JP3417457B2 - Target containing MgO as main component and method for producing the same - Google Patents

Target containing MgO as main component and method for producing the same

Info

Publication number
JP3417457B2
JP3417457B2 JP15639397A JP15639397A JP3417457B2 JP 3417457 B2 JP3417457 B2 JP 3417457B2 JP 15639397 A JP15639397 A JP 15639397A JP 15639397 A JP15639397 A JP 15639397A JP 3417457 B2 JP3417457 B2 JP 3417457B2
Authority
JP
Japan
Prior art keywords
mgo
sintering
powder
target
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15639397A
Other languages
Japanese (ja)
Other versions
JPH116058A (en
Inventor
武義 竹之内
正一 島村
直紀 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP15639397A priority Critical patent/JP3417457B2/en
Publication of JPH116058A publication Critical patent/JPH116058A/en
Application granted granted Critical
Publication of JP3417457B2 publication Critical patent/JP3417457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、AC型のプラズマ
ディスプレイパネルの誘電体層を保護するMgO膜をス
パッタ法で成膜するのに適したターゲット及びその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a target suitable for forming a MgO film for protecting a dielectric layer of an AC type plasma display panel by a sputtering method and a method for manufacturing the target.

【0002】[0002]

【従来の技術】近年、液晶(Liquid Crystal Display :
LCD)をはじめとして、各種の平面ディスプレイの
研究開発と実用化はめざましく、その生産も急増してい
る。カラープラズマディスプレイパネル(PDP)につ
いても、その開発と実用化の動きが最近活発になってい
る。PDPは大型化し易く、ハイビジョン用の大画面壁
掛けテレビの最短距離にあり、既に対角40インチクラ
スのPDPの試作が進められている。PDPは、電極構
造の点で金属電極がガラス誘電体材料で覆われるAC型
と、放電空間に金属電極が露出しているDC型とに分類
される。
2. Description of the Related Art In recent years, liquid crystal (Liquid Crystal Display:
Research and development and practical application of various flat displays such as LCD) are remarkable, and the production thereof is also rapidly increasing. The development and commercialization of color plasma display panels (PDPs) have also become active recently. PDPs tend to be large in size and are at the shortest distance from large-screen wall-mounted TVs for high-definition televisions, and trial production of PDPs with a diagonal size of 40 inches is already underway. PDPs are classified into an AC type in which a metal electrode is covered with a glass dielectric material and a DC type in which a metal electrode is exposed in a discharge space in terms of an electrode structure.

【0003】このAC型PDPの開発の当初は、ガラス
誘電体層が放電空間に露出していたため、直接放電にさ
らされ、イオン衝撃のスパッタリングにより誘電体層の
表面が変化して放電開始電圧が上昇していた。そのた
め、高い昇華熱を持つ種々の酸化物をこの誘電体層の保
護膜とする試みがなされた。この保護膜は直接放電用の
ガスと接しているために重要な役割を担っている。即
ち、保護膜に求められる特性は、低い放電電圧、放
電時の耐スパッタリング性、速い放電の応答性、及び
絶縁性である。これらの条件を満たす材料として、M
gOが保護膜に用いられる。このMgOからなる保護膜
は、誘電体層の表面を放電時のスパッタリングから守
り、PDPの長寿命化に重要な働きをしている。
At the beginning of the development of this AC type PDP, since the glass dielectric layer was exposed in the discharge space, it was directly exposed to a discharge, and the surface of the dielectric layer was changed by the sputtering of ion bombardment, so that the discharge starting voltage was increased. It was rising. Therefore, attempts have been made to use various oxides having high heat of sublimation as protective films for this dielectric layer. This protective film plays an important role because it is in direct contact with the discharge gas. That is, the characteristics required for the protective film are low discharge voltage, sputtering resistance during discharge, fast discharge response, and insulation. As a material satisfying these conditions, M
gO is used for the protective film. This protective film made of MgO protects the surface of the dielectric layer from sputtering during discharge and plays an important role in extending the life of the PDP.

【0004】現在、AC型PDPの上記保護膜として、
単結晶MgOの破砕品を蒸着材とする電子ビーム蒸着法
により成膜されたMgO膜が知られている。この電子ビ
ーム蒸着法によるMgO膜は1000オングストローム
/分以上の高速で成膜することができる。また成膜され
たMgO膜の結晶方位は(111)面に配向した膜が最
も低い維持電圧で駆動でき、更に膜中に存在する(11
1)面の量が増えるほど、二次電子の放出比は増大し、
駆動電圧も減少すると言われている。なお上記単結晶M
gOの破砕品は純度が98%以上のMgOクリンカや軽
焼MgO(1000℃以下で焼結されたMgO)を電弧
炉(アーク炉)で溶融することにより、即ち電融により
インゴットとした後、このインゴットから単結晶部を取
出して破砕することにより製造される。
Currently, as the protective film of the AC type PDP,
An MgO film formed by an electron beam evaporation method using a crushed single crystal MgO as an evaporation material is known. The MgO film formed by this electron beam evaporation method can be formed at a high speed of 1000 angstroms / minute or more. Regarding the crystal orientation of the formed MgO film, the film oriented to the (111) plane can be driven with the lowest sustaining voltage, and further exists in the film (11
1) As the amount of surface increases, the emission ratio of secondary electrons increases,
It is said that the driving voltage will also decrease. The above single crystal M
The crushed product of gO is obtained by melting MgO clinker having a purity of 98% or more and light-burning MgO (MgO sintered at 1000 ° C. or less) in an electric arc furnace (arc furnace), that is, after forming an ingot by electric melting, It is manufactured by taking out a single crystal part from this ingot and crushing it.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来の単
結晶MgOの破砕品を蒸着材として用いた電子ビーム蒸
着法では、成膜速度が速い利点がある反面、スプラッシ
ュが発生したり、成膜面積が広いときには膜厚を均一に
することが難しい不具合があった。この点を解消するた
めにスパッタ法でMgO膜を成膜する方法が考えられる
が、この方法では、ターゲット材料として絶縁性の高い
MgO焼結体が要求され、更に成膜速度を上げるため
に、緻密なMgO焼結体が必要になる。また上記MgO
焼結体の絶縁性の高さにはMgO焼結体の密度、純度、
結晶粒界や結晶粒内の組織構造が影響する。
However, in the electron beam evaporation method using the above-mentioned conventional crushed single crystal MgO as an evaporation material, there is an advantage that the film formation speed is high, but on the other hand, splash or a film formation occurs. When the area is large, there is a problem that it is difficult to make the film thickness uniform. In order to solve this point, a method of forming a MgO film by a sputtering method can be considered. However, in this method, a MgO sintered body having a high insulating property is required as a target material, and in order to further increase the film forming speed, A dense MgO sintered body is required. In addition, the above MgO
The density of the MgO sintered body, the purity,
The crystal grain boundaries and the texture structure within the crystal grains influence.

【0006】一般にMgO焼結体は優れた耐熱性、耐食
性及び電気絶縁性を有するが、強度、破壊靱性値及び耐
熱衝撃性に乏しく、このままスパッタ法のターゲット材
料として使用することは難しかった。この点を解消する
ために、種々の焼結助剤を添加してMgO焼結体の高密
度化を図ることができるが、この方法によっても、組織
的にMgO焼結体のMgO結晶粒界に欠陥が存在するた
め、MgO膜の配向性が劣り、しかもその成膜速度を高
めることができない問題点があった。
Generally, the MgO sintered body has excellent heat resistance, corrosion resistance and electric insulation, but it is poor in strength, fracture toughness and thermal shock resistance, and it was difficult to use it as it is as a target material for the sputtering method. In order to eliminate this point, various sintering aids can be added to increase the density of the MgO sintered body, but this method also systematically improves the MgO crystal grain boundaries of the MgO sintered body. Due to the presence of defects, there is a problem that the orientation of the MgO film is inferior and the film formation rate cannot be increased.

【0007】本発明の目的は、強度、破壊靱性値及び耐
熱衝撃性を向上でき、スパッタ法により成膜されたMg
O膜の配向性及び成膜速度を向上できる、MgOを主成
分とするターゲット及びその製造方法を提供することに
ある。本発明の別の目的は、スパッタ法により成膜して
も、低い放電電圧、放電時の耐スパッタ性、速い放電の
応答性、及び高い絶縁性を有するMgO膜を得ることが
できる、MgOを主成分とするターゲット及びその製造
方法を提供することにある。
An object of the present invention is to improve strength, fracture toughness value and thermal shock resistance, and to form a Mg film formed by a sputtering method.
It is an object of the present invention to provide a target containing MgO as a main component and a method for producing the same, which can improve the orientation of the O film and the film formation rate. Another object of the present invention is to provide a MgO film that can be formed by a sputtering method to obtain a MgO film having a low discharge voltage, a sputtering resistance during discharge, a fast discharge response, and a high insulating property. It is to provide a target containing a main component and a method for manufacturing the target.

【0008】[0008]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、平均結晶粒径が0.5〜100μm
の結晶粒子1を有するMgOマトリックス中にLaB6
粒子2が1〜25体積%分散されたMgOを主成分とす
るターゲットである。この請求項1に記載されたMgO
を主成分とするターゲットでは、異方性のない、即ち所
定の2軸(a軸及びc軸)方向の熱膨張係数等の物性値
が同じであるMgOマトリックス結晶粒内又は結晶粒界
3にLaB6粒子2を分散させる複合化を行うことによ
り、セラミック焼結体であるMgO複合材のターゲット
の物理的性質を改善できる。例えば、Al23マトリッ
クスにSiC粒子を分散させた場合に、分散粒子の熱膨
張係数がマトリックスの熱膨張係数の1/2以下である
ため、焼結時にこの熱膨張係数の差に起因して焼結過程
で分散粒子の周囲や内部に発生する応力は1000〜1
800MPaに達する。この応力が大きくなると、マト
リックスと分散粒子の界面に亀裂が走ることがあり、こ
れを防ぐためには非常に細かいSiC粒子しか分散でき
ない。
The invention according to claim 1 is
As shown in FIG. 1, the average crystal grain size is 0.5 to 100 μm.
LaB 6 in MgO matrix with crystalline particles 1 of
This is a target whose main component is MgO in which particles 2 are dispersed in an amount of 1 to 25% by volume. MgO described in claim 1
In the target containing Mg as the main component, there is no anisotropy, that is, in the MgO matrix crystal grain or in the crystal grain boundary 3 where the physical properties such as the coefficient of thermal expansion in the predetermined biaxial (a-axis and c-axis) directions are the same. By performing the compounding in which the LaB 6 particles 2 are dispersed, it is possible to improve the physical properties of the target of the MgO composite material that is the ceramic sintered body. For example, when SiC particles are dispersed in an Al 2 O 3 matrix, the coefficient of thermal expansion of the dispersed particles is not more than 1/2 of the coefficient of thermal expansion of the matrix. The stress generated around and inside the dispersed particles during the sintering process is 1000 to 1
Reach 800 MPa. If this stress increases, cracks may run at the interface between the matrix and the dispersed particles, and in order to prevent this, only very fine SiC particles can be dispersed.

【0009】これに対して、本発明のLaB6粒子2の
熱膨張係数は高温では軟らかくなるため、1300℃で
はMgOの熱膨張係数(約12×10-6/℃)の約0.
8倍になる。MgOマトリックスに対する分散粒子の高
温時の熱挙動から、焼結時にマトリックス及び分散粒子
はマトリックスの結晶粒界3面で強く結合する。この結
晶粒界3面での強い結合によってターゲットとして用い
たときには、600オングストローム/分以上の成膜速
度が得られる高電圧でスパッタリングしても、ターゲッ
トの割れや異常放電が発生せず、スパッタリングで成膜
されたMgO膜は低い放電電圧、放電時の耐スパッタ
性、速い放電の応答性、及び高い絶縁性を有する。この
結果、AC型PDPの誘電体層の保護膜に好適なものと
なる。一方、上述のように分散粒子であるLaB6粒子
2は高温で軟らかくなるために、高温ではマトリックス
と分散粒子との熱膨張係数の差は小さくなる。この結
果、マトリックスの結晶粒界3に亀裂を発生させない範
囲で粒子径が比較的大きなLaB6粒子2を分散させる
ことができるので、結晶粒界3を締付けるトータルの領
域が大きくなり、結晶粒界3の欠陥も少なく、かつ強度
も向上する。
On the other hand, the coefficient of thermal expansion of the LaB 6 particles 2 of the present invention becomes soft at a high temperature, so at 1300 ° C., the coefficient of thermal expansion of MgO (about 12 × 10 −6 / ° C.) is about 0.
8 times. Due to the thermal behavior of the dispersed particles with respect to the MgO matrix at high temperature, the matrix and the dispersed particles are strongly bonded to each other at the three crystal grain boundaries of the matrix during sintering. When used as a target due to the strong bonding at the three crystal grain boundaries, sputtering does not cause cracking or abnormal discharge of the target even if sputtering is performed at a high voltage that can achieve a film formation rate of 600 Å / min or more. The formed MgO film has a low discharge voltage, sputtering resistance during discharge, fast discharge response, and high insulation. As a result, it becomes suitable as a protective film for the dielectric layer of the AC type PDP. On the other hand, as described above, the LaB 6 particles 2 which are dispersed particles become soft at high temperature, and therefore the difference in the coefficient of thermal expansion between the matrix and the dispersed particles becomes small at high temperature. As a result, the LaB 6 particles 2 having a relatively large particle size can be dispersed in a range that does not cause cracks in the crystal grain boundaries 3 of the matrix, so that the total area for tightening the crystal grain boundaries 3 becomes large, and The number of defects of 3 is small and the strength is improved.

【0010】請求項2に係る発明は、MgO粉末とLa
6粉末とを湿式混合する工程と、この混合物を減圧加
熱して乾燥した後に乾式解砕する工程と、乾式解砕した
混合粉末を成形する工程と、この成形体を1300〜1
650℃の温度で焼結する工程とを含むMgOを主成分
とするターゲットの製造方法である。この請求項2に記
載された製造方法でターゲットを製造すると、分散粒子
がMgOマトリックス内に均一に分散し、結晶粒界面の
整合性が良く、かつ結晶粒界の欠陥が少ない、即ち組織
が良く制御されたターゲットが得られる。
The invention according to claim 2 relates to MgO powder and La.
A step of wet mixing the B 6 powder, a step of dry crushing the mixture after drying with heating under reduced pressure, and the step of forming the mixed powder were dry-pulverized, the molded body 1300-1
And a step of sintering at a temperature of 650 ° C. for manufacturing a target containing MgO as a main component. When the target is manufactured by the manufacturing method according to the second aspect, the dispersed particles are uniformly dispersed in the MgO matrix, the matching of the crystal grain interfaces is good, and the defects of the crystal grain boundaries are small, that is, the structure is good. A controlled target is obtained.

【0011】請求項3に係る発明は、請求項2に係る発
明であって、更に成形体を真空中又は不活性ガス雰囲気
中で1400〜1650℃に昇温して焼結することを特
徴とする。請求項4に係る発明は、請求項2に係る発明
であって、更に成形体を真空中又は常圧の不活性ガス雰
囲気中で1300〜1350℃に昇温して一次焼結し、
更に真空中又は常圧の不活性ガス雰囲気中で1450〜
1650℃に昇温して二次焼結することを特徴とする。
請求項5に係る発明は、請求項3又は4に係る発明であ
って、更に成形体を焼結する前に還元性ガス雰囲気中で
700〜900℃に昇温して還元処理することを特徴と
する。上記請求項3〜5に記載された製造方法でターゲ
ットを製造すると、更に組織が良く制御されたターゲッ
トが得られる。
The invention according to claim 3 is the invention according to claim 2, characterized in that the molded body is further heated to 1400 to 1650 ° C in a vacuum or in an inert gas atmosphere and sintered. To do. The invention according to claim 4 is the invention according to claim 2, further comprising heating the molded body to 1300 to 1350 ° C. in vacuum or in an inert gas atmosphere at normal pressure to perform primary sintering,
Further, in vacuum or in an inert gas atmosphere at normal pressure, 1450 to
It is characterized in that the temperature is raised to 1650 ° C. and secondary sintering is performed.
The invention according to claim 5 is the invention according to claim 3 or 4, characterized in that the temperature is raised to 700 to 900 ° C. in a reducing gas atmosphere for reduction treatment before the compact is further sintered. And When the target is manufactured by the manufacturing method described in any one of claims 3 to 5, a target having a better controlled texture can be obtained.

【0012】請求項6に係る発明は、MgO粉末とLa
6粉末とを湿式混合する工程と、この混合物を減圧加
熱して乾燥した後に乾式解砕する工程と、乾式解砕した
混合粉末を不活性ガス雰囲気中で1450〜1650℃
に昇温して焼結する工程とを含むMgOを主成分とする
ターゲットの製造方法である。この請求項6に記載され
た製造方法でターゲットを製造すると、ターゲットを更
に緻密にできるとともに製造工数を低減できる。
According to the invention of claim 6, MgO powder and La
A step of wet mixing the B 6 powder, a step of dry crushing the mixture after drying with heating under reduced pressure, the mixed powder was dry pulverized in an inert gas atmosphere from 1450 to 1,650 ° C.
The method of manufacturing a target containing MgO as a main component, the method including the step of raising the temperature to sinter and sintering. When the target is manufactured by the manufacturing method according to the sixth aspect, the target can be made more precise and the number of manufacturing steps can be reduced.

【0013】[0013]

【発明の実施の形態】次に本発明の実施の形態を説明す
る。本発明のMgOを主成分とするターゲットはセラミ
ック焼結体であって、マトリックスとしてMgOが用い
られ、分散粒子としてLaB6粒子が用いられる。また
MgOの平均結晶粒径は0.5〜100μm、好ましく
は2〜50μmであり、分散粒子の平均粒径は2.0μ
m以下、好ましくは1.0μm以下であり、更に分散粒
子のマトリックスに対する含有割合は1〜25体積%、
好ましくは5〜20体積%である。ここで、分散粒子の
含有割合はMgO及び分散粒子の合計に対する内割の割
合である。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described. The target containing MgO as a main component of the present invention is a ceramic sintered body, MgO is used as a matrix, and LaB 6 particles are used as dispersed particles. The average crystal grain size of MgO is 0.5 to 100 μm, preferably 2 to 50 μm, and the average grain size of dispersed particles is 2.0 μm.
m or less, preferably 1.0 μm or less, and the content ratio of the dispersed particles to the matrix is 1 to 25% by volume,
It is preferably 5 to 20% by volume. Here, the content ratio of the dispersed particles is a ratio of the inner content to the total of MgO and the dispersed particles.

【0014】MgOの平均結晶粒径を0.5〜100μ
mに限定したのは、この範囲が組織制御が可能なためで
ある。また分散粒子の平均粒径を2.0μm以下に限定
したのは、MgOの組織構造を制御し易くするためと、
残留応力が所定限度以上になってもマイクロクラックが
発生しないためである。一方、分散粒子の平均粒径が
2.0μmを越えるとマイクロクラックが発生し易くな
る。更に分散粒子の添加量を1〜25体積%に限定した
は、25体積%を越えると材料組織の制御が困難とな
り、耐スパッタ性や絶縁性にばらつきが生じ、材料の信
頼性がなくなるからである。また分散粒子の添加量が上
記範囲内であれば、マトリックス中に分散粒子が均一に
取込まれるように組織を制御でき、成膜した膜特性も向
上する。
The average crystal grain size of MgO is 0.5 to 100 μm.
The reason why it is limited to m is that the tissue can be controlled in this range. Further, the reason why the average particle size of the dispersed particles is limited to 2.0 μm or less is to facilitate the control of the MgO structure,
This is because microcracks do not occur even when the residual stress exceeds the predetermined limit. On the other hand, if the average particle size of the dispersed particles exceeds 2.0 μm, microcracks are likely to occur. Further, the addition amount of the dispersed particles is limited to 1 to 25% by volume, because if it exceeds 25% by volume, the control of the material structure becomes difficult, the spatter resistance and the insulating property vary, and the reliability of the material is lost. is there. Further, when the amount of the dispersed particles added is within the above range, the structure can be controlled so that the dispersed particles are uniformly taken into the matrix, and the characteristics of the formed film are improved.

【0015】このように構成された本発明のターゲット
の製造方法を説明する。先ず平均粒径が0.1〜5μ
m、好ましくは0.2〜1μmのMgO粉末に平均粒径
が0.2〜2μmのLaB6粉末を1〜20体積%混
ぜ、更にエタノール等を分散媒として湿式混合する。上
記MgO粉末の平均粒径を0.1〜5μmと限定したの
は、焼結し易くするためである。また上記湿式混合は、
撹拌ミル又は湿式ボールミルにより行われる。撹拌ミル
では、直径1〜3mmのZrO2製ボールを用いて0.
5〜1時間湿式混合される。ZrO2製ボールの直径を
1〜3mmと限定したのは、1mm未満では混合が不十
分となることからであり、3mmを越えると不純物が増
える不具合があるからである。また混合時間が最長1時
間と短いのは、1時間を越えると原料の混合のみならず
粉砕の仕事をするため、不純物の発生の原因となり、ま
た1時間もあれば十分に混合できるからである。
A method of manufacturing the target of the present invention having the above structure will be described. First, the average particle size is 0.1-5μ
1 to 20% by volume of LaB 6 powder having an average particle diameter of 0.2 to 2 μm is mixed with MgO powder of m, preferably 0.2 to 1 μm, and further wet mixed using ethanol or the like as a dispersion medium. The reason why the average particle size of the MgO powder is limited to 0.1 to 5 μm is to facilitate sintering. In addition, the wet mixing is
It is performed by a stirring mill or a wet ball mill. In the stirring mill, a ZrO 2 ball having a diameter of 1 to 3 mm was used.
Wet mix for 5 to 1 hour. The reason why the diameter of the ZrO 2 balls is limited to 1 to 3 mm is that mixing is insufficient when the diameter is less than 1 mm, and impurities increase when the diameter exceeds 3 mm. The reason why the mixing time is as short as 1 hour at the longest is that if it exceeds 1 hour, not only the mixing of the raw materials but also the work of crushing is performed, which causes the generation of impurities, and the mixing time of 1 hour is sufficient. .

【0016】湿式ボールミルでは、ZrO2製ボールを
用いる場合には、直径5〜10mmの多数のZrO2
ボールを用いて8〜24時間、好ましくは20〜24時
間湿式混合される。ZrO2製ボールの直径を5〜10
mmと限定したのは、5mm未満では混合が不十分とな
ることからであり、10mmを越えると不純物が増える
不具合があるからである。また混合時間が最長24時間
と長いのは、長時間連続混合しても不純物の発生が少な
いからである。
In the wet ball mill, when ZrO 2 balls are used, a large number of ZrO 2 balls having a diameter of 5 to 10 mm are used and wet mixed for 8 to 24 hours, preferably 20 to 24 hours. The diameter of the ZrO 2 ball is 5-10
The reason why it is limited to mm is that mixing is insufficient if it is less than 5 mm, and there is a problem that impurities increase if it exceeds 10 mm. Further, the reason that the mixing time is as long as 24 hours at the longest is that the generation of impurities is small even after continuous mixing for a long time.

【0017】次いで上記混合物を減圧加熱して乾燥した
後に乾式解砕する。混合物はロータリエバポレータを用
いて4〜12時間減圧加熱して乾燥された後、乾式ボー
ルミルを用いて12〜24時間乾式解砕される。またこ
のボールミル内はLaB6粉末の酸化を防止するために
アルゴンガスで置換されることが好ましい。
Next, the above mixture is heated under reduced pressure to dry and then dry crushed. The mixture is dried under reduced pressure using a rotary evaporator for 4 to 12 hours, and then dry crushed for 12 to 24 hours using a dry ball mill. Further, the inside of this ball mill is preferably replaced with argon gas in order to prevent the oxidation of the LaB 6 powder.

【0018】次に乾式解砕した混合粉末を成形する。混
合粉末の成形方法としては、一軸加圧成形装置及び冷間
静水圧成形装置(CIP(Cold Isostatic Press)成形
装置)の双方を用いることが好ましい。先ず乾式解砕し
た混合粉末を一軸加圧成形装置の型に充填して5〜10
MPaの圧力で一軸加圧成形して仮成形した後、この仮
成形体をCIP成形装置のゴム型に充填して140〜2
00MPaの圧力でCIP成形する。
Next, the dry-crushed mixed powder is molded. As a method for molding the mixed powder, it is preferable to use both a uniaxial pressure molding device and a cold isostatic pressing device (CIP (Cold Isostatic Press) molding device). First, the mixed powder pulverized by dry crushing was filled in a mold of a uniaxial pressure molding device,
After uniaxial pressure molding at a pressure of MPa to perform temporary molding, this temporary molded body is filled in a rubber mold of a CIP molding machine to 140 to 2
CIP molding is performed at a pressure of 00 MPa.

【0019】更に上記成形体を焼結することにより、M
gOを主成分とするターゲットが得られる。焼結方法に
は、一段焼結法と二段焼結法とがある。一段焼結法に
は、成形体を1×10-2〜1×10-4Torr、好まし
くは1×10-3〜1×10-4Torrの真空中で140
0〜1650℃に昇温し、この温度で2〜3時間保持す
ることにより焼結する方法がある。焼結温度を1400
〜1650℃に限定したのは、1400℃未満では緻密
な焼結体が得られず、1650℃を越えると粒成長して
特性が低下するからである。
Further, by sintering the above-mentioned compact, M
A target containing gO as a main component is obtained. The sintering method includes a one-step sintering method and a two-step sintering method. For the one-step sintering method, the molded body is subjected to a vacuum in a vacuum of 1 × 10 −2 to 1 × 10 −4 Torr, preferably 1 × 10 −3 to 1 × 10 −4 Torr.
There is a method of sintering by raising the temperature to 0 to 1650 ° C. and holding at this temperature for 2 to 3 hours. Sintering temperature 1400
The reason why the temperature is limited to ˜1650 ° C. is that a dense sintered body cannot be obtained at a temperature lower than 1400 ° C., and grain growth is caused at a temperature higher than 1650 ° C. to deteriorate the characteristics.

【0020】また一段焼結法には、0.02〜0.5M
Pa、好ましくは0.1〜0.5MPaの圧力の不活性
ガス雰囲気中で1400〜1650℃に昇温し、この温
度で2〜3時間保持することにより焼結する方法があ
る。不活性ガスとしては、アルゴンガス、窒素ガス等を
用いることが好ましく、ガス圧を0.02〜0.5MP
aに限定したのは、0.02MPa未満では炉内をプラ
ス雰囲気にできず、0.5MPaを越えても特性が変ら
ずガス圧を上げる必要がないからである。
Further, in the one-step sintering method, 0.02-0.5M
There is a method of sintering by raising the temperature to 1400 to 1650 ° C. in an inert gas atmosphere having a pressure of Pa, preferably 0.1 to 0.5 MPa, and holding at this temperature for 2 to 3 hours. As the inert gas, it is preferable to use argon gas, nitrogen gas or the like, and the gas pressure is 0.02 to 0.5 MP.
The reason for limiting the value to a is that if the pressure is less than 0.02 MPa, the inside of the furnace cannot be made into a positive atmosphere, and if the pressure exceeds 0.5 MPa, the characteristics do not change and it is not necessary to raise the gas pressure.

【0021】一方、二段焼結法には、真空中又は常圧の
不活性ガス雰囲気中で1300〜1350℃に昇温しこ
の温度で1〜2時間保持して一次焼結を行い、更に真空
中又は常圧の不活性ガス雰囲気中で1450〜1650
℃に昇温しこの温度で2〜3時間保持して二次焼結を行
う方法である。不活性ガスとしては、アルゴンガス、窒
素ガス等を用いることが好ましい。また一次焼結温度を
1300〜1350℃に限定したのは、この温度範囲で
一次焼結することにより、粒径が大きくてもその表面と
内部との焼結むら(組織構造の差)がなくなるからであ
り、二次焼結温度を1450〜1650℃に限定したの
は、1450℃未満では緻密な焼結体が得られず、16
50℃を越えると粒成長して特性が低下するからであ
る。なお、一段焼結、二段焼結のいずれの場合も、成形
体を焼結する前に還元性ガス雰囲気中で700〜900
℃、好ましくは750〜850℃に昇温して還元処理す
ることが好ましい。還元性ガスとしては、水素ガス等を
用いることが好ましく、還元処理するのは分散粒子の酸
化防止のためである。
On the other hand, in the two-stage sintering method, the temperature is raised to 1300 to 1350 ° C. in a vacuum or an inert gas atmosphere at normal pressure, and this temperature is maintained for 1 to 2 hours for primary sintering. 1450 to 1650 in a vacuum or an inert gas atmosphere at normal pressure
This is a method in which the temperature is raised to ° C and the temperature is maintained for 2 to 3 hours to carry out secondary sintering. As the inert gas, it is preferable to use argon gas, nitrogen gas or the like. Further, the primary sintering temperature is limited to 1300 to 1350 ° C. The primary sintering in this temperature range eliminates uneven sintering (difference in structure) between the surface and the inside even if the grain size is large. Therefore, the reason why the secondary sintering temperature is limited to 1450 to 1650 ° C. is that a dense sintered body cannot be obtained below 1450 ° C.
This is because if the temperature exceeds 50 ° C., the grains grow and the characteristics deteriorate. In both cases of single-stage sintering and two-stage sintering, 700 to 900 in a reducing gas atmosphere before sintering the molded body.
It is preferable to raise the temperature to 750 ° C., preferably 750 to 850 ° C., for reduction treatment. Hydrogen gas or the like is preferably used as the reducing gas, and the reducing treatment is performed to prevent the dispersed particles from being oxidized.

【0022】本発明のターゲットの別の製造方法を説明
する。この製造方法では、上記製造方法と同様に乾式解
砕して得られた混合粉末を、不活性ガス雰囲気中プレス
圧が15〜30MPaで、1450〜1650℃、好ま
しくは1500〜1600℃に昇温し、この温度で1〜
2時間保持して焼結(以下、ホットプレス焼結という)
することによりターゲットを作製する。このホットプレ
ス焼結は成形と焼結を同時に行うことができるので、タ
ーゲットを更に緻密にできるとともに製造工数を低減で
きるという利点がある。不活性ガスとしては、アルゴン
ガス、窒素ガス等を用いることが好ましく、このガス圧
は0.02〜0.5MPa、好ましくは0.1〜0.5
MPaに設定される。また混合粉末を15〜30MPa
に加圧するには耐熱性に優れた黒鉛製ダイスを有するプ
レス装置を用いることが好ましい。また混合粉末の加圧
を15〜30MPaに限定したのは、15MPa未満で
は緻密な焼結体が得られず、30MPaを越えるとダイ
スの肉厚が厚くなって小さな焼結体しか得られず実用的
でないからである。更に焼結温度を1450〜1650
℃に限定したのは、1450℃未満では緻密な焼結体が
得られず、1650℃を越えると粒成長により特性が低
下するからである。
Another method of manufacturing the target of the present invention will be described. In this manufacturing method, the mixed powder obtained by dry crushing in the same manner as in the above manufacturing method is heated to 1450 to 1650 ° C., preferably 1500 to 1600 ° C. under a press pressure of 15 to 30 MPa in an inert gas atmosphere. At this temperature
Hold for 2 hours for sintering (hereinafter referred to as hot press sintering)
By doing so, a target is manufactured. Since this hot press sintering can perform molding and sintering at the same time, it has the advantages that the target can be made more precise and the number of manufacturing steps can be reduced. As the inert gas, it is preferable to use argon gas, nitrogen gas or the like, and the gas pressure is 0.02 to 0.5 MPa, preferably 0.1 to 0.5.
It is set to MPa. In addition, the mixed powder is 15 to 30 MPa.
To pressurize, it is preferable to use a pressing device having a graphite die with excellent heat resistance. Further, the pressure of the mixed powder was limited to 15 to 30 MPa because a dense sintered body could not be obtained at less than 15 MPa, and a wall thickness of the die became thicker than 30 MPa to obtain only a small sintered body. Because it is not the target. Furthermore, the sintering temperature is 1450 to 1650.
The reason for limiting the temperature to 1 ° C is that a dense sintered body cannot be obtained at a temperature lower than 1450 ° C, and the characteristics deteriorate due to grain growth at a temperature higher than 1650 ° C.

【0023】[0023]

【実施例】以下に実施例及び比較例を挙げて、本発明を
より具体的に説明するが、本発明はその要旨を越えない
限り、以下の実施例に限定されるものではない。 <実施例1>先ずMgO粉末(赤穂化成社製3N、平均
粒径0.2μm)に、1体積%のLaB6粉末(新日本
金属社製、平均粒径1.4μm)を混ぜ、エタノールを
分散媒として撹拌ミルで1時間湿式混合した。この混合
物をロータリエバポレータを用いて8時間減圧加熱して
乾燥した後、乾式ボールミル内で4時間乾式解砕した。
なお、上記ボールミル内は分散粒子の酸化を防ぐために
アルゴンガスで置換した。次に上記乾式解砕した混合粉
末を黒鉛製ダイス(内径130mm)に充填して混合粉
末に15MPaのプレス圧をかけた状態で焼結炉(富士
電波工業社製)内に収容し、かつこの焼結炉内をガス圧
が0.05MPaのアルゴンガス雰囲気にして1450
℃に昇温し、この温度に1時間保持して焼結した。この
ようにして作製されたターゲットを実施例1とした。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited to the following Examples unless it exceeds the gist. <Example 1> First, 1% by volume of LaB 6 powder (manufactured by Shin Nippon Metal Co., Ltd., average particle size 1.4 μm) was mixed with MgO powder (3N manufactured by Ako Kasei Co., Ltd., average particle size 0.2 μm), and ethanol was added. As a dispersion medium, wet mixing was performed for 1 hour with a stirring mill. The mixture was heated under reduced pressure for 8 hours using a rotary evaporator to dry it, and then dry crushed in a dry ball mill for 4 hours.
The inside of the ball mill was replaced with argon gas to prevent the dispersed particles from being oxidized. Next, the dry crushed mixed powder was filled in a graphite die (inner diameter 130 mm), and the mixed powder was placed in a sintering furnace (manufactured by Fuji Denpa Kogyo Co., Ltd.) with a pressing pressure of 15 MPa applied thereto. The inside of the sintering furnace was set to 1450 with an argon gas atmosphere having a gas pressure of 0.05 MPa.
The temperature was raised to 0 ° C. and the temperature was maintained for 1 hour for sintering. The target manufactured in this manner was referred to as Example 1.

【0024】<実施例2>先ずMgO粉末に、10体積
%のLaB6粉末を混ぜ、エタノールを分散媒として撹
拌ミルで1時間湿式混合した。この混合物を実施例1と
同様にして乾式解砕した。次に上記乾式解砕した混合粉
末を一軸プレス装置の金型(内径160mm)に充填し
て7.35MPaで一軸加圧成形した後、147MPa
でCIP成形して成形体を得た。この成形体を焼結炉
(富士電波工業社製)に入れ、水素雰囲気中800℃で
2時間還元処理した後、アルゴン雰囲気中1350℃で
1時間保持し、更に昇温して1600℃で2時間保持し
て焼結した。このようにして作製されたターゲットを実
施例2とした。
Example 2 First, 10% by volume of LaB 6 powder was mixed with MgO powder and wet-mixed for 1 hour with a stirring mill using ethanol as a dispersion medium. This mixture was dry-crushed in the same manner as in Example 1. Next, the dry crushed mixed powder was filled in a mold (inner diameter 160 mm) of a uniaxial pressing device, uniaxially pressure molded at 7.35 MPa, and then 147 MPa.
CIP molding was carried out to obtain a molded body. This compact was placed in a sintering furnace (manufactured by Fuji Denpa Kogyo Co., Ltd.), subjected to reduction treatment in a hydrogen atmosphere at 800 ° C. for 2 hours, then held in an argon atmosphere at 1350 ° C. for 1 hour, and further heated to 1600 ° C. for 2 hours. Hold for time and sinter. The target produced in this manner was referred to as Example 2.

【0025】<実施例3>MgO粉末に、10体積%の
LaB6粉末を混ぜたことを除いて、上記実施例1と同
様にしてターゲットを作製した。 <実施例4>MgO粉末に、5体積%のLaB6粉末を
混ぜたことを除いて、上記実施例1と同様にしてターゲ
ットを作製した。 <実施例5>上記実施例2と全く同一の条件で作製した
ターゲットを実施例5とした。 <実施例6>MgO粉末に、20体積%のLaB6粉末
を混ぜたことを除いて、上記実施例2と同様にしてター
ゲットを作製した。
Example 3 A target was prepared in the same manner as in Example 1 except that 10% by volume of LaB 6 powder was mixed with MgO powder. Example 4 A target was prepared in the same manner as in Example 1 except that 5% by volume of LaB 6 powder was mixed with MgO powder. <Example 5> A target produced under exactly the same conditions as in Example 2 was referred to as Example 5. To <Example 6> MgO powder, except that mixed with 20 vol% of LaB 6 powder, a target was prepared in the same manner as in Example 2.

【0026】<比較例1>MgO粉末に、LaB6粉末
を全く混ぜないことを除いて、実施例2と同様にして成
形体を作製した後、この成形体を焼結炉に入れ、還元処
理を行わずにアルゴン雰囲気中1600℃で2時間保持
し焼結した。このようにして作製されたターゲットを比
較例1とした。 <比較例2>MgO粉末に、40体積%のLaB6粉末
を混ぜたことを除いて、上記実施例1と同様にしてター
ゲットを作製した。 <比較例3>MgO粉末に、35体積%のLaB6粉末
を混ぜたことを除いて、上記実施例2と同様にしてター
ゲットを作製した。 <比較例4>市販のMgO焼結体のターゲットを比較例
4とした。
Comparative Example 1 A compact was prepared in the same manner as in Example 2 except that the MgB powder was not mixed with LaB 6 powder at all, and the compact was placed in a sintering furnace and subjected to a reduction treatment. Without carrying out, it was held at 1600 ° C. for 2 hours in an argon atmosphere and sintered. The target manufactured in this manner was used as Comparative Example 1. Comparative Example 2 A target was produced in the same manner as in Example 1 except that 40% by volume of LaB 6 powder was mixed with MgO powder. Comparative Example 3 A target was prepared in the same manner as in Example 2 except that 35% by volume of LaB 6 powder was mixed with MgO powder. Comparative Example 4 A target of a commercially available MgO sintered body was set as Comparative Example 4.

【0027】<比較試験と評価> (a) 相対密度及び破壊強度試験 実施例1〜6及び比較例1〜3で得られたターゲットを
それぞれ切り出し、研削・研磨加工して、JIS R1
601に準じた3mm×4mm×40mmの3点曲げ試
験片の大きさとし、相対密度及び破壊強度を測定した。
これらの結果を表1に示す。なお、相対密度はトルエン
中、アルキメデス法で測定し、破壊強度は3点曲げ試験
により測定した。
<Comparison Test and Evaluation> (a) Relative Density and Fracture Strength Test The targets obtained in Examples 1 to 6 and Comparative Examples 1 to 3 were cut out, ground and polished to obtain JIS R1.
The size of a 3 mm × 4 mm × 40 mm 3-point bending test piece according to 601 was used, and the relative density and breaking strength were measured.
The results are shown in Table 1. The relative density was measured by the Archimedes method in toluene, and the breaking strength was measured by a 3-point bending test.

【0028】[0028]

【表1】 [Table 1]

【0029】表1から明らかなように、比較例1〜3の
ターゲットの相対密度が96%台であるのに対し、実施
例1〜6のターゲットの相対密度は99%以上と緻密に
なった。また実施例1〜6のターゲットの曲げ強度は比
較例1〜3の2倍以上の高強度を示した。これは、実施
例1〜6では結晶粒界面に亀裂を発生させない範囲でL
aB6粒子を均一に分散できたので、結晶粒界の欠陥も
少なく強度が改善できたためであり、比較例2及び3で
はLaB6粉末の混合割合の過多により結晶粒界に欠陥
が生じたためであると考えられる。
As is clear from Table 1, the relative densities of the targets of Comparative Examples 1 to 3 are in the order of 96%, whereas the relative densities of the targets of Examples 1 to 6 are 99% or more and are dense. . The bending strength of the targets of Examples 1 to 6 was twice as high as that of Comparative Examples 1 to 3. In Examples 1 to 6, this is L within a range that does not cause a crack at the crystal grain interface.
Now that you uniformly dispersed aB 6 particles, even less strength defects of the grain boundaries and because could be improved, because defects in the grain boundaries is caused by excessive mixing ratio of LaB 6 powder in Comparative Examples 2 and 3 It is believed that there is.

【0030】(b) MgO膜の成膜速度、成膜したMgO
膜の特性試験及びその放電性試験 実施例2、5及び6のターゲットと、比較例3及び4の
ターゲットとを、外径127mmの円板状に加工した
後、銅製バックプレートにボンディングして、スパッタ
法によりガラス基板に成膜して5種類の基板を作製し
た。なお、成膜条件は、ターゲットから基板までの距離
(T/S)を5cm、基板温度を300℃、ガス圧を1
0mTorrにそれぞれ設定し、高周波出力(RF)を
1500Wとした。成膜したMgO膜の膜圧は、He−
Neレーザ(波長6238オングストローム)により、
膜に対し1波長、2入射角(55°、70°)のエリプ
ソ測定を行い、解析ソフトを用いて求め、これらのMg
Oの膜厚を成膜時間で除すことにより、MgO膜の成膜
速度を求めた。同時にMgO膜の屈折率及び吸収係数を
求めた。
(B) MgO film formation rate, formed MgO film
Film characteristic test and its discharge property test The targets of Examples 2, 5 and 6 and the targets of Comparative Examples 3 and 4 were processed into a disk shape having an outer diameter of 127 mm, and then bonded to a copper back plate, Five types of substrates were produced by forming a film on a glass substrate by a sputtering method. The film-forming conditions are as follows: the distance from the target to the substrate (T / S) is 5 cm, the substrate temperature is 300 ° C., and the gas pressure is 1.
Each was set to 0 mTorr and the high frequency output (RF) was set to 1500W. The film pressure of the formed MgO film is He-
With a Ne laser (wavelength 6238 angstrom),
Ellipso measurement of 1 wavelength and 2 incident angles (55 °, 70 °) was performed on the film, and it was determined using analysis software.
The film forming rate of the MgO film was obtained by dividing the film thickness of O by the film forming time. At the same time, the refractive index and absorption coefficient of the MgO film were obtained.

【0031】またMgO膜の放電開始電圧は、上記実施
例2、5及び6のターゲットと、比較例3及び4のター
ゲットを用いて、図2に示すTEG(Test Element Gro
up)基板10をそれぞれ作製して測定した。TEG基板
10は厚さ1mmのガラス基板(コーニング#7059
ガラス製)11上にフォトリソグラフィによりInSn
複合酸化膜からなる下地電極12を100μmの間隔で
厚さ1μm、幅100μmに形成し、これらの下地電極
12を覆うようにSiの反応性DCスパッタリングで厚
さ3μmのガラス層13を形成した後、上記スパッタ法
により同一の成膜条件で厚さ0.7μmのMgO膜14
を成膜して作られた。
The discharge start voltage of the MgO film was measured by using the targets of Examples 2, 5 and 6 and the targets of Comparative Examples 3 and 4 as shown in FIG.
up) Substrate 10 was prepared and measured. The TEG substrate 10 is a glass substrate having a thickness of 1 mm (Corning # 7059
InSn by photolithography on 11)
After forming the base electrode 12 made of a composite oxide film with a thickness of 1 μm and a width of 100 μm at intervals of 100 μm, a glass layer 13 having a thickness of 3 μm was formed by reactive DC sputtering of Si so as to cover these base electrodes 12. The MgO film 14 having a thickness of 0.7 μm formed under the same film forming conditions by the above-described sputtering method.
It was made by forming a film.

【0032】放電開始電圧は上記5種類のTEG基板を
TEG基板毎に図3に示す装置のNe−5%Xeで50
0Torrの真空ベルジャー15内に配置した加熱サン
プル台16に載せ、下地電極12(図2)をパルス電源
17に接続し、TEG基板10を熱電対18で測定しな
がら一定の温度に制御して、電源電圧を上昇して行き、
放電を開始する電圧を測定した。パルス電源17は0〜
300Vの範囲で電圧可変であって、周波数66kHz
でパルス幅10μsecのパルスを発生するようになって
いる。MgO膜の成膜速度、屈折率、吸収係数及び放電
開始電圧を表2に示す。
The discharge start voltage is 50 for each of the above 5 types of TEG substrates with Ne-5% Xe of the device shown in FIG.
The sample is placed on a heating sample table 16 arranged in a vacuum bell jar 15 of 0 Torr, the base electrode 12 (FIG. 2) is connected to a pulse power source 17, and the TEG substrate 10 is controlled at a constant temperature while being measured by a thermocouple 18. Increase the power supply voltage,
The voltage at which discharge started was measured. The pulse power supply 17 is 0
The voltage is variable in the range of 300 V and the frequency is 66 kHz.
The pulse width is 10 μsec. Table 2 shows the film forming rate, the refractive index, the absorption coefficient, and the discharge starting voltage of the MgO film.

【0033】[0033]

【表2】 [Table 2]

【0034】表2から明らかなように、実施例2、5及
び6のターゲットを用いてスパッタ成膜した場合には、
比較例4(市販のMgO焼結体)のターゲットを用いた
場合の9倍以上、比較例3の2.5〜3.5倍の高速で
成膜できた。これは、実施例2、5及び6ではMgOマ
トリックス及び分散粒子がマトリックスの結晶粒界面で
強く結合しているため、高速で成膜してもターゲットが
割れず、異常放電が発生しなかったことによる。また屈
折率は、比較例3及び4では1.68及び1.67であ
ったのに対し、実施例2、5及び6では1.78〜1.
80と若干向上し、吸収係数は比較例3及び4では0.
012及び0.011であったのに対し、実施例2、5
及び6では0.001以下と大幅に向上した。更に実施
例2、5及び6の放電開始電圧は比較例3及び4と比較
して10〜24V低くなった。なお、実施例2、5及び
6のターゲットを用いてMgO膜を成膜した基板をPD
Pに組込んだときの耐スパッタ性は良好で、駆動電圧は
従来より低下した。
As is clear from Table 2, when the targets of Examples 2, 5 and 6 were used to form a film by sputtering,
It was possible to form a film at a speed 9 times or more that of the target of Comparative Example 4 (commercial MgO sintered body) and 2.5 to 3.5 times that of Comparative Example 3. This is because in Examples 2, 5 and 6, the MgO matrix and the dispersed particles were strongly bonded at the crystal grain interface of the matrix, so that the target did not crack even when the film was formed at a high speed, and abnormal discharge did not occur. by. The refractive indexes were 1.68 and 1.67 in Comparative Examples 3 and 4, while 1.78 to 1.
The absorption coefficient was slightly improved to 80 in Comparative Examples 3 and 4.
012 and 0.011 while Examples 2, 5
In Nos. 6 and 6, it was significantly improved to 0.001 or less. Further, the discharge start voltage of Examples 2, 5 and 6 was lower by 10 to 24 V than that of Comparative Examples 3 and 4. The substrate on which the MgO film was formed using the targets of Examples 2, 5 and 6 was used as a PD.
The resistance to spatter when incorporated into P was good, and the drive voltage was lower than before.

【0035】[0035]

【発明の効果】以上述べたように、本発明によれば、平
均結晶粒径が0.5〜100μmの結晶粒子を有するM
gOマトリックス中にLaB6粒子を1〜25体積%分
散してターゲットを形成したので、ターゲットの強度、
破壊靱性値及び耐熱衝撃性を向上できる。また本発明の
ターゲットを用いてスパッタ法で成膜すれば、二相共
存、即ちMgOマトリックスと分散粒子とが固溶体や反
応物を形成しない状態でスパッタ蒸発するので、高速安
定成膜が可能となり、得られた膜は基板に完全に固溶し
かつ膜の配向性は向上する。また本発明のターゲットを
用いてMgO膜を成膜した基板をPDPに組込んだとき
に、放電電圧を低くでき、放電時の耐スパッタ性を向上
でき、かつ放電の応答性を速くでき、更にこのMgO膜
は高い絶縁性を有する。
As described above, according to the present invention, M having crystal grains having an average crystal grain size of 0.5 to 100 μm is used.
The LaB 6 particles were dispersed in the gO matrix in an amount of 1 to 25% by volume to form a target.
The fracture toughness value and thermal shock resistance can be improved. In addition, when a film is formed by a sputtering method using the target of the present invention, two-phase coexistence, that is, since the MgO matrix and the dispersed particles are sputter evaporated without forming a solid solution or a reactant, a high-speed stable film formation becomes possible, The obtained film is completely solid-solved in the substrate and the orientation of the film is improved. Further, when a substrate on which an MgO film is formed using the target of the present invention is incorporated into a PDP, the discharge voltage can be lowered, the spatter resistance during discharge can be improved, and the discharge responsiveness can be increased. This MgO film has high insulation.

【0036】またMgO粉末とLaB6粉末とを湿式混
合し、この混合物を減圧加熱して乾燥した後に乾式解砕
し、乾式解砕した混合粉末を成形し、更にこの成形体を
1300〜1650℃の温度で焼結することによりター
ゲットを製造すれば、分散粒子がMgOマトリックス内
に均一に分散し、結晶粒界面の整合性が良く、かつ結晶
粒界の欠陥が少ない、即ち組織が良く制御されたターゲ
ットが得られる。また成形体を真空中又は不活性ガス雰
囲気中で1400〜1650℃に昇温して焼結したり、
真空中又は常圧の不活性ガス雰囲気中で1300〜13
50℃に昇温して一次焼結し、更に真空中又は常圧の不
活性ガス雰囲気中で1450〜1650℃に昇温して二
次焼結したり、或いは成形体を焼結する前に還元性ガス
雰囲気中で700〜900℃に昇温して還元処理したり
すれば、更に組織が良く制御されたターゲットが得られ
る。
Further, the MgO powder and the LaB 6 powder are wet-mixed, the mixture is heated under reduced pressure and dried, and then dry-crushed to form a dry-crushed mixed powder, and the molded body is further cooled to 1300 to 1650 ° C. When the target is manufactured by sintering at the temperature of, the dispersed particles are uniformly dispersed in the MgO matrix, the matching of the grain boundaries is good, and the defects of the grain boundaries are small, that is, the structure is well controlled. You get the target. In addition, the molded body is heated to 1400 to 1650 ° C. in a vacuum or in an inert gas atmosphere for sintering,
1300 to 13 in an inert gas atmosphere of vacuum or normal pressure
Before raising the temperature to 50 ° C. to perform primary sintering, and further raising the temperature to 1450 to 1650 ° C. in vacuum or in an inert gas atmosphere at normal pressure to perform secondary sintering, or before sintering the compact. If the temperature is raised to 700 to 900 ° C. in a reducing gas atmosphere to carry out the reduction treatment, a target having a well-structured structure can be obtained.

【0037】更にMgO粉末とLaB6粉末とを湿式混
合し、この混合物を減圧加熱して乾燥した後に乾式解砕
し、更に乾式解砕した混合粉末を不活性ガス雰囲気中プ
レス圧が15〜30MPaで1450〜1650℃に昇
温して焼結すれば、ターゲットを更に緻密にできるとと
もに製造工数を低減できる。
Further, the MgO powder and the LaB 6 powder are wet-mixed, the mixture is heated under reduced pressure to dry and then dry crushed, and the dry crushed mixed powder is pressed under an inert gas atmosphere at a pressing pressure of 15 to 30 MPa. If the temperature is raised to 1450 to 1650 ° C. and then sintered, the target can be made more precise and the number of manufacturing steps can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のMgOを主成分とするターゲットの強
化機構を説明する図。
FIG. 1 is a diagram illustrating a strengthening mechanism of a target containing MgO as a main component of the present invention.

【図2】本発明のMgOを主成分とするターゲットを用
いてスパッタ法で成膜したMgO膜を有するTEG基板
の断面図。
FIG. 2 is a cross-sectional view of a TEG substrate having a MgO film formed by a sputtering method using a target containing MgO as a main component of the present invention.

【図3】図2に示すTEG基板の放電開始電圧を測定す
る装置の構成図。
FIG. 3 is a configuration diagram of an apparatus for measuring a discharge start voltage of the TEG substrate shown in FIG.

【符号の説明】[Explanation of symbols]

1 MgOマトリックスの結晶粒子 2 LaB6粒子1 MgO matrix crystal particles 2 LaB 6 particles

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−237636(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 14/58 C04B 35/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-10-237636 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C23C 14/00-14/58 C04B 35 / 04

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平均結晶粒径が0.5〜100μmの結
晶粒子(1)を有するMgOマトリックス中にLaB6粒子
(2)が1〜25体積%分散されたMgOを主成分とする
ターゲット。
1. LaB 6 particles in a MgO matrix having crystal particles (1) having an average crystal grain size of 0.5 to 100 μm.
A target whose main component is MgO in which 1 to 25% by volume of (2) is dispersed.
【請求項2】 MgO粉末とLaB6粉末とを湿式混合
する工程と、 前記混合物を減圧加熱して乾燥した後に乾式解砕する工
程と、 前記乾式解砕した混合粉末を成形する工程と、 前記成形体を1300〜1650℃の温度で焼結する工
程とを含むMgOを主成分とするターゲットの製造方
法。
2. A step of wet mixing MgO powder and LaB 6 powder, a step of heating the mixture under reduced pressure to dry and then dry crushing, a step of molding the dry crushed mixed powder, A method of manufacturing a target containing MgO as a main component, which comprises a step of sintering a compact at a temperature of 1300 to 1650 ° C.
【請求項3】 成形体を真空中又は不活性ガス雰囲気中
で1400〜1650℃に昇温して焼結する請求項2記
載のMgOを主成分とするターゲットの製造方法。
3. The method for producing a target containing MgO as a main component according to claim 2, wherein the compact is heated to 1400 to 1650 ° C. in a vacuum or in an inert gas atmosphere and sintered.
【請求項4】 成形体を真空中又は常圧の不活性ガス雰
囲気中で1300〜1350℃に昇温して一次焼結し、
更に真空中又は常圧の不活性ガス雰囲気中で1450〜
1650℃に昇温して二次焼結する請求項2記載のMg
Oを主成分とするターゲットの製造方法。
4. The molded body is heated to 1300 to 1350 ° C. in vacuum or in an inert gas atmosphere at normal pressure to perform primary sintering,
Further, in vacuum or in an inert gas atmosphere at normal pressure, 1450 to
The Mg according to claim 2, wherein the temperature is raised to 1650 ° C and the secondary sintering is performed.
A method of manufacturing a target containing O as a main component.
【請求項5】 成形体を焼結する前に還元性ガス雰囲気
中で700〜900℃に昇温して還元処理する請求項3
又は4記載のMgOを主成分とするターゲットの製造方
法。
5. The reduction treatment by raising the temperature to 700 to 900 ° C. in a reducing gas atmosphere before sintering the molded body.
Alternatively, the method for producing a target containing MgO as a main component according to 4 above.
【請求項6】 MgO粉末とLaB6粉末とを湿式混合
する工程と、 前記混合物を減圧加熱して乾燥した後に乾式解砕する工
程と、 前記乾式解砕した混合粉末を不活性ガス雰囲気中で14
50〜1650℃に昇温して焼結する工程とを含むMg
Oを主成分とするターゲットの製造方法。
6. A step of wet mixing MgO powder and LaB 6 powder, a step of heating the mixture under reduced pressure to dry and then dry crushing, and a step of dry crushing the mixed powder in an inert gas atmosphere. 14
Mg including a step of raising the temperature to 50 to 1650 ° C. and sintering.
A method of manufacturing a target containing O as a main component.
JP15639397A 1997-06-13 1997-06-13 Target containing MgO as main component and method for producing the same Expired - Lifetime JP3417457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15639397A JP3417457B2 (en) 1997-06-13 1997-06-13 Target containing MgO as main component and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15639397A JP3417457B2 (en) 1997-06-13 1997-06-13 Target containing MgO as main component and method for producing the same

Publications (2)

Publication Number Publication Date
JPH116058A JPH116058A (en) 1999-01-12
JP3417457B2 true JP3417457B2 (en) 2003-06-16

Family

ID=15626766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15639397A Expired - Lifetime JP3417457B2 (en) 1997-06-13 1997-06-13 Target containing MgO as main component and method for producing the same

Country Status (1)

Country Link
JP (1) JP3417457B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9988709B2 (en) 2011-12-27 2018-06-05 Jx Nippon Mining & Metals Corporation Sintered compact magnesium oxide target for sputtering, and method for producing same

Also Published As

Publication number Publication date
JPH116058A (en) 1999-01-12

Similar Documents

Publication Publication Date Title
KR101627491B1 (en) Oxide sinter, process for producing the same, target, and transparent conductive film and transparent conductive substrate both obtained from the target
KR100496115B1 (en) Sputtering target of dielectrics with high strength and a method for manufacturing the same
JPH10306367A (en) Zno-ga2o3 sintered body for sputtering target and its production
JP5205696B2 (en) Gallium oxide based sintered body and method for producing the same
JP3314728B2 (en) Polycrystalline MgO deposited material
TWI402365B (en) Indium tin oxide target, method for manufacturing the same, transparent conductive film of indium tin oxide, and method for manufacturing transparent conductive film of indium tin oxide
JPH11322332A (en) Zno-based sintered product and its production
JP3470633B2 (en) Deposition material containing MgO as a main component and method for producing the same
JP3893793B2 (en) MgO vapor deposition material and method for producing the same
JPH11236219A (en) Zinc oxide-base sintered compact and its production
JPH10291854A (en) Polycrystalline mgo vapor depositing material and its production
JPH10130827A (en) Mgo target and its production
JPH11256320A (en) Zno base sintered compact
JPH05311428A (en) High density ito sintered compact and sputtering target
JP3331584B2 (en) Polycrystalline MgO deposited material
JPH10297955A (en) Material having evaporated magnesium oxide layer and its production
JPH11171539A (en) Zno-base sintered compact and its production
JP3494205B2 (en) Target material containing MgO as a main component and method for producing the same
JP3417457B2 (en) Target containing MgO as main component and method for producing the same
JPH10297962A (en) Zno-ga2o3-based sintered compact for sputtering target and production of the sintered compact
JPH10158826A (en) Mgo target and its production
JP4026194B2 (en) ZnO-Ga2O3-based sintered body for sputtering target and method for producing the same
JPH10237636A (en) Target essentially consisting of mgo and its production
JPH10297964A (en) Production of zno-ga2o3-based sintered compact for sputtering target
KR101512819B1 (en) ZnO BASED SPUTTERING TARGET, METHOD OF FABRICATING THEREOF AND THIN FILM TRANSISTOR HAVING SHIELDING LAYER DEPOSITED BY THE SAME

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

EXPY Cancellation because of completion of term