JPH10158826A - Mgo target and its production - Google Patents

Mgo target and its production

Info

Publication number
JPH10158826A
JPH10158826A JP8324059A JP32405996A JPH10158826A JP H10158826 A JPH10158826 A JP H10158826A JP 8324059 A JP8324059 A JP 8324059A JP 32405996 A JP32405996 A JP 32405996A JP H10158826 A JPH10158826 A JP H10158826A
Authority
JP
Japan
Prior art keywords
mgo
powder
purity
sintering
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8324059A
Other languages
Japanese (ja)
Inventor
Takeyoshi Takenouchi
武義 竹之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP8324059A priority Critical patent/JPH10158826A/en
Publication of JPH10158826A publication Critical patent/JPH10158826A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce an MgO target having a high purity and density and suitable for formation of AC type PDP MgO protective coating by a sputtering method. SOLUTION: This MgO target capable of corresponding to a sputtering coating forming rate of >=600Å/min is composed of a high purity and high density MgO sintered body having >=99.9% purity and >=99.0% relative density. High purity MgO powder is added with 10 to 60wt.% electromelted MgO powder, 1 to 5wt.% MgO fine powder with the average grain size of <=100nm and a binder, and mixing is executed. This mixture is compacted and degreased, is thereafter subjected to primary sintering at 1250 to 1350 deg.C and is next subjected to secondary sintering at >=1500 deg.C. By the blending and two-step sintering, a high purity and high density MgO sintered body can be produced. By the blending of the electromelted MgO powder, MgO coating good in crystallinity can be formed. The MgO coating having good orientation properties, crystalinity and coating characteristics can be formed at a high coating rate by a sputtering method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高純度・高密度M
gOターゲット及びその製造方法に関わり、詳しくは、
AC型PDP(Plasma Display Pan
el)のMgO保護膜のスパッタリング成膜に好適なM
gOターゲット及びその製造方法に関する。
The present invention relates to a high-purity, high-density M
Related to the gO target and its manufacturing method,
AC PDP (Plasma Display Pan)
e) M suitable for sputtering of the MgO protective film
The present invention relates to a gO target and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、液晶(Liquid Cryst
al Disply:LCD)をはじめとして、各種の
平面ディスプレイに関する研究開発と実用化はめざまし
く、その生産量も急増している。
2. Description of the Related Art In recent years, liquid crystals (Liquid Crystal) have been developed.
The research and development and commercialization of various flat displays, including al displays (LCDs), have been remarkable, and their production has been rapidly increasing.

【0003】カラープラズマディスプレイパネル(PD
P)についても、最近になって、その開発と実用化の動
きが活発になってきている。PDPは大型化しやすく、
ハイビジョン用大画面壁掛けテレビの最短距離にあり、
既に対角40インチクラスのPDPの試作が進められて
いる。
A color plasma display panel (PD)
Regarding P), the development and commercialization of P) have recently been active. PDP is easy to increase in size,
It is at the shortest distance of the large screen wall-mounted TV for HDTV,
Prototyping of a 40-inch diagonal PDP is already underway.

【0004】PDPは、電極構造の点で金属電極が誘電
体材料で覆われているAC型と、放電空間に金属電極が
露出しているDC型とに分類される。
[0004] PDPs are classified into an AC type in which a metal electrode is covered with a dielectric material in terms of an electrode structure, and a DC type in which a metal electrode is exposed in a discharge space.

【0005】AC型では、この誘電体層の上に更に保護
層が形成されている。AC型PDP開発の当初は、この
保護層は採用されていなかったために、誘電体層が直接
放電にさらされ、イオン衝撃のスパッタリングにより誘
電体層表面が変質して、放電開始電圧が上昇していた。
この問題を解決するために、高い昇華熱を持つ種々の酸
化物で保護層を形成する試みがなされ、現在のAC型P
DPは、誘電体層上に保護層が形成された構造となって
いる。
In the AC type, a protective layer is further formed on the dielectric layer. At the beginning of the development of the AC type PDP, this protective layer was not used, so that the dielectric layer was directly exposed to discharge, and the surface of the dielectric layer was altered by ion bombardment, resulting in an increase in the firing voltage. Was.
In order to solve this problem, attempts have been made to form a protective layer with various oxides having a high heat of sublimation.
DP has a structure in which a protective layer is formed on a dielectric layer.

【0006】AC型PDPにおいて、保護層は直接ガス
と接しているため、様々な面から、重要な役割を持って
いる。この保護層に求められる特性は、 (a)低い放電電圧 (b)耐スパッタ性 (c)速い放電の応答性 (d)絶縁性 である。この条件を満たすものとして保護層にMgOが
用いられている。MgO保護膜は、誘電体層表面をスパ
ッタリングの衝撃から守り、PDPの長寿命化に重要な
働きをしている。
In an AC type PDP, since the protective layer is in direct contact with the gas, it plays an important role from various aspects. The properties required for this protective layer are (a) low discharge voltage, (b) spatter resistance, (c) fast discharge response, and (d) insulation. MgO is used for the protective layer to satisfy this condition. The MgO protective film protects the surface of the dielectric layer from the impact of sputtering, and plays an important role in extending the life of the PDP.

【0007】現在、AC型PDPにおいて、このMgO
保護膜は電子ビーム蒸着法で成膜されている。保護層と
して最適なMgO膜は(111)面に配向した膜であ
り、(111)面に配向したMgO膜であれば、最も低
維持電圧で駆動できる。また、膜中に存在する(11
1)面の量が増えるほど、二次電子放出比は増大し、駆
動電圧も減少すると言われている。
At present, in an AC type PDP, the MgO
The protective film is formed by an electron beam evaporation method. The optimal MgO film as the protective layer is a film oriented in the (111) plane. If the MgO film is oriented in the (111) plane, it can be driven at the lowest sustain voltage. Also, it exists in the film (11
1) It is said that as the amount of the surface increases, the secondary electron emission ratio increases and the driving voltage also decreases.

【0008】ところで、従来、MgO保護膜の成膜に採
用されている電子ビーム蒸着法は、成膜スピードは速い
が、スプラッシュが発生したり、大面積に対しては均一
性に欠けるという欠点がある。これに対して、スパッタ
法は製造プロセスの面から導入が容易で、MgO保護膜
の成膜に好適である。
[0008] The electron beam evaporation method conventionally used for forming the MgO protective film has a high film forming speed, but has a drawback that splash is generated and the uniformity is lacking for a large area. is there. On the other hand, the sputtering method is easy to introduce from the viewpoint of the manufacturing process, and is suitable for forming the MgO protective film.

【0009】スパッタ法で配向性が良好なAC型PDP
用MgO保護膜を速い成膜速度で成膜するためには、タ
ーゲットとして、少なくとも99.9%のMgO純度と
相対密度99%以上の密度を有する高純度・高密度Mg
O焼結体よりなるMgOターゲットが必要となる。
AC PDP with good orientation by sputtering
In order to form a protective MgO protective film at a high deposition rate, a high-purity and high-density Mg having a purity of at least 99.9% and a relative density of 99% or more is used as a target.
An MgO target made of an O sintered body is required.

【0010】[0010]

【発明が解決しようとする課題】従来の高密度MgO焼
結体は、種々の焼結助剤の添加で緻密化することにより
製造されている。即ち、市販の高純度MgO粉末を焼結
助剤なしで焼結した場合には、相対密度93%程度の焼
結体しか得られない。これに対して、焼結助剤を添加し
て焼結することにより、高密度化が可能となる。
A conventional high-density MgO sintered body is manufactured by adding various sintering aids to densify the sintered body. That is, when a commercially available high-purity MgO powder is sintered without a sintering aid, only a sintered body having a relative density of about 93% can be obtained. On the other hand, by adding a sintering aid and sintering, high density can be achieved.

【0011】しかしながら、焼結助剤を添加して得られ
たMgO焼結体では、MgO純度を高くすることができ
ず、MgO純度98〜99%程度が限度で、微量の不純
物を含有している。
However, in the MgO sintered body obtained by adding the sintering aid, the MgO purity cannot be increased, and the MgO purity is limited to about 98 to 99% and contains a trace amount of impurities. I have.

【0012】このように、従来においては、高純度かつ
高密度のMgO焼結体が提供されておらず、高密度であ
るが純度に劣るMgO焼結体又は高純度であるが密度の
低いMgO焼結体しか得られていない。
As described above, conventionally, a high-purity and high-density MgO sintered body has not been provided, and a high-density but low-purity MgO sintered body or a high-purity but low-density MgO Only a sintered body was obtained.

【0013】高密度であっても純度に劣るMgO焼結体
又は高純度であっても密度の低いMgO焼結体をターゲ
ットとしてスパッタ法で成膜して得られたMgO膜は、
配向性と結晶性に劣り、AC型PDPのMgO保護膜と
しての機能に劣る上に、このようなMgO焼結体では速
い成膜速度で成膜することもできない。
An MgO film obtained by forming a film by a sputtering method using a MgO sintered body having a high density or an inferior purity or a MgO sintered body having a high purity and a low density as a target is:
It is inferior in orientation and crystallinity, inferior in the function of an AC-type PDP as a MgO protective film, and cannot be formed at a high film forming rate with such a MgO sintered body.

【0014】本発明は上記従来の問題点を解決し、スパ
ッタ法によるAC型PDPのMgO保護膜の成膜に好適
な高純度・高密度MgOターゲット及びその製造方法を
提供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a high-purity and high-density MgO target suitable for forming an MgO protective film of an AC type PDP by a sputtering method and a method of manufacturing the same. .

【0015】[0015]

【課題を解決するための手段】本発明のMgOターゲッ
トは、MgO純度99.9%以上、相対密度99.0%
以上のMgO焼結体よりなるMgOターゲットであっ
て、スパッタ成膜速度600Å/min以上に対応可能
なMgOターゲットである。
The MgO target of the present invention has an MgO purity of 99.9% or more and a relative density of 99.0%.
This is an MgO target made of the above-described MgO sintered body, and is an MgO target capable of supporting a sputter deposition rate of 600 ° / min or more.

【0016】本発明のMgOターゲットの製造方法は、
請求項1に記載のMgOターゲットを製造する方法であ
って、高純度MgO粉末に、電融MgO粉末10〜60
重量%と、平均粒径100nm以下のMgO微粉末1〜
5重量%とバインダーを添加、混合して成形し、得られ
た成形体を脱脂した後、1250〜1350℃、好まし
くは1250〜1300℃で一次焼結し、次いで150
0℃以上で二次焼結することを特徴とする。
The method of manufacturing the MgO target according to the present invention comprises:
The method for producing an MgO target according to claim 1, wherein the high-purity MgO powder is added to the electro-fused MgO powder 10 to 60.
Wt%, and MgO fine powder 1 having an average particle size of 100 nm or less.
5% by weight and a binder are added, mixed and molded. After the obtained molded body is degreased, it is subjected to primary sintering at 1250 to 1350 ° C, preferably 1250 to 1300 ° C, and then to 150 ° C.
It is characterized by secondary sintering at 0 ° C. or higher.

【0017】本発明では、高純度MgO粉末に、電融M
gO粉末10〜60重量%と微細なMgO微粉末を少量
添加し、昇温・降温速度を遅くした二段焼結を行うこと
により、焼結助剤を用いることなく、高純度・高密度
で、スパッタ法により結晶性の良好なMgO膜を形成可
能なMgO焼結体を製造する。
In the present invention, high purity MgO powder is added to
By adding a small amount of fine MgO fine powder of 10 to 60% by weight of gO powder and performing the two-stage sintering at a low temperature raising / lowering rate, high purity and high density can be obtained without using a sintering aid. Then, an MgO sintered body capable of forming an MgO film having good crystallinity by a sputtering method is manufactured.

【0018】即ち、微細なMgO微粉末は易焼結性であ
り、焼結助剤を用いることなく緻密化が可能である。こ
の微細なMgO微粉末を少量添加した原料粉末の焼結は
1200℃から始まり、1350℃で焼結はかなり進行
する。従って、この温度で一次焼結することにより、大
型品であっても表面と内部の焼結むら(組織構造の差)
のないMgO焼結体が得られる。更に、1500℃以上
の温度で本焼結することにより、焼結助剤を用いない、
従って、高純度で不純物を殆ど含有しないMgO焼結体
であって、ほぼ理論密度の高密度MgO焼結体が得られ
る。
That is, the fine MgO fine powder is easily sinterable and can be densified without using a sintering aid. The sintering of the raw material powder to which a small amount of the fine MgO fine powder is added starts from 1200 ° C., and proceeds considerably at 1350 ° C. Therefore, by performing primary sintering at this temperature, uneven sintering between the surface and the inside (difference in microstructure) even in a large product
A MgO sintered body free from slag is obtained. Furthermore, by sintering at a temperature of 1500 ° C. or more, no sintering aid is used,
Therefore, it is possible to obtain a high-density sintered MgO sintered body having a high theoretical purity and containing almost no impurities.

【0019】また、電融MgOは、結晶性が高く、この
点において単結晶に類似している。このような電融Mg
Oを原料に用いて製造したMgO焼結体であれば、スパ
ッタにより、結晶性の良いMgO膜を形成することがで
きる。
Electrofused MgO has high crystallinity and is similar to a single crystal in this point. Such fused Mg
If the MgO sintered body is manufactured using O as a raw material, an MgO film having good crystallinity can be formed by sputtering.

【0020】なお、本発明で得られたMgO焼結体に
は、僅かな気孔がMgOの粒界ではなく、粒内に存在す
る。このような微構造を有する、高純度・高密度のMg
Oターゲットを用いてスパッタ法でMgO膜を成膜した
場合、市販のターゲットの6倍の600Å/min以上
の成膜速度で成膜することが可能であり、得られるMg
O膜の膜特性も極めて良好である。
In the MgO sintered body obtained according to the present invention, small pores are present not in the MgO grain boundaries but in the grains. High-purity, high-density Mg having such a microstructure
When an MgO film is formed by a sputtering method using an O target, the film can be formed at a film formation rate of 600 ° / min or more, which is six times that of a commercially available target.
The film characteristics of the O film are also very good.

【0021】[0021]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。
Embodiments of the present invention will be described below in detail.

【0022】本発明のMgOターゲットを構成するMg
O焼結体は、MgO純度99.9%以上の高純度MgO
焼結体であるが、より配向性及び結晶性に優れたMgO
膜を形成するために、不純物であるSi,Fe,Cr,
V,Ca,Al,Mn,Ni,Na,Kの含有量は合計
で700ppm以下であることが好ましい。
Mg constituting the MgO target of the present invention
The O sintered body is made of high-purity MgO having an MgO purity of 99.9% or more.
MgO which is a sintered body but has better orientation and crystallinity
In order to form a film, impurities such as Si, Fe, Cr,
The contents of V, Ca, Al, Mn, Ni, Na, and K are preferably 700 ppm or less in total.

【0023】また、本発明のMgOターゲットを構成す
るMgO焼結体は、相対密度99.0%以上の高密度で
あるため、スパッタ法による成膜速度を速くでき、60
0Å/min以上の高速成膜が可能である。
Further, since the MgO sintered body constituting the MgO target of the present invention has a high density of 99.0% or more in relative density, the deposition rate by the sputtering method can be increased, and
High-speed film formation of 0 ° / min or more is possible.

【0024】次に、このような本発明のMgOターゲッ
トを製造する本発明のMgOターゲットの製造方法の好
適例について説明する。
Next, a preferred example of the method for producing the MgO target of the present invention for producing the MgO target of the present invention will be described.

【0025】まず、平均粒径0.1μm以上、好ましく
は0.2〜2μmで、純度99.9%以上、好ましくは
99.99%以上の高純度MgO粉末に、電融MgO粉
末10〜60重量%と平均粒径100nm以下のMgO
微粉末1〜5重量%と、バインダーを所定割合で混合
し、エタノール等の分散媒を用いて濃度70%以上、好
ましくは70〜75%のスラリーを調製し、常法に従っ
てスプレードライヤで造粒する。そして、得られた造粒
粉を金型で加圧成形し、脱脂した後、大気中、真空中、
又は不活性雰囲気中1250〜1350℃で一次焼結
し、更に1500℃以上、好ましくは1550〜160
0℃の温度で二次焼結する。なお、電融MgO粉末もま
た、高純度MgO粉末と同様、平均粒径0.1μm以
上、好ましくは0.2〜2μmのものを用いる。
First, a high-purity MgO powder having an average particle diameter of 0.1 μm or more, preferably 0.2 to 2 μm and a purity of 99.9% or more, preferably 99.99% or more, and an electro-fused MgO powder of 10 to 60% MgO with weight% and average particle size of 100 nm or less
A binder is mixed at a predetermined ratio with 1 to 5% by weight of fine powder and a binder, and a slurry having a concentration of 70% or more, preferably 70 to 75% is prepared using a dispersion medium such as ethanol, and granulated by a spray dryer according to a conventional method. I do. Then, the obtained granulated powder is press-molded in a mold, degreased, and then in the air, in a vacuum,
Alternatively, primary sintering is performed at 1250 to 1350 ° C. in an inert atmosphere, and 1500 ° C. or higher, preferably 1550 to 160 ° C.
Secondary sintering at a temperature of 0 ° C. The electrofused MgO powder also has an average particle size of 0.1 μm or more, preferably 0.2 to 2 μm, like the high-purity MgO powder.

【0026】本発明において、出発原料として高純度M
gO粉末に平均粒径100nm以下のMgO微粉末を添
加して用いるのは、焼結性の向上と微構造の制御のため
であり、その添加量を高純度MgO粉末に対して5重量
%以下とするのは、5重量%を超えると高濃度スラリー
の調製が難しく、得られる成形体の密度も低く、焼結し
ても理論密度近くまで緻密化しないためである。MgO
微粉末の添加量が高純度MgO粉末に対して1重量%未
満であると、MgO微粉末を添加することによる上記効
果を十分に得ることはできない。なお、このMgO微粉
末も高純度であることが重要であり、MgO純度99.
9%以上であることが好ましい。
In the present invention, high purity M
The reason why the MgO fine powder having an average particle size of 100 nm or less is added to the gO powder and used is to improve the sinterability and control the microstructure. The reason for this is that if it exceeds 5% by weight, it is difficult to prepare a high-concentration slurry, the density of the obtained compact is low, and even if it is sintered, it does not become close to the theoretical density. MgO
If the added amount of the fine powder is less than 1% by weight with respect to the high-purity MgO powder, the above-mentioned effect by adding the MgO fine powder cannot be sufficiently obtained. It is important that the MgO fine powder also has high purity.
It is preferably at least 9%.

【0027】また、電融MgO粉末を添加するのは、電
融MgOは結晶性が進んでいる点で単結晶に類似してお
り、電融MgO粉末の配合により、結晶性の良好なMg
O膜をスパッタ成膜できるようになるからである。しか
し、電融MgO粉末は焼結性が低く、添加量を多くする
と、緻密な焼結体が得られない。また、電融MgO粉末
はアーク放電を利用して製造するために、気孔が多く、
吸着不純物を含んでいる点において、好ましいターゲッ
ト材料ではない。しかし、電融MgO焼結体をターゲッ
トに用いてスパッタ成膜すると、成膜速度は遅いが、上
述の如く、結晶性の良いMgO膜を形成することができ
る。MgOの焼結性と得られるMgO膜の膜特性及び成
膜速度との兼ね合いから、電融MgO粉末の添加量は1
0〜60重量%とする。
The reason for adding the electro-fused MgO powder is that electro-fused MgO is similar to a single crystal in that the crystallinity is advanced.
This is because the O film can be formed by sputtering. However, the electrofused MgO powder has low sinterability, and if the addition amount is increased, a dense sintered body cannot be obtained. In addition, since the fused MgO powder is manufactured using arc discharge, it has many pores,
It is not a preferred target material in that it contains adsorbed impurities. However, when a sputtered film is formed by using an electrofused MgO sintered body as a target, an MgO film having good crystallinity can be formed as described above, although the film forming speed is low. Due to the balance between the sinterability of MgO, the film characteristics of the obtained MgO film, and the film formation rate, the amount of the electrofused MgO powder should be 1
0 to 60% by weight.

【0028】この電融MgO粉末及び高純度MgO粉末
の平均粒径が0.1μm未満であると、粉末のハンドリ
ングが悪く、高濃度(70%以上)スラリーの調製が困
難であり、良好な造粒粉が製造できず、結果として、高
密度の成形体及び焼結体が得られない。特に、大型品を
製造する場合には、密度の問題の他に反りが大きくな
り、後加工に時間がかかる。また、電融MgO粉末及び
高純度MgO粉末の平均粒径が2μmを超えると、微構
造の制御が難しく、緻密な焼結体が得られない。
If the average particle size of the electro-fused MgO powder and the high-purity MgO powder is less than 0.1 μm, the handling of the powder is poor, and it is difficult to prepare a high-concentration (70% or more) slurry. Granular powder cannot be produced, and as a result, a high-density compact and sintered body cannot be obtained. Particularly, in the case of manufacturing a large product, in addition to the problem of the density, the warpage increases, and the post-processing takes time. If the average particle size of the electrofused MgO powder and the high-purity MgO powder exceeds 2 μm, it is difficult to control the microstructure, and a dense sintered body cannot be obtained.

【0029】なお、用いるバインダーは非水系用バイン
ダーであり、その添加量は、高純度MgO粉末、電融M
gO粉末及びMgO微粉末の合計に対して0.5〜3重
量%とするのが好ましい。
The binder to be used is a non-aqueous binder.
The content is preferably 0.5 to 3% by weight based on the total of the gO powder and the MgO fine powder.

【0030】本発明では、一次焼結及び二次焼結の二段
階焼結を行って焼結時の昇温・降温速度を遅くすること
で、焼結むらを防止して焼結体の微構造を制御し、AC
型PDP用MgO保護膜のスパッタ成膜に適したMgO
焼結体を得る。この焼結に当り、一次焼結の温度が12
50℃未満では焼結が進行せず、1350℃を超えると
二段階焼結による微構造の制御が困難となる。また、二
次焼結の温度が1500℃未満では、常圧焼結で十分に
緻密化することができない。この二次焼結の温度が15
00℃以上であれば、HIP法やホットプレス法などの
特殊な焼結を行うことなく、大型品であっても、通常の
常圧焼結で高密度焼結体を得ることができる。
In the present invention, the two-stage sintering of the primary sintering and the secondary sintering is performed to reduce the rate of temperature rise / fall during sintering, thereby preventing unevenness in sintering and reducing the fineness of the sintered body. Control the structure, AC
Suitable for sputter deposition of MgO protective film for type PDP
Obtain a sintered body. In this sintering, the primary sintering temperature was 12
If it is lower than 50 ° C., sintering does not proceed. If it exceeds 1350 ° C., it is difficult to control the microstructure by two-stage sintering. If the secondary sintering temperature is lower than 1500 ° C., it is not possible to sufficiently densify by normal pressure sintering. The temperature of this secondary sintering is 15
When the temperature is 00 ° C. or higher, a high-density sintered body can be obtained by ordinary normal pressure sintering even for a large product without performing special sintering such as a HIP method or a hot press method.

【0031】本発明においては、微構造の制御の点か
ら、一次焼結及び二次焼結における1000℃以上での
昇温速度は50℃/hr以下、特に40〜20℃/hr
とし、降温速度は100℃/hr以下、特に70〜40
℃/hrとするのが好ましい。
In the present invention, from the viewpoint of controlling the microstructure, the rate of temperature rise at 1000 ° C. or more in the primary sintering and the secondary sintering is 50 ° C./hr or less, particularly 40 to 20 ° C./hr.
And the temperature decreasing rate is 100 ° C./hr or less, especially 70 to 40
C / hr is preferred.

【0032】なお、本発明において、MgO粉末からの
原料調製は、前記のようにスプレードライ造粒でなく、
仮焼粉によるものでも構わない。また、焼結体の元にな
る成形方法にも特に制限はなく、従来公知の方法、例え
ば、一軸加圧成形、ラバープレス成形、鋳込成形などの
方法を採用することができる。
In the present invention, the raw material preparation from the MgO powder is not performed by spray dry granulation as described above,
The calcined powder may be used. The method of forming the sintered body is not particularly limited, and a conventionally known method, for example, a method such as uniaxial pressure forming, rubber press forming, or casting may be employed.

【0033】[0033]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明するが、本発明はその要旨を超えない限
り、以下の実施例に限定されるものではない。
The present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples unless it exceeds the gist.

【0034】実施例1〜5 高純度MgO粉末(岩谷化学社製「MJ−30」、平均
粒径0.3μm,MgO純度99.9%)に対して、電
融MgO粉末(三菱マテリアル(株)製「FMR−P
C」325メッシュパス品を撹拌ミルで平均粒径1μm
に粉砕したもの)及びMgO微粉末(宇部化学工業社製
「1000A」、平均粒径0.1μm,MgO純度9
9.99%)を表1記載の配合割合で添加し、更にバイ
ンダー(三洋化成社製「PEG−200」)を高純度M
gO粉末、電融MgO粉末及びMgO微粉末の合計に対
して2重量%添加し、これにエタノールを分散媒として
加え、撹拌ミルで2時間湿式混合し、濃度70%のスラ
リーを調製し、スプレードライ造粒した。この造粒粉末
を金型(内径60mm、あるいは155mmで厚さ8m
m)に充填し、75kg/cm2 で一軸加圧成形した
後、1500kg/cm2でCIP成形した。得られた
成形体を電気炉(広築社製)に入れ、大気中、1300
℃で1時間一次焼結し、次いで、1600℃で2時間二
次焼結した。なお、1000〜1600℃の昇温は30
℃/hr、1600℃からの降温は50℃/hrで行っ
た。
Examples 1 to 5 A high-purity MgO powder ("MJ-30" manufactured by Iwatani Chemical Co., Ltd., average particle size 0.3 μm, MgO purity 99.9%) was fused to a fused MgO powder (Mitsubishi Materials Corporation). "FMR-P"
C ”325 mesh pass product with stirring mill, average particle size 1μm
Pulverized) and MgO fine powder (“1000A” manufactured by Ube Chemical Industry Co., Ltd., average particle diameter 0.1 μm, MgO purity 9)
9.99%) at the compounding ratio shown in Table 1, and a binder (“PEG-200” manufactured by Sanyo Kasei Co., Ltd.)
gO powder, electrofused MgO powder and MgO fine powder were added in an amount of 2% by weight, ethanol was added as a dispersion medium, and the mixture was wet-mixed with a stirring mill for 2 hours to prepare a slurry having a concentration of 70%. Dry granulated. This granulated powder is placed in a mold (inner diameter 60 mm or 155 mm and thickness 8 m).
filled into m), it was uniaxially pressed at 75 kg / cm 2, and CIP molding at 1500 kg / cm 2. The obtained molded body was placed in an electric furnace (manufactured by Hirokisha Co., Ltd.) and
Primary sintering at 1600 ° C. for 1 hour, and then secondary sintering at 1600 ° C. for 2 hours. The temperature rise from 1000 to 1600 ° C. is 30
The temperature was lowered from 1600 ° C./° C. at 50 ° C./hr.

【0035】内径60mmの金型成形で得られた直径5
0mmの焼結体は、切り出し、研削・研磨加工して、J
IS R1601に準じた3×4×40mmの3点曲げ
試験片の大さとし、密度及び破壊強度を調べ、その結果
を表1に示した。なお、密度はトルエン中、アルキメデ
ス法で測定した。破壊強度は3点曲げ試験により測定し
た。
A diameter 5 obtained by molding a mold having an inner diameter of 60 mm
0mm sintered body is cut out, ground and polished,
The size of a 3 × 4 × 40 mm three-point bending test piece according to IS R1601 was measured, and the density and the breaking strength were examined. The results are shown in Table 1. The density was measured by the Archimedes method in toluene. The breaking strength was measured by a three-point bending test.

【0036】また、実施例4で得られたMgO焼結体に
ついて不純物の分析を行い、結果を表2に示した。
The MgO sintered body obtained in Example 4 was analyzed for impurities, and the results are shown in Table 2.

【0037】更に、実施例1,4では、内径155mm
の金型成形で得られた直径5インチのMgO焼結体を銅
製バックプレートにボンディングした後、スパッタ試験
を行った。成膜条件はT/S5cm、基板温度300
℃、ガス圧は反跳Ar効果を少なくするために10mm
Torrと設定し、RF1500Wでスパッタした。成
膜した膜厚はHe−Neレーザ(6328A)のエリプ
ソにより測定した。また、同時に屈折率と吸収係数を求
め、結果を表3に示した。
Further, in Examples 1 and 4, the inner diameter is 155 mm.
Was bonded to a copper back plate, and a sputter test was performed. The deposition conditions were T / S 5 cm, substrate temperature 300.
℃, gas pressure is 10mm to reduce the recoil Ar effect
Torr was set and RF1500W was sputtered. The thickness of the formed film was measured by an ellipsometer using a He-Ne laser (6328A). The refractive index and the absorption coefficient were determined at the same time, and the results are shown in Table 3.

【0038】比較例1〜3 電融MgO粉末及びMgO微粉末の添加量を表1に示す
割合とし(比較例3では電融MgO粉末添加せず、Mg
O微粉末のみ添加)、焼結を1650℃で3時間の一段
焼結としたこと以外は実施例1と同様にしてMgO焼結
体を製造し、同様に相対密度及び曲げ強度を調べ、結果
を表1に示した。
Comparative Examples 1 to 3 The amounts of the electrofused MgO powder and the MgO fine powder were set to the ratios shown in Table 1.
O powder was added only), and an MgO sintered body was manufactured in the same manner as in Example 1 except that the sintering was performed in one-step at 3650 ° C. for 3 hours, and the relative density and flexural strength were examined in the same manner. Are shown in Table 1.

【0039】また、比較例1については、実施例4と同
様にして不純物の分析を行い、結果を表2に示した。
For Comparative Example 1, impurities were analyzed in the same manner as in Example 4, and the results are shown in Table 2.

【0040】更に、比較例1については、実施例1と同
様にしてスパッタ試験を行い、結果を表3に示した。
Further, for Comparative Example 1, a sputtering test was conducted in the same manner as in Example 1, and the results are shown in Table 3.

【0041】比較例4,5 比較例3において、MgO微粉末の添加量を表1に示す
割合とし、高純度MgO粉末として平均粒径5μmのも
のを用いたこと以外は同様にしてMgO焼結体を製造
し、同様に相対密度及び曲げ強度を調べ、結果を表1に
示した。
Comparative Examples 4 and 5 In Comparative Example 3, MgO sintering was carried out in the same manner as in Comparative Example 3, except that the amount of the MgO fine powder was set to the ratio shown in Table 1 and high-purity MgO powder having an average particle size of 5 μm was used. The body was manufactured, and the relative density and the bending strength were similarly examined. The results are shown in Table 1.

【0042】また、比較例4については、実施例1と同
様にしてスパッタ試験を行い、結果を表3に示した。
For Comparative Example 4, a sputtering test was performed in the same manner as in Example 1, and the results are shown in Table 3.

【0043】比較例6,7 実施例2において、電融MgO粉末の添加量を表1に示
す割合としたこと以外は同様にしてMgO焼結体を製造
し、同様に相対密度及び曲げ強度を調べ、結果を表1に
示した。
Comparative Examples 6 and 7 An MgO sintered body was produced in the same manner as in Example 2 except that the amount of the electrofused MgO powder was changed to the ratio shown in Table 1, and the relative density and bending strength were similarly measured. Investigation and the results are shown in Table 1.

【0044】比較例8 実施例2において、焼結を1650℃で3時間の一段焼
結としたこと以外は同様にしてMgO焼結体を製造し、
同様に相対密度及び曲げ強度を調べ、結果を表1に示し
た。
Comparative Example 8 An MgO sintered body was manufactured in the same manner as in Example 2 except that the sintering was performed in one-step at 1650 ° C. for 3 hours.
Similarly, the relative density and bending strength were examined, and the results are shown in Table 1.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 [Table 3]

【0048】表1〜3より明らかなように、本発明のM
gOターゲットは、純度99.99%で相対密度99.
0%以上の緻密な焼結体であり、曲げ強度も300〜4
00MPaの高強度を示す。また、スパッタ法による成
膜速度は、比較例のMgO焼結体の約6倍以上の高速で
あり、得られたMgO膜は(111)面に配向し、膜特
性も良好であった。これに対し、比較例1,4では、
(111)面の回析ピーク強度は低く、結晶性は良くな
かった。
As is clear from Tables 1 to 3, the M
The gO target has a purity of 99.99% and a relative density of 99.99%.
It is a dense sintered body of 0% or more and has a bending strength of 300 to 4
It shows a high strength of 00 MPa. The film formation rate by the sputtering method was about six times or more higher than that of the MgO sintered body of the comparative example. The obtained MgO film was oriented to the (111) plane, and the film characteristics were good. In contrast, in Comparative Examples 1 and 4,
The diffraction peak intensity of the (111) plane was low, and the crystallinity was not good.

【0049】[0049]

【発明の効果】以上詳述した通り、本発明の高純度・高
密度MgO焼結体よりなるMgOターゲットによれば、
AC型PDPのMgO保護膜として良好な配向性、結晶
性及び膜特性を有するMgO膜を、スパッタ法により高
い成膜速度で成膜できる。
As described above in detail, according to the MgO target made of the high-purity and high-density MgO sintered body of the present invention,
An MgO film having good orientation, crystallinity, and film characteristics as an MgO protective film of an AC PDP can be formed at a high film formation rate by a sputtering method.

【0050】本発明のMgOターゲットの製造方法によ
れば、このような高純度・高密度MgO焼結体よりなる
大型なMgOターゲットを常圧焼結にて安価に製造する
ことができる。
According to the method of manufacturing an MgO target of the present invention, a large-sized MgO target made of such a high-purity and high-density MgO sintered body can be manufactured at low pressure by normal-pressure sintering.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 MgO純度99.9%以上、相対密度9
9.0%以上のMgO焼結体よりなるMgOターゲット
であって、 スパッタ成膜速度600Å/min以上に対応可能なM
gOターゲット。
1. An MgO purity of 99.9% or more and a relative density of 9
An MgO target composed of a MgO sintered body of 9.0% or more, and capable of supporting a sputtering film forming rate of 600 ° / min or more.
gO target.
【請求項2】 請求項1に記載のMgOターゲットを製
造する方法であって、高純度MgO粉末に、電融MgO
粉末10〜60重量%と、平均粒径100nm以下のM
gO微粉末1〜5重量%とバインダーを添加、混合して
成形し、得られた成形体を脱脂した後、1250〜13
50℃で一次焼結し、次いで1500℃以上で二次焼結
することを特徴とするMgOターゲットの製造方法。
2. The method for producing an MgO target according to claim 1, wherein the high-purity MgO powder is added to a fused MgO powder.
10 to 60% by weight of powder and M having an average particle size of 100 nm or less
1-5% by weight of gO fine powder and a binder are added, mixed and molded, and the obtained molded body is degreased.
A method for producing an MgO target, comprising performing primary sintering at 50 ° C. and then secondary sintering at 1500 ° C. or higher.
JP8324059A 1996-12-04 1996-12-04 Mgo target and its production Pending JPH10158826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8324059A JPH10158826A (en) 1996-12-04 1996-12-04 Mgo target and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8324059A JPH10158826A (en) 1996-12-04 1996-12-04 Mgo target and its production

Publications (1)

Publication Number Publication Date
JPH10158826A true JPH10158826A (en) 1998-06-16

Family

ID=18161703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8324059A Pending JPH10158826A (en) 1996-12-04 1996-12-04 Mgo target and its production

Country Status (1)

Country Link
JP (1) JPH10158826A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379783B1 (en) * 1997-02-13 2002-04-30 Lg Electronics Inc. Protection layer of plasma display panel and method of forming the same
JP2005005086A (en) * 2003-06-11 2005-01-06 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
SG145671A1 (en) * 2007-03-01 2008-09-29 Heraeus Inc High density ceramic and cermet sputtering targets by microwave sintering
JP2009173502A (en) * 2008-01-28 2009-08-06 Nippon Tungsten Co Ltd POLYCRYSTAL MgO SINTERED COMPACT, METHOD FOR PRODUCING THE SAME, AND MgO TARGET FOR SPUTTERING
WO2010029702A1 (en) * 2008-09-09 2010-03-18 キヤノンアネルバ株式会社 Method for manufacturing magnetoresistive element, and storage medium used in the manufacturing method
WO2013065564A1 (en) * 2011-11-04 2013-05-10 株式会社フェローテックセラミックス Sputtering target and method for producing same
US9988709B2 (en) 2011-12-27 2018-06-05 Jx Nippon Mining & Metals Corporation Sintered compact magnesium oxide target for sputtering, and method for producing same
WO2020054104A1 (en) * 2018-09-13 2020-03-19 Jx金属株式会社 Mgo sintered body sputtering target

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379783B1 (en) * 1997-02-13 2002-04-30 Lg Electronics Inc. Protection layer of plasma display panel and method of forming the same
JP2005005086A (en) * 2003-06-11 2005-01-06 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
SG145671A1 (en) * 2007-03-01 2008-09-29 Heraeus Inc High density ceramic and cermet sputtering targets by microwave sintering
KR101537733B1 (en) * 2008-01-28 2015-07-17 니혼텅스텐 가부시키가이샤 Polycrystalline MgO sintered compact, process for producing the polycrystalline MgO sintered compact, and MgO target for sputtering
JP2009173502A (en) * 2008-01-28 2009-08-06 Nippon Tungsten Co Ltd POLYCRYSTAL MgO SINTERED COMPACT, METHOD FOR PRODUCING THE SAME, AND MgO TARGET FOR SPUTTERING
WO2009096384A1 (en) * 2008-01-28 2009-08-06 Nippon Tungsten Co., Ltd. POLYCRYSTALLINE MgO SINTERED COMPACT, PROCESS FOR PRODUCING THE POLYCRYSTALLINE MgO SINTERED COMPACT, AND MgO TARGET FOR SPUTTERING
US20100294657A1 (en) * 2008-01-28 2010-11-25 Nippon Tungsten Co., Ltd. POLYCRYSTALLINE MgO SINTERED BODY, PRODUCTION METHOD THEREFOR, AND MgO SPUTTERING TARGET
DE112009000280T5 (en) 2008-01-28 2011-02-24 Nippon Tungsten Co., Ltd. Polycrystalline MgO sintered body, process for its preparation and MgO sputtering target
DE112009000280B4 (en) * 2008-01-28 2017-05-04 Nippon Tungsten Co., Ltd. Polycrystalline MgO sintered body and MgO sputtering target
US8454933B2 (en) * 2008-01-28 2013-06-04 Nippon Tungsten Co., Ltd. Polycrystalline magnesium oxide (MgO) sintered body and MgO sputtering target
TWI464133B (en) * 2008-01-28 2014-12-11 日本鎢合金股份有限公司 Polycrystalline MgO sintered body and its manufacturing method and MgO target for sputtering
WO2010029702A1 (en) * 2008-09-09 2010-03-18 キヤノンアネルバ株式会社 Method for manufacturing magnetoresistive element, and storage medium used in the manufacturing method
CN103917687A (en) * 2011-11-04 2014-07-09 飞罗得陶瓷股份有限公司 Sputtering target and method for producing same
JPWO2013065564A1 (en) * 2011-11-04 2015-04-27 株式会社フェローテックセラミックス Sputtering target and manufacturing method thereof
WO2013065564A1 (en) * 2011-11-04 2013-05-10 株式会社フェローテックセラミックス Sputtering target and method for producing same
US9824868B2 (en) 2011-11-04 2017-11-21 Ferrotec Ceramics Corporation Sputtering target and method for producing the same
US9988709B2 (en) 2011-12-27 2018-06-05 Jx Nippon Mining & Metals Corporation Sintered compact magnesium oxide target for sputtering, and method for producing same
US10066290B1 (en) 2011-12-27 2018-09-04 Jx Nippon Mining & Metals Corporation Sintered compact magnesium oxide target for sputtering, and method for producing same
WO2020054104A1 (en) * 2018-09-13 2020-03-19 Jx金属株式会社 Mgo sintered body sputtering target
KR20200032097A (en) * 2018-09-13 2020-03-25 제이엑스금속주식회사 MgO sintered sputtering target
CN111465712A (en) * 2018-09-13 2020-07-28 捷客斯金属株式会社 MgO sintered body sputtering target
JPWO2020054104A1 (en) * 2018-09-13 2020-10-22 Jx金属株式会社 MgO sintered body sputtering target
US11345990B2 (en) 2018-09-13 2022-05-31 Jx Nippon Mining & Metals Corporation MgO sintered sputtering target

Similar Documents

Publication Publication Date Title
JPH10306367A (en) Zno-ga2o3 sintered body for sputtering target and its production
JP3314728B2 (en) Polycrystalline MgO deposited material
JPH10130827A (en) Mgo target and its production
JP3470633B2 (en) Deposition material containing MgO as a main component and method for producing the same
JP4733890B2 (en) Method for forming a film containing SiO2 as a main component
JP2000290062A (en) MgO VAPOR-DEPOSITED MATERIAL AND ITS PRODUCTION
JPH062130A (en) Zinc oxide-based target for sputtering
KR20050106475A (en) Sputtering target and process for producing the same
JP2000169956A (en) Magnesium oxide target for sputtering and its production
JPH10291854A (en) Polycrystalline mgo vapor depositing material and its production
JPH10158826A (en) Mgo target and its production
JP3331584B2 (en) Polycrystalline MgO deposited material
JPH10297955A (en) Material having evaporated magnesium oxide layer and its production
JP4575035B2 (en) Single crystal magnesium oxide sintered body, method for producing the same, and protective film for plasma display panel
KR20070041440A (en) Single-ctystal magnesium oxide sinter, process for produsing the same, and protective film for plasma display panel
JP2007290875A (en) Titanium oxide-based sintered compact and its manufacturing method
JP3494205B2 (en) Target material containing MgO as a main component and method for producing the same
JP2004043955A (en) MgO VAPOR DEPOSITION MATERIAL AND ITS MANUFACTURING PROCESS, MANUFACTURING PROCESS OF MgO DEPOSITION FILM
JPH1129355A (en) Polycrystalline magnesium oxide vacuum-deposition material and its production
JP4823475B2 (en) Vapor deposition material, MgO vapor deposition material, manufacturing method thereof, and film formation method
JPH10130828A (en) Mgo target and its production
JP4955916B2 (en) Single crystal magnesium oxide sintered body, method for producing the same, and protective film for plasma display panel
JPH10237636A (en) Target essentially consisting of mgo and its production
JP3417457B2 (en) Target containing MgO as main component and method for producing the same
JP2003002749A (en) Indium oxide powder and method for manufacturing ito sputtering target