JP3314728B2 - Polycrystalline MgO deposited material - Google Patents
Polycrystalline MgO deposited materialInfo
- Publication number
- JP3314728B2 JP3314728B2 JP22664698A JP22664698A JP3314728B2 JP 3314728 B2 JP3314728 B2 JP 3314728B2 JP 22664698 A JP22664698 A JP 22664698A JP 22664698 A JP22664698 A JP 22664698A JP 3314728 B2 JP3314728 B2 JP 3314728B2
- Authority
- JP
- Japan
- Prior art keywords
- mgo
- film
- ppm
- less
- impurities
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2211/00—Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
- H01J2211/20—Constructional details
- H01J2211/34—Vessels, containers or parts thereof, e.g. substrates
- H01J2211/40—Layers for protecting or enhancing the electron emission, e.g. MgO layers
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
- Gas-Filled Discharge Tubes (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、AC型のプラズマ
ディスプレイパネルのMgO膜の成膜に適した多結晶M
gO蒸着材に関するものである。The present invention relates to a polycrystalline M suitable for forming an MgO film of an AC type plasma display panel.
It relates to a gO vapor deposition material.
【0002】[0002]
【従来の技術】近年、液晶(Liquid Cryst
al Display:LCD)をはじめとして、各種
の平面ディスプレイの研究開発と実用化はめざましく、
その生産も急増している。カラープラズマディスプレイ
パネル(PDP)についても、その開発と実用化の動き
が最近活発になっている。PDPは大型化し易く、ハイ
ビジョン用の大画面壁掛けテレビの最短距離にあり、既
に対角40インチクラスのPDPの試作が進められてい
る。PDPは、電極構造の点で金属電極がガラス誘電体
材料で覆われるAC型と、放電空間に金属電極が露出し
ているDC型とに分類される。2. Description of the Related Art In recent years, liquid crystals (Liquid Crystal) have been developed.
al Display (LCD), and other R & D and practical application of various flat displays are remarkable.
Its production is also increasing rapidly. Recently, color plasma display panels (PDPs) have been actively developed and put into practical use. PDPs are easy to increase in size, are at the shortest distance from large screen wall-mounted televisions for high-definition televisions, and prototypes of 40-inch diagonal PDPs have already been developed. PDPs are classified into an AC type in which a metal electrode is covered with a glass dielectric material in terms of an electrode structure, and a DC type in which a metal electrode is exposed in a discharge space.
【0003】このAC型PDPの開発の当初は、ガラス
誘電体層が放電空間に露出していたため、直接放電にさ
らされ、イオン衝撃のスパッタリングにより誘電体層の
表面が変化して放電開始電圧が上昇していた。そのた
め、高い昇華熱を持つ種々の酸化物をこの誘電体層の保
護膜とする試みがなされた。この保護膜は直接放電用の
ガスと接しているために重要な役割を担っている。即
ち、保護膜に求められる特性は、低い放電電圧、放電時
の耐スパッタリング性、速い放電の応答性、及び絶縁性
である。これらの条件を満たす材料として、MgOが保
護膜に用いられる。このMgOからなる保護膜は、誘電
体層の表面を放電時のスパッタリングから守り、PDP
の長寿命化に重要な働きをしている。At the beginning of the development of the AC type PDP, since the glass dielectric layer was exposed to the discharge space, the glass dielectric layer was directly exposed to the discharge, and the surface of the dielectric layer was changed by ion bombardment, and the discharge starting voltage was lowered. Was rising. For this reason, attempts have been made to use various oxides having high sublimation heat as protective films for the dielectric layer. This protective film plays an important role because it is in direct contact with the discharge gas. That is, the characteristics required for the protective film are a low discharge voltage, resistance to sputtering during discharge, fast discharge responsiveness, and insulation. MgO is used for the protective film as a material satisfying these conditions. The protective film made of MgO protects the surface of the dielectric layer from sputtering at the time of discharge, and is used for PDP.
It plays an important role in prolonging the service life.
【0004】現在、AC型PDPの上記保護膜として、
単結晶MgOの破砕品を蒸着材とする電子ビーム蒸着法
により成膜されたMgO膜が知られている。この電子ビ
ーム蒸着法によるMgO膜は1000オングストローム
/分以上の高速で成膜することができる。また成膜され
たMgO膜の結晶方位は(111)面に配向した膜が最
も低い維持電圧で駆動でき、更に膜中に存在する(11
1)面の量が増えるほど二次電子の放出比は増大し、駆
動電圧も減少すると言われている。なお上記単結晶Mg
Oの破砕品は純度が98%以上のMgOクリンカや軽焼
MgO(1000℃以下で焼結されたMgO)を電気炉
(アーク炉)で溶融することにより、即ち電融によりイ
ンゴットとした後、このインゴットから単結晶部を破砕
して取出すことにより製造される。At present, as the above protective film of AC type PDP,
An MgO film formed by an electron beam evaporation method using a crushed single crystal MgO as an evaporation material is known. The MgO film formed by the electron beam evaporation method can be formed at a high speed of 1000 Å / min or more. The crystal orientation of the formed MgO film is such that a film oriented in the (111) plane can be driven at the lowest sustaining voltage, and furthermore, exists in the film (11
1) It is said that as the amount of the surface increases, the emission ratio of secondary electrons increases and the driving voltage also decreases. The single crystal Mg
The crushed product of O is obtained by melting MgO clinker having a purity of 98% or more or lightly burned MgO (MgO sintered at 1000 ° C. or less) in an electric furnace (arc furnace), that is, into an ingot by electromelting. It is manufactured by crushing and extracting a single crystal part from this ingot.
【0005】[0005]
【発明が解決しようとする課題】しかし、上記従来の単
結晶MgOの破砕品を蒸着材として用いた電子ビーム蒸
着法では、単結晶MgOがカーボン電極棒によるアーク
溶融で製造するため、単結晶中のカーボン量は100p
pm以上存在し、電子ビームで蒸着した膜中にもかなり
のカーボン量が存在する。カーボンがMgO膜中にかな
り存在するとプラズマ放電時、膜表面層近傍に存在する
電荷を膜中に取り込み易く(トラップし易く)電子の衝
突頻度が低下し、ついては2次電子の放出係数が下がる
ため、放電電圧を高くしなければならない問題があっ
た。また蒸着材に局所的に高エネルギーを与えるため、
微粉の蒸着材の飛散(スプラッシュ)が発生し、蒸着効
率が低下する不具合があった。このスプラッシュの発生
の防止には蒸着材の大型化が有効であると考えられてい
るが、単結晶MgOはその製造過程として、電気溶融後
かなり長時間自然放置する状態を経て、大型インゴット
を冷却し、更にそのインゴットから単結晶部分を破砕し
て取り出し、整粒する工程がある。その際、フレッシュ
な破砕面は活性度が高く、大気中の水分や炭酸ガスが長
時間にわたって付着するため、蒸着前の脱気工程で、こ
れらの付着した水分、炭酸ガスがかなり放出されるた
め、脱気にかなりの時間を要し、生産性を向上する上で
問題視されている。その粉砕品では現行の粒径1〜5m
mより大きな粒子を、歩留り良く安定して確保すること
が困難であった。また上記従来の単結晶MgOの破砕品
を蒸着材として用いた電子ビーム蒸着法では、大面積の
ガラス誘電体層に対してMgO膜を均一に成膜すること
が難しく、膜厚分布に問題があった。この結果、MgO
膜を成膜したガラス誘電体層をPDPに組み込んだ場合
に、電気的特性、例えば放電開始電圧や維持電圧が、高
くなったり或いは変化したりする問題点があった。However, in the conventional electron beam evaporation method using a crushed product of single crystal MgO as a deposition material, single crystal MgO is produced by arc melting using a carbon electrode rod. Of carbon is 100p
pm or more, and a considerable amount of carbon is also present in the film deposited by electron beam. When carbon is considerably present in the MgO film, during plasma discharge, charges existing in the vicinity of the film surface layer are easily taken into the film (easy to be trapped), so that the frequency of collision of electrons decreases, and the emission coefficient of secondary electrons decreases. However, there is a problem that the discharge voltage must be increased. Also, to give high energy locally to the deposition material,
There was a problem that the vapor deposition material of the fine powder was scattered (splash) and the vapor deposition efficiency was reduced. It is thought that increasing the size of the vapor deposition material is effective in preventing the generation of this splash. However, as a manufacturing process, single-crystal MgO is allowed to stand naturally for a long time after electric melting, and then cools the large ingot. Further, there is a step of crushing and taking out a single crystal portion from the ingot, and sizing. At that time, the fresh crushed surface has high activity, and moisture and carbon dioxide in the atmosphere adhere over a long period of time. However, it takes a considerable amount of time to degas, and this is regarded as a problem in improving productivity. The current particle size is 1-5m
It has been difficult to stably secure particles larger than m with good yield. In the conventional electron beam evaporation method using a crushed single crystal MgO product as an evaporation material, it is difficult to uniformly form an MgO film on a large-area glass dielectric layer, and there is a problem in film thickness distribution. there were. As a result, MgO
When a glass dielectric layer on which a film is formed is incorporated into a PDP, there is a problem that electrical characteristics, for example, a discharge starting voltage and a sustaining voltage are increased or changed.
【0006】一方、MgOクリンカや軽焼MgOは、海
水から得られるMgCl2を原料としていることが多
く、このMgCl2には比較的多くのCa、Si、Fe
等の不純物が含まれるため、これらの不純物が単結晶M
gO中に残留する。また単結晶MgOの製造過程におけ
るインゴットでは、このインゴットの中心から表面部に
向かって連続的に不純物量が増加しており、このため単
結晶部の取り出し方によって製品の純度が極めて容易に
変動してしまい、単結晶MgOの純度の安定性や信頼性
を欠く問題点があった。On the other hand, MgO clinker and lightly burned MgO often use MgCl2 obtained from seawater as a raw material, and this MgCl2 contains a relatively large amount of Ca, Si, Fe.
And the like, these impurities are contained in the single crystal M
Remains in gO. Further, in the ingot in the production process of the single crystal MgO, the impurity amount continuously increases from the center of the ingot toward the surface portion. Therefore, the purity of the product varies very easily depending on how the single crystal portion is taken out. As a result, there is a problem that the stability and reliability of the purity of the single crystal MgO are lacking.
【0007】これらの点を解消するために単結晶MgO
に代えて多結晶MgOを用いる方法も考えられる。しか
し種々の焼結助剤の添加により緻密化した高密度の多結
晶MgOでは、組織的に結晶粒界に欠陥が存在する問題
点があり、また純度を高くすると密度が低くなる問題点
があった。一方、欠陥のほとんどない原子間結合エネル
ギーの高い構造体は、蒸着に際して電子ビームを照射す
る時、かなり高エネルギーの電子が衝突しないと結合を
振り切ってMgやOの原子は飛び出しにくく、飛び出し
量が少ないため、成膜速度を速くするには電子ビームの
パワーを上げるなり、限界があった。この結果、これら
の多結晶MgO蒸着材を用いて電子ビーム蒸着法にてガ
ラス誘電体層にMgO膜を成膜すると結晶方位(11
1)面への配向量が減少し、このガラス誘電体層をPD
Pに組込んだときの電気特性が低下するため、多結晶M
gOを蒸着材として使用できなかった。In order to solve these problems, a single crystal MgO
Alternatively, a method using polycrystalline MgO may be considered. However, high-density polycrystalline MgO densified by the addition of various sintering aids has a problem that defects are systematically present at crystal grain boundaries, and a problem that the density is lowered when the purity is increased. Was. On the other hand, a structure with few defects and high interatomic bond energy, when irradiating an electron beam during deposition, if electrons with high energy do not collide, the bond is broken off and atoms of Mg and O are difficult to fly out, and the amount of protrusion is small. Since there is little, there is a limit to increasing the film formation rate because the power of the electron beam must be increased. As a result, when an MgO film is formed on a glass dielectric layer by an electron beam evaporation method using these polycrystalline MgO evaporation materials, the crystal orientation (11
1) The amount of orientation on the surface is reduced, and this glass dielectric layer is
Since the electrical characteristics when incorporated in P are reduced, the polycrystalline M
gO could not be used as a vapor deposition material.
【0008】本発明の目的は、電子ビーム蒸着法にて蒸
着しても、スプラッシュを発生させずに高速でかつ均一
に成膜できる多結晶MgO蒸着材を提供することにあ
る。本発明の別の目的は、成膜されたMgO膜の膜特性
を向上できる多結晶MgO蒸着材を提供することにあ
る。An object of the present invention is to provide a polycrystalline MgO vapor deposition material that can form a film at high speed and uniformly without generating a splash even when vapor deposition is performed by an electron beam vapor deposition method. Another object of the present invention is to provide a polycrystalline MgO vapor deposition material that can improve the film characteristics of a formed MgO film.
【0009】[0009]
【課題を解決するための手段】請求項1に係る発明は、
MgO純度が99.90%以上でカーボン量が30pp
m以下であり、かつ相対密度が98%以上の多結晶Mg
Oの焼結体ペレットからなる多結晶MgO蒸着材であ
る。この請求項1に記載された多結晶MgO蒸着材で
は、高純度かつ高密度の多結晶MgO蒸着材を用いてA
C型PDP等のMgO膜を成膜すると、スプラッシュが
極めて少なく高速で安定した成膜ができる。また膜厚分
布を向上できるので、略均一な膜質を有するMgO膜を
得ることができる。The invention according to claim 1 is
MgO purity of 99.90% or more and carbon content of 30pp
m and a relative density of 98% or more
This is a polycrystalline MgO vapor deposition material made of a sintered pellet of O. In the polycrystalline MgO vapor deposition material according to the first aspect, the high purity and high density polycrystalline MgO vapor deposition material
When an MgO film such as a C-type PDP is formed, a stable film can be formed at high speed with little splash. Further, since the film thickness distribution can be improved, an MgO film having substantially uniform film quality can be obtained.
【0010】請求項2に係る発明は、請求項1に係る発
明であって、更に、多結晶MgOの焼結体ペレットに含
まれる、Si及びAlの不純物がそれぞれ元素濃度で1
50ppm以下であり、Caの不純物が元素濃度で20
0ppm以下であり、Feの不純物が元素濃度で50p
pm以下であり、Cr、V及びNiの不純物がそれぞれ
元素濃度で10ppm以下であり、Na及びKの不純物
がそれぞれ元素濃度で20ppm以下であり、Zrの不
純物濃度150ppm以下であることを特徴とする。こ
の請求項2に記載された多結晶MgO蒸着材では、成膜
されたMgO膜に含まれる不純物が極めて少なくなるの
で、このMgO膜の膜特性は向上する。The invention according to claim 2 is the invention according to claim 1, wherein the impurities of Si and Al contained in the sintered pellet of polycrystalline MgO have an element concentration of 1% each.
50 ppm or less, and the impurity of Ca is 20
0 ppm or less, and the impurity of Fe is 50 p in element concentration.
pm or less, the impurities of Cr, V and Ni are each 10 ppm or less in elemental concentration, the impurities of Na and K are each 20 ppm or less in elemental concentration, and the impurity concentration of Zr is 150 ppm or less. . In the polycrystalline MgO vapor deposition material according to the second aspect, the impurities contained in the formed MgO film are extremely small, so that the film characteristics of the MgO film are improved.
【0011】[0011]
【発明の実施の形態】次に本発明の実施の形態を詳しく
説明する。本発明の多結晶MgO蒸着材はMgO純度が
99.90%以上、特に、カーボン量が30ppm以下
であり、かつ相対密度が98%以上の多結晶MgOの燒
結体ペレットからなる多結晶MgO蒸着材。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail. The polycrystalline MgO vapor deposition material of the present invention has a MgO purity of 99.90% or more, in particular, a carbon content of 30 ppm or less, and a relative density of 98% or more. .
【0012】多結晶MgOの燒結体ペレットに含まれる
不純物(Si、Al、Ca、Fe、Cr、V、Ni、N
a、K、C、及びZr)の含有量は合計で850ppm
以下あることが好ましい。また上記不純物の個別的な含
有量は、Si及びAlの不純物がそれぞれ元素濃度で1
50ppm以下であり、Caの不純物が元素濃度で20
0ppm以下であり、Feの不純物が元素濃度で50p
pm以下であり、Cr、V及びNiの不純物がそれぞれ
元素濃度で10ppm以下であり、Na及びKの不純物
がそれぞれ元素濃度で20ppm以下であり、Zrの不
純物が元素濃度で150ppm以下であることが好まし
い。上記各不純物が元素濃度で上記値を越えると、Mg
O蒸着材を電子ビーム蒸着法で成膜したガラス基板をパ
ネルに組み込んだときに、膜質にばらつきが生じるため
に、電気的特性、例えば駆動電圧が高くなったり或いは
不安定になったりする不具合がある。The impurities (Si, Al, Ca, Fe, Cr, V, Ni, N) contained in the sintered pellet of polycrystalline MgO
a, K, C, and Zr) in total 850 ppm
The following are preferred. The individual content of the above impurities is such that the impurities of Si and Al are each 1 elemental concentration.
50 ppm or less, and the impurity of Ca is 20
0 ppm or less, and the impurity of Fe is 50 p in element concentration.
pm or less, the impurities of Cr, V and Ni are each 10 ppm or less in element concentration, the impurities of Na and K are each 20 ppm or less in element concentration, and the impurity of Zr is 150 ppm or less in element concentration. preferable. When each of the above impurities exceeds the above value in element concentration, Mg
When a glass substrate on which an O vapor deposition material is formed by an electron beam vapor deposition method is incorporated into a panel, there is a problem that electric characteristics, for example, a driving voltage becomes high or becomes unstable due to variations in film quality. is there.
【0013】[0013]
【実施例】以下、本発明を実施例及び比較例を挙げて、
本発明をより具体的に説明するが、本発明はその要旨を
越えない限り、以下の実施例に限定されるものではな
い。 <実施例1>先ずMgO粉末(岩谷化学社製MJ−3
0、純度99.9%、平均粒径0.3μm)に対し、バ
インダとしてポリエチレングリコール(三洋化成社製P
EG−200)を1重量%添加し、エタノールを分散媒
とするスラリーを濃度72重量%(粘度400cps)
に調整した。次いでこのスラリーをボールミル(直径1
0mmの樹脂製ボール使用)にて20時間湿式混合した
後、スプレードライヤにて噴霧乾燥して平均粒径80μ
mの造粒粉末を得た。噴霧乾燥の条件はアトマイザ(高
速回転円盤)の回転速度を10000rpmに設定し、
加熱ガスの入口及び出口温度をそれぞれ100℃及び6
0℃に設定した。次に得られた造粒粉末をCIP成形装
置の薄肉円筒状容器(内径155mm、高さ8mm)に
充填し、1500Kg/cm2でCIP成形した。更に
この成形体を二段階燒結した、即ち電気炉に入れ、大気
中1300℃で2時間一次燒結した後、1650℃で2
時間二次燒結した。一次燒結から二次燒結への昇温速度
は30℃/時間であり、二次燒結終了後の降温速度は5
0℃/時間であった。この燒結体の円盤を実施例1とし
た。EXAMPLES Hereinafter, the present invention will be described with reference to Examples and Comparative Examples.
The present invention will be described more specifically, but the present invention is not limited to the following examples unless it exceeds the gist. <Example 1> First, MgO powder (MJ-3 manufactured by Iwatani Chemical Co., Ltd.)
0, purity 99.9%, average particle size 0.3 μm), polyethylene glycol (Pan manufactured by Sanyo Chemical Co., Ltd.)
EG-200) was added at 1% by weight, and a slurry containing ethanol as a dispersion medium was concentrated at a concentration of 72% by weight (viscosity: 400 cps).
Was adjusted. Next, this slurry was ball milled (diameter 1
(Using a 0 mm resin ball) for 20 hours and then spray-drying with a spray dryer to obtain an average particle size of 80 μm.
m of granulated powder was obtained. The spray drying conditions were as follows: the rotation speed of the atomizer (high-speed rotating disk) was set to 10,000 rpm,
The inlet and outlet temperatures of the heated gas are 100 ° C and 6 ° C, respectively.
It was set to 0 ° C. Next, the obtained granulated powder was filled into a thin-walled cylindrical container (inner diameter: 155 mm, height: 8 mm) of a CIP molding apparatus, and was subjected to CIP molding at 1500 kg / cm 2 . Further, the compact was sintered in two steps, that is, put in an electric furnace and primary-sintered at 1300 ° C. for 2 hours in the air.
Time was secondary sintering. The rate of temperature rise from primary sintering to secondary sintering is 30 ° C./hour, and the rate of temperature decrease after secondary sintering is 5
It was 0 ° C./hour. This sintered disk was designated as Example 1.
【0014】<実施例2>実施例1と同様に調整したス
ラリーを実施例1と同一のボールを使用したボールミル
にて24時間湿式混合した後、スプレードライヤにて噴
霧乾燥して平均粒径200μmの造粒粉末を得た。この
造粒粉末を一軸プレス装置の型(内径6mm、深さ3m
m)に充填し、1000Kg/cm2で一軸プレス成形
した。上記以外は実施例1と同様に製造した。この燒結
体ペレットを実施例2とした。Example 2 A slurry prepared in the same manner as in Example 1 was wet-mixed for 24 hours in a ball mill using the same balls as in Example 1, and then spray-dried with a spray dryer to obtain an average particle size of 200 μm. Was obtained. The granulated powder is placed in a uniaxial pressing machine mold (inner diameter 6 mm, depth 3 m).
m), and uniaxially press-molded at 1000 kg / cm 2 . Except for the above, it was manufactured in the same manner as in Example 1. This sintered pellet was used as Example 2.
【0015】<実施例3>実施例1と同様に調整したス
ラリーを実施例1と同一のボールを使用したボールミル
にて24時間湿式混合した後、スプレードライヤにて噴
霧乾燥して平均粒径150μmの造粒粉末を得た。この
造粒粉末をCIP成形装置の薄肉円筒状容器(内径15
5mm、高さ8mm)に充填し、1500Kg/cm2
でCIP成形した。上記以外は実施例1と同様に製造し
た。この燒結体の円板を実施例3とした。 <実施例4>実施例1と同様に調整したスラリーを撹拌
ミル(直径2mmのZrO2製ボール使用)にて1時間
湿式混合した後、スプレードライヤにて噴霧乾燥して平
均粒径200μmの造粒粉末を得た。この造粒粉末を一
軸プレス装置の型(内径6mm、深さ3mm)に充填
し、1000Kg/cm2で一軸プレス成形した。上記
以外は実施例1と同様に製造した。この燒結体ペレット
を実施例4とした。Example 3 The slurry prepared in the same manner as in Example 1 was wet-mixed for 24 hours in a ball mill using the same balls as in Example 1, and then spray-dried with a spray dryer to obtain an average particle size of 150 μm. Was obtained. This granulated powder is transferred to a thin cylindrical container (with an inner diameter of 15
5 mm, height 8 mm) and 1500 kg / cm 2
Was CIP molded. Except for the above, it was produced in the same manner as in Example 1. This sintered disk was named Example 3. Example 4 A slurry prepared in the same manner as in Example 1 was wet-mixed for 1 hour in a stirring mill (using ZrO2 balls having a diameter of 2 mm), and then spray-dried with a spray dryer to form granules having an average particle size of 200 μm. A powder was obtained. This granulated powder was filled into a mold of a uniaxial press device (inner diameter: 6 mm, depth: 3 mm), and subjected to uniaxial press molding at 1000 kg / cm 2 . Except for the above, it was manufactured in the same manner as in Example 1. This sintered pellet was used as Example 4.
【0016】<実施例5>実施例1と同様に調整したス
ラリーを実施例5と同一のボールを使用した撹拌ミルに
て1時間湿式混合した後、スプレードライヤにて噴霧乾
燥して平均粒径150μmの造粒粉末を得た。この造粒
粉末を一軸プレス装置の型(内径6mm深さ3mm)に
充填し、1000Kg/cm2で一軸プレス成形した。
上記以外は実施例1と同様に製造した。この燒結体ペレ
ットを実施例5とした。Example 5 The slurry prepared in the same manner as in Example 1 was wet-mixed for 1 hour in a stirring mill using the same balls as in Example 5, and then spray-dried with a spray dryer to obtain an average particle size. A granulated powder of 150 μm was obtained. This granulated powder was filled into a mold of a uniaxial press device (inner diameter: 6 mm, depth: 3 mm), and subjected to uniaxial press molding at 1000 kg / cm 2 .
Except for the above, it was manufactured in the same manner as in Example 1. This sintered pellet was used as Example 5.
【0017】<比較例1>実施例1と同様に調整したス
ラリーを実施例1と同一のボールを使用したボールミル
にて48時間湿式混合した後、スプレードライヤにて噴
霧乾燥して平均粒径70μmの造粒粉末を得た。次に得
られた造粒粉末をCIP成形装置の薄肉円筒状容器(内
径155mm、高さ8mm)に充填し、1500Kg/
cm2でCIP成形した。更にこの成形体を電気炉に入
れ、大気中1650℃で3時間燒結した。この燒結体の
円板を比較例1とした。 <比較例2>実施例1と同様に調整したスラリーを撹拌
ミル(直径3mmのZrO2製ボール使用)にて8時間
湿式混合した後、スプレードライヤにて平均粒径40μ
mの造粒粉末を一軸プレス装置の型(内径6mm、深さ
3mm)に充填し、1000Kg/cm2で一軸プレス
成形した。燒結は比較例1と同様に行った。この燒結体
ペレットを比較例2とした。 <比較例3>市販の電融により製造された単結晶MgO
(純度99.3%)の破砕品を比較例3とした。この破
砕品の直径は3〜5mmであった。Comparative Example 1 A slurry prepared in the same manner as in Example 1 was wet-mixed for 48 hours in a ball mill using the same balls as in Example 1, and then spray-dried with a spray dryer to obtain an average particle size of 70 μm. Was obtained. Next, the obtained granulated powder is filled in a thin-walled cylindrical container (inner diameter: 155 mm, height: 8 mm) of a CIP molding machine, and 1500 kg /
CIP was performed in cm 2 . The compact was placed in an electric furnace and sintered at 1650 ° C. for 3 hours in the atmosphere. This sintered disk was used as Comparative Example 1. <Comparative Example 2> The slurry prepared in the same manner as in Example 1 was wet-mixed in a stirring mill (using a ZrO2 ball having a diameter of 3 mm) for 8 hours, and then the average particle size was 40 µm using a spray dryer.
m of the granulated powder was charged into a mold of a uniaxial press device (inner diameter 6 mm, depth 3 mm), and subjected to uniaxial press molding at 1000 kg / cm 2 . Sintering was performed in the same manner as in Comparative Example 1. This sintered body pellet was used as Comparative Example 2. Comparative Example 3 Commercially available single crystal MgO produced by electrofusion
A crushed product having a purity of 99.3% was used as Comparative Example 3. The diameter of this crushed product was 3 to 5 mm.
【0018】<比較試験と評価> (a)相対密度測定 実施例1〜5及び比較例1〜3で得られた燒結体の円
板、ペレット及び破砕品の純度、相対密度をそれぞれ測
定した。これらの結果を表1に示す。なお、純度は不純
物の分析値より算出し、相対密度はトルエン中、アルキ
メデス法で測定した。また表1には実施例1〜5及び比
較例1〜3の燒結体の円板及びペレットの製造条件、即
ちスラリーの混合処理、造粒粉末の平均粒径及び成形体
の燒結条件を記載した。<Comparison Test and Evaluation> (a) Measurement of Relative Density The purity and relative density of the discs, pellets and crushed products of the sintered bodies obtained in Examples 1 to 5 and Comparative Examples 1 to 3 were measured, respectively. Table 1 shows the results. The purity was calculated from the analysis value of impurities, and the relative density was measured in toluene by Archimedes method. Table 1 also shows the conditions for producing the discs and pellets of the sintered bodies of Examples 1 to 5 and Comparative Examples 1 to 3, namely, the mixing treatment of the slurry, the average particle size of the granulated powder, and the sintering conditions of the molded body. .
【0019】[0019]
【表1】 [Table 1]
【0020】表1から明らかな様に、実施例1〜5では
製造工程での不純物の混入はなく、MgO燒結体の純度
は出発原料のMgO粉末に相応して全て99.90%以
上であり、相対密度は99%以上まで緻密化した。一
方、比較例2では、ボールミルや撹拌ミルで混合する時
間やメデイア径が不適切なために、製造工程で不純物が
混入した。更に実施例1、3と比較例1、2から、相対
密度に関して二段階燒結の方が一段階燒結より好ましい
ことが判った。As is apparent from Table 1, in Examples 1 to 5, no impurities were mixed in the production process, and the purity of the MgO sintered body was all at least 99.90% corresponding to the starting material MgO powder. And the relative density was reduced to 99% or more. On the other hand, in Comparative Example 2, impurities were mixed in the production process due to inappropriate mixing time and media diameter in a ball mill or a stirring mill. Further, from Examples 1 and 3 and Comparative Examples 1 and 2, it was found that the two-stage sintering was preferable to the one-stage sintering with respect to the relative density.
【0021】(b)不純物の分析 実施例3の燒結体と比較例2の焼結体及び比較例3の単
結晶MgOの破砕品とに含まれる不純物を、原子吸光及
びICP(誘導結合形プラズマ分析法、Inducti
vely Coupled Plasma emiss
ion spectrochemical analy
sis)によりそれぞれ分析した。その結果を表2に示
す。(B) Analysis of impurities The impurities contained in the sintered body of Example 3 and the sintered body of Comparative Example 2 and the crushed single crystal MgO of Comparative Example 3 were analyzed by atomic absorption and ICP (inductively coupled plasma). Analytical method, Inducti
very Coupled Plasma emissions
ion spectrochemical analysis
sis). Table 2 shows the results.
【0022】[0022]
【表2】 [Table 2]
【0023】表2から明らかな様に、実施例3では不純
物の濃度が25ppm未満であったのに対し、比較例2
ではZr以外の不純物の濃度が30ppm以下であった
が、不純物Zrの濃度がかなり高い800ppmを示し
た。また比較例3では不純物Caの濃度が390ppm
と極めて高い値を示した。これは、比較例3の原料中に
Al、Ca、Feが多量に含まれており、特にCaが多
量に含まれているためである。As is apparent from Table 2, the concentration of the impurities in Example 3 was less than 25 ppm, while the concentration in Comparative Example 2 was less than 25 ppm.
Although the concentration of impurities other than Zr was 30 ppm or less, the concentration of impurity Zr was 800 ppm, which was considerably high. In Comparative Example 3, the concentration of the impurity Ca was 390 ppm.
And an extremely high value. This is because the raw material of Comparative Example 3 contains a large amount of Al, Ca, and Fe, and particularly contains a large amount of Ca.
【0024】(c)成膜したMgO膜の特性試験及びそ
の放電性試験 実施例2、4及び5の焼結体ペレットと、比較例2の燒
結体ペレット、比較例3の単結晶MgOの破砕品とに、
電子ビーム蒸着法によりガラス基板に成膜して5種類の
TEG(Test Element Group)基板
を作製した。TEG基板は、厚さ3mmのガラス基板
(コーニング♯7059ガラス製)上にフォトリソグラ
フィによりInSn複合酸化膜からなる下地電極を10
0μmの間隔で厚さ1μm、幅100μmに形成し、こ
れらの下地電極を覆うように反応性DCスパッタリング
で厚さ3μmのガラス層を形成した後、上記電子ビーム
蒸着法により同一の成膜条件で厚さ7000オングスト
ロームのMgO膜を成膜することにより作られた。な
お、MgO膜の成膜条件は、加速電圧が15KV、蒸着
圧力が1×10―2Pa、蒸着距離が600mmであっ
た。(C) Characteristic test of the formed MgO film and its discharge test The sintered pellets of Examples 2, 4 and 5, the sintered pellet of Comparative Example 2, and the single crystal MgO of Comparative Example 3 were crushed. With the goods
Five types of TEG (Test Element Group) substrates were manufactured by forming films on a glass substrate by an electron beam evaporation method. The TEG substrate is composed of a 3 mm-thick glass substrate (Corning # 7059 glass) on which a base electrode made of an InSn composite oxide film is formed by photolithography.
After forming a glass layer having a thickness of 1 μm and a width of 100 μm at intervals of 0 μm, and forming a glass layer having a thickness of 3 μm by reactive DC sputtering so as to cover these base electrodes, the above-mentioned electron beam evaporation method was performed under the same film forming conditions. It was formed by depositing a 7000 Å thick MgO film. The deposition conditions of the MgO film, an acceleration voltage is 15 KV, the deposition pressure is 1 × 10- 2 Pa, the deposition distance was 600 mm.
【0025】先ず上記MgO膜の屈折率を測定した。M
gO膜の屈折率は、He−Neレーザ(波長6238オ
ングストローム)により、膜に対し1波長、2入射角
(55、70)のエリプソ測定を行い、解析ソフトを用
いて求めた。次に上記MgO膜の放電開始電圧を以下の
方法で測定した。5種類のTEG基板をTEG基板のN
e―5%Xeで500Torrの真空ベルジャー内に配
置した加熱サンプル台に載せ、下地電極をパルス電源に
接続し、TEG基板を熱電対で測定しながら一定の温度
に制御して、電源電圧を上昇して行き、放電を開始する
電圧を測定した。パルス電源は0〜300Vの範囲で電
圧可変であって、周波数66Hzでパルス幅10μse
cのパルスを発生するようになっている。MgO膜の屈
折率、放電開始電圧を表3に示す。First, the refractive index of the MgO film was measured. M
The refractive index of the gO film was determined by using a He-Ne laser (wavelength: 6238 angstroms), performing ellipsometry at one wavelength and two incident angles (55, 70) on the film, and using analysis software. Next, the discharge starting voltage of the MgO film was measured by the following method. Five types of TEG substrates are replaced by N
e-5% Xe Placed on a heated sample table placed in a 500 Torr vacuum bell jar, connected to the base electrode to a pulse power source, and controlled the TEG substrate to a constant temperature while measuring with a thermocouple, and increased the power source voltage. The voltage at which discharge was started was measured. The pulse power supply is variable in the range of 0 to 300 V, and has a frequency of 66 Hz and a pulse width of 10 μs.
c pulse is generated. Table 3 shows the refractive index and the firing voltage of the MgO film.
【0026】[0026]
【表3】 [Table 3]
【0027】表3から明らかなように、比較例2及び3
では屈折率が1.65及び1.68であったのに対し、
実施例2、4及び5では屈折率が1.7以上と向上し
た。また放電開始電圧は、実施例2、4及び5では比較
例2、3と比べて10〜20V程度低いことが判った。
更に実施例の成膜速度は比較例の約3倍の値が得られ
た。これは電子ビームが当った時に、比較例3の単結晶
MgOの破砕品では配向性があるが、実施例の多結晶M
gOの燒結体ペレットでは配向性がないために効率的な
成膜が可能となったためである。なお、実施例2、4及
び5を用いてMgO膜を成膜した基板をPDPに組み込
んだときの耐スパッタ性も良好で駆動電圧も低下した。As apparent from Table 3, Comparative Examples 2 and 3
Had refractive indexes of 1.65 and 1.68,
In Examples 2, 4 and 5, the refractive index was improved to 1.7 or more. Further, it was found that the discharge starting voltage was lower by about 10 to 20 V in Examples 2, 4 and 5 than in Comparative Examples 2 and 3.
Further, the film forming rate of the example was about three times the value of the comparative example. This is because the single crystal MgO crushed product of Comparative Example 3 has an orientation when irradiated with an electron beam, but the polycrystalline M
This is because the sintered body pellet of gO has no orientation, so that efficient film formation is possible. In addition, when the substrate on which the MgO film was formed using Examples 2, 4 and 5 was incorporated in a PDP, the sputter resistance was good and the driving voltage was lowered.
【0028】(d)MgO膜の膜厚分布 実施例2の燒結体ペレットと、比較例2の燒結体ペレッ
トと比較例3の単結晶MgOの破砕品とを、上記と同様
に電子ビーム蒸着法によりガラス基板に成膜した。この
MgO膜の膜厚分布をHe―Neレーザ(6328オン
グストローム)のエリプソにより測定した。この結果を
表4に示す。なお、表4において各部の膜厚をガラス基
板中心の膜厚に対する比で示した。即ち、ガラス基板中
心の膜厚を1.0とし、各部の膜厚はこれに対する比で
示した。(D) Film Thickness Distribution of MgO Film The sintered pellet of Example 2, the sintered pellet of Comparative Example 2, and the crushed single crystal MgO of Comparative Example 3 were subjected to electron beam evaporation in the same manner as described above. To form a film on a glass substrate. The film thickness distribution of this MgO film was measured by an ellipsometer using a He—Ne laser (6328 Å). Table 4 shows the results. In Table 4, the thickness of each part is shown as a ratio to the thickness of the center of the glass substrate. That is, the film thickness at the center of the glass substrate was set to 1.0, and the film thickness of each part was shown by a ratio to this.
【0029】[0029]
【表4】 [Table 4]
【0030】表4から明らかなように、実施例2の減少
率(バラツキ割合)は比較例2及び3より小さかった。As apparent from Table 4, the reduction rate (variation ratio) of Example 2 was smaller than Comparative Examples 2 and 3.
【0031】[0031]
【発明の効果】以上述べたように、本発明によれば、多
結晶MgO蒸着材をMgO純度が99.90%以上、特
に、カーボン量が30ppm以下であり、かつ相対密度
が98%以上の多結晶MgOの燒結体ペレットから構成
したので、この高純度かつ高密度の多結晶MgO蒸着材
を用いてAC型PDP等のMgO膜を成膜すると、スプ
ラッシュが少なく効率的に成膜でき、略均一な膜厚を有
するMgO膜を得ることができる。この結果、MgO膜
の成膜面積が大きくても、略均一に成膜することができ
るので、例えばMgO膜を成膜したガラス誘電体層をP
DPに組み込んだ場合に、放電開始電圧や駆動電圧を低
く一定にでき、PDPの電気的特性を向上できる。As described above, according to the present invention, a polycrystalline MgO vapor-deposited material having a MgO purity of 99.90% or more, particularly a carbon content of 30 ppm or less and a relative density of 98% or more is obtained. Since it is composed of sintered pellets of polycrystalline MgO, using this high-purity and high-density polycrystalline MgO vapor-deposited material to form an MgO film such as an AC-type PDP can efficiently form a film with little splash and substantially An MgO film having a uniform thickness can be obtained. As a result, even if the film area of the MgO film is large, the film can be formed substantially uniformly.
When incorporated in the DP, the discharge starting voltage and the driving voltage can be kept low and constant, and the electrical characteristics of the PDP can be improved.
【0032】また多結晶MgOの燒結体ペレットに含ま
れる、Si及びAlの不純物をそれぞれ元素濃度で15
0ppm以下に、Caの不純物を元素濃度で200pp
m以下に、Feの不純物を元素濃度で50ppm以下
に、Cr、V及びNiの不純物をそれぞれ元素濃度で1
0ppm以下に、Na及びKの不純物をそれぞれ元素濃
度で20ppm以下に、Zrの不純物を元素濃度で15
0ppm以下にすれば、成膜されたMgO膜に含まれる
不純物が極めて少なくなるので、このMgO膜の膜特性
は向上する。Further, the impurities of Si and Al contained in the sintered pellets of polycrystalline MgO are each added at an element concentration of 15%.
0 ppm or less, Ca impurity is 200pp
m, the impurity of Fe is 50 ppm or less in elemental concentration, and the impurities of Cr, V and Ni are each 1 elemental in concentration.
0 ppm or less, Na and K impurities at an element concentration of 20 ppm or less, and Zr impurity at an element concentration of 15 ppm or less.
If the content is set to 0 ppm or less, impurities contained in the formed MgO film become extremely small, so that the film characteristics of the MgO film are improved.
【0033】更に純度が99.90%以上で平均粒径が
0.1〜3μmのMgO粉末とバインダと有機溶媒とを
混合して濃度が45〜57重量%のスラリーを調整し、
スラリーを噴霧乾燥して平均粒径が50〜300μmの
造粒粉末を得た後、この造粒粉末を所定の型に入れて所
定の圧力で成形し、この成形体を所定の温度で燒結すれ
ば、上記MgO純度が99.90%以上、特に、カーボ
ン量が30ppm以下でありかつ相対密度が98%以上
の多結晶MgOの燒結体ペレットからなる多結晶MgO
蒸着材を得ることができる。Further, a slurry having a concentration of 45 to 57% by weight is prepared by mixing MgO powder having a purity of 99.90% or more and an average particle size of 0.1 to 3 μm, a binder and an organic solvent,
After the slurry is spray-dried to obtain a granulated powder having an average particle size of 50 to 300 μm, the granulated powder is put into a predetermined mold, molded at a predetermined pressure, and sintered at a predetermined temperature. For example, polycrystalline MgO having a MgO purity of 99.90% or more, in particular, a polycrystalline MgO sintered body pellet having a carbon content of 30 ppm or less and a relative density of 98% or more.
An evaporation material can be obtained.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/053 H01J 11/02 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/053 H01J 11/02
Claims (2)
量が30ppm以下であり、かつ相対密度が98%以上
の多結晶MgOの燒結体ペレットからなる多結晶MgO
蒸着材。1. A polycrystalline MgO comprising a sintered pellet of MgO having a purity of 99.90% or more, a carbon amount of 30 ppm or less, and a relative density of 98% or more.
Evaporation material.
る、Si及びAlの不純物がそれぞれ元素濃度で150
ppm以下であり、Caの不純物が元素濃度で200p
pm以下であり、Feの不純物が元素濃度で50ppm
以下であり、Cr、V及びNiの不純物がそれぞれ元素
濃度で10ppm以下であり、Na及びKの不純物がそ
れぞれ元素濃度で20ppm以下であり、Zrの不純物
濃度で150ppm以下である請求項1記載の多結晶M
gO蒸着材。2. The method according to claim 1, wherein the impurities of Si and Al contained in the polycrystalline MgO sintered pellets have an element concentration of 150% respectively.
ppm or less, and the impurity of Ca is 200 p
pm or less, and the impurity of Fe is 50 ppm in elemental concentration.
The impurities of Cr, V and Ni are each 10 ppm or less in element concentration, the impurities of Na and K are each 20 ppm or less in element concentration, and the impurity concentration of Zr is 150 ppm or less in Zr. Polycrystalline M
gO vapor deposition material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22664698A JP3314728B2 (en) | 1998-08-11 | 1998-08-11 | Polycrystalline MgO deposited material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22664698A JP3314728B2 (en) | 1998-08-11 | 1998-08-11 | Polycrystalline MgO deposited material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000063171A JP2000063171A (en) | 2000-02-29 |
JP3314728B2 true JP3314728B2 (en) | 2002-08-12 |
Family
ID=16848451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22664698A Expired - Lifetime JP3314728B2 (en) | 1998-08-11 | 1998-08-11 | Polycrystalline MgO deposited material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3314728B2 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4698077B2 (en) * | 2001-07-18 | 2011-06-08 | パナソニック株式会社 | Plasma display panel and manufacturing method thereof |
JP4904657B2 (en) * | 2001-09-27 | 2012-03-28 | パナソニック株式会社 | Plasma display panel, raw material for protective film, and manufacturing method thereof |
TW200300455A (en) * | 2001-11-30 | 2003-06-01 | Mitsubishi Materials Corp | MgO deposition material and production method of the same |
WO2003097895A1 (en) * | 2002-05-20 | 2003-11-27 | Mitsubishi Materials Corporation | MATERIAL SUBJECTED TO VACUUM EVAPORATION, MgO MATERIAL SUBJECTED TO VACUUM EVAPORATION, PROCESS FOR PRODUCING THE SAME AND METHOD OF FORMING FILM |
KR100515678B1 (en) * | 2002-10-10 | 2005-09-23 | 엘지전자 주식회사 | Plasma display panel and protective film thereof |
JP4225761B2 (en) * | 2002-10-10 | 2009-02-18 | 三菱マテリアル株式会社 | Polycrystalline MgO vapor deposition material with adjusted Si concentration |
EP1505624B1 (en) * | 2003-03-03 | 2011-12-21 | Panasonic Corporation | Plasma display panel, its manufacturing method, and its protective layer material |
KR100467437B1 (en) * | 2003-03-04 | 2005-01-24 | 삼성에스디아이 주식회사 | Plasma display panel |
US7391156B2 (en) | 2003-09-24 | 2008-06-24 | Matsushita Electrical Industrial Co., Ltd. | Plasma display panel |
CN100394530C (en) * | 2003-09-26 | 2008-06-11 | 松下电器产业株式会社 | Plasma display panel |
US7218050B2 (en) | 2003-09-26 | 2007-05-15 | Matsushita Electric Industrial Co., Ltd. | Plasma display panel |
KR100997068B1 (en) * | 2003-10-21 | 2010-11-30 | 우베 마테리알즈 가부시키가이샤 | Magnesium oxide for vapor deposition |
JP4627652B2 (en) * | 2003-10-21 | 2011-02-09 | 宇部マテリアルズ株式会社 | Magnesium oxide vapor deposition material |
KR100599708B1 (en) | 2004-05-25 | 2006-07-13 | 삼성에스디아이 주식회사 | Plasma display panel |
KR100696481B1 (en) | 2004-12-07 | 2007-03-19 | 삼성에스디아이 주식회사 | Plasma display panel |
JP4676796B2 (en) | 2005-03-25 | 2011-04-27 | タテホ化学工業株式会社 | Magnesium oxide single crystal and method for producing the same |
JP5108218B2 (en) * | 2005-09-28 | 2012-12-26 | 日本化学工業株式会社 | Magnesium oxide powder, precursor for magnesium oxide molded body, manufacturing method thereof, magnesium oxide molded body, and magnesium oxide sintered body pellet |
KR100711512B1 (en) * | 2005-11-01 | 2007-04-27 | 엘지전자 주식회사 | Plasma display panel with protective layer ease of electron emission and manufacturing methods thereof |
US20070103076A1 (en) | 2005-11-07 | 2007-05-10 | Kim Ki-Dong | Plasma display panel |
JP4736933B2 (en) * | 2006-04-28 | 2011-07-27 | パナソニック株式会社 | Plasma display panel |
JP5040245B2 (en) * | 2006-10-02 | 2012-10-03 | パナソニック株式会社 | Plasma display panel |
JP4321593B2 (en) | 2007-01-15 | 2009-08-26 | パナソニック株式会社 | Plasma display panel |
JP5417720B2 (en) * | 2007-03-09 | 2014-02-19 | 三菱マテリアル株式会社 | Method for producing ZnO vapor deposition material and method for forming vapor deposition film using vapor deposition material produced by the method |
-
1998
- 1998-08-11 JP JP22664698A patent/JP3314728B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000063171A (en) | 2000-02-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3314728B2 (en) | Polycrystalline MgO deposited material | |
US9005487B2 (en) | Tablet for ion plating, production method therefor and transparent conductive film | |
JPH10291854A (en) | Polycrystalline mgo vapor depositing material and its production | |
JPWO2012105323A1 (en) | Oxide sintered body and tablet processed the same | |
JP3470633B2 (en) | Deposition material containing MgO as a main component and method for producing the same | |
JP3331584B2 (en) | Polycrystalline MgO deposited material | |
JP2000290062A (en) | MgO VAPOR-DEPOSITED MATERIAL AND ITS PRODUCTION | |
JPH10297955A (en) | Material having evaporated magnesium oxide layer and its production | |
JPH10130827A (en) | Mgo target and its production | |
JPH1129857A (en) | Polycrystalline magnesium oxide vapor deposition material and its production | |
WO2005118504A1 (en) | Single-crystal magnesium oxide sinter, process for producing the same, and protective film for plasma display panel | |
JP2005343758A (en) | Single crystal magnesium oxide sintered compact, manufacturing method thereof,and protective film for use in plasma display panel | |
JP2004169098A (en) | Vapor depositing material, and optical thin film and optical component obtained by using the same | |
US20150206615A1 (en) | Oxide sintered body and tablet obtained by processing same | |
JPH10158826A (en) | Mgo target and its production | |
JPH1192212A (en) | Magnesium oxide sintered compact, its production and magnesium oxide thin film | |
JPH10130828A (en) | Mgo target and its production | |
JPH1129355A (en) | Polycrystalline magnesium oxide vacuum-deposition material and its production | |
JP2004043955A (en) | MgO VAPOR DEPOSITION MATERIAL AND ITS MANUFACTURING PROCESS, MANUFACTURING PROCESS OF MgO DEPOSITION FILM | |
JP4823475B2 (en) | Vapor deposition material, MgO vapor deposition material, manufacturing method thereof, and film formation method | |
JPH11335824A (en) | Target material essentially consisting of mgo and its production | |
WO2006104027A1 (en) | Magnesium oxide single crystal and method for producing same | |
JPH10237636A (en) | Target essentially consisting of mgo and its production | |
JP4955916B2 (en) | Single crystal magnesium oxide sintered body, method for producing the same, and protective film for plasma display panel | |
JP2003226960A (en) | MgO VAPOR DEPOSITION MATERIAL AND PRODUCTION METHOD THEREFOR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020507 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080607 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090607 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090607 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100607 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100607 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100607 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100607 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110607 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120607 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120607 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130607 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |