JP2000063171A - Polycrystalline mgo vapor depositing material - Google Patents

Polycrystalline mgo vapor depositing material

Info

Publication number
JP2000063171A
JP2000063171A JP10226646A JP22664698A JP2000063171A JP 2000063171 A JP2000063171 A JP 2000063171A JP 10226646 A JP10226646 A JP 10226646A JP 22664698 A JP22664698 A JP 22664698A JP 2000063171 A JP2000063171 A JP 2000063171A
Authority
JP
Japan
Prior art keywords
mgo
ppm
film
impurities
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10226646A
Other languages
Japanese (ja)
Other versions
JP3314728B2 (en
Inventor
Takeyoshi Takenouchi
武義 竹之内
Hitoshi Oomisono
仁 近江園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16848451&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2000063171(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP22664698A priority Critical patent/JP3314728B2/en
Publication of JP2000063171A publication Critical patent/JP2000063171A/en
Application granted granted Critical
Publication of JP3314728B2 publication Critical patent/JP3314728B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/40Layers for protecting or enhancing the electron emission, e.g. MgO layers

Abstract

PROBLEM TO BE SOLVED: To scarcely cause splash and form an MgO film to be formed into an almost uniform thickness even by depositing a vapor by an electron beam vapor deposition method. SOLUTION: This MgO vapor depositing material comprises a sintered compact pellet of a polycrystalline MgO having >=99.90% of MgO purity, especially <=30 ppm content of carbon and >=98% relative density. Furthermore, contents of impurities contained in the sintered compact pellet of the polycrystalline MgO are respectively <=150 ppm each of Si and Al impurities expressed in terms of element concentrations, <=200 ppm of Ca impurity expressed in terms of the element concentration, <=50 ppm of Fe impurity expressed in terms of the element concentration, <=10 ppm each of Cr, V and Ni impurities expressed in terms of the element concentrations, <=20 ppm each of Na and K impurities expressed in terms of the element concentrations and <=150 ppm of Zr impurity expressed in terms of the element concentration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、AC型のプラズマ
ディスプレイパネルのMgO膜の成膜に適した多結晶M
gO蒸着材に関するものである。
TECHNICAL FIELD The present invention relates to a polycrystalline M suitable for forming an MgO film of an AC type plasma display panel.
It relates to a gO vapor deposition material.

【0002】[0002]

【従来の技術】近年、液晶(Liquid Cryst
al Display:LCD)をはじめとして、各種
の平面ディスプレイの研究開発と実用化はめざましく、
その生産も急増している。カラープラズマディスプレイ
パネル(PDP)についても、その開発と実用化の動き
が最近活発になっている。PDPは大型化し易く、ハイ
ビジョン用の大画面壁掛けテレビの最短距離にあり、既
に対角40インチクラスのPDPの試作が進められてい
る。PDPは、電極構造の点で金属電極がガラス誘電体
材料で覆われるAC型と、放電空間に金属電極が露出し
ているDC型とに分類される。
2. Description of the Related Art In recent years, liquid crystal (Liquid Crystal)
R & D and commercialization of various flat displays including Al Display (LCD) are remarkable.
Its production is also increasing rapidly. The development and commercialization of color plasma display panels (PDPs) have also become active recently. PDPs tend to be large in size and are at the shortest distance from large-screen wall-mounted TVs for high-definition televisions, and trial production of PDPs with a diagonal size of 40 inches is already underway. PDPs are classified into an AC type in which a metal electrode is covered with a glass dielectric material and a DC type in which a metal electrode is exposed in a discharge space in terms of an electrode structure.

【0003】このAC型PDPの開発の当初は、ガラス
誘電体層が放電空間に露出していたため、直接放電にさ
らされ、イオン衝撃のスパッタリングにより誘電体層の
表面が変化して放電開始電圧が上昇していた。そのた
め、高い昇華熱を持つ種々の酸化物をこの誘電体層の保
護膜とする試みがなされた。この保護膜は直接放電用の
ガスと接しているために重要な役割を担っている。即
ち、保護膜に求められる特性は、低い放電電圧、放電時
の耐スパッタリング性、速い放電の応答性、及び絶縁性
である。これらの条件を満たす材料として、MgOが保
護膜に用いられる。このMgOからなる保護膜は、誘電
体層の表面を放電時のスパッタリングから守り、PDP
の長寿命化に重要な働きをしている。
At the beginning of the development of this AC type PDP, since the glass dielectric layer was exposed in the discharge space, it was directly exposed to a discharge, and the surface of the dielectric layer was changed by the sputtering of ion bombardment, so that the discharge starting voltage was increased. It was rising. Therefore, attempts have been made to use various oxides having high heat of sublimation as protective films for this dielectric layer. This protective film plays an important role because it is in direct contact with the discharge gas. That is, the characteristics required for the protective film are low discharge voltage, sputtering resistance during discharge, fast discharge response, and insulation. MgO is used for the protective film as a material satisfying these conditions. This protective film made of MgO protects the surface of the dielectric layer from sputtering during discharge,
Plays an important role in extending the life of the.

【0004】現在、AC型PDPの上記保護膜として、
単結晶MgOの破砕品を蒸着材とする電子ビーム蒸着法
により成膜されたMgO膜が知られている。この電子ビ
ーム蒸着法によるMgO膜は1000オングストローム
/分以上の高速で成膜することができる。また成膜され
たMgO膜の結晶方位は(111)面に配向した膜が最
も低い維持電圧で駆動でき、更に膜中に存在する(11
1)面の量が増えるほど二次電子の放出比は増大し、駆
動電圧も減少すると言われている。なお上記単結晶Mg
Oの破砕品は純度が98%以上のMgOクリンカや軽焼
MgO(1000℃以下で焼結されたMgO)を電気炉
(アーク炉)で溶融することにより、即ち電融によりイ
ンゴットとした後、このインゴットから単結晶部を破砕
して取出すことにより製造される。
Currently, as the protective film of the AC type PDP,
An MgO film formed by an electron beam evaporation method using a crushed single crystal MgO as an evaporation material is known. The MgO film formed by this electron beam evaporation method can be formed at a high speed of 1000 angstroms / minute or more. Regarding the crystal orientation of the formed MgO film, the film oriented to the (111) plane can be driven with the lowest sustaining voltage, and further exists in the film (11
1) It is said that the emission ratio of secondary electrons increases and the drive voltage decreases as the amount of planes increases. The above single crystal Mg
The crushed product of O is obtained by melting MgO clinker having a purity of 98% or more or light-baked MgO (MgO sintered at 1000 ° C. or less) in an electric furnace (arc furnace), that is, after forming an ingot by electrofusion, It is manufactured by crushing and taking out a single crystal part from this ingot.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来の単
結晶MgOの破砕品を蒸着材として用いた電子ビーム蒸
着法では、単結晶MgOがカーボン電極棒によるアーク
溶融で製造するため、単結晶中のカーボン量は100p
pm以上存在し、電子ビームで蒸着した膜中にもかなり
のカーボン量が存在する。カーボンがMgO膜中にかな
り存在するとプラズマ放電時、膜表面層近傍に存在する
電荷を膜中に取り込み易く(トラップし易く)電子の衝
突頻度が低下し、ついては2次電子の放出係数が下がる
ため、放電電圧を高くしなければならない問題があっ
た。また蒸着材に局所的に高エネルギーを与えるため、
微粉の蒸着材の飛散(スプラッシュ)が発生し、蒸着効
率が低下する不具合があった。このスプラッシュの発生
の防止には蒸着材の大型化が有効であると考えられてい
るが、単結晶MgOはその製造過程として、電気溶融後
かなり長時間自然放置する状態を経て、大型インゴット
を冷却し、更にそのインゴットから単結晶部分を破砕し
て取り出し、整粒する工程がある。その際、フレッシュ
な破砕面は活性度が高く、大気中の水分や炭酸ガスが長
時間にわたって付着するため、蒸着前の脱気工程で、こ
れらの付着した水分、炭酸ガスがかなり放出されるた
め、脱気にかなりの時間を要し、生産性を向上する上で
問題視されている。その粉砕品では現行の粒径1〜5m
mより大きな粒子を、歩留り良く安定して確保すること
が困難であった。また上記従来の単結晶MgOの破砕品
を蒸着材として用いた電子ビーム蒸着法では、大面積の
ガラス誘電体層に対してMgO膜を均一に成膜すること
が難しく、膜厚分布に問題があった。この結果、MgO
膜を成膜したガラス誘電体層をPDPに組み込んだ場合
に、電気的特性、例えば放電開始電圧や維持電圧が、高
くなったり或いは変化したりする問題点があった。
However, in the electron beam evaporation method using the conventional crushed single crystal MgO as an evaporation material, the single crystal MgO is produced by arc melting with a carbon electrode rod. Amount of carbon is 100p
It exists above pm, and there is a considerable amount of carbon in the film deposited by electron beam. If a large amount of carbon is present in the MgO film, during plasma discharge, the electric charges existing in the vicinity of the film surface layer are easily incorporated (trapped) into the film, the frequency of electron collisions decreases, and the emission coefficient of secondary electrons decreases. There was a problem that the discharge voltage had to be increased. Also, in order to locally apply high energy to the vapor deposition material,
There is a problem that vapor deposition of fine powder is scattered (splash) and vapor deposition efficiency is reduced. It is believed that increasing the size of the vapor deposition material is effective in preventing this splash, but as a manufacturing process for single crystal MgO, it is left to stand for a long time after electric melting and then the large ingot is cooled. Then, there is a step of crushing the single crystal portion from the ingot and taking it out, and sizing. At that time, the freshly crushed surface has high activity, and moisture and carbon dioxide in the atmosphere adhere for a long time, so these moisture and carbon dioxide are considerably released in the degassing step before vapor deposition. Deaeration requires a considerable amount of time and is regarded as a problem in improving productivity. The current particle size of the crushed product is 1 to 5 m
It was difficult to stably secure particles larger than m with good yield. Further, in the electron beam evaporation method using the conventional crushed single crystal MgO as an evaporation material, it is difficult to uniformly form an MgO film on a large-area glass dielectric layer, which causes a problem in film thickness distribution. there were. As a result, MgO
When the glass dielectric layer on which the film is formed is incorporated into the PDP, there is a problem that the electrical characteristics such as the discharge starting voltage and the sustaining voltage become higher or change.

【0006】一方、MgOクリンカや軽焼MgOは、海
水から得られるMgCl2を原料としていることが多
く、このMgCl2には比較的多くのCa、Si、Fe
等の不純物が含まれるため、これらの不純物が単結晶M
gO中に残留する。また単結晶MgOの製造過程におけ
るインゴットでは、このインゴットの中心から表面部に
向かって連続的に不純物量が増加しており、このため単
結晶部の取り出し方によって製品の純度が極めて容易に
変動してしまい、単結晶MgOの純度の安定性や信頼性
を欠く問題点があった。
On the other hand, MgO clinker and light burned MgO often use MgCl2 obtained from seawater as a raw material, and MgCl2 contains a relatively large amount of Ca, Si and Fe.
Since such impurities are included in the single crystal M
Remains in gO. Further, in the ingot in the manufacturing process of the single crystal MgO, the amount of impurities continuously increases from the center of the ingot toward the surface portion. Therefore, the purity of the product varies very easily depending on how the single crystal portion is taken out. Therefore, there is a problem in that the stability and reliability of the purity of single crystal MgO are lacking.

【0007】これらの点を解消するために単結晶MgO
に代えて多結晶MgOを用いる方法も考えられる。しか
し種々の焼結助剤の添加により緻密化した高密度の多結
晶MgOでは、組織的に結晶粒界に欠陥が存在する問題
点があり、また純度を高くすると密度が低くなる問題点
があった。一方、欠陥のほとんどない原子間結合エネル
ギーの高い構造体は、蒸着に際して電子ビームを照射す
る時、かなり高エネルギーの電子が衝突しないと結合を
振り切ってMgやOの原子は飛び出しにくく、飛び出し
量が少ないため、成膜速度を速くするには電子ビームの
パワーを上げるなり、限界があった。この結果、これら
の多結晶MgO蒸着材を用いて電子ビーム蒸着法にてガ
ラス誘電体層にMgO膜を成膜すると結晶方位(11
1)面への配向量が減少し、このガラス誘電体層をPD
Pに組込んだときの電気特性が低下するため、多結晶M
gOを蒸着材として使用できなかった。
In order to solve these points, single crystal MgO
Alternatively, a method of using polycrystalline MgO may be considered. However, high density polycrystalline MgO that has been densified by adding various sintering aids has a problem that defects are structurally present in the crystal grain boundaries, and that the higher the purity, the lower the density. It was On the other hand, a structure having few interatomic bond energies with few defects has a large amount of protrusion when the electron beam is irradiated during vapor deposition, unless the electrons of considerably high energy collide with each other and the Mg and O atoms are hard to pop out. Since it is small, the power of the electron beam must be increased to increase the film forming speed, which is a limit. As a result, when the MgO film is formed on the glass dielectric layer by the electron beam evaporation method using these polycrystalline MgO evaporation materials, the crystal orientation (11
1) The amount of orientation to the plane is reduced, and this glass dielectric layer is PD
Since the electrical characteristics when incorporated into P deteriorate, polycrystalline M
gO could not be used as a vapor deposition material.

【0008】本発明の目的は、電子ビーム蒸着法にて蒸
着しても、スプラッシュを発生させずに高速でかつ均一
に成膜できる多結晶MgO蒸着材を提供することにあ
る。本発明の別の目的は、成膜されたMgO膜の膜特性
を向上できる多結晶MgO蒸着材を提供することにあ
る。
An object of the present invention is to provide a polycrystalline MgO vapor deposition material capable of forming a film uniformly at a high speed without causing a splash even when vapor-deposited by an electron beam vapor deposition method. Another object of the present invention is to provide a polycrystalline MgO vapor deposition material capable of improving the film characteristics of the formed MgO film.

【0009】[0009]

【課題を解決するための手段】請求項1に係る発明は、
MgO純度が99.90%以上でカーボン量が30pp
m以下であり、かつ相対密度が98%以上の多結晶Mg
Oの焼結体ペレットからなる多結晶MgO蒸着材であ
る。この請求項1に記載された多結晶MgO蒸着材で
は、高純度かつ高密度の多結晶MgO蒸着材を用いてA
C型PDP等のMgO膜を成膜すると、スプラッシュが
極めて少なく高速で安定した成膜ができる。また膜厚分
布を向上できるので、略均一な膜質を有するMgO膜を
得ることができる。
The invention according to claim 1 is
MgO purity is 99.90% or more and carbon content is 30 pp
m or less and a relative density of 98% or more of polycrystalline Mg
It is a polycrystalline MgO vapor deposition material composed of sintered pellets of O. In the polycrystalline MgO vapor deposition material described in claim 1, a high-purity and high-density polycrystalline MgO vapor deposition material is used.
When a MgO film such as a C-type PDP is formed, a splash is extremely small and a stable film can be formed at high speed. Moreover, since the film thickness distribution can be improved, it is possible to obtain an MgO film having a substantially uniform film quality.

【0010】請求項2に係る発明は、請求項1に係る発
明であって、更に、多結晶MgOの焼結体ペレットに含
まれる、Si及びAlの不純物がそれぞれ元素濃度で1
50ppm以下であり、Caの不純物が元素濃度で20
0ppm以下であり、Feの不純物が元素濃度で50p
pm以下であり、Cr、V及びNiの不純物がそれぞれ
元素濃度で10ppm以下であり、Na及びKの不純物
がそれぞれ元素濃度で20ppm以下であり、Zrの不
純物濃度150ppm以下であることを特徴とする。こ
の請求項2に記載された多結晶MgO蒸着材では、成膜
されたMgO膜に含まれる不純物が極めて少なくなるの
で、このMgO膜の膜特性は向上する。
The invention according to claim 2 is the invention according to claim 1, further comprising impurities of Si and Al contained in the sintered pellets of polycrystalline MgO in an element concentration of 1 respectively.
It is less than 50 ppm, and Ca impurities are 20 in elemental concentration.
0ppm or less, Fe impurity is 50p in elemental concentration
pm or less, Cr, V, and Ni impurities are each 10 ppm or less in element concentration, Na and K impurities are each 20 ppm or less in element concentration, and Zr impurity concentration is 150 ppm or less. . In the polycrystalline MgO vapor deposition material according to the second aspect, impurities contained in the formed MgO film are extremely small, so that the film characteristics of the MgO film are improved.

【0011】[0011]

【発明の実施の形態】次に本発明の実施の形態を詳しく
説明する。本発明の多結晶MgO蒸着材はMgO純度が
99.90%以上、特に、カーボン量が30ppm以下
であり、かつ相対密度が98%以上の多結晶MgOの燒
結体ペレットからなる多結晶MgO蒸着材。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described in detail. The polycrystalline MgO vapor deposition material of the present invention has a MgO purity of 99.90% or higher, particularly a carbon amount of 30 ppm or lower, and a relative density of 98% or higher. .

【0012】多結晶MgOの燒結体ペレットに含まれる
不純物(Si、Al、Ca、Fe、Cr、V、Ni、N
a、K、C、及びZr)の含有量は合計で850ppm
以下あることが好ましい。また上記不純物の個別的な含
有量は、Si及びAlの不純物がそれぞれ元素濃度で1
50ppm以下であり、Caの不純物が元素濃度で20
0ppm以下であり、Feの不純物が元素濃度で50p
pm以下であり、Cr、V及びNiの不純物がそれぞれ
元素濃度で10ppm以下であり、Na及びKの不純物
がそれぞれ元素濃度で20ppm以下であり、Zrの不
純物が元素濃度で150ppm以下であることが好まし
い。上記各不純物が元素濃度で上記値を越えると、Mg
O蒸着材を電子ビーム蒸着法で成膜したガラス基板をパ
ネルに組み込んだときに、膜質にばらつきが生じるため
に、電気的特性、例えば駆動電圧が高くなったり或いは
不安定になったりする不具合がある。
Impurities (Si, Al, Ca, Fe, Cr, V, Ni, N contained in the polycrystalline MgO sintered pellets)
The total content of a, K, C, and Zr) is 850 ppm.
The following is preferable. The individual contents of the above impurities are as follows.
It is less than 50 ppm, and Ca impurities are 20 in elemental concentration.
0ppm or less, Fe impurity is 50p in elemental concentration
pm or less, impurities of Cr, V, and Ni are each 10 ppm or less in element concentration, impurities of Na and K are each 20 ppm or less in element concentration, and impurities of Zr are 150 ppm or less in element concentration. preferable. When each of the above impurities exceeds the above values in elemental concentration, Mg
When a glass substrate formed by depositing an O vapor deposition material by an electron beam vapor deposition method is incorporated into a panel, the quality of the film varies, so that the electrical characteristics, for example, the driving voltage becomes high or unstable. is there.

【0013】[0013]

【実施例】以下、本発明を実施例及び比較例を挙げて、
本発明をより具体的に説明するが、本発明はその要旨を
越えない限り、以下の実施例に限定されるものではな
い。 <実施例1>先ずMgO粉末(岩谷化学社製MJ−3
0、純度99.9%、平均粒径0.3μm)に対し、バ
インダとしてポリエチレングリコール(三洋化成社製P
EG−200)を1重量%添加し、エタノールを分散媒
とするスラリーを濃度72重量%(粘度400cps)
に調整した。次いでこのスラリーをボールミル(直径1
0mmの樹脂製ボール使用)にて20時間湿式混合した
後、スプレードライヤにて噴霧乾燥して平均粒径80μ
mの造粒粉末を得た。噴霧乾燥の条件はアトマイザ(高
速回転円盤)の回転速度を10000rpmに設定し、
加熱ガスの入口及び出口温度をそれぞれ100℃及び6
0℃に設定した。次に得られた造粒粉末をCIP成形装
置の薄肉円筒状容器(内径155mm、高さ8mm)に
充填し、1500Kg/cm2でCIP成形した。更に
この成形体を二段階燒結した、即ち電気炉に入れ、大気
中1300℃で2時間一次燒結した後、1650℃で2
時間二次燒結した。一次燒結から二次燒結への昇温速度
は30℃/時間であり、二次燒結終了後の降温速度は5
0℃/時間であった。この燒結体の円盤を実施例1とし
た。
EXAMPLES Hereinafter, the present invention will be described with reference to Examples and Comparative Examples.
The present invention will be described in more detail, but the present invention is not limited to the following examples unless it exceeds the gist. <Example 1> First, MgO powder (MJ-3 manufactured by Iwatani Chemical Co., Ltd.)
0, purity 99.9%, average particle size 0.3 μm, polyethylene glycol as a binder (Sanyo Chemical Co., Ltd. P
EG-200) 1% by weight, and a slurry containing ethanol as a dispersion medium has a concentration of 72% by weight (viscosity 400 cps).
Adjusted to. This slurry was then ball milled (diameter 1
Wet-mix for 20 hours with a 0 mm resin ball) and then spray-dry with a spray dryer to obtain an average particle size of 80μ.
A granulated powder of m was obtained. The conditions for spray drying are as follows: the atomizer (high-speed rotating disk) rotation speed is set to 10,000 rpm,
The heating gas inlet and outlet temperatures are 100 ° C and 6 respectively.
It was set to 0 ° C. Next, the obtained granulated powder was filled in a thin-walled cylindrical container (internal diameter 155 mm, height 8 mm) of a CIP molding apparatus, and CIP molding was performed at 1500 Kg / cm 2 . Further, this molded body was sintered in two steps, that is, placed in an electric furnace and primary sintered in the atmosphere at 1300 ° C. for 2 hours, and then at 1650 ° C. for 2 hours.
Second time fired. The rate of temperature rise from primary sintering to secondary sintering is 30 ° C./hour, and the rate of temperature decrease after completion of secondary sintering is 5
It was 0 ° C./hour. The disc of this sintered body was referred to as Example 1.

【0014】<実施例2>実施例1と同様に調整したス
ラリーを実施例1と同一のボールを使用したボールミル
にて24時間湿式混合した後、スプレードライヤにて噴
霧乾燥して平均粒径200μmの造粒粉末を得た。この
造粒粉末を一軸プレス装置の型(内径6mm、深さ3m
m)に充填し、1000Kg/cm2で一軸プレス成形
した。上記以外は実施例1と同様に製造した。この燒結
体ペレットを実施例2とした。
Example 2 A slurry prepared in the same manner as in Example 1 was wet-mixed for 24 hours in a ball mill using the same balls as in Example 1 and then spray-dried by a spray dryer to obtain an average particle size of 200 μm. Granulated powder of was obtained. This granulated powder is used as a mold for a uniaxial press (inner diameter: 6 mm, depth: 3 m).
m) and were uniaxially press molded at 1000 Kg / cm 2 . Except for the above, it was manufactured in the same manner as in Example 1. This sintered pellet was used as Example 2.

【0015】<実施例3>実施例1と同様に調整したス
ラリーを実施例1と同一のボールを使用したボールミル
にて24時間湿式混合した後、スプレードライヤにて噴
霧乾燥して平均粒径150μmの造粒粉末を得た。この
造粒粉末をCIP成形装置の薄肉円筒状容器(内径15
5mm、高さ8mm)に充填し、1500Kg/cm2
でCIP成形した。上記以外は実施例1と同様に製造し
た。この燒結体の円板を実施例3とした。 <実施例4>実施例1と同様に調整したスラリーを撹拌
ミル(直径2mmのZrO2製ボール使用)にて1時間
湿式混合した後、スプレードライヤにて噴霧乾燥して平
均粒径200μmの造粒粉末を得た。この造粒粉末を一
軸プレス装置の型(内径6mm、深さ3mm)に充填
し、1000Kg/cm2で一軸プレス成形した。上記
以外は実施例1と同様に製造した。この燒結体ペレット
を実施例4とした。
Example 3 A slurry prepared in the same manner as in Example 1 was wet-mixed for 24 hours in a ball mill using the same balls as in Example 1 and then spray-dried with a spray dryer to obtain an average particle size of 150 μm. Granulated powder of was obtained. This granulated powder is put into a thin-walled cylindrical container (inner diameter 15
5 mm, height 8 mm), 1500 kg / cm 2
CIP molding was carried out. Except for the above, it was manufactured in the same manner as in Example 1. This sintered disc was used as Example 3. <Example 4> The slurry prepared in the same manner as in Example 1 was wet-mixed for 1 hour with a stirring mill (using a ZrO2 ball having a diameter of 2 mm), and then spray-dried with a spray dryer to form an average particle size of 200 µm. A powder was obtained. This granulated powder was filled in a mold (inner diameter: 6 mm, depth: 3 mm) of a uniaxial pressing device and uniaxially press-molded at 1000 Kg / cm 2 . Except for the above, it was manufactured in the same manner as in Example 1. This sintered pellet was used as Example 4.

【0016】<実施例5>実施例1と同様に調整したス
ラリーを実施例5と同一のボールを使用した撹拌ミルに
て1時間湿式混合した後、スプレードライヤにて噴霧乾
燥して平均粒径150μmの造粒粉末を得た。この造粒
粉末を一軸プレス装置の型(内径6mm深さ3mm)に
充填し、1000Kg/cm2で一軸プレス成形した。
上記以外は実施例1と同様に製造した。この燒結体ペレ
ットを実施例5とした。
<Example 5> The slurry prepared in the same manner as in Example 1 was wet-mixed for 1 hour in a stirring mill using the same balls as in Example 5, and then spray-dried by a spray dryer to obtain an average particle size. A granulated powder of 150 μm was obtained. This granulated powder was filled in a mold (inner diameter 6 mm, depth 3 mm) of a uniaxial pressing device and uniaxially press-molded at 1000 Kg / cm 2 .
Except for the above, it was manufactured in the same manner as in Example 1. This sintered pellet was used as Example 5.

【0017】<比較例1>実施例1と同様に調整したス
ラリーを実施例1と同一のボールを使用したボールミル
にて48時間湿式混合した後、スプレードライヤにて噴
霧乾燥して平均粒径70μmの造粒粉末を得た。次に得
られた造粒粉末をCIP成形装置の薄肉円筒状容器(内
径155mm、高さ8mm)に充填し、1500Kg/
cm2でCIP成形した。更にこの成形体を電気炉に入
れ、大気中1650℃で3時間燒結した。この燒結体の
円板を比較例1とした。 <比較例2>実施例1と同様に調整したスラリーを撹拌
ミル(直径3mmのZrO2製ボール使用)にて8時間
湿式混合した後、スプレードライヤにて平均粒径40μ
mの造粒粉末を一軸プレス装置の型(内径6mm、深さ
3mm)に充填し、1000Kg/cm2で一軸プレス
成形した。燒結は比較例1と同様に行った。この燒結体
ペレットを比較例2とした。 <比較例3>市販の電融により製造された単結晶MgO
(純度99.3%)の破砕品を比較例3とした。この破
砕品の直径は3〜5mmであった。
Comparative Example 1 A slurry prepared in the same manner as in Example 1 was wet-mixed for 48 hours in a ball mill using the same balls as in Example 1 and then spray-dried by a spray dryer to obtain an average particle size of 70 μm. Granulated powder of was obtained. Next, the obtained granulated powder was filled in a thin-walled cylindrical container (internal diameter 155 mm, height 8 mm) of a CIP molding apparatus, and 1500 kg /
CIP molding was performed at cm 2 . Further, this molded body was placed in an electric furnace and sintered in the atmosphere at 1650 ° C. for 3 hours. This sintered disc was used as Comparative Example 1. <Comparative Example 2> The slurry prepared in the same manner as in Example 1 was wet-mixed for 8 hours with a stirring mill (using a ZrO2 ball having a diameter of 3 mm), and then with a spray drier, an average particle diameter of 40 μm.
The granulated powder of m was filled in a mold (inner diameter: 6 mm, depth: 3 mm) of a uniaxial press machine and uniaxially press molded at 1000 Kg / cm 2 . Sintering was performed as in Comparative Example 1. This sintered pellet was used as Comparative Example 2. <Comparative Example 3> Single crystal MgO produced by commercial electrofusion
The crushed product (purity 99.3%) was used as Comparative Example 3. The crushed product had a diameter of 3 to 5 mm.

【0018】<比較試験と評価> (a)相対密度測定 実施例1〜5及び比較例1〜3で得られた燒結体の円
板、ペレット及び破砕品の純度、相対密度をそれぞれ測
定した。これらの結果を表1に示す。なお、純度は不純
物の分析値より算出し、相対密度はトルエン中、アルキ
メデス法で測定した。また表1には実施例1〜5及び比
較例1〜3の燒結体の円板及びペレットの製造条件、即
ちスラリーの混合処理、造粒粉末の平均粒径及び成形体
の燒結条件を記載した。
<Comparative Test and Evaluation> (a) Relative Density Measurement Purity and relative density of the sintered discs, pellets and crushed products obtained in Examples 1 to 5 and Comparative Examples 1 to 3 were measured. The results are shown in Table 1. The purity was calculated from the analysis value of impurities, and the relative density was measured by the Archimedes method in toluene. Further, Table 1 describes the manufacturing conditions of the discs and pellets of the sintered bodies of Examples 1 to 5 and Comparative Examples 1 to 3, that is, the mixing treatment of the slurry, the average particle size of the granulated powder, and the sintering conditions of the molded body. .

【0019】[0019]

【表1】 [Table 1]

【0020】表1から明らかな様に、実施例1〜5では
製造工程での不純物の混入はなく、MgO燒結体の純度
は出発原料のMgO粉末に相応して全て99.90%以
上であり、相対密度は99%以上まで緻密化した。一
方、比較例2では、ボールミルや撹拌ミルで混合する時
間やメデイア径が不適切なために、製造工程で不純物が
混入した。更に実施例1、3と比較例1、2から、相対
密度に関して二段階燒結の方が一段階燒結より好ましい
ことが判った。
As is clear from Table 1, in Examples 1 to 5, impurities were not mixed in during the manufacturing process, and the purity of the MgO sintered body was 99.90% or more in all, corresponding to the starting MgO powder. The relative density was densified to 99% or more. On the other hand, in Comparative Example 2, impurities were mixed in the manufacturing process because the time for mixing in a ball mill or a stirring mill and the media diameter were inappropriate. Further, from Examples 1 and 3 and Comparative Examples 1 and 2, it was found that the two-stage sintering was preferable to the one-stage sintering with respect to the relative density.

【0021】(b)不純物の分析 実施例3の燒結体と比較例2の焼結体及び比較例3の単
結晶MgOの破砕品とに含まれる不純物を、原子吸光及
びICP(誘導結合形プラズマ分析法、Inducti
vely Coupled Plasma emiss
ion spectrochemical analy
sis)によりそれぞれ分析した。その結果を表2に示
す。
(B) Analysis of Impurities The impurities contained in the sintered body of Example 3, the sintered body of Comparative Example 2 and the crushed single crystal MgO of Comparative Example 3 were analyzed by atomic absorption and ICP (inductively coupled plasma). Analytical method, Inducti
Very Coupled Plasma Emiss
ion spectrochemical analysis
sis). The results are shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】表2から明らかな様に、実施例3では不純
物の濃度が25ppm未満であったのに対し、比較例2
ではZr以外の不純物の濃度が30ppm以下であった
が、不純物Zrの濃度がかなり高い800ppmを示し
た。また比較例3では不純物Caの濃度が390ppm
と極めて高い値を示した。これは、比較例3の原料中に
Al、Ca、Feが多量に含まれており、特にCaが多
量に含まれているためである。
As is clear from Table 2, in Example 3, the concentration of impurities was less than 25 ppm, while in Comparative Example 2
The concentration of impurities other than Zr was 30 ppm or less, but the concentration of the impurity Zr was 800 ppm, which was considerably high. In Comparative Example 3, the concentration of impurity Ca is 390 ppm.
And showed an extremely high value. This is because the raw material of Comparative Example 3 contained a large amount of Al, Ca and Fe, and particularly contained a large amount of Ca.

【0024】(c)成膜したMgO膜の特性試験及びそ
の放電性試験 実施例2、4及び5の焼結体ペレットと、比較例2の燒
結体ペレット、比較例3の単結晶MgOの破砕品とに、
電子ビーム蒸着法によりガラス基板に成膜して5種類の
TEG(Test Element Group)基板
を作製した。TEG基板は、厚さ3mmのガラス基板
(コーニング♯7059ガラス製)上にフォトリソグラ
フィによりInSn複合酸化膜からなる下地電極を10
0μmの間隔で厚さ1μm、幅100μmに形成し、こ
れらの下地電極を覆うように反応性DCスパッタリング
で厚さ3μmのガラス層を形成した後、上記電子ビーム
蒸着法により同一の成膜条件で厚さ7000オングスト
ロームのMgO膜を成膜することにより作られた。な
お、MgO膜の成膜条件は、加速電圧が15KV、蒸着
圧力が1×10―2Pa、蒸着距離が600mmであっ
た。
(C) Characteristic test of deposited MgO film and its discharge property test Sintered body pellets of Examples 2, 4 and 5, sintered pellets of Comparative Example 2 and crushing of single crystal MgO of Comparative Example 3 To the item
Five types of TEG (Test Element Group) substrates were produced by forming a film on a glass substrate by an electron beam evaporation method. For the TEG substrate, a base electrode made of an InSn composite oxide film is formed by photolithography on a glass substrate (made of Corning # 7059 glass) having a thickness of 3 mm.
After forming a glass layer having a thickness of 1 μm and a width of 100 μm at intervals of 0 μm and having a thickness of 3 μm by reactive DC sputtering so as to cover these base electrodes, the same film forming conditions were applied by the electron beam evaporation method described above. It was made by depositing a 7000 Å thick MgO film. The deposition conditions of the MgO film, an acceleration voltage is 15 KV, the deposition pressure is 1 × 10- 2 Pa, the deposition distance was 600 mm.

【0025】先ず上記MgO膜の屈折率を測定した。M
gO膜の屈折率は、He−Neレーザ(波長6238オ
ングストローム)により、膜に対し1波長、2入射角
(55、70)のエリプソ測定を行い、解析ソフトを用
いて求めた。次に上記MgO膜の放電開始電圧を以下の
方法で測定した。5種類のTEG基板をTEG基板のN
e―5%Xeで500Torrの真空ベルジャー内に配
置した加熱サンプル台に載せ、下地電極をパルス電源に
接続し、TEG基板を熱電対で測定しながら一定の温度
に制御して、電源電圧を上昇して行き、放電を開始する
電圧を測定した。パルス電源は0〜300Vの範囲で電
圧可変であって、周波数66Hzでパルス幅10μse
cのパルスを発生するようになっている。MgO膜の屈
折率、放電開始電圧を表3に示す。
First, the refractive index of the MgO film was measured. M
The refractive index of the gO film was obtained by performing ellipso measurement on the film with one wavelength and two incident angles (55, 70) using a He-Ne laser (wavelength 6238 angstrom), and was obtained using analysis software. Next, the discharge starting voltage of the MgO film was measured by the following method. 5 types of TEG boards are
e-5% Xe was placed on a heating sample stand placed in a 500 Torr vacuum bell jar, the base electrode was connected to a pulse power source, and the TEG substrate was controlled to a constant temperature while being measured by a thermocouple to raise the power source voltage. Then, the voltage at which the discharge was started was measured. The pulse power supply has a variable voltage in the range of 0 to 300 V and a pulse width of 10 μse at a frequency of 66 Hz.
c pulse is generated. Table 3 shows the refractive index and the discharge start voltage of the MgO film.

【0026】[0026]

【表3】 [Table 3]

【0027】表3から明らかなように、比較例2及び3
では屈折率が1.65及び1.68であったのに対し、
実施例2、4及び5では屈折率が1.7以上と向上し
た。また放電開始電圧は、実施例2、4及び5では比較
例2、3と比べて10〜20V程度低いことが判った。
更に実施例の成膜速度は比較例の約3倍の値が得られ
た。これは電子ビームが当った時に、比較例3の単結晶
MgOの破砕品では配向性があるが、実施例の多結晶M
gOの燒結体ペレットでは配向性がないために効率的な
成膜が可能となったためである。なお、実施例2、4及
び5を用いてMgO膜を成膜した基板をPDPに組み込
んだときの耐スパッタ性も良好で駆動電圧も低下した。
As is clear from Table 3, Comparative Examples 2 and 3
In contrast, the refractive indices were 1.65 and 1.68, while
In Examples 2, 4 and 5, the refractive index was improved to 1.7 or more. It was also found that the discharge start voltage was lower in Examples 2, 4 and 5 by about 10 to 20 V than in Comparative Examples 2 and 3.
Further, the film forming rate of the example was about three times that of the comparative example. This is because the single crystal MgO crushed product of Comparative Example 3 has an orientation when hit by an electron beam, but the polycrystalline M of the embodiment is
This is because the sintered pellet of gO has no orientation, and thus efficient film formation is possible. In addition, when the substrate on which the MgO film was formed using Examples 2, 4 and 5 was incorporated into a PDP, the sputtering resistance was good and the driving voltage was also lowered.

【0028】(d)MgO膜の膜厚分布 実施例2の燒結体ペレットと、比較例2の燒結体ペレッ
トと比較例3の単結晶MgOの破砕品とを、上記と同様
に電子ビーム蒸着法によりガラス基板に成膜した。この
MgO膜の膜厚分布をHe―Neレーザ(6328オン
グストローム)のエリプソにより測定した。この結果を
表4に示す。なお、表4において各部の膜厚をガラス基
板中心の膜厚に対する比で示した。即ち、ガラス基板中
心の膜厚を1.0とし、各部の膜厚はこれに対する比で
示した。
(D) Thickness distribution of MgO film The sintered pellets of Example 2 and the sintered pellets of Comparative Example 2 and the crushed single crystal MgO of Comparative Example 3 were subjected to the electron beam evaporation method in the same manner as above. To form a film on a glass substrate. The film thickness distribution of this MgO film was measured by an ellipso of a He—Ne laser (6328 angstrom). The results are shown in Table 4. In Table 4, the film thickness of each part is shown as a ratio to the film thickness at the center of the glass substrate. That is, the film thickness at the center of the glass substrate was set to 1.0, and the film thickness at each part was shown as a ratio to this.

【0029】[0029]

【表4】 [Table 4]

【0030】表4から明らかなように、実施例2の減少
率(バラツキ割合)は比較例2及び3より小さかった。
As is clear from Table 4, the reduction rate (variation rate) of Example 2 was smaller than that of Comparative Examples 2 and 3.

【0031】[0031]

【発明の効果】以上述べたように、本発明によれば、多
結晶MgO蒸着材をMgO純度が99.90%以上、特
に、カーボン量が30ppm以下であり、かつ相対密度
が98%以上の多結晶MgOの燒結体ペレットから構成
したので、この高純度かつ高密度の多結晶MgO蒸着材
を用いてAC型PDP等のMgO膜を成膜すると、スプ
ラッシュが少なく効率的に成膜でき、略均一な膜厚を有
するMgO膜を得ることができる。この結果、MgO膜
の成膜面積が大きくても、略均一に成膜することができ
るので、例えばMgO膜を成膜したガラス誘電体層をP
DPに組み込んだ場合に、放電開始電圧や駆動電圧を低
く一定にでき、PDPの電気的特性を向上できる。
As described above, according to the present invention, the polycrystalline MgO vapor deposition material has a MgO purity of 99.90% or more, particularly a carbon amount of 30 ppm or less and a relative density of 98% or more. Since it is composed of sintered pellets of polycrystalline MgO, when a MgO film such as AC type PDP is formed by using this high-purity and high-density polycrystalline MgO vapor deposition material, it is possible to efficiently form a film with little splash. An MgO film having a uniform film thickness can be obtained. As a result, even if the MgO film has a large film formation area, it can be formed substantially uniformly.
When incorporated in the DP, the discharge start voltage and the drive voltage can be kept low and constant, and the electrical characteristics of the PDP can be improved.

【0032】また多結晶MgOの燒結体ペレットに含ま
れる、Si及びAlの不純物をそれぞれ元素濃度で15
0ppm以下に、Caの不純物を元素濃度で200pp
m以下に、Feの不純物を元素濃度で50ppm以下
に、Cr、V及びNiの不純物をそれぞれ元素濃度で1
0ppm以下に、Na及びKの不純物をそれぞれ元素濃
度で20ppm以下に、Zrの不純物を元素濃度で15
0ppm以下にすれば、成膜されたMgO膜に含まれる
不純物が極めて少なくなるので、このMgO膜の膜特性
は向上する。
Further, the impurities of Si and Al contained in the sintered pellet of polycrystalline MgO are each contained in an element concentration of 15
The elemental concentration of Ca impurities is 200 pp below 0 ppm.
m or less, Fe impurities at an elemental concentration of 50 ppm or less, and Cr, V, and Ni impurities at an elemental concentration of 1 respectively.
0 ppm or less, Na and K impurities in elemental concentrations of 20 ppm or less, and Zr impurities in elemental concentration of 15 ppm or less.
If the content is 0 ppm or less, the impurities contained in the formed MgO film are extremely small, so that the film characteristics of the MgO film are improved.

【0033】更に純度が99.90%以上で平均粒径が
0.1〜3μmのMgO粉末とバインダと有機溶媒とを
混合して濃度が45〜57重量%のスラリーを調整し、
スラリーを噴霧乾燥して平均粒径が50〜300μmの
造粒粉末を得た後、この造粒粉末を所定の型に入れて所
定の圧力で成形し、この成形体を所定の温度で燒結すれ
ば、上記MgO純度が99.90%以上、特に、カーボ
ン量が30ppm以下でありかつ相対密度が98%以上
の多結晶MgOの燒結体ペレットからなる多結晶MgO
蒸着材を得ることができる。
Further, MgO powder having a purity of 99.90% or more and an average particle diameter of 0.1 to 3 μm is mixed with a binder and an organic solvent to prepare a slurry having a concentration of 45 to 57% by weight.
After the slurry is spray-dried to obtain a granulated powder having an average particle size of 50 to 300 μm, the granulated powder is put into a predetermined mold and molded at a predetermined pressure, and the molded body is sintered at a predetermined temperature. For example, the above-mentioned MgO purity is 99.90% or more, and in particular, the polycrystalline MgO made of sintered pellets of polycrystalline MgO having a carbon amount of 30 ppm or less and a relative density of 98% or more.
A vapor deposition material can be obtained.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G030 AA03 AA04 AA07 AA08 AA17 AA22 AA27 AA29 AA36 AA37 AA45 AA60 CA01 GA28 GA29 4K029 AA09 BA43 BB08 BD00 DB05 DB17 5C040 GE07 KA04 KB08 KB19 KB30 MA24 MA26    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G030 AA03 AA04 AA07 AA08 AA17                       AA22 AA27 AA29 AA36 AA37                       AA45 AA60 CA01 GA28 GA29                 4K029 AA09 BA43 BB08 BD00 DB05                       DB17                 5C040 GE07 KA04 KB08 KB19 KB30                       MA24 MA26

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 MgO純度99.90%以上でカーボン
量が30ppm以下であり、かつ相対密度が98%以上
の多結晶MgOの燒結体ペレットからなる多結晶MgO
蒸着材。
1. A polycrystalline MgO composed of sintered pellets of polycrystalline MgO having a MgO purity of 99.90% or more, a carbon amount of 30 ppm or less, and a relative density of 98% or more.
Evaporation material.
【請求項2】 多結晶MgOの焼結体ペレットに含まれ
る、Si及びAlの不純物がそれぞれ元素濃度で150
ppm以下であり、Caの不純物が元素濃度で200p
pm以下であり、Feの不純物が元素濃度で50ppm
以下であり、Cr、V及びNiの不純物がそれぞれ元素
濃度で10ppm以下であり、Na及びKの不純物がそ
れぞれ元素濃度で20ppm以下であり、Zrの不純物
濃度で150ppm以下である請求項1記載の多結晶M
gO蒸着材。
2. Impurities of Si and Al contained in the polycrystalline MgO sintered pellets are contained in elemental concentrations of 150 and 150, respectively.
It is less than ppm and the impurity of Ca is 200p in elemental concentration.
pm or less, Fe impurity is 50 ppm in elemental concentration
The Cr content, the V content, and the Ni content are 10 ppm or less, the Na content and the K content are 20 ppm, and the Zr content is 150 ppm or less. Polycrystalline M
gO vapor deposition material.
JP22664698A 1998-08-11 1998-08-11 Polycrystalline MgO deposited material Expired - Lifetime JP3314728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22664698A JP3314728B2 (en) 1998-08-11 1998-08-11 Polycrystalline MgO deposited material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22664698A JP3314728B2 (en) 1998-08-11 1998-08-11 Polycrystalline MgO deposited material

Publications (2)

Publication Number Publication Date
JP2000063171A true JP2000063171A (en) 2000-02-29
JP3314728B2 JP3314728B2 (en) 2002-08-12

Family

ID=16848451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22664698A Expired - Lifetime JP3314728B2 (en) 1998-08-11 1998-08-11 Polycrystalline MgO deposited material

Country Status (1)

Country Link
JP (1) JP3314728B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031136A (en) * 2001-07-18 2003-01-31 Nec Corp Plasma display panel and manufacturing method of the same
JP2003109511A (en) * 2001-09-27 2003-04-11 Matsushita Electric Ind Co Ltd Plasma display panel
WO2003046249A1 (en) * 2001-11-30 2003-06-05 Mitsubishi Materials Corporation MgO VAPOR DEPOSITION MATERIAL AND METHOD FOR PREPARATION THEREOF
WO2003097895A1 (en) * 2002-05-20 2003-11-27 Mitsubishi Materials Corporation MATERIAL SUBJECTED TO VACUUM EVAPORATION, MgO MATERIAL SUBJECTED TO VACUUM EVAPORATION, PROCESS FOR PRODUCING THE SAME AND METHOD OF FORMING FILM
EP1408528A2 (en) * 2002-10-10 2004-04-14 Lg Electronics Inc. Polycrystalline MgO deposition material having adjusted Si concentration
WO2004079769A1 (en) 2003-03-03 2004-09-16 Matsushita Electric Industrial Co., Ltd. Plasma display panel, its manufacturing method, and its protective layer material
JP2004273452A (en) * 2003-03-04 2004-09-30 Samsung Sdi Co Ltd Plasma display panel
WO2005029530A1 (en) * 2003-09-24 2005-03-31 Matsushita Electric Industrial Co., Ltd. Plasma display panel
WO2005031783A1 (en) * 2003-09-26 2005-04-07 Matsushita Electric Industrial Co., Ltd. Plasma display panel
WO2005041240A1 (en) * 2003-09-26 2005-05-06 Matsushita Electric Industrial Co., Ltd. Plasma display panel
JP2005330574A (en) * 2003-10-21 2005-12-02 Ube Material Industries Ltd Magnesium oxide vapor-deposition material
US7166961B2 (en) 2002-10-10 2007-01-23 Lg Electronics, Inc. Protective film of plasma display panel and method of fabricating the same
KR100696481B1 (en) 2004-12-07 2007-03-19 삼성에스디아이 주식회사 Plasma display panel
JP2007091525A (en) * 2005-09-28 2007-04-12 Nippon Chem Ind Co Ltd Magnesium oxide powder, precursor for magnesium oxide molded body, method for producing them, magnesium oxide molded body, and magnesium oxide sintered pellet
KR100711512B1 (en) * 2005-11-01 2007-04-27 엘지전자 주식회사 Plasma display panel with protective layer ease of electron emission and manufacturing methods thereof
EP1783803A2 (en) 2005-11-07 2007-05-09 Samsung SDI Co., Ltd. Plasma Display Panel
JP2007299583A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Plasma display panel, and its manufacturing method
JP2008091195A (en) * 2006-10-02 2008-04-17 Matsushita Electric Ind Co Ltd Plasma display panel
JP2008255480A (en) * 2007-03-09 2008-10-23 Mitsubishi Materials Corp Vapor deposition material and manufacturing method therefor
US7528547B2 (en) 2004-05-25 2009-05-05 Samsung Sdi Co., Ltd. Plasma display panel with magnesium oxide protection layer including dopants
US7691200B2 (en) 2005-03-25 2010-04-06 Tateho Chemical Industries Co., Ltd Magnesium oxide single crystal and method for producing the same
US7795811B2 (en) 2007-01-15 2010-09-14 Panasonic Corporation Plasma display panel
JP2010236096A (en) * 2003-10-21 2010-10-21 Ube Material Industries Ltd Magnesium oxide vapor-deposition material

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031136A (en) * 2001-07-18 2003-01-31 Nec Corp Plasma display panel and manufacturing method of the same
JP4698077B2 (en) * 2001-07-18 2011-06-08 パナソニック株式会社 Plasma display panel and manufacturing method thereof
US6879107B2 (en) 2001-07-18 2005-04-12 Nec Corporation Plasma display panel and fabrication method of the same
JP2003109511A (en) * 2001-09-27 2003-04-11 Matsushita Electric Ind Co Ltd Plasma display panel
CN100376713C (en) * 2001-11-30 2008-03-26 三菱麻铁里亚尔株式会社 MgO vapor deposition material and production method therefor
US7138350B2 (en) 2001-11-30 2006-11-21 Mitsubishi Materials Corporation MgO vapor deposition material and method for preparation thereof
WO2003046249A1 (en) * 2001-11-30 2003-06-05 Mitsubishi Materials Corporation MgO VAPOR DEPOSITION MATERIAL AND METHOD FOR PREPARATION THEREOF
EP1482068A4 (en) * 2001-11-30 2012-04-11 Mitsubishi Materials Corp MgO VAPOR DEPOSITION MATERIAL AND METHOD FOR PREPARATION THEREOF
EP1482068A1 (en) * 2001-11-30 2004-12-01 Mitsubishi Materials Corporation MgO VAPOR DEPOSITION MATERIAL AND METHOD FOR PREPARATION THEREOF
WO2003097895A1 (en) * 2002-05-20 2003-11-27 Mitsubishi Materials Corporation MATERIAL SUBJECTED TO VACUUM EVAPORATION, MgO MATERIAL SUBJECTED TO VACUUM EVAPORATION, PROCESS FOR PRODUCING THE SAME AND METHOD OF FORMING FILM
EP1408528A2 (en) * 2002-10-10 2004-04-14 Lg Electronics Inc. Polycrystalline MgO deposition material having adjusted Si concentration
EP1408528A3 (en) * 2002-10-10 2007-07-18 Lg Electronics Inc. Polycrystalline MgO deposition material having adjusted Si concentration
CN100392790C (en) * 2002-10-10 2008-06-04 Lg电子株式会社 Protection film for plasma display panel and manufacturing method thereof
US6995104B2 (en) * 2002-10-10 2006-02-07 Lg Electronics Inc. Polycrystalline MgO deposition material having adjusted Si concentration
WO2004033749A1 (en) * 2002-10-10 2004-04-22 Mitsubishi Materials Corporation POLYCRYSTALLINE MgO VAPOR DEPOSITION MATERIAL
US7166961B2 (en) 2002-10-10 2007-01-23 Lg Electronics, Inc. Protective film of plasma display panel and method of fabricating the same
CN100439555C (en) * 2002-10-10 2008-12-03 三菱麻铁里亚尔株式会社 Polycrystalline mgo vapor deposition material
EP1505624A1 (en) * 2003-03-03 2005-02-09 Matsushita Electric Industrial Co., Ltd. Plasma display panel, its manufacturing method, and its protective layer material
EP1505624A4 (en) * 2003-03-03 2008-08-20 Matsushita Electric Ind Co Ltd Plasma display panel, its manufacturing method, and its protective layer material
WO2004079769A1 (en) 2003-03-03 2004-09-16 Matsushita Electric Industrial Co., Ltd. Plasma display panel, its manufacturing method, and its protective layer material
JP2009206107A (en) * 2003-03-03 2009-09-10 Panasonic Corp Method of manufacturing plasma display panel
JP2004273452A (en) * 2003-03-04 2004-09-30 Samsung Sdi Co Ltd Plasma display panel
CN100337297C (en) * 2003-03-04 2007-09-12 三星Sdi株式会社 Plasma display panel
US7253561B2 (en) 2003-03-04 2007-08-07 Samsung Sdi Co., Ltd. Plasma display panel including dopant elements Si and Fe
US7391156B2 (en) 2003-09-24 2008-06-24 Matsushita Electrical Industrial Co., Ltd. Plasma display panel
EP1587126A1 (en) * 2003-09-24 2005-10-19 Matsushita Electric Industrial Co., Ltd. Plasma display panel
WO2005029530A1 (en) * 2003-09-24 2005-03-31 Matsushita Electric Industrial Co., Ltd. Plasma display panel
EP1587126A4 (en) * 2003-09-24 2007-10-10 Matsushita Electric Ind Co Ltd Plasma display panel
WO2005031783A1 (en) * 2003-09-26 2005-04-07 Matsushita Electric Industrial Co., Ltd. Plasma display panel
KR100697495B1 (en) * 2003-09-26 2007-03-20 마츠시타 덴끼 산교 가부시키가이샤 Plasma display panel
WO2005041240A1 (en) * 2003-09-26 2005-05-06 Matsushita Electric Industrial Co., Ltd. Plasma display panel
US7218050B2 (en) 2003-09-26 2007-05-15 Matsushita Electric Industrial Co., Ltd. Plasma display panel
US7245078B2 (en) 2003-09-26 2007-07-17 Matsushita Electric Industrial Co., Ltd. Plasma display panel having protective layer with magnesium oxide and magnesium carbide
CN100394530C (en) * 2003-09-26 2008-06-11 松下电器产业株式会社 Plasma display panel
CN100392789C (en) * 2003-09-26 2008-06-04 松下电器产业株式会社 Plasma display panel
JP2005330574A (en) * 2003-10-21 2005-12-02 Ube Material Industries Ltd Magnesium oxide vapor-deposition material
JP4627652B2 (en) * 2003-10-21 2011-02-09 宇部マテリアルズ株式会社 Magnesium oxide vapor deposition material
JP2010236096A (en) * 2003-10-21 2010-10-21 Ube Material Industries Ltd Magnesium oxide vapor-deposition material
US7528547B2 (en) 2004-05-25 2009-05-05 Samsung Sdi Co., Ltd. Plasma display panel with magnesium oxide protection layer including dopants
KR100696481B1 (en) 2004-12-07 2007-03-19 삼성에스디아이 주식회사 Plasma display panel
US7691200B2 (en) 2005-03-25 2010-04-06 Tateho Chemical Industries Co., Ltd Magnesium oxide single crystal and method for producing the same
JP2007091525A (en) * 2005-09-28 2007-04-12 Nippon Chem Ind Co Ltd Magnesium oxide powder, precursor for magnesium oxide molded body, method for producing them, magnesium oxide molded body, and magnesium oxide sintered pellet
KR100711512B1 (en) * 2005-11-01 2007-04-27 엘지전자 주식회사 Plasma display panel with protective layer ease of electron emission and manufacturing methods thereof
EP1783803A2 (en) 2005-11-07 2007-05-09 Samsung SDI Co., Ltd. Plasma Display Panel
EP1783803A3 (en) * 2005-11-07 2009-01-21 Samsung SDI Co., Ltd. Plasma Display Panel
JP4736933B2 (en) * 2006-04-28 2011-07-27 パナソニック株式会社 Plasma display panel
JP2007299583A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Plasma display panel, and its manufacturing method
JP2008091195A (en) * 2006-10-02 2008-04-17 Matsushita Electric Ind Co Ltd Plasma display panel
US7795811B2 (en) 2007-01-15 2010-09-14 Panasonic Corporation Plasma display panel
JP2008255480A (en) * 2007-03-09 2008-10-23 Mitsubishi Materials Corp Vapor deposition material and manufacturing method therefor

Also Published As

Publication number Publication date
JP3314728B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
JP3314728B2 (en) Polycrystalline MgO deposited material
US9005487B2 (en) Tablet for ion plating, production method therefor and transparent conductive film
JP5764828B2 (en) Oxide sintered body and tablet processed the same
JPH10291854A (en) Polycrystalline mgo vapor depositing material and its production
KR20160063403A (en) Amorphous composite oxide film,crystalline composite oxide film,process for producing amorphous composite oxide film,process for producing crystalline composite oxide film,and composite oxide sinter
JP3470633B2 (en) Deposition material containing MgO as a main component and method for producing the same
JP3893793B2 (en) MgO vapor deposition material and method for producing the same
JP3331584B2 (en) Polycrystalline MgO deposited material
JPH10297955A (en) Material having evaporated magnesium oxide layer and its production
JPH10130827A (en) Mgo target and its production
JPH1129857A (en) Polycrystalline magnesium oxide vapor deposition material and its production
WO2005118504A1 (en) Single-crystal magnesium oxide sinter, process for producing the same, and protective film for plasma display panel
JP2004169098A (en) Vapor depositing material, and optical thin film and optical component obtained by using the same
JPH10158826A (en) Mgo target and its production
JPH1129355A (en) Polycrystalline magnesium oxide vacuum-deposition material and its production
JP2004043955A (en) MgO VAPOR DEPOSITION MATERIAL AND ITS MANUFACTURING PROCESS, MANUFACTURING PROCESS OF MgO DEPOSITION FILM
JPH1192212A (en) Magnesium oxide sintered compact, its production and magnesium oxide thin film
JP4823475B2 (en) Vapor deposition material, MgO vapor deposition material, manufacturing method thereof, and film formation method
JPH10130828A (en) Mgo target and its production
JPH10237636A (en) Target essentially consisting of mgo and its production
JPH11335824A (en) Target material essentially consisting of mgo and its production
JP4955916B2 (en) Single crystal magnesium oxide sintered body, method for producing the same, and protective film for plasma display panel
JP2003226960A (en) MgO VAPOR DEPOSITION MATERIAL AND PRODUCTION METHOD THEREFOR
JP3896218B2 (en) Indium-germanium vapor deposition target and method for producing the same
JP3417457B2 (en) Target containing MgO as main component and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

EXPY Cancellation because of completion of term