部2を有する蒸着材粒子1は、例えば図2に示す金型成形機によって形成される。すなわち、各種酸化物から成る蒸着材原料粉末3を、この金型成形機の上部金型(上パンチ)4と下部金型(下パンチ)5との間に充填し、上部金型4と下部金型5に圧力をかけて粉体をプレス成形することによって成形体を作製し、この成形体を焼成することにより蒸着材粒子1が製造される。
【0019】
ここで図3に示す蒸着材粒子1の赤道部に形成する突起部2の高さHは、蒸着材粒子1の直径Dの0.1〜0.3倍程度で十分である一方、突起部2の幅Wも、蒸着材粒子1の直径Dの0.1〜0.3倍程度とされる。上記突起部2の高さHは、図2における金型4,5の先端部6,7の厚さを変化させることにより調整することができる。さらに、突起部2の幅Wは、プレス成形する際の金型4,5の先端部6,7の間隔を変化させることにより調整することができる。
【0020】
さらに図1に示すように、上記蒸着材料において、前記蒸着材料が多数の蒸着材粒子からなり、この蒸着材粒子を平面に投影したときに形成される投影像1aに外接する正円(外接円)の面積をAとし、上記投影像1aに内接する正円(内接円)の面積をBとした場合に、A/Bで表される形状係数が1以上5以下である蒸着材粒子の割合が90質量%以上であることが好ましい。
【0021】
ここで、上記形状係数A/Bが1となることは、蒸着材粒子が球体であることを意味する。A/B比が5を超えるような蒸着材料は、丸みが少ないため,隣接する接触面積が低下してしまい、熱伝導性も低下してしまうため、電子ビーム(EB)溶解を実施した際に気孔や溶け残りを形成してしまう。また、A/Bで表される形状係数が1以上5以下である粒子状蒸着材が、90質量%未満の場合では、前記同様に隣接する蒸着材粒子の接触面積が減少し、熱伝導性も低下してしまうため、電子ビーム(EB)溶解を実施した時に気孔や溶け残りを形成してしまう。なお、上記蒸着材粒子の形状係数A/Bおよびその形状係数を有する粒子の割合は、蒸着材粒子群を2次元方向に展開した写真の画像解析などにより容易に測定することができる。
【0022】
上記のように、A/Bで表される形状係数が1以上5以下である蒸着材粒子の割合が90質量%以上であるように、蒸着材料を調製することにより、この蒸着材料を溶解槽に高い充填効率で蒸着材を充填することができ、溶融体内部に気相部分が取り残されないように蒸着材料を効率的に溶融させることができ、スプラッシュの発生を効果的に防止することができる。なお、90質量%以上とは100質量%を含むものである。
【0023】
また、上記蒸着材料において、前記蒸着材粒子がTa,Nb,Ti,Zr,Si,Mg,Y,Ca,Al,Hf,In,Zn,Snから選択された少なくとも1種の酸化物で構成されていることが好ましい。具体的には、Ta,Nb,TiO,ZrO,SiO,MgO,Y,CaO,Al,HfO,In,ZnO,SnOなどが使用される。なお上記酸化物としては上記元素を1種類含有する酸化物を主体に構成されるが、上記元素を2種類以上含有する複合酸化物で構成しても良い。
【0024】
さらに上記蒸着材料において、前記蒸着材粒子の相対密度が50%以上であることが望ましい。上記相対密度が50%未満の場合には、蒸着材粒子の僅かな接触衝撃によって欠けや割れを生じてしまう。また、蒸着材料を溶解したときに溶融体中に気孔や気相成分が残留しやすくなり、スプラッシュが発生しやすくなる。そのため、上記蒸着材粒子の相対密度は60〜100%であることがより好ましく、さらには80〜100%の範囲がさらに好ましい。なお、蒸着材料の原料粉末をホットプレス処理することにより、50〜80%の相対密度が容易に得られる一方、原料粉末について熱間静水圧プレス(HIP)処理を実施することにより、80〜100%と高い相対密度が得られる。上記相対密度の測定方法としては、各酸化物の理論密度に対して、アルキメデス法によって測定した実密度の値から算出する方法が好適である。
【0025】
また上記蒸着材料において、軽元素である、Na,Kの含有量が100ppm以下であることが好ましい。50ppm以下であることが、さらに好ましい。上記軽元素の含有量が100ppmを超える場合には、蒸着時に照射する電子ビー(EB)等によって軽元素は揮発し易くなり、その際にスプラッシュが生じてしまう。特に、上記Na,Kのような軽元素は溶解蒸着時にスプラッシュの原因になり易い元素であり、この不純物軽元素を低減することにより、スプラッシュに起因する不良を防止できる。
【0026】
さらに上記蒸着材料において、前記蒸着材粒子の粒径は0.5mm〜30mmの範囲にあることが好ましい。この粒径範囲において、蒸着材料の融解が効率的に進行し、蒸着材料の取扱い性も良好である。また、溶解ルツボの容量や、球体としての蒸着材粒子の強度および熱伝導性の観点から考慮すると上記粒径範囲が好適である。蒸着材粒子の粒径が0.5mm未満の場合には、作業時の取り扱いが非常に困難になる。特に、前述の突起部を設けた形状である場合には、粒径が0.5mm未満だと突起部を設ける効果が小さく、30mmを超えると却って粒子同士の隙間が大きくなってしまうおそれがある。
【0027】
本発明に係る蒸着材料は、例えば下記のようなプロセスに従って製造される。すなわち、原料となるTa酸化物等の酸化物粉末もしくは酸化物粉末に適当量の焼結助剤や溶剤、バインダーを加え、混合、解砕し、スプレードライヤーにて造粒粉を調製する。このようにして調製した造粒粉末を、例えば図2に示すような略球面状の凹部を有する金型4,5を使用してプレス成形し、得られた成形体を脱脂後、所定条件で焼結して製造することができる。
【0028】
上記脱脂温度は、200℃〜600℃の範囲が好適である。200℃未満の脱脂温度では、バインダーなどの助剤が素材から十分に除去されない。また600℃を超える高温度では、蒸着材成形体の外表面部の焼結が先に進行してしまうことから、助剤が十分に除去されないことがある。焼結温度は、素材酸化物の融点の1/2以上の温度に設定することが好ましい。さらに素材酸化物の融点の2/3程度であることが、より好ましい。上記焼結温度が素材酸化物の融点の1/2未満では、焼結が十分に進行せず、所望の相対密度および形状精度が得られない。また、焼結操作を実施する雰囲気の真空度は、133×10−5Pa(1×10−5Torr)以下が好ましい。この真空度より大きいと、不純物であるNaやKの揮散が十分に進行せず、蒸着材料中の不純物であるNaやKの含有量の制御が困難になってしまう。
【0029】
上記蒸着材料は、更に、EB溶解回転法、高周波誘導熱プラズマ法などを用いて作製することも可能である。蒸着源としての蒸着材料の形状は、原料粉末を成形する際に使用する金型の形状、もしくは金型への原料粉末投入量、プレス圧によって調整することができる。得られた蒸着材料は、取扱い性を良好にするために、球体もしくは楕円体の粒子本体の赤道部に突起部が形成されたものとすることが好ましい。真球状もしくは楕円体状の蒸着材粒子を作製する場合には、研磨などの機械加工によって粒子形状の制御を実施することができる。
【0030】
本発明に係る光学薄膜は、上記蒸着材料から蒸発した成分を基板上に蒸着して形成される。この光学薄膜とは単層で厚さ10μm以下のものを示す。さらに本発明に係る光学部品は、上記光学薄膜を具備したことを特徴とするものである。
【0031】
上記構成に係る蒸着材料によれば、蒸着材料を構成する蒸着材粒子の形状を球状体や楕円体のように、少なくとも一部に球面を具備する形状に形成することにより、ルツボに対する蒸着材料の充填率が高まり溶融体内部に気相部分が取り残されないように蒸着材料を効率的に溶融させることができ、スプラッシュの発生を効果的に防止することができ、蒸着膜を使用する製品の品質を高め、その製造歩留りを大幅に改善することができる。
【0032】
【発明の実施の形態】
次に、本発明の実施形態について以下の実施例を参照して具体的に説明する。
【0033】
実施例1
市販されている純度3N(99.9%)のTa酸化物(Ta)の粉末に、バインダー(エポキシ樹脂)を加え、混合解砕した後に、スプレードライヤーにて造粒を行った。このようにして得られた造粒粉末を図2に示す金型成形機を使用してプレス成形した。上部金型4および下部金型5としてはそれぞれ半径が1.5mmの半球面上の凹部を形成したものを用いた。次に、得られた各素球成形体を大気中にて温度250℃で5時間加熱して脱脂した後、真空度133×10−5Paの真空中にて温度1500℃で5時間焼結した。球状の各蒸着材粒子の赤道部には、図3に示すような突起部2が形成され、蒸着材粒子の直径Dに対する突起部2の幅Wの比率(W/D)は0.1であり、突起部2の高さHは1mm未満であった。
【0034】
得られた蒸着材料の実密度をアルキメデス法によって測定し、さらに理論密度に対する比率を算出して相対密度を測定した。この相対密度の平均値は55%であった。また得られた蒸着材料を篩い分けして、直径1.5〜2.5mmの蒸着材粒子を選別した。選別した蒸着材粒子から無作為に粒子100個を抽出し画像解析したところ、図1に示す形状係数A/Bが1.0以上5.0以下である蒸着材粒子の質量比率は98%であった。
【0035】
得られた蒸着材料を直径50mm×高さ30mmのCu製ルツボに充填した。充填率は、ルツボに充填した蒸着源の体積をルツボの容積で割った値に100を掛けた値とする。この結果、充填率は92%であった。蒸着装置内に上記ルツボを設置して、真空度133×10−5Pa以下にして、出力3kWのエレクトロンビームを照射して蒸着材料を加熱して10時間溶解した。その後、実際に50mm角のガラス基板を100枚用意し、蒸着源に対向するようにセッティングして、蒸発した蒸着材成分を蒸着し、ガラス基板上に蒸着膜を形成した。得られた各蒸着サンプルについて、ガラス基板1枚当りの蒸着膜中に混入した直径5μm以上のスプレッシュ個数を、欠陥検出装置を用いて測定したところ、基板1枚あたり平均3.5個であった。また、不純物であるNaとKとの合計含有量を分光分析装置によって測定し、表1に示す結果を得た。
【0036】
上記の結果から明らかなように、実施例1に係る蒸着材料は、溶解槽への充填率を高くでき、効率的に溶解蒸発せしめることが可能になり、スプラッシュの発生数を効果的に抑制でき、スプラッシュによる不良を低減し、蒸着膜を使用した製品の製造歩留まりを向上させ、スループットも高いことが判明した。
【0037】
実施例2−12
表1左欄に示す酸化物であり、市販されている純度3N(99.9%)の各種酸化物の粉末に、バインダー(エポキシ樹脂)を加え、混合解砕した後に、スプレードライヤーにて造粒を行った。このようにして得られた造粒粉末を図2に示す金型成形機を使用してプレス成形し、各実施例用の球状成形体を調製した。ここで実施例2,4−6,8,11については、表1に示す寸法の突起部が形成されるように、上部金型4,下部金型5およびそれらの先端部6,7の形状を変えると共に成形圧力を調整して成形操作を実施した。
【0038】
次に、得られた各素球成形体を大気中にて表1に示す温度および時間で加熱して脱脂した後、表1に示す真空度の真空中にて表1に示す焼結条件(温度×時間)で焼結した。実施例2,4−6,8,11に係る球状の各蒸着材粒子の赤道部には、図3に示すような突起部2が形成され、蒸着材粒子の直径Dに対する突起部2の幅Wの比率(W/D)および突起部2の高さHは、それぞれ表1に示す値に設定した。
【0039】
一方、実施例3,7,9,10,12に係る各蒸着材粒子成形体の赤道部にも突起部が形成されていたが、成形体の段階で研磨を実施して突起部を取り除き、ほぼ球状の蒸着材粒子とした。
【0040】
得られた蒸着材料の実密度をアルキメデス法によって測定し、さらに理論密度に対する比率を算出して相対密度を測定した。この相対密度の平均値を表1に示す。また得られた蒸着材料を篩い分けして、表1左欄に示す直径範囲の蒸着材粒子を選別した。選別した蒸着材粒子から無作為に粒子100個を抽出し画像解析し、図1に示す形状係数A/Bが1.0以上5.0以下である蒸着材粒子の質量比率を求めた。また、不純物であるNaとKとの合計含有量を分光分析装置によって測定し、表1に示す結果を得た。
【0041】
得られた各蒸着材料を直径50mm×高さ30mmのCu製ルツボに充填した。充填率は、ルツボに充填した蒸着源の体積をルツボの容積で割った値に100を掛けた値とする。この結果、充填率は表1に示す通りであった。蒸着装置内に上記ルツボを設置して、真空度133×10−5Pa以下にして、出力3kWのエレクトロンビームを照射して蒸着材料を加熱して10時間溶解した。その後、実際に50mm角のガラス基板を100枚用意し、蒸着源に対向するようにセッティングして、蒸発した蒸着材成分を蒸着し、ガラス基板上に蒸着膜を形成した。得られた各蒸着サンプルについて、ガラス基板1枚当りの蒸着膜中に混入した直径5μm以上のスプレッシュ個数を、欠陥検出装置を用いて測定し、表1に示す結果を得た。
【0042】
表1に示す結果から明らかなように、所定の形状係数を有し、球状に形成された各実施例に係る蒸着材料は、ルツボなどの溶解槽への充填率を高くでき、効率的に溶解蒸発せしめることが可能になり、スプラッシュの発生数を効果的に抑制でき、スプラッシュによる不良を低減し、蒸着膜を使用した製品の製造歩留まりを向上させ、スループットも高いことが判明した。
【0043】
特に、突起部を形成しない実施例3,7,9,10,12に係る各蒸着材粒子では、球状度がさらに高まり、ほぼ真球状に形成されているため、ルツボへの充填率が極めて高くなり、気相成分を残存させないように蒸着材料を効率的に蒸発させることが可能になり、基板1枚当りのスプラッシュ数も極めて小さく、優れた特性が発揮されることが実証された。ただし、突起部を形成していないため、平面上に展開した場合などに転動して逸散し易く、取扱い性にはやや難点があった。
【0044】
また、焼結時の真空度を高めて成形体を焼結して調製した蒸着材粒子によれば、不純物軽元素であるNaおよびKが効果的に除去されており、スプラッシュ低減にさらに寄与したものと推定される。
【0045】
比較例1−12
表1左欄に示す酸化物からなり、市販されている純度3N(99.9%)の各種酸化物の解砕粉末またはペレット状に成形した蒸着材料を用意した。比較例1,6,8,10については、表1に示す粒径範囲を有する解砕粉をそのまま蒸着材料として使用した。
【0046】
一方、比較例3−5については、表1に示す粒径範囲を有する解砕粉に、バインダー(エポキシ樹脂)を加え、混合解砕した後に、スプレードライヤーにて造粒を実施した。こうして得られた造粒粉末を、図2に示すような金型成形機を使用して球状成形体をそれぞれ調製した。なお比較例3,4については、表1に示すような仕様の突起部が形成されるような形状を有する金型を使用して金型プレス成形した。次に、比較例3,4,5については、得られた素球成形体を表1に示す脱脂条件で大気中にて脱脂した後、さらに表1に示す真空度を有する雰囲気中でそれぞれの焼結条件(温度×時間)で焼結することにより、比較例3−5に係る蒸着材料を調製した。
【0047】
一方、比較例2,7,9,11−14については、ペレット状に形成された酸化物をそのまま各比較例に係る蒸着材料とした。
【0048】
こうして調製した各蒸着材料について、解砕粉を除いて相対密度を、実施例1と同様にして測定して表1に示す結果を得た。また、ペレット状の蒸着材料を除き、各比較例の蒸着材粒子から無作為に粒子100個を抽出し画像解析することにより図1に示す形状係数A/Bが1.0以上5.0以下である蒸着材粒子の質量比率を測定して表1に示す結果を得た。
【0049】
次に、得られた各蒸着材料を直径50mm×高さ30mmのCu製ルツボに充填し、実施例1と同様に、ルツボに充填した蒸着材料の体積をルツボの容積で割った値に100を掛けた値を充填率として測定し表1に示す結果を得た。
【0050】
さらに、各比較例に係る蒸着材料を充填したルツボを蒸着装置内に配置して、真空度133×10−5Pa以下にして、出力3kWのエレクトロンビームを照射して蒸着材料を加熱して10時間溶解した。その後、実際に50mm角のガラス基板を100枚用意し、蒸着源に対向するようにセッティングして、蒸発した蒸着材成分を蒸着し、ガラス基板上に蒸着膜を形成した。得られた各蒸着サンプルについて、ガラス基板1枚当りの蒸着膜中に飛散混入した直径5μm以上のスプレッシュ個数を、欠陥検出装置を用いて測定し、下記表1に示す結果を得た。
【0051】
【表1】

Figure 2004169098
【0052】
上記表1に示す結果から明らかなように、所定の形状係数を有し、球状に形成された各実施例に係る蒸着材料は、ルツボなどの溶解槽への充填率を高くでき、効率的に溶解蒸発せしめることが可能になり、スプラッシュの発生数を効果的に抑制でき、スプラッシュによる不良を低減し、蒸着膜を使用した製品の製造歩留まりを向上させ、スループットも高いことが判明した。なお、実施例9および実施例12のNaおよびKの合計量を示す「検出限界以下」とは0.02ppm以下を示すものである。
【0053】
一方、不定形上の解砕粉からなり、所定の形状係数を有する粒子割合が少ない比較例1,6,8,10に係る蒸着材料では、いずれもルツボへの充填率が60%台と小さく、気相成分を残さないように効率的に溶解させることが困難であり、スプラッシュの発生率が増大化した。
【0054】
また、解砕粉を球状に成形して焼結した比較例3−5に係る蒸着材料では、球状化によりルツボへの充填率は向上したものの、NaやKなどの不純物元素が十分に除去されず、蒸着材料中に残存しているため、スプラッシュ量が多くなることが確認された。
【0055】
一方、ペレット状に形成された酸化物をそのまま蒸着材料として使用した比較例2,7,9,11−14においては、微細なペレットを使用してもルツボへの充填率を高めることが困難であり、また不純物元素の低減が意図されていないため、スプラッシュの発生量が相対的に高いことが再確認できた。
【0056】
【発明の効果】
以上の説明の通り、本発明に係る蒸着材料によれば、蒸着材料を構成する蒸着材粒子の形状を球状体や楕円体のように、少なくとも一部に球面を具備する形状に形成することにより、ルツボに対する蒸着材料の充填率が高まり溶融体内部に気相部分が取り残されないように蒸着材料を効率的に溶融させることができ、スプラッシュの発生を効果的に防止することができ、蒸着膜を使用する製品の品質を高め、その製造歩留りを大幅に改善することができる。
【図面の簡単な説明】
【図1】本発明に係る蒸着材料を構成する蒸着材粒子の投影図から形状係数を求める手法を説明する平面図。
【図2】本発明に係る蒸着材料を製造する際に使用する金型成形機の構成を示す断面図。
【図3】本発明に係る蒸着材料を構成する蒸着材粒子の形状例を示す斜視図。
【符号の説明】
1 蒸着材粒子
1a 蒸着材粒子の投影像
2 突起部
3 蒸着材原料粉末
4 上部金型
5 下部金型
6 先端部
7 先端部
A 外接円
B 内接円
D 粒径
H 突起部の高さ
W 突起部の幅[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to vapor deposition for forming a thin film such as an anti-reflection film used in the field of information technology (IT) such as a cathode ray tube, a liquid crystal display, a PDP (plasma display panel) and a film, the field of an optical fiber, and other optical components. The present invention relates to a material, and more particularly to a vapor deposition material capable of greatly improving the production yield of a product with little scattering of a melt of the vapor deposition material and generation of defects, and an optical thin film and an optical component formed using the same.
[0002]
[Prior art]
In recent years, there has been a remarkable progress in element devices in the display technology field. From the beginning to the present day, the cathode ray tube has been the basic element device. On the other hand, recently, liquid crystal display devices have been showing a significant presence as new display devices, and are being demanded as monitors for mobile phones and personal computers as well as monitors for mobile devices such as home televisions, mobile phones, and mobile terminals. Is expanding rapidly. In addition, the size of the display screen has been increased, and in a plasma display panel called a PDP, a large screen of 32 inches or more has been put into practical use. The required characteristics common to these display devices include the feature that they can be made lightweight and thin. In the case of a cathode ray tube, since a thin planar structure cannot be adopted due to the structure for deflecting and scanning an electron beam, there is a disadvantage that a certain installation space is required. Since a planar structure can be adopted, it can be hung on a wall, and a so-called wall-mounted television has been put to practical use.
[0003]
In the above-mentioned display device, a user reads information while visually recognizing a display screen, and therefore, visibility is naturally required as a basic characteristic. However, since light rays from the background enter the display screen and are reflected on the display screen surface to enter the user's vision, so-called reflection of the background occurs, and the contrast on the display screen is reduced to deteriorate the visibility. Often.
[0004]
In order to prevent the reflection of the background, a process of forming an anti-reflection film on the surface of the display is generally performed as means for suppressing surface reflection on the screen. There are two types of anti-reflection film structures: one is a film that is formed directly on the display glass, and another is a type in which an anti-reflection film is formed on a film in advance, and the film is pasted on the display glass.The latter anti-reflection film structure is widely used. ing.
[0005]
The anti-reflection film utilizes a mechanism in which thin films having different refractive indices from each other are alternately stacked by optical design, thereby causing reflected light to interfere and attenuating the reflectance. Examples of the method for forming the antireflection film include a vapor deposition method in which a vaporized material is heated and melted and vaporized, and a vaporized material is vapor-deposited on the substrate surface. The main method is the sputtering method, but recently, a sputtering method has been partially adopted from the viewpoints of production capacity and controllability of the film thickness.
[0006]
In vacuum deposition as a typical example of the above-described deposition method, a deposition material is melted by an electron gun or resistance heating in a vacuum vessel to form a gas, and a deposition film such as an anti-reflection film is integrally formed on an object surface such as a substrate. Things. As a material having a high refractive index, an oxide such as Ti, Ta, Nb, or Zr is used, while a material having a low refractive index is SiO.2And the like. Further, in order to shorten the vapor deposition time and to prevent thermal effects on the substrate and to prevent the splash phenomenon, a molded article containing metal tantalum in a proportion of 4 to 55% by weight with respect to tantalum pentoxide is used. A sintered vapor deposition material is also used (for example, see Patent Document 1).
[0007]
[Patent Document 1]
JP-A-4-325669 (pages 2-3)
At present, in the method of forming an antireflection film by a vapor deposition method, generally, as a vapor deposition source, a compact of oxide powder formed in the form of a pellet or a small disc or a vapor-deposited material obtained by sintering it, or pulverized thereof Evaporation materials are widely used. Above all, most of the film forming methods use a pulverized irregular-shaped vapor deposition material. This deposition material is put into a crucible made of Cu or a high melting point metal, and is melted by electron beam (EB) in a vacuum, and the vaporized deposition material is deposited on a surface of a glass substrate or the like to form an anti-reflection film or the like. are doing. These steps are repeated several times to form a dense melt evaporation source, and a film such as an anti-reflection film is actually formed.
[0008]
[Problems to be solved by the invention]
However, when the conventional pellet-shaped or micro-disc-shaped vapor deposition material is filled into a crucible and melted, there is a problem that a residual melt is easily generated in the molten vapor deposition source and the melting efficiency is low. . In addition, even when a conventional pulverized irregular-shaped vapor deposition material is used, the efficiency of filling the crucible with the vapor deposition material is reduced, and the gas phase portion is increased in the molten phase. (EB) There is a problem that the time required for dissolution is prolonged and the melt is easily scattered. In other words, if there is any undissolved material or pores in the molten vapor deposition source, a phenomenon called so-called splash, which is likely to occur during the film forming operation, and the molten vapor deposition material is scattered and adheres to the substrate, so that the product yield is increased. Has been raised as a technical problem to be solved.
[0009]
The present invention has been made to address such a problem, and can reduce the above-mentioned splash, improve the product yield, and shorten the time required for electron beam (EB) melting. It is an object of the present invention to provide an evaporated material, an optical thin film and an optical component using the same.
[0010]
[Means for Solving the Problems]
The present inventors have studied various mechanisms for generating a splash in order to achieve the above object. As a result, it was found that the shape of the vapor deposition material particles, the amount of the gas component in the molten state, the density of the vapor deposition material, and the impurity content had a significant effect on the generation of splash. In other words, the splash generated during the vapor deposition operation is a phenomenon in which the gas component remaining in the vaporized material previously dissolved expands under the influence of the heating energy such as the electron beam (EB) and continues to be irradiated with the electron beam and the like. This is a phenomenon in which pores containing gas components burst when floating on the surface of the melt, and the melted fine particles are scattered on the opposing substrate.
[0011]
Then, the present inventors diligently studied a method capable of removing a gas component as much as possible while dissolving a deposition material. As a result, it has been found that it is important points to reduce the gas components adsorbed on the surface of the vapor deposition material and to increase the filling rate of the vapor deposition material to be put into a melting tank such as a crucible.
[0012]
At present, a deposition material generally used as a particulate deposition source is a crushed powder obtained by crushing an oxide ingot. However, as a matter of course, the shape of the pulverized material is indefinite and has various shapes, and is a material having a large number of irregularities due to irregularities. That is, since such a material has a very large surface area, the amount of the adsorbed gas component increases in proportion thereto. In addition, even if the crucible is filled with the above-described irregularly shaped vapor deposition material, the filling density does not increase, and since there are many gaps between the adjacent vapor deposition material particles, heat conduction during melting becomes poor, Dissolution does not proceed efficiently, and as a result, undissolved portions are formed.
[0013]
Therefore, as the vapor deposition material particles constituting the vapor deposition material, it is preferable to use a vapor deposition material in which a sphere or an ellipsoid, or a projection portion projecting outward in the center (equatorial portion) of the sphere or ellipse is formed. This can reduce the surface area of the vapor deposition material as much as possible, reduce the adsorbed gas component, and increase the packing density when filling the crucible. Ellipsoids and spherical bodies with projections are inferior in rolling properties and fluidity compared to spherical bodies, and are therefore effective from the viewpoint of improving handling.
[0014]
That is, by forming the shape of the vapor deposition material particles constituting the vapor deposition material into a shape having a spherical surface at least in part, such as a spherical body or an ellipsoid, the filling rate of the vapor deposition material with respect to the crucible is increased and the inside of the melt is increased. The vapor deposition material could be efficiently melted so that the gas phase portion was not left, and the generation of splash could be effectively prevented. Further, it has been found that by setting the relative density of the vapor deposition material to a predetermined range or more, it is possible to effectively suppress the generation of splash caused by pores in the vapor deposition material. Further, it has been found that the generation of the splash can be effectively suppressed by reducing the content of a certain kind of impurity light element to a predetermined range. The present invention has been completed based on these findings.
[0015]
That is, the vapor deposition material according to the present invention includes vapor deposition material particles, and at least a part of the surface of the vapor deposition material particles has a spherical surface. As described above, by forming at least a part of the surface of the vapor deposition material particles into a shape having a spherical surface, the vapor deposition source container (melting tank) such as a crucible can be filled with the vapor deposition material with high filling efficiency. The vapor deposition material can be efficiently melted so that the gas phase portion is not left inside the body, and the generation of splash can be effectively prevented.
[0016]
Further, in the above-mentioned vapor deposition material, it is preferable that the shape of the vapor deposition material particles is a sphere or an ellipsoid, and a projection projecting outward is formed at the equator of the vapor deposition material particles. That is, as shown in FIG. 3, by forming a projection 2 projecting outward in the equator portion of the vapor deposition material particle 1, the rolling of the vapor deposition material particle 1 is effectively regulated, and the vapor deposition material particle 1 is developed on a plane. In this case, the escaping due to rolling can be effectively prevented, and the handleability of the deposition material, which is an aggregate of the deposition material particles 1, is greatly improved.
[0017]
As shown in FIG. 3, the protrusion 2 may be formed on the entire equatorial portion so as to make a full circumference in the circumferential direction of the outer surface of the vapor deposition material particles 1, but may be partially formed on a part of the equatorial portion. May be formed.
[0018]
The vapor deposition material particles 1 having the projections 2 are formed, for example, by a mold forming machine shown in FIG. That is, the vapor deposition material powder 3 composed of various oxides is filled between an upper die (upper punch) 4 and a lower die (lower punch) 5 of the die molding machine, and the upper die 4 and the lower die are filled. A compact is produced by press-molding the powder while applying pressure to the mold 5, and the compact is fired to produce the vapor deposition material particles 1.
[0019]
Here, the height H of the protrusion 2 formed at the equator of the vapor deposition material particle 1 shown in FIG. 3 is sufficient to be about 0.1 to 0.3 times the diameter D of the vapor deposition material particle 1, while the protrusion H is sufficient. The width W of 2 is also about 0.1 to 0.3 times the diameter D of the vapor deposition material particles 1. The height H of the projection 2 can be adjusted by changing the thickness of the tips 6, 7 of the dies 4, 5 in FIG. Further, the width W of the projection 2 can be adjusted by changing the distance between the tips 6, 7 of the dies 4, 5 during press molding.
[0020]
Further, as shown in FIG. 1, in the vapor deposition material, the vapor deposition material is composed of a large number of vapor deposition material particles, and a perfect circle (circumscribed circle) circumscribing a projected image 1a formed when the vapor deposition material particles are projected on a plane. ) Is A and the area of a perfect circle (inscribed circle) inscribed in the projected image 1a is B, the vapor deposition material particles having a shape factor represented by A / B of 1 or more and 5 or less. The proportion is preferably at least 90% by mass.
[0021]
Here, that the shape factor A / B is 1 means that the vapor deposition material particles are spherical. A vapor-deposited material having an A / B ratio of more than 5 has a small roundness, so that the adjacent contact area is reduced and the thermal conductivity is also reduced. They form pores and undissolved residue. When the particulate deposition material having a shape factor represented by A / B of 1 or more and 5 or less is less than 90% by mass, the contact area between the adjacent vapor deposition material particles is reduced in the same manner as described above, and the thermal conductivity is reduced. Therefore, pores and undissolved portions are formed when electron beam (EB) melting is performed. The shape factor A / B of the vapor deposition material particles and the ratio of the particles having the shape factor can be easily measured by image analysis of a photograph in which the vapor deposition material particles are developed in a two-dimensional direction.
[0022]
As described above, the vapor deposition material is prepared such that the proportion of the vapor deposition material particles having a shape factor represented by A / B of 1 or more and 5 or less is 90% by mass or more, thereby dissolving the vapor deposition material in a melting tank. The vapor deposition material can be filled with high filling efficiency, and the vapor deposition material can be efficiently melted so that no gas phase portion is left inside the melt, thereby effectively preventing the occurrence of splash. it can. Note that 90% by mass or more includes 100% by mass.
[0023]
In the above-described vapor deposition material, the vapor deposition material particles are composed of at least one oxide selected from Ta, Nb, Ti, Zr, Si, Mg, Y, Ca, Al, Hf, In, Zn, and Sn. Is preferred. Specifically, Ta2O5, Nb2O5, TiO2, ZrO2, SiO2, MgO, Y2O3, CaO, Al2O3, HfO2, In2O3, ZnO, SnO2Are used. The oxide is mainly composed of an oxide containing one kind of the above elements, but may be composed of a composite oxide containing two or more kinds of the above elements.
[0024]
Further, in the above-mentioned evaporation material, it is desirable that the relative density of the evaporation material particles is 50% or more. If the relative density is less than 50%, chipping or cracking may occur due to slight contact impact of the vapor deposition material particles. Further, when the vapor deposition material is dissolved, pores and gaseous phase components are likely to remain in the melt, and splash is likely to occur. Therefore, the relative density of the vapor deposition material particles is more preferably 60 to 100%, and further preferably 80 to 100%. The relative density of 50 to 80% can be easily obtained by hot pressing the raw material powder of the vapor deposition material, while the raw powder is subjected to hot isostatic pressing (HIP) processing to obtain a relative density of 80 to 100%. % Relative density is obtained. As a method for measuring the relative density, a method of calculating the theoretical density of each oxide from the value of the actual density measured by the Archimedes method is preferable.
[0025]
In the above evaporation material, the content of light elements, Na and K, is preferably 100 ppm or less. More preferably, it is 50 ppm or less. When the content of the light element exceeds 100 ppm, the light element is liable to volatilize due to an electron beam (EB) or the like irradiated at the time of vapor deposition, and a splash occurs at that time. In particular, light elements such as Na and K are elements that are liable to cause a splash at the time of dissolution deposition, and by reducing this impurity light element, defects due to the splash can be prevented.
[0026]
Further, in the above-mentioned vapor deposition material, the particle diameter of the vapor deposition material particles is preferably in the range of 0.5 mm to 30 mm. In this particle size range, melting of the vapor deposition material proceeds efficiently, and the handleability of the vapor deposition material is good. The above-mentioned particle size range is preferable in consideration of the capacity of the melting crucible, the strength of the vapor deposition material particles as a sphere, and the thermal conductivity. When the particle diameter of the vapor deposition material particles is less than 0.5 mm, handling during work becomes very difficult. In particular, in the case of the shape provided with the above-mentioned protrusions, if the particle size is less than 0.5 mm, the effect of providing the protrusions is small, and if it exceeds 30 mm, the gap between the particles may be rather increased. .
[0027]
The vapor deposition material according to the present invention is manufactured, for example, according to the following process. That is, an appropriate amount of a sintering aid, a solvent, and a binder are added to an oxide powder such as a Ta oxide or an oxide powder as a raw material, mixed, pulverized, and a granulated powder is prepared by a spray drier. The granulated powder thus prepared is press-formed using, for example, dies 4 and 5 having substantially spherical concave portions as shown in FIG. 2, and the obtained molded body is degreased and then subjected to a predetermined condition. It can be manufactured by sintering.
[0028]
The degreasing temperature is preferably in the range of 200 ° C to 600 ° C. At a degreasing temperature of less than 200 ° C., auxiliary agents such as a binder are not sufficiently removed from the material. At a high temperature exceeding 600 ° C., the sintering of the outer surface of the formed article of the vapor deposition material proceeds first, so that the auxiliary may not be sufficiently removed. The sintering temperature is preferably set to a temperature equal to or higher than half the melting point of the material oxide. More preferably, it is about 2/3 of the melting point of the material oxide. If the sintering temperature is less than 1/2 of the melting point of the material oxide, sintering does not proceed sufficiently, and desired relative density and shape accuracy cannot be obtained. The degree of vacuum of the atmosphere in which the sintering operation is performed is 133 × 10-5Pa (1 × 10-5Torr) or less. If the degree of vacuum is larger than this, the volatilization of the impurities Na and K does not proceed sufficiently, and it becomes difficult to control the contents of the impurities Na and K in the deposition material.
[0029]
The above-mentioned evaporation material can be further produced by using an EB melting rotation method, a high frequency induction thermal plasma method, or the like. The shape of the vapor deposition material as the vapor deposition source can be adjusted by the shape of the mold used for molding the raw material powder, the amount of the raw material powder charged into the mold, and the pressing pressure. It is preferable that the obtained vapor deposition material has a spherical or elliptical particle body having a protruding portion formed at the equator portion in order to improve handleability. When producing truly spherical or elliptical vapor deposition material particles, the particle shape can be controlled by mechanical processing such as polishing.
[0030]
The optical thin film according to the present invention is formed by vapor-depositing components evaporated from the above-mentioned vapor deposition material on a substrate. The optical thin film is a single layer having a thickness of 10 μm or less. Further, an optical component according to the present invention includes the above optical thin film.
[0031]
According to the vapor deposition material according to the above configuration, by forming the shape of the vapor deposition material particles constituting the vapor deposition material into a shape having a spherical surface at least in part, such as a sphere or an ellipsoid, the vapor deposition material for the crucible is formed. The vaporization material can be efficiently melted so that the filling rate is increased and the gas phase is not left inside the melt, splash can be effectively prevented, and the quality of products using the vapor deposition film can be improved. And the manufacturing yield can be greatly improved.
[0032]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be specifically described with reference to the following examples.
[0033]
Example 1
A commercially available Ta oxide having a purity of 3N (99.9%) (Ta oxide)2O5After adding a binder (epoxy resin) to the powder of (1) and mixing and pulverizing the mixture, the mixture was granulated by a spray dryer. The granulated powder thus obtained was press-formed using a die forming machine shown in FIG. The upper mold 4 and the lower mold 5 each having a concave portion on a hemispherical surface with a radius of 1.5 mm were used. Next, each of the obtained elementary spherical compacts was heated in the air at a temperature of 250 ° C. for 5 hours to be degreased.-5It was sintered at a temperature of 1500 ° C. for 5 hours in a vacuum of Pa. A protruding portion 2 as shown in FIG. 3 is formed at the equator of each spherical vapor deposition material particle, and the ratio (W / D) of the width W of the protrusion 2 to the diameter D of the vapor deposition material particle is 0.1. The height H of the projection 2 was less than 1 mm.
[0034]
The actual density of the obtained vapor deposition material was measured by the Archimedes method, and the relative density was measured by calculating the ratio to the theoretical density. The average value of the relative density was 55%. Further, the obtained evaporation material was sieved to select evaporation material particles having a diameter of 1.5 to 2.5 mm. When 100 particles were randomly extracted from the selected vapor deposition material particles and subjected to image analysis, the mass ratio of the vapor deposition material particles having a shape coefficient A / B of 1.0 or more and 5.0 or less shown in FIG. 1 was 98%. there were.
[0035]
The obtained evaporation material was filled in a Cu crucible having a diameter of 50 mm and a height of 30 mm. The filling rate is a value obtained by multiplying 100 by a value obtained by dividing the volume of the evaporation source filled in the crucible by the volume of the crucible. As a result, the filling rate was 92%. The above crucible was set in a vapor deposition apparatus, and the degree of vacuum was 133 × 10-5The deposition material was heated to 3 Pa or less and irradiated with an electron beam having a power of 3 kW to be melted for 10 hours. Thereafter, 100 glass substrates of 50 mm square were actually prepared, and the glass substrate was set so as to face the evaporation source, and the evaporated evaporation material component was evaporated to form an evaporation film on the glass substrate. For each of the obtained vapor-deposited samples, the number of splashes having a diameter of 5 μm or more mixed in the vapor-deposited film per glass substrate was measured using a defect detection device. As a result, the average was 3.5 per substrate. . Further, the total content of impurities Na and K was measured by a spectroscopic analyzer, and the results shown in Table 1 were obtained.
[0036]
As is evident from the above results, the vapor deposition material according to Example 1 can increase the filling rate in the melting tank, can efficiently dissolve and evaporate, and can effectively suppress the number of splashes generated. It was also found that defects due to splash were reduced, the production yield of products using the deposited film was improved, and the throughput was high.
[0037]
Example 2-12
An oxide shown in the left column of Table 1, a binder (epoxy resin) is added to commercially available powders of various oxides having a purity of 3N (99.9%), mixed and crushed, and then produced by a spray dryer. Granulated. The granulated powder thus obtained was press-molded using a mold molding machine shown in FIG. 2 to prepare a spherical molded body for each example. Here, in Examples 2, 4-6, 8, and 11, the shapes of the upper mold 4, the lower mold 5, and their tips 6, 7 were formed such that the protrusions having the dimensions shown in Table 1 were formed. And the molding pressure was adjusted to carry out the molding operation.
[0038]
Next, after heating each of the obtained molded elemental spheres in the air at a temperature and for a time shown in Table 1 to degrease them, sintering conditions shown in Table 1 in a vacuum having a degree of vacuum shown in Table 1 ( (Temperature x time). A protruding portion 2 as shown in FIG. 3 is formed at the equator of each of the spherical vapor deposition material particles according to Examples 2, 4-6, 8, and 11, and the width of the protruding portion 2 with respect to the diameter D of the vapor deposition material particles. The ratio of W (W / D) and the height H of the projection 2 were set to the values shown in Table 1, respectively.
[0039]
On the other hand, a projection was also formed at the equator of each of the vapor-deposited material particle molded bodies according to Examples 3, 7, 9, 10, and 12, but the projections were removed at the stage of the molded body to remove the projections. Substantially spherical vapor deposition material particles were used.
[0040]
The actual density of the obtained vapor deposition material was measured by the Archimedes method, and the relative density was measured by calculating the ratio to the theoretical density. Table 1 shows the average value of the relative density. Further, the obtained vapor deposition material was sieved to select vapor deposition material particles having a diameter range shown in the left column of Table 1. One hundred particles were randomly extracted from the selected vapor deposition material particles and subjected to image analysis, and the mass ratio of the vapor deposition material particles having a shape coefficient A / B of 1.0 or more and 5.0 or less shown in FIG. 1 was obtained. The total content of impurities Na and K was measured by a spectrophotometer, and the results shown in Table 1 were obtained.
[0041]
Each of the obtained evaporation materials was filled in a Cu crucible having a diameter of 50 mm and a height of 30 mm. The filling rate is a value obtained by multiplying 100 by a value obtained by dividing the volume of the evaporation source filled in the crucible by the volume of the crucible. As a result, the filling rate was as shown in Table 1. The above crucible was set in a vapor deposition apparatus, and the degree of vacuum was 133 × 10-5The deposition material was heated to 3 Pa or less and irradiated with an electron beam having a power of 3 kW to be melted for 10 hours. Thereafter, 100 glass substrates of 50 mm square were actually prepared, and the glass substrate was set so as to face the evaporation source, and the evaporated evaporation material component was evaporated to form an evaporation film on the glass substrate. For each of the obtained vapor deposition samples, the number of splashes having a diameter of 5 μm or more mixed into the vapor deposition film per glass substrate was measured using a defect detection apparatus, and the results shown in Table 1 were obtained.
[0042]
As is clear from the results shown in Table 1, the vapor-deposited material according to each example having a predetermined shape factor and formed in a spherical shape can increase the filling rate of a melting tank such as a crucible and can efficiently dissolve the material. It has been found that it is possible to evaporate, to effectively suppress the number of generated splashes, to reduce defects due to splash, to improve the production yield of products using vapor-deposited films, and to increase throughput.
[0043]
In particular, in each of the vapor deposition material particles according to Examples 3, 7, 9, 10, and 12 in which no protrusion is formed, the degree of spheroidity is further increased and the particles are formed almost spherical, so that the filling rate into the crucible is extremely high. Thus, the vapor deposition material can be efficiently evaporated without leaving the gas phase components, the number of splashes per substrate is extremely small, and it has been proved that excellent characteristics are exhibited. However, since the projections are not formed, they are easily rolled and dissipated when unfolded on a flat surface, and have a difficulty in handling.
[0044]
Further, according to the vapor deposition material particles prepared by sintering the compact by increasing the degree of vacuum during sintering, Na and K as light impurity elements were effectively removed, which further contributed to the reduction of splash. It is presumed that.
[0045]
Comparative Example 1-12
Vapor-deposited materials formed of crushed powders or pellets of various oxides having a purity of 3N (99.9%), which are commercially available and made of the oxides shown in the left column of Table 1, were prepared. For Comparative Examples 1, 6, 8, and 10, crushed powder having a particle size range shown in Table 1 was used as it was as a vapor deposition material.
[0046]
On the other hand, for Comparative Example 3-5, a binder (epoxy resin) was added to crushed powder having a particle size range shown in Table 1, mixed and crushed, and then granulated by a spray dryer. From the granulated powder thus obtained, spherical compacts were respectively prepared using a mold molding machine as shown in FIG. In Comparative Examples 3 and 4, mold press molding was performed using a mold having a shape such that a projection having the specifications shown in Table 1 was formed. Next, with respect to Comparative Examples 3, 4, and 5, after the obtained molded elemental spheres were degreased in the air under the degreasing conditions shown in Table 1, each of them was further baked in an atmosphere having a degree of vacuum shown in Table 1. By sintering under sintering conditions (temperature x time), a vapor deposition material according to Comparative Example 3-5 was prepared.
[0047]
On the other hand, in Comparative Examples 2, 7, 9, and 11-14, the oxide formed in a pellet shape was used as a vapor deposition material according to each Comparative Example as it was.
[0048]
The relative density of each of the thus prepared deposition materials was measured in the same manner as in Example 1 except for the crushed powder, and the results shown in Table 1 were obtained. Except for the pellet-shaped vapor deposition material, 100 particles were randomly extracted from the vapor deposition material particles of each comparative example and subjected to image analysis, whereby the shape factor A / B shown in FIG. 1 was 1.0 or more and 5.0 or less. Was measured, and the results shown in Table 1 were obtained.
[0049]
Next, each of the obtained vapor deposition materials was filled in a Cu crucible having a diameter of 50 mm and a height of 30 mm, and the value obtained by dividing the volume of the vapor deposition material filled in the crucible by the volume of the crucible was 100 as in Example 1. The multiplied value was measured as a filling factor, and the results shown in Table 1 were obtained.
[0050]
Further, a crucible filled with the vapor deposition material according to each comparative example was placed in a vapor deposition apparatus, and a degree of vacuum of 133 × 10-5The deposition material was heated to 3 Pa or less and irradiated with an electron beam having a power of 3 kW to be melted for 10 hours. Thereafter, 100 glass substrates of 50 mm square were actually prepared, and the glass substrate was set so as to face the evaporation source, and the evaporated evaporation material component was evaporated to form an evaporation film on the glass substrate. For each of the obtained vapor deposition samples, the number of splashes having a diameter of 5 μm or more scattered and mixed into the vapor deposition film per glass substrate was measured using a defect detection apparatus, and the results shown in Table 1 below were obtained.
[0051]
[Table 1]
Figure 2004169098
[0052]
As is clear from the results shown in Table 1 above, the vapor deposition material according to each example having a predetermined shape factor and being formed into a spherical shape can increase the filling rate of a melting tank such as a crucible, and can efficiently be used. It has been found that it is possible to dissolve and evaporate, the number of generated splashes can be effectively suppressed, defects due to splash can be reduced, the production yield of products using vapor-deposited films can be improved, and throughput can be high. Note that “below the detection limit” indicating the total amount of Na and K in Example 9 and Example 12 indicates 0.02 ppm or less.
[0053]
On the other hand, in the vapor deposition materials according to Comparative Examples 1, 6, 8, and 10, which are composed of irregularly crushed powder and have a small percentage of particles having a predetermined shape coefficient, the filling rate of the crucible is as small as 60%. However, it was difficult to efficiently dissolve the gas phase components without leaving them, and the incidence of splash was increased.
[0054]
In addition, in the deposition material according to Comparative Example 3-5 in which the crushed powder was formed into a spherical shape and sintered, although the filling rate in the crucible was improved by spheroidization, impurity elements such as Na and K were sufficiently removed. However, it was confirmed that the amount of splash was large because it remained in the evaporation material.
[0055]
On the other hand, in Comparative Examples 2, 7, 9, and 11-14 in which the oxide formed in the form of pellets was directly used as the vapor deposition material, it was difficult to increase the filling rate of the crucible even with the use of fine pellets. It was again confirmed that the amount of generated splash was relatively high because there was no intention to reduce impurity elements.
[0056]
【The invention's effect】
As described above, according to the deposition material according to the present invention, by forming the shape of the deposition material particles constituting the deposition material into a shape having a spherical surface at least in part, such as a sphere or an ellipsoid. The deposition rate of the vapor deposition material in the crucible is increased, and the vapor deposition material can be efficiently melted so that the gas phase portion is not left inside the melt, and the generation of the splash can be effectively prevented, and the vapor deposition film can be formed. Can improve the quality of products using the same and greatly improve the production yield.
[Brief description of the drawings]
FIG. 1 is a plan view illustrating a method for obtaining a shape factor from a projection view of vapor deposition material particles constituting a vapor deposition material according to the present invention.
FIG. 2 is a cross-sectional view showing a configuration of a mold forming machine used when producing a deposition material according to the present invention.
FIG. 3 is a perspective view showing a shape example of vapor deposition material particles constituting a vapor deposition material according to the present invention.
[Explanation of symbols]
1 evaporation material particles
1a Projection image of vapor deposition material particles
2 Projection
3 Evaporation material raw material powder
4 Upper mold
5 Lower mold
6 Tip
7 Tip
A circumscribed circle
B inscribed circle
D Particle size
H Height of protrusion
W Width of protrusion

Claims (9)

蒸着材粒子からなり、この蒸着材粒子の表面の少なくとも一部に球面を具備することを特徴とする蒸着材料。An evaporation material comprising evaporation material particles, wherein at least a part of the surface of the evaporation material particles has a spherical surface. 蒸着材粒子の形状が球体または楕円体であり、この蒸着材粒子の赤道部に、外方向に突出する突起部が形成されていることを特徴とする請求項1記載の蒸着材料。The vapor deposition material according to claim 1, wherein the shape of the vapor deposition material particles is a sphere or an ellipsoid, and a projection projecting outward is formed at an equatorial portion of the vapor deposition material particles. 前記蒸着材料が多数の蒸着材粒子からなり、この蒸着材粒子を平面に投影したときに形成される投影像に外接する正円の面積をAとし、上記投影像に内接する正円の面積をBとした場合に、A/Bで表される形状係数が1以上5以下である蒸着材粒子の割合が90質量%以上であることを特徴とする請求項1または2記載の蒸着材料。The deposition material is composed of a large number of deposition material particles, the area of a perfect circle circumscribing a projected image formed when the deposition material particles are projected onto a plane is A, and the area of a perfect circle inscribed in the projection image is A 3. The vapor deposition material according to claim 1, wherein when B is used, a ratio of vapor deposition material particles having a shape factor represented by A / B of 1 to 5 is 90 mass% or more. 4. 前記蒸着材粒子がTa,Nb,Ti,Zr,Si,Mg,Y,Ca,Al,Hf,In,Zn,Snから選択された少なくとも1種の酸化物で構成されていることを特徴とする請求項1乃至3のいずれかに記載の蒸着材料。The vapor deposition material particles are composed of at least one oxide selected from Ta, Nb, Ti, Zr, Si, Mg, Y, Ca, Al, Hf, In, Zn, and Sn. The vapor deposition material according to claim 1. 前記蒸着材粒子の相対密度が50%以上であることを特徴とする請求項1乃至4のいずれかに記載の蒸着材料。The vapor deposition material according to any one of claims 1 to 4, wherein the relative density of the vapor deposition material particles is 50% or more. 軽元素である、Na,Kの含有量が100ppm以下であることを特徴とする請求項1乃至4のいずれかに記載の蒸着材料。The vapor deposition material according to any one of claims 1 to 4, wherein the content of Na, K, which is a light element, is 100 ppm or less. 前記蒸着材粒子の粒径が0.5mm〜30mmの範囲にあることを特徴とする請求項1乃至6のいずれかに記載の蒸着材料。The vapor deposition material according to any one of claims 1 to 6, wherein the particle diameter of the vapor deposition material particles is in a range of 0.5 mm to 30 mm. 請求項1乃至7のいずれかに記載の蒸着材料から蒸着されたことを特徴とする光学薄膜。An optical thin film deposited from the deposition material according to claim 1. 請求項8記載の光学薄膜を具備したことを特徴とする光学部品。An optical component comprising the optical thin film according to claim 8.
JP2002335591A 2002-11-19 2002-11-19 Vapor deposition material Expired - Lifetime JP4445193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002335591A JP4445193B2 (en) 2002-11-19 2002-11-19 Vapor deposition material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002335591A JP4445193B2 (en) 2002-11-19 2002-11-19 Vapor deposition material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009256321A Division JP2010031384A (en) 2009-11-09 2009-11-09 Optical thin film and optical component

Publications (2)

Publication Number Publication Date
JP2004169098A true JP2004169098A (en) 2004-06-17
JP4445193B2 JP4445193B2 (en) 2010-04-07

Family

ID=32699693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002335591A Expired - Lifetime JP4445193B2 (en) 2002-11-19 2002-11-19 Vapor deposition material

Country Status (1)

Country Link
JP (1) JP4445193B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152199A (en) * 2004-12-01 2006-06-15 Konica Minolta Medical & Graphic Inc Radiation image conversion panel, its production method and production apparatus
JP2006284778A (en) * 2005-03-31 2006-10-19 Hoya Corp Method of suppressing splash and method for manufacturing plastic lens
JP2009235563A (en) * 2008-03-03 2009-10-15 Toho Titanium Co Ltd Vapor-deposition material of metal oxide, production method therefor, and method for producing vapor-deposition film of metal oxide
JP2009235564A (en) * 2008-03-03 2009-10-15 Toho Titanium Co Ltd Vapor-deposition material of tantalum oxide, production method therefor, and method for producing vapor-deposition film of tantalum oxide
JP2010095755A (en) * 2008-10-16 2010-04-30 Toho Titanium Co Ltd Vapor-deposition material of tantalum oxide, production method thereof, and method for producing vapor-deposition film of tantalum oxide
JP2010095754A (en) * 2008-10-16 2010-04-30 Toho Titanium Co Ltd Vapor-deposition material of tantalum oxide, production method therefor, and method for producing vapor-deposition film of tantalum oxide
JP2011111654A (en) * 2009-11-27 2011-06-09 Mitsubishi Materials Corp Method for producing vapor deposition material, and vapor deposition material produced thereby
JP2012027412A (en) * 2010-07-28 2012-02-09 Konica Minolta Opto Inc Optical element and manufacturing method thereof
JP2020097758A (en) * 2018-12-17 2020-06-25 住友化学株式会社 Particle for vacuum deposition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152199A (en) * 2004-12-01 2006-06-15 Konica Minolta Medical & Graphic Inc Radiation image conversion panel, its production method and production apparatus
JP2006284778A (en) * 2005-03-31 2006-10-19 Hoya Corp Method of suppressing splash and method for manufacturing plastic lens
JP2009235563A (en) * 2008-03-03 2009-10-15 Toho Titanium Co Ltd Vapor-deposition material of metal oxide, production method therefor, and method for producing vapor-deposition film of metal oxide
JP2009235564A (en) * 2008-03-03 2009-10-15 Toho Titanium Co Ltd Vapor-deposition material of tantalum oxide, production method therefor, and method for producing vapor-deposition film of tantalum oxide
JP2010095755A (en) * 2008-10-16 2010-04-30 Toho Titanium Co Ltd Vapor-deposition material of tantalum oxide, production method thereof, and method for producing vapor-deposition film of tantalum oxide
JP2010095754A (en) * 2008-10-16 2010-04-30 Toho Titanium Co Ltd Vapor-deposition material of tantalum oxide, production method therefor, and method for producing vapor-deposition film of tantalum oxide
JP2011111654A (en) * 2009-11-27 2011-06-09 Mitsubishi Materials Corp Method for producing vapor deposition material, and vapor deposition material produced thereby
JP2012027412A (en) * 2010-07-28 2012-02-09 Konica Minolta Opto Inc Optical element and manufacturing method thereof
JP2020097758A (en) * 2018-12-17 2020-06-25 住友化学株式会社 Particle for vacuum deposition

Also Published As

Publication number Publication date
JP4445193B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
JP3314728B2 (en) Polycrystalline MgO deposited material
JP5764828B2 (en) Oxide sintered body and tablet processed the same
JPWO2006077692A1 (en) Sb-Te alloy powder for sintering, sintered sputtering target obtained by sintering this powder, and method for producing Sb-Te alloy powder for sintering
WO2014132746A1 (en) Fept-c-based sputtering target and method for manufacturing same
WO2004044260A1 (en) Sputtering target and powder for production thereof
JP4445193B2 (en) Vapor deposition material
WO2011145265A1 (en) Sintered magnesium oxide material, and process for production thereof
JPH10291854A (en) Polycrystalline mgo vapor depositing material and its production
JP3331584B2 (en) Polycrystalline MgO deposited material
JPH10297955A (en) Material having evaporated magnesium oxide layer and its production
JP2010031384A (en) Optical thin film and optical component
JPH1129857A (en) Polycrystalline magnesium oxide vapor deposition material and its production
JP4813182B2 (en) ITO sputtering target
JP5381725B2 (en) Method for producing ZnO vapor deposition material
JP3359268B2 (en) Pellet for vacuum film formation, method for manufacturing MgO sintered body, and method for vacuum film formation of MgO thin film
JP2010185129A (en) METHOD FOR MANUFACTURING ZnO VAPOR DEPOSITION MATERIAL
JP2007119805A (en) Method for manufacturing sputtering target
JP5428872B2 (en) Method for producing ZnO vapor deposition material
JP2005075648A (en) Method of manufacturing indium tin oxide sintered compact
JP2004043955A (en) MgO VAPOR DEPOSITION MATERIAL AND ITS MANUFACTURING PROCESS, MANUFACTURING PROCESS OF MgO DEPOSITION FILM
JPH1129355A (en) Polycrystalline magnesium oxide vacuum-deposition material and its production
JP2004084016A (en) Magnesium oxide vapor deposition material
KR19980079548A (en) Mg deposition material and its manufacturing method
JP3896218B2 (en) Indium-germanium vapor deposition target and method for producing the same
JP5115249B2 (en) Vapor deposition material and method for forming a vapor deposition film using the vapor deposition material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

R151 Written notification of patent or utility model registration

Ref document number: 4445193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

EXPY Cancellation because of completion of term