JPH1129355A - Polycrystalline magnesium oxide vacuum-deposition material and its production - Google Patents

Polycrystalline magnesium oxide vacuum-deposition material and its production

Info

Publication number
JPH1129355A
JPH1129355A JP9186127A JP18612797A JPH1129355A JP H1129355 A JPH1129355 A JP H1129355A JP 9186127 A JP9186127 A JP 9186127A JP 18612797 A JP18612797 A JP 18612797A JP H1129355 A JPH1129355 A JP H1129355A
Authority
JP
Japan
Prior art keywords
mgo
ppm
polycrystalline
impurities
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9186127A
Other languages
Japanese (ja)
Inventor
Takeyoshi Takenouchi
武義 竹之内
Hiroshi Sasaki
博 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP9186127A priority Critical patent/JPH1129355A/en
Priority to KR1019970074442A priority patent/KR19980079548A/en
Publication of JPH1129355A publication Critical patent/JPH1129355A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5029Magnesia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00577Coating or impregnation materials applied by spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glanulating (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a polycrystalline MgO vacuum-deposition material capable of forming a MgO film having an approximately uniform thickness substantially without generating a splash, even when subjected to a vacuum-deposition treatment by an electron beam method. SOLUTION: This polycrystalline MgO vacuum-deposition material comprises sintered pellets 11 having a MgO purity of >=99.5% and a relative density of >=96% and formed in a spherical shape. The crystal particle diameters of the pellets are 1-500 μm. Si and Al impurities are contained it the pellets 11 in element concentrations of <=200 ppm and <=200 ppm, respectively. Ca, Zn and Fe impurities are also contained in element concentrations of <=250 ppm, <=150 ppm and <=50 ppm, respectively. Cr, V and Ni impurities are also contained in element concentrations of <=10 ppm, <=10 ppm and <=10 ppm, respectively. Na, K and C impurities are more also contained in element concentrations of <=20 ppm, <=20 ppm and <=70 ppm, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、AC型のプラズマ
ディスプレイパネルのMgO膜の成膜に適した多結晶M
gO蒸着材とその製造方法に関するものである。
The present invention relates to a polycrystalline M suitable for forming an MgO film of an AC type plasma display panel.
The present invention relates to a gO vapor deposition material and a method for producing the same.

【0002】[0002]

【従来の技術】近年、液晶(Liquid Crystal Display :
LCD)をはじめとして、各種の平面ディスプレイの
研究開発と実用化はめざましく、その生産も急増してい
る。カラープラズマディスプレイパネル(PDP)につ
いても、その開発と実用化の動きが最近活発になってい
る。PDPは大型化し易く、ハイビジョン用の大画面壁
掛けテレビの最短距離にあり、既に対角40インチクラ
スのPDPの試作が進められている。PDPは、電極構
造の点で金属電極がガラス誘電体材料で覆われるAC型
と、放電空間に金属電極が露出しているDC型とに分類
される。
2. Description of the Related Art In recent years, liquid crystal (Liquid Crystal Display):
Research and development and commercialization of various flat displays, including LCDs, are remarkable, and their production is increasing rapidly. Recently, color plasma display panels (PDPs) have been actively developed and put into practical use. PDPs are easy to increase in size, are at the shortest distance from large screen wall-mounted televisions for high-definition televisions, and prototypes of 40-inch diagonal PDPs have already been developed. PDPs are classified into an AC type in which a metal electrode is covered with a glass dielectric material in terms of an electrode structure, and a DC type in which a metal electrode is exposed in a discharge space.

【0003】このAC型PDPの開発の当初は、ガラス
誘電体層が放電空間に露出していたため、直接放電にさ
らされ、イオン衝撃のスパッタリングにより誘電体層の
表面が変化して放電開始電圧が上昇していた。そのた
め、高い昇華熱を持つ種々の酸化物をこの誘電体層の保
護膜とする試みがなされた。この保護膜は直接放電用の
ガスと接しているために重要な役割を担っている。即
ち、保護膜に求められる特性は、低い放電電圧、放
電時の耐スパッタリング性、速い放電の応答性、及び
絶縁性である。これらの条件を満たす材料として、M
gOが保護膜に用いられる。このMgOからなる保護膜
は、誘電体層の表面を放電時のスパッタリングから守
り、PDPの長寿命化に重要な働きをしている。
At the beginning of the development of the AC type PDP, since the glass dielectric layer was exposed to the discharge space, the glass dielectric layer was directly exposed to the discharge, and the surface of the dielectric layer was changed by ion bombardment, and the discharge starting voltage was lowered. Was rising. For this reason, attempts have been made to use various oxides having high sublimation heat as protective films for the dielectric layer. This protective film plays an important role because it is in direct contact with the discharge gas. That is, the characteristics required for the protective film are a low discharge voltage, resistance to sputtering during discharge, fast discharge responsiveness, and insulation. Materials satisfying these conditions include M
gO is used for the protective film. This protective film made of MgO protects the surface of the dielectric layer from sputtering at the time of discharge, and plays an important role in extending the life of the PDP.

【0004】現在、AC型PDPの上記保護膜として、
単結晶MgOの破砕品を蒸着材とする電子ビーム蒸着法
により成膜されたMgO膜が知られている。この電子ビ
ーム蒸着法によるMgO膜は1000オングストローム
/分以上の高速で成膜することができる。また成膜され
たMgO膜の結晶方位は(111)面に配向した膜が最
も低い維持電圧で駆動でき、更に膜中に存在する(11
1)面の量が増えるほど、二次電子の放出比は増大し、
駆動電圧も減少すると言われている。なお上記単結晶M
gOの破砕品は純度が98%以上のMgOクリンカや軽
焼MgO(1000℃以下で焼結されたMgO)を電弧
炉(アーク炉)で溶融することにより、即ち電融により
インゴットとした後、このインゴットから単結晶部を取
出して破砕することにより製造される。
At present, as the above protective film of AC type PDP,
An MgO film formed by an electron beam evaporation method using a crushed single crystal MgO as an evaporation material is known. The MgO film formed by the electron beam evaporation method can be formed at a high speed of 1000 Å / min or more. The crystal orientation of the formed MgO film is such that a film oriented in the (111) plane can be driven at the lowest sustaining voltage, and furthermore, exists in the film (11
1) As the amount of surface increases, the emission ratio of secondary electrons increases,
It is said that the driving voltage also decreases. The single crystal M
The crushed product of gO is obtained by melting MgO clinker having a purity of 98% or more or lightly burned MgO (MgO sintered at 1000 ° C. or less) in an electric arc furnace (arc furnace), that is, into an ingot by electromelting. It is manufactured by taking out a single crystal part from this ingot and crushing it.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来の単
結晶MgOの破砕品は直方体であるため、この破砕品を
蒸着材として用いた電子ビーム蒸着時に蒸着材のエッジ
に局所的に高エネルギが与えられると、蒸着材の飛散
(スプラッシュ)が発生し、蒸着効率が低下する不具合
があった。このスプラッシュの発生の防止には蒸着材の
大型化が有効であると考えられているが、単結晶MgO
の破砕品は脆弱であるため粉化しやすく、この破砕品を
現行の粒径1〜5mmより大きな一定のサイズに均一に
揃えることが困難であった。また上記従来の単結晶Mg
Oの破砕品を蒸着材として用いた電子ビーム蒸着時に大
面積のガラス誘電体層に対してMgO膜を均一に成膜す
ることが難しく、膜厚が均一にならない問題があった。
この結果、MgO膜を成膜したガラス誘電体層をPDP
に組込んだ場合に、電気的特性、例えば放電開始電圧や
駆動電圧が高くなったり或いは変化したりする問題点が
あった。
However, since the above-mentioned conventional crushed single crystal MgO is a rectangular parallelepiped, high energy is locally applied to the edge of the deposition material during electron beam evaporation using the crushed product as a deposition material. When given, the vapor deposition material is scattered (splash), and the vapor deposition efficiency is reduced. In order to prevent the generation of the splash, it is considered effective to increase the size of the vapor deposition material.
Since the crushed product is fragile, it is easy to be pulverized, and it has been difficult to uniformly prepare the crushed product into a certain size larger than the current particle size of 1 to 5 mm. In addition, the conventional single crystal Mg
It has been difficult to uniformly form an MgO film on a large-area glass dielectric layer during electron beam evaporation using a crushed O product as a deposition material, and there has been a problem that the film thickness is not uniform.
As a result, the glass dielectric layer on which the MgO film was formed
In this case, there is a problem that electric characteristics, for example, a discharge starting voltage and a driving voltage are increased or changed.

【0006】一方、MgOクリンカや軽焼MgOは、海
水から得られるMgCl2を原料としていることが多
く、このMgCl2には比較的多くのCa,Si,Fe
等の不純物が含まれるため、これらの不純物が単結晶M
gO中に残留する。また単結晶MgOの製造過程におけ
るインゴットでは、このインゴットの中心から表面部に
向って連続的に不純物量が増加しており、このため単結
晶部の取出し方によって製品の純度が極めて容易に変動
してしまい、単結晶MgOの純度の安定性や信頼性を欠
く問題点があった。
On the other hand, MgO clinker and lightly burned MgO often use MgCl 2 obtained from seawater as a raw material, and this MgCl 2 contains a relatively large amount of Ca, Si, Fe.
And the like, these impurities are contained in the single crystal M
Remains in gO. Further, in the ingot in the production process of the single crystal MgO, the amount of impurities continuously increases from the center of the ingot toward the surface portion. Therefore, the purity of the product varies very easily depending on how the single crystal portion is taken out. As a result, there is a problem that the stability and reliability of the purity of the single crystal MgO are lacking.

【0007】これらの点を解消するために単結晶MgO
に代えて多結晶MgOを用いる方法も考えられる。しか
し種々の焼結助剤の添加により緻密化した高密度の多結
晶MgOでは、組織的に結晶粒界に欠陥が存在する問題
点があり、また純度を高くすると、密度が低くくなる問
題点があった。この結果、これらの多結晶MgO蒸着材
を用いて電子ビーム蒸着法にてガラス誘電体層にMgO
膜を成膜すると、結晶方位の(111)面への配向量が
減少し、このガラス誘電体層をPDPに組込んだときの
電気的特性が低下するため、多結晶MgOを蒸着材とし
て使用できなかった。
In order to solve these problems, a single crystal MgO
Alternatively, a method using polycrystalline MgO may be considered. However, high-density polycrystalline MgO densified by the addition of various sintering aids has a problem that defects are systematically present at crystal grain boundaries, and a problem that the density is lowered when the purity is increased. was there. As a result, MgO was added to the glass dielectric layer by electron beam evaporation using these polycrystalline MgO evaporation materials.
When a film is formed, the amount of orientation of the crystal orientation to the (111) plane is reduced, and the electrical characteristics when this glass dielectric layer is incorporated into a PDP are reduced. Therefore, polycrystalline MgO is used as a vapor deposition material. could not.

【0008】本発明の目的は、電子ビーム蒸着法にて蒸
着しても、スプラッシュを発生させずに高速でかつ均一
に成膜できる多結晶MgO蒸着材とその製造方法を提供
することにある。本発明の別の目的は、成膜されたMg
O膜の膜特性を向上できる多結晶MgO蒸着材とその製
造方法を提供することにある。本発明の更に別の目的
は、焼結体ペレットが粉化せず、また設備コストが安価
で量産に適した多結晶MgO蒸着材とその製造方法を提
供することにある。
An object of the present invention is to provide a polycrystalline MgO vapor deposition material capable of forming a film at high speed and uniformly without generating a splash even when vapor deposition is performed by an electron beam vapor deposition method, and a method for producing the same. Another object of the present invention is to form a deposited Mg
An object of the present invention is to provide a polycrystalline MgO vapor deposition material capable of improving the film characteristics of an O film and a method for producing the same. Still another object of the present invention is to provide a polycrystalline MgO vapor-deposited material that does not powder sintered compacts, has low equipment costs, and is suitable for mass production, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、MgO純度が99.5%以上かつ相
対密度が96%以上の多結晶MgOの焼結体ペレット1
1からなり、ペレット11が球状に形成された多結晶M
gO蒸着材である。この請求項1に記載された多結晶M
gO蒸着材では、高純度かつ高密度の多結晶MgOの焼
結体ペレット11を用いてAC型PDP等のMgO膜を
成膜すると、スプラッシュが極めて少なく高速で安定し
た成膜ができる。また焼結体ペレット11を球状に形成
したので、ペレット11の欠けや割れが発生しない。こ
の結果、ペレット11が粉化しないので、スプラッシュ
の発生は更に少なくなる。従って、膜厚分布を向上でき
るので、略均一な膜質を有するMgO膜を得ることがで
きる。
The invention according to claim 1 is
As shown in FIG. 1, a sintered compact pellet 1 of polycrystalline MgO having an MgO purity of 99.5% or more and a relative density of 96% or more.
1 and a polycrystalline M in which the pellet 11 is formed in a spherical shape.
gO vapor deposition material. The polycrystalline M according to claim 1
In the case of a gO vapor deposition material, when a MgO film such as an AC-type PDP is formed using a high-purity and high-density polycrystalline MgO sintered pellet 11, a stable film can be formed at a high speed with little splash. Further, since the sintered pellet 11 is formed in a spherical shape, chipping or cracking of the pellet 11 does not occur. As a result, since the pellets 11 are not powdered, the occurrence of splash is further reduced. Therefore, the film thickness distribution can be improved, and an MgO film having substantially uniform film quality can be obtained.

【0010】請求項2に係る発明は、請求項1に係る発
明であって、更に多結晶MgOの焼結体ペレットの結晶
粒径が1〜500μmであることを特徴とする。この請
求項2に記載された多結晶MgO蒸着材では、上記範囲
内の大小さまざまな粒径の結晶がモザイク状に焼結して
焼結体ペレットが形成されるため、ペレットの強度及び
密度が高くなり、隣接する結晶粒の粒界が密着して粒界
における気孔の発生を低減できる。この結果、成膜され
たMgO膜は優れた膜特性を有する。
A second aspect of the present invention is the invention according to the first aspect, further characterized in that the crystal grain size of the sintered compact pellet of polycrystalline MgO is 1 to 500 μm. In the polycrystalline MgO vapor-deposited material according to the second aspect, since crystals having various particle sizes within the above range are sintered in a mosaic shape to form a sintered body pellet, the strength and density of the pellet are reduced. As a result, the grain boundaries of adjacent crystal grains are brought into close contact with each other, so that generation of pores at the grain boundaries can be reduced. As a result, the formed MgO film has excellent film properties.

【0011】請求項3に係る発明は、請求項1又は2に
係る発明であって、更に多結晶MgOの焼結体ペレット
に含まれる、Si及びAlの不純物がそれぞれ元素濃度
で200ppm以下であり、Caの不純物が元素濃度で
250ppm以下であり、Zrの不純物が元素濃度で1
50ppm以下であり、Feの不純物が元素濃度で50
ppm以下であり、Cr,V及びNiの不純物がそれぞ
れ元素濃度で10ppm以下であり、Na及びKの不純
物がそれぞれ元素濃度で20ppm以下であり、Cの不
純物が元素濃度で70ppm以下であることを特徴とす
る。この請求項3に記載された多結晶MgO蒸着材で
は、成膜されたMgO膜に含まれる不純物が極めて少な
くなるので、このMgO膜の膜特性は向上する。
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the impurities of Si and Al contained in the sintered compact of polycrystalline MgO each have an element concentration of 200 ppm or less. , Ca impurities have an element concentration of 250 ppm or less, and Zr impurities have an element concentration of 1 ppm or less.
50 ppm or less, and the impurities of Fe
ppm or less, the impurities of Cr, V and Ni are respectively 10 ppm or less in element concentration, the impurities of Na and K are each 20 ppm or less in element concentration, and the impurity of C is 70 ppm or less in element concentration. Features. In the polycrystalline MgO vapor deposition material according to the third aspect, the impurities contained in the formed MgO film are extremely small, so that the film characteristics of the MgO film are improved.

【0012】請求項4に係る発明は、図1及び図2に示
すように、純度が99.5%以上で平均粒径が0.1〜
3μmのMgO粉末を転動造粒機13の回転皿13bに
入れた後にバインダを含む有機溶媒を噴霧することによ
りMgO粉末を造粒して球状の成形体14を成形する工
程と、回転皿13bに更にMgO粉末を入れかつバイン
ダを含む有機溶媒を噴霧する作業を繰返して球状の成形
体14を所定の大きさに成長させる工程と、成長した成
形体14を所定の温度で焼結する工程とを含む多結晶M
gO蒸着材の製造方法である。この請求項4に記載され
た多結晶MgO蒸着材の製造方法では、請求項1に記載
されたMgO純度が99.5%以上かつ相対密度が96
%以上の多結晶MgOの焼結体ペレット11からなる多
結晶MgO蒸着材を得ることができる。
According to the present invention, as shown in FIGS. 1 and 2, the purity is 99.5% or more and the average particle size is 0.1 to 0.1%.
A step of putting the 3 μm MgO powder into the rotating plate 13b of the tumbling granulator 13 and then granulating the MgO powder by spraying an organic solvent containing a binder to form a spherical compact 14; A step of repeatedly adding MgO powder and spraying an organic solvent containing a binder to grow a spherical molded body 14 to a predetermined size; and a step of sintering the grown molded body 14 at a predetermined temperature. Polycrystalline M containing
This is a method for producing a gO vapor deposition material. In the method for producing a polycrystalline MgO vapor deposition material according to claim 4, the MgO purity described in claim 1 is 99.5% or more and the relative density is 96.
% Or more of the polycrystalline MgO sintered body pellets 11 can be obtained.

【0013】請求項5に係る発明は、純度が99.5%
以上で平均粒径が0.1〜3μmのMgO粉末とバイン
ダとを混練して解砕する工程と、解砕したバインダを含
むMgO粉末を転動造粒機の回転皿に入れた後に有機溶
媒を噴霧することによりMgO粉末を造粒して球状の成
形体を成形する工程と、回転皿に更にバインダを含むM
gO粉末を入れかつ有機溶媒を噴霧する作業を繰返すこ
とにより球状の成形体を所定の大きさに成長させる工程
と、成長した成形体を所定の温度で焼結する工程とを含
む多結晶MgO蒸着材の製造方法である。この請求項5
に記載された多結晶MgO蒸着材の製造方法でも、請求
項4に記載された製造方法と同様に、MgO純度が9
9.5%以上かつ相対密度が96%以上の多結晶MgO
の焼結体ペレットからなる多結晶MgO蒸着材を得るこ
とができる。また球状の成形体を1250〜1350℃
の温度で一次焼結した後、昇温して1500〜1650
℃の温度で二次焼結することが好ましい。
The invention according to claim 5 has a purity of 99.5%.
A step of kneading and crushing the MgO powder having an average particle diameter of 0.1 to 3 μm and a binder, and putting the MgO powder containing the crushed binder into a rotary dish of a tumbling granulator, followed by an organic solvent. To form a spherical molded body by granulating MgO powder by spraying
Polycrystalline MgO deposition including a step of growing a spherical molded body to a predetermined size by repeating an operation of adding gO powder and spraying an organic solvent, and a step of sintering the grown molded body at a predetermined temperature. It is a method of manufacturing a material. Claim 5
In the method for producing a polycrystalline MgO vapor-deposited material according to the present invention, the MgO purity is 9
9.5% or more and polycrystalline MgO having a relative density of 96% or more
Of polycrystalline MgO can be obtained. In addition, the spherical molded body is 1250-1350 ° C.
After primary sintering at a temperature of 1500 to 1650
It is preferable to perform secondary sintering at a temperature of ° C.

【0014】[0014]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1に示すように、本発明の多結晶
MgO蒸着材はMgO純度が99.5%以上、更に好ま
しくは99.9%以上、かつ相対密度が96%以上、更
に好ましくは97.5%以上の多結晶MgOの焼結体ペ
レット11からなる。またこの焼結体ペレット11は球
状に形成される。このペレット11の直径は1〜10m
m、好ましくは3〜6mmの範囲内に形成される。ペレ
ット11の直径を上記範囲に限定したのは、成形性が良
好で、取扱いに便利だからである。また焼結体ペレット
11の結晶粒径は1〜500μmの範囲内にあることが
好ましい。ペレット11の結晶粒径を1〜500μmと
限定したのは、この範囲内の大小さまざまな粒径の結晶
がモザイク状に焼結するため、強度が高くなり、隣接す
る結晶粒の粒界が密着して粒界における気孔の発生を低
減できるからである。
Embodiments of the present invention will now be described with reference to the drawings. As shown in FIG. 1, the polycrystalline MgO vapor deposition material of the present invention has a MgO purity of 99.5% or more, more preferably 99.9% or more, and a relative density of 96% or more, more preferably 97.5% or more. Of sintered compact pellets 11 of polycrystalline MgO. The sintered body pellet 11 is formed in a spherical shape. The diameter of the pellet 11 is 1 to 10 m
m, preferably in the range of 3 to 6 mm. The reason why the diameter of the pellet 11 is limited to the above range is that the moldability is good and the handling is convenient. Further, the crystal grain size of the sintered pellet 11 is preferably in the range of 1 to 500 μm. The crystal grain size of the pellets 11 is limited to 1 to 500 μm because crystals of various sizes within this range are sintered in a mosaic shape, so that the strength is increased and the grain boundaries of adjacent crystal grains are closely adhered. This is because the generation of pores at the grain boundaries can be reduced.

【0015】多結晶MgOの焼結体ペレット11に含ま
れる不純物(Si,Al,Ca,Zr,Fe,Cr,
V,Ni,Na,K及びC)の含有量は合計で850p
pm以下であることが好ましい。また上記不純物の個別
的な含有量は、Si及びAlの不純物がそれぞれ元素濃
度で200ppm以下であり、Caの不純物が元素濃度
で250ppm以下であり、Zrの不純物が元素濃度で
150ppm以下であり、Feの不純物が元素濃度で5
0ppm以下であり、Cr,V及びNiの不純物がそれ
ぞれ元素濃度で10ppm以下であり、Na及びKの不
純物がそれぞれ元素濃度で20ppm以下であり、Cの
不純物が元素濃度で70ppm以下であることが好まし
い。上記各不純物が元素濃度で上記値を超えると、Mg
O蒸着材を電子ビーム蒸着法で成膜したガラス基板をパ
ネルに組込んだときに、膜質にばらつきが生じるため
に、電気的特性、例えば駆動電圧が高くなったり或いは
不安定になったりする不具合がある。
The impurities (Si, Al, Ca, Zr, Fe, Cr,
V, Ni, Na, K and C) content is 850p in total
pm or less. The individual contents of the impurities are as follows: the impurities of Si and Al are each 200 ppm or less in elemental concentration, the impurities of Ca are 250 ppm or less in elemental concentration, and the impurities of Zr are 150 ppm or less in elemental concentration. Fe impurity is 5 in elemental concentration
0 ppm or less, impurities of Cr, V and Ni are each 10 ppm or less in element concentration, impurities of Na and K are each 20 ppm or less in element concentration, and impurities of C are 70 ppm or less in element concentration. preferable. If each of the above impurities exceeds the above value in the element concentration, Mg
When a glass substrate on which an O vapor deposition material is formed by an electron beam vapor deposition method is incorporated into a panel, the film quality varies, so that electrical characteristics, for example, a driving voltage becomes high or becomes unstable. There is.

【0016】このように構成された多結晶MgO蒸着材
の製造方法を図1及び図2に基づいて説明する。先ず回
転皿型転動造粒機13の回転皿13bを図2の実線矢印
で示す方向に回転している状態で、純度が99.5%以
上で平均粒径が0.1〜3μmのMgO粉末を回転皿1
3bに入れた後に、MgO粉末が回転皿13bの傾斜し
た底上を均一に流れる、即ちMgO粉末が転がりなら上
下に動くことを見ながら、スプレー器13fでバインダ
を含む有機溶媒を噴霧する。これによりMgO粉末が核
粒子となって回転皿13b内で上下動しながら、核粒子
同士が互いに結合し締まり合って生(なま)密度の高い
球状の成形体14が形成される。
A method of manufacturing the polycrystalline MgO vapor deposition material having the above-described structure will be described with reference to FIGS. First, MgO having a purity of 99.5% or more and an average particle size of 0.1 to 3 μm is obtained in a state where the rotating plate 13b of the rotating plate-type tumbling granulator 13 is rotated in the direction shown by the solid arrow in FIG. Powder on rotating dish 1
After being put in 3b, the organic solvent including the binder is sprayed with the sprayer 13f while watching that the MgO powder flows uniformly on the inclined bottom of the rotating plate 13b, that is, moves up and down if the MgO powder rolls. As a result, while the MgO powder becomes core particles and moves up and down in the rotating plate 13b, the core particles are combined with each other and tightened to form a spherical molded body 14 having a high raw density.

【0017】ここで、MgO粉末の平均粒径を0.1〜
3μmと限定したのは、0.1μm未満では、粉末が細
かすぎて凝集するため、粉末のハンドリングが悪くな
り、3μmを越えると、微細構造の制御が難しく、緻密
な焼結体ペレット11が得られないからである。またM
gO粉末の平均粒径を上記範囲に限定すると、焼結助剤
を用いなくても所望の焼結体ペレット11が得られる利
点もある。またバインダとしてはポリエチレングリコー
ルやポリビニールブチラール等を、有機溶媒としてはエ
タノールやプロパノール等を用いることが好ましい。バ
インダは0.2〜2重量%添加すれば十分である。
Here, the average particle size of the MgO powder is 0.1 to
The reason why the diameter is limited to 3 μm is that if the diameter is less than 0.1 μm, the powder is too fine and agglomerates, so that the handling of the powder is deteriorated. It is not possible. Also M
When the average particle size of the gO powder is limited to the above range, there is an advantage that a desired sintered body pellet 11 can be obtained without using a sintering aid. It is preferable to use polyethylene glycol or polyvinyl butyral as a binder and to use ethanol or propanol as an organic solvent. It is sufficient to add 0.2 to 2% by weight of the binder.

【0018】この実施の形態の回転皿型転動造粒機13
は図2に詳しく示すように、支持台13aに傾斜角度を
変更可能にかつ回転可能に取付けられた回転軸(図示せ
ず)と、この回転軸の先端に固着され傾斜した平底を有
する回転皿13bと、この回転皿13bの周縁に形成さ
れた成形体用出口13cに連なる成形体用シュータ13
dとを備える。またMgO粉末は原料用シュータ13e
から回転皿13bに供給され、バインダを含む有機溶剤
はスプレー器13fの複数のノズル13gから噴霧され
るように構成される。複数のノズル13gは図示しない
管路に接続される。また図2の符号13hは回転皿13
bの内周面に付着した造粒粉末を掻き落とすサイドスク
レーパである。
The rotary dish-type rolling granulator 13 of this embodiment
As shown in detail in FIG. 2, a rotating shaft (not shown) is attached to the support base 13a so as to be capable of changing the inclination angle and rotatable, and a rotating plate having an inclined flat bottom fixed to the tip of the rotating shaft. 13b and a molded-body shooter 13 connected to a molded-body outlet 13c formed on the periphery of the rotating plate 13b.
d. The MgO powder is used as a raw material shooter 13e.
Is supplied to the rotating plate 13b, and the organic solvent containing the binder is configured to be sprayed from the plurality of nozzles 13g of the sprayer 13f. The plurality of nozzles 13g are connected to a pipe (not shown). Reference numeral 13h in FIG.
b is a side scraper for scraping off the granulated powder adhered to the inner peripheral surface of b.

【0019】次に原料用シュータ13eから上記回転皿
13bに更にMgO粉末を入れかつ複数のノズル13g
からバインダを含む有機溶媒を噴霧する。これにより上
記球状の成形体14が成長するので、この作業を繰返す
ことにより十分に密度の高くなった真球に近い所定の粒
径(所定の直径)の成形体14を得ることができる。所
定の大きさになった成形体14は成形体用シュータ13
dから転がって排出される。この成形体14はメカニカ
ルプレス(金型プレス法)のような圧力による成形では
ないため、金型と強く摩擦・圧縮されることがなく、成
形体14に不純物が含まれることはない。また金型プレ
ス法では、プレス成形の前処理としてスプレードライヤ
が必要であるが、本発明のように回転皿型転動造粒機1
3を用いると、スプレードライヤが不要になるので、設
備コストが安価で量産に適する。
Next, MgO powder is further charged from the raw material shooter 13e into the rotating plate 13b and a plurality of nozzles 13g are provided.
Is sprayed with an organic solvent containing a binder. As a result, the spherical compact 14 grows. By repeating this operation, a compact 14 having a sufficiently high density and a predetermined particle size (predetermined diameter) close to a true sphere can be obtained. The molded body 14 having a predetermined size is used as the molded body shooter 13.
Rolled and discharged from d. Since the molded body 14 is not molded by pressure as in a mechanical press (die pressing method), the molded body 14 is not strongly rubbed or compressed with a mold, and the molded body 14 does not contain impurities. In the die pressing method, a spray dryer is required as a pretreatment for press molding.
The use of No. 3 eliminates the need for a spray dryer, so the equipment cost is low and suitable for mass production.

【0020】更に上記球状の成形体13を所定の温度で
焼結する。焼結する前に成形体13を350〜620℃
の温度で脱脂処理することが好ましい。この脱脂処理は
成形体13の焼結後の色むらを防止するために行われ、
時間をかけて十分に行うことが好ましい。焼結は125
0〜1350℃の温度で1〜5時間行う一次焼結と、こ
の後に更に昇温して1500〜1650℃の温度で1〜
10時間行う二次焼結とからなる二段焼結により行われ
る。
Further, the spherical molded body 13 is sintered at a predetermined temperature. Before sintering, the compact 13 is heated to 350 to 620 ° C.
It is preferable to perform a degreasing treatment at a temperature of This degreasing treatment is performed to prevent color unevenness after sintering of the molded body 13,
It is preferable to perform the treatment sufficiently over time. Sintering 125
Primary sintering performed at a temperature of 0 to 1350 ° C. for 1 to 5 hours, followed by further heating to a temperature of 1500 to 1650 ° C.
This is performed by two-stage sintering including secondary sintering performed for 10 hours.

【0021】成形体13を先ず一次焼結するために昇温
すると、1200℃から焼結が始まり、1350℃で焼
結はかなり進む。この温度で一次焼結することにより、
粒径が大きくてもその表面と内部との焼結むら(組織構
造の差)はなく、1500〜1650℃の温度で二次焼
結することにより、相対密度が100%に近い焼結体ペ
レット11が得られる。この結果、本発明の高純度かつ
高密度のMgO焼結体ペレット11をプラズマディスプ
レイパネルに成膜すると、ペレット11が球状であるた
め、電子ビーム蒸着時のスプラッシュが少なく、膜特性
の良好なMgO膜を得られる。
When the temperature of the molded body 13 is first raised for primary sintering, sintering starts at 1200 ° C., and proceeds considerably at 1350 ° C. By primary sintering at this temperature,
Even if the grain size is large, there is no sintering unevenness (difference in microstructure) between the surface and the inside, and the sintered body is subjected to secondary sintering at a temperature of 1500 to 1650 ° C., whereby the relative density is close to 100%. 11 is obtained. As a result, when the high-purity and high-density sintered MgO pellets 11 of the present invention are formed on a plasma display panel, the pellets 11 are spherical. A membrane is obtained.

【0022】なお、この実施の形態では、平底の回転皿
を有する回転皿型転動造粒機を挙げたが、多段底、変形
底又は球面底の回転皿を有する回転皿型転動造粒機でも
よい。また、上記二段焼結時の昇温速度を20〜30℃
/時間と遅くすれば更に緻密化を図ることができる。更
に、この実施の形態では、成形体を二段焼結により焼結
したが、焼結温度が1500〜1650℃の範囲の一段
焼結により成形体を焼結してもよい。
In this embodiment, a rotary dish type rolling granulator having a flat bottom rotating dish has been described, but a rotary dish type rolling granulator having a multi-stage, deformed or spherical bottom rotating dish. Machine. Further, the heating rate during the two-stage sintering is set to 20 to 30 ° C.
If the time is slowed down, the density can be further increased. Further, in this embodiment, the molded body is sintered by two-stage sintering, but the molded body may be sintered by single-stage sintering at a sintering temperature of 1500 to 1650 ° C.

【0023】次に本発明の多結晶MgO蒸着材の別の製
造方法を説明する。先ず純度が99.5%以上で平均粒
径が0.1〜3μmのMgO粉末とバインダとを混練し
て所定の粒径に解砕する。バインダとしてはポリエチレ
ングリコールやポリビニールブチラール等を用いること
が好ましく、このバインダの添加量は0.2〜2重量%
であることが好ましい。また解砕後の平均粒径は10〜
100μmの範囲内であることが好ましい。次いで上記
解砕したバインダを含むMgO粉末を転動造粒機の回転
皿に入れた後に、バインダを含むMgO粉末が転がりな
ら上下に動くことを見ながら、スプレー器で有機溶媒を
噴霧する。有機溶媒としてはエタノールやプロパノール
等を用いることが好ましい。これにより上記第1の実施
の形態と同様に、MgO粉末が核粒子となって回転皿内
で上下動しながら、核粒子同士が互いに結合し締まり合
って生(なま)密度の高い球状の成形体が形成される。
Next, another method for producing the polycrystalline MgO vapor deposition material of the present invention will be described. First, MgO powder having a purity of 99.5% or more and an average particle size of 0.1 to 3 μm and a binder are kneaded and crushed to a predetermined particle size. As the binder, it is preferable to use polyethylene glycol or polyvinyl butyral, and the amount of the binder is 0.2 to 2% by weight.
It is preferred that The average particle size after crushing is 10
It is preferable that it is within the range of 100 μm. Next, after putting the crushed MgO powder containing the binder into the rotating plate of the tumbling granulator, the organic solvent is sprayed with a sprayer while watching that the MgO powder containing the binder moves up and down if it rolls. It is preferable to use ethanol, propanol, or the like as the organic solvent. As a result, similarly to the first embodiment, while the MgO powder becomes core particles and moves up and down in the rotating dish, the core particles are connected to each other and tightened to form a spherical particle having a high raw (green) density. A compact is formed.

【0024】この実施の形態では、第1の実施の形態の
傾斜した回転皿を有する回転皿型転動造粒機又は水平の
回転皿を有する回転皿型転動造粒機等が用いられる。次
に上記回転皿に更にバインダを含むMgO粉末を入れか
つ有機溶媒を噴霧する。これにより上記球状の成形体が
成長するので、この作業を繰返すことにより所定の大き
さ、即ち所定の直径を有する成形体を得ることができ
る。以下の焼結工程は上記第1の実施の形態と同様であ
るので、繰返しの説明を省略する。
In this embodiment, the rotating dish-type rolling granulator having the inclined rotating dish of the first embodiment or the rotating dish-type rolling granulator having the horizontal rotating dish is used. Next, MgO powder containing a binder is further put into the above rotating dish, and an organic solvent is sprayed. As a result, the spherical shaped body grows, and by repeating this operation, a shaped body having a predetermined size, that is, a predetermined diameter can be obtained. The following sintering steps are the same as those in the first embodiment, and a repeated description will be omitted.

【0025】[0025]

【発明の効果】以上述べたように、本発明によれば、多
結晶MgO蒸着材をMgO純度が99.5%以上かつ相
対密度が96%以上の多結晶MgOの焼結体ペレットに
より構成し、更にこのペレットを球状に形成したので、
この高純度かつ高密度の多結晶MgOの焼結体ペレット
を用いてAC型PDP等のMgO膜を成膜すると、スプ
ラッシュが少なく効率的に成膜でき、略均一な膜厚を有
するMgO膜を得ることができる。また焼結体ペレット
を球状に形成することにより、ペレットの欠けや割れが
発生しないので、ペレットが粉化せず、スプラッシュの
発生は更に少なくなる。この結果、MgO膜の成膜面積
が大きくても、略均一に成膜することができるので、例
えばMgO膜を成膜したガラス誘電体層をPDPに組込
んだ場合に、放電開始電圧や駆動電圧を低く一定にで
き、PDPの電気的特性を向上できる。
As described above, according to the present invention, the polycrystalline MgO vapor deposition material is formed of sintered polycrystalline MgO pellets having an MgO purity of 99.5% or more and a relative density of 96% or more. Since this pellet was formed into a spherical shape,
When an MgO film such as an AC-type PDP is formed by using the high-purity and high-density sintered polycrystalline MgO pellet, an MgO film having a substantially uniform film thickness can be formed efficiently with little splash. Obtainable. Further, by forming the sintered body pellets into a spherical shape, chipping or cracking of the pellets does not occur, so that the pellets are not powdered and the occurrence of splash is further reduced. As a result, even if the film area of the MgO film is large, the film can be formed substantially uniformly. For example, when the glass dielectric layer on which the MgO film is formed is incorporated in the PDP, the discharge starting voltage and the driving voltage are reduced. The voltage can be kept low and constant, and the electrical characteristics of the PDP can be improved.

【0026】また多結晶MgOの焼結体ペレットの結晶
粒径を1〜500μmに形成すれば、この範囲内の大小
さまざまな粒径の結晶がモザイク状に焼結して焼結体ペ
レットが形成されるため、ペレットの強度及び密度が高
くなり、隣接する結晶粒の粒界が密着して粒界における
気孔の発生を低減できる。この結果、成膜されたMgO
膜は優れた膜特性を有する。また多結晶MgOの焼結体
ペレットに含まれる、Si及びAlの不純物をそれぞれ
元素濃度で200ppm以下に、Caの不純物を元素濃
度で250ppm以下に、Zrの不純物を元素濃度で1
50ppm以下に、Feの不純物を元素濃度で50pp
m以下に、Cr,V及びNiの不純物をそれぞれ元素濃
度で10ppm以下に、Na及びKの不純物をそれぞれ
元素濃度で20ppm以下に、Cの不純物を元素濃度で
70ppm以下にすれば、成膜されたMgO膜に含まれ
る不純物が極めて少なくなるので、このMgO膜の膜特
性は向上する。
Further, when the crystal grain size of the sintered polycrystalline MgO pellet is formed in the range of 1 to 500 μm, crystals having various grain sizes within this range are sintered in a mosaic shape to form a sintered pellet. Therefore, the strength and density of the pellets are increased, and the grain boundaries of adjacent crystal grains are brought into close contact with each other, so that generation of pores at the grain boundaries can be reduced. As a result, the deposited MgO
The film has excellent film properties. Further, the impurities of Si and Al contained in the sintered body pellets of polycrystalline MgO are respectively 200 ppm or less in element concentration, the impurities of Ca are 250 ppm or less in element concentration, and the impurities of Zr are 1 element in concentration.
To 50 ppm or less, the impurity of Fe should be
m, the impurities of Cr, V and Ni are each reduced to an element concentration of 10 ppm or less, the impurities of Na and K are each reduced to an element concentration of 20 ppm or less, and the impurity of C is reduced to an element concentration of 70 ppm or less. Since the impurities contained in the MgO film become extremely small, the film characteristics of the MgO film are improved.

【0027】また純度が99.5%以上で平均粒径が
0.1〜3μmのMgO粉末を転動造粒機の回転皿に入
れた後にバインダを含む有機溶媒を噴霧することにより
MgO粉末を造粒して球状の成形体を成形し、、回転皿
に更にMgO粉末を入れかつバインダを含む有機溶媒を
噴霧する作業を繰返して球状の成形体を所定の大きさに
成長させ、成長した成形体を所定の温度で焼結すれば、
上記MgO純度が99.5%以上かつ相対密度が96%
以上の多結晶MgOの焼結体ペレットからなる多結晶M
gO蒸着材を得ることができる。更に純度が99.5%
以上で平均粒径が0.1〜3μmのMgO粉末とバイン
ダとを混練して解砕し、この解砕したバインダを含むM
gO粉末を転動造粒機の回転皿に入れた後に有機溶媒を
噴霧することによりMgO粉末を造粒して球状の成形体
を成形し、回転皿に更にバインダを含むMgO粉末を入
れかつ有機溶媒を噴霧する作業を繰返すことにより球状
の成形体を所定の大きさに成長させ、成長した成形体を
所定の温度で焼結しても、上記製造方法と同様の効果が
得られる。
Further, MgO powder having a purity of 99.5% or more and an average particle diameter of 0.1 to 3 μm is put in a rotating dish of a tumbling granulator, and then an organic solvent containing a binder is sprayed thereon to make the MgO powder. The operation of granulating to form a spherical molded body, further adding MgO powder to a rotating dish and spraying an organic solvent containing a binder is repeated to grow the spherical molded body to a predetermined size, and the grown molding is formed. If the body is sintered at a certain temperature,
MgO purity of 99.5% or more and relative density of 96%
Polycrystalline M made of sintered pellets of the above polycrystalline MgO
A gO vapor deposition material can be obtained. Further 99.5% purity
As described above, MgO powder having an average particle size of 0.1 to 3 μm and a binder are kneaded and crushed, and M containing the crushed binder is mixed.
The gO powder is put into a rotating dish of a tumbling granulator, and then the organic solvent is sprayed to granulate the MgO powder to form a spherical molded body. Even when the operation of spraying the solvent is repeated, the spherical molded body is grown to a predetermined size, and the grown molded body is sintered at a predetermined temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の多結晶MgOの焼結体ペレ
ットの正面図。
FIG. 1 is a front view of a sintered pellet of polycrystalline MgO according to an embodiment of the present invention.

【図2】スラリーを成形する回転皿型転動造粒機の正面
図。
FIG. 2 is a front view of a rotary dish type rolling granulator for forming a slurry.

【符号の説明】[Explanation of symbols]

11 焼結体ペレット 13 回転皿型転動造粒機 13b 回転皿 14 成形体 DESCRIPTION OF SYMBOLS 11 Sintered body pellet 13 Rotary dish-type rolling granulator 13b Rotating dish 14 Molded

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年10月27日[Submission date] October 27, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Correction target item name] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0027】また純度が99.5%以上で平均粒径が
0.1〜3μmのMgO粉末を転動造粒機の回転皿に入
れた後にバインダを含む有機溶媒を噴霧することにより
MgO粉末を造粒して球状の成形体を成形し、回転皿に
更にMgO粉末を入れかつバインダを含む有機溶媒を噴
霧する作業を繰返して球状の成形体を所定の大きさに成
長させ、成長した成形体を所定の温度で焼結すれば、上
記MgO純度が99.5%以上かつ相対密度が96%以
上の多結晶MgOの焼結体ペレットからなる多結晶Mg
O蒸着材を得ることができる。更に純度が99.5%以
上で平均粒径が0.1〜3μmのMgO粉末とバインダ
とを混練して解砕し、この解砕したバインダを含むMg
O粉末を転動造粒機の回転皿に入れた後に有機溶媒を噴
霧することによりMgO粉末を造粒して球状の成形体を
成形し、回転皿に更にバインダを含むMgO粉末を入れ
かつ有機溶媒を噴霧する作業を繰返すことにより球状の
成形体を所定の大きさに成長させ、成長した成形体を所
定の温度で焼結しても、上記製造方法と同様の効果が得
られる。 ─────────────────────────────────────────────────────
Further, MgO powder having a purity of 99.5% or more and an average particle diameter of 0.1 to 3 μm is put in a rotating dish of a tumbling granulator, and then an organic solvent containing a binder is sprayed thereon to make the MgO powder. granulated molding a molded article of spherical, further put MgO powder in time Utatesara and repeated the work of spraying an organic solvent containing a binder to grow compact of spherical predetermined size, grown molding If the body is sintered at a predetermined temperature, the polycrystalline Mg composed of a sintered body pellet of polycrystalline MgO having a purity of 99.5% or more and a relative density of 96% or more is obtained.
An O vapor deposition material can be obtained. Further, the binder is kneaded with MgO powder having a purity of 99.5% or more and having an average particle diameter of 0.1 to 3 μm and crushed, and Mg containing the crushed binder is mixed.
The O powder is put into a rotating plate of a tumbling granulator, and then an organic solvent is sprayed to granulate the MgO powder to form a spherical molded body. Even when the operation of spraying the solvent is repeated, the spherical molded body is grown to a predetermined size, and the grown molded body is sintered at a predetermined temperature. ────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年12月18日[Submission date] December 18, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項4[Correction target item name] Claim 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0012】請求項4に係る発明は、図1及び図2に示
すように、純度が99.5%以上で平均粒径が0.1〜
3μmのMgO粉末を転動造粒機13の回転皿13bに
入れた後にバインダを含む有機溶媒を噴霧することによ
りMgO粉末を造粒して球状の成形体を成形する工程
と、回転皿13bに更にMgO粉末を入れかつバインダ
を含む有機溶媒を噴霧する作業を繰返して球状の成形体
14を所定の大きさに成長させる工程と、成長した成形
体14を所定の温度で焼結する工程とを含む多結晶Mg
O蒸着材の製造方法である。この請求項4に記載された
多結晶MgO蒸着材の製造方法では、請求項1に記載さ
れたMgO純度が99.5%以上かつ相対密度が96%
以上の多結晶MgOの焼結体ペレット11からなる多結
晶MgO蒸着材を得ることができる。
According to the present invention, as shown in FIGS. 1 and 2, the purity is 99.5% or more and the average particle size is 0.1 to 0.1%.
A step of forming a spherical compact by granulating the MgO powder by spraying an organic solvent containing a binder after putting the 3 μm MgO powder into the rotating plate 13b of the tumbling granulator 13 ; Further, a step of repeating the operation of adding the MgO powder and spraying the organic solvent containing the binder to grow the spherical compact 14 to a predetermined size, and a step of sintering the grown compact 14 at a predetermined temperature. Containing polycrystalline Mg
This is a method for producing an O vapor deposition material. In the method for producing a polycrystalline MgO vapor deposition material according to claim 4, the MgO purity according to claim 1 is 99.5% or more and the relative density is 96%.
A polycrystalline MgO vapor deposition material composed of the above-described sintered pellet 11 of polycrystalline MgO can be obtained.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 MgO純度が99.5%以上かつ相対密
度が96%以上の多結晶MgOの焼結体ペレット(11)か
らなり、前記ペレット(11)が球状に形成された多結晶M
gO蒸着材。
1. A polycrystalline MgO sintered body pellet (11) having a MgO purity of 99.5% or more and a relative density of 96% or more, wherein said pellet (11) is formed into a spherical shape.
gO vapor deposition material.
【請求項2】 多結晶MgOの焼結体ペレットの結晶粒
径が1〜500μmである請求項1記載の多結晶MgO
蒸着材。
2. The polycrystalline MgO according to claim 1, wherein the crystal grain size of the sintered polycrystalline MgO pellet is 1 to 500 μm.
Evaporation material.
【請求項3】 多結晶MgOの焼結体ペレットに含まれ
る、Si及びAlの不純物がそれぞれ元素濃度で200
ppm以下であり、Caの不純物が元素濃度で250p
pm以下であり、Zrの不純物が元素濃度で150pp
m以下であり、Feの不純物が元素濃度で50ppm以
下であり、Cr,V及びNiの不純物がそれぞれ元素濃
度で10ppm以下であり、Na及びKの不純物がそれ
ぞれ元素濃度で20ppm以下であり、Cの不純物が元
素濃度で70ppm以下である請求項1又は2記載の多
結晶MgO蒸着材。
3. The method according to claim 1, wherein each of Si and Al impurities contained in the polycrystalline MgO sintered pellet has an element concentration of 200%.
ppm or less, and the impurity of Ca is 250
pm or less, and the Zr impurity is 150 pp in elemental concentration.
m or less, the impurities of Fe are 50 ppm or less in elemental concentration, the impurities of Cr, V, and Ni are 10 ppm or less in elemental concentration, and the impurities of Na and K are 20 ppm or less in elemental concentration, respectively. 3. The polycrystalline MgO vapor deposition material according to claim 1, wherein an impurity of the element has an element concentration of 70 ppm or less. 4.
【請求項4】 純度が99.5%以上で平均粒径が0.
1〜3μmのMgO粉末を転動造粒機(13)の回転皿(13
b)に入れた後にバインダを含む有機溶媒を噴霧すること
により前記MgO粉末を造粒して球状の成形体(14)を成
形する工程と、 前記回転皿(13b)に更にMgO粉末を入れかつバインダ
を含む有機溶媒を噴霧する作業を繰返して前記球状の成
形体(14)を所定の大きさに成長させる工程と、 前記成長した成形体(14)を所定の温度で焼結する工程と
を含む多結晶MgO蒸着材の製造方法。
4. A composition having a purity of 99.5% or more and an average particle size of 0.5%.
A rotating dish (13) of a rolling granulator (13)
b) granulating the MgO powder by spraying an organic solvent containing a binder after the step (b) to form a spherical molded body (14), further adding MgO powder to the rotating dish (13b), and Repeating the operation of spraying an organic solvent containing a binder to grow the spherical molded body (14) to a predetermined size; andsintering the grown molded body (14) at a predetermined temperature. A method for producing a polycrystalline MgO vapor-deposited material.
【請求項5】 純度が99.5%以上で平均粒径が0.
1〜3μmのMgO粉末とバインダとを混練して解砕す
る工程と、 前記解砕したバインダを含むMgO粉末を転動造粒機の
回転皿に入れた後に有機溶媒を噴霧することにより前記
MgO粉末を造粒して球状の成形体を成形する工程と、 前記回転皿に更にバインダを含むMgO粉末を入れかつ
有機溶媒を噴霧する作業を繰返すことにより前記球状の
成形体を所定の大きさに成長させる工程と、 前記成長した成形体を所定の温度で焼結する工程とを含
む多結晶MgO蒸着材の製造方法。
5. The method according to claim 5, wherein the purity is 99.5% or more and the average particle size is 0.5%.
A step of kneading and pulverizing a 1 to 3 μm MgO powder and a binder, and placing the MgO powder containing the pulverized binder in a rotating dish of a tumbling granulator, and then spraying the organic solvent with the MgO powder. The step of granulating the powder to form a spherical molded body, and further adding the MgO powder containing a binder to the rotary dish and spraying an organic solvent to repeat the operation of forming the spherical molded body into a predetermined size. A method for producing a polycrystalline MgO vapor deposition material, comprising: a step of growing; and a step of sintering the grown compact at a predetermined temperature.
【請求項6】 球状の成形体を1250〜1350℃の
温度で一次焼結した後、昇温して1500〜1650℃
の温度で二次焼結する請求項4又は5記載の多結晶Mg
O蒸着材の製造方法。
6. After a spherical molded body is primarily sintered at a temperature of 1250-1350 ° C., the temperature is raised to 1500-1650 ° C.
The polycrystalline Mg according to claim 4 or 5, wherein secondary sintering is performed at a temperature of
Manufacturing method of O vapor deposition material.
JP9186127A 1997-04-22 1997-07-11 Polycrystalline magnesium oxide vacuum-deposition material and its production Pending JPH1129355A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9186127A JPH1129355A (en) 1997-07-11 1997-07-11 Polycrystalline magnesium oxide vacuum-deposition material and its production
KR1019970074442A KR19980079548A (en) 1997-04-22 1997-12-26 Mg deposition material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9186127A JPH1129355A (en) 1997-07-11 1997-07-11 Polycrystalline magnesium oxide vacuum-deposition material and its production

Publications (1)

Publication Number Publication Date
JPH1129355A true JPH1129355A (en) 1999-02-02

Family

ID=16182848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9186127A Pending JPH1129355A (en) 1997-04-22 1997-07-11 Polycrystalline magnesium oxide vacuum-deposition material and its production

Country Status (1)

Country Link
JP (1) JPH1129355A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1408528A2 (en) * 2002-10-10 2004-04-14 Lg Electronics Inc. Polycrystalline MgO deposition material having adjusted Si concentration
JP2007302911A (en) * 2006-05-08 2007-11-22 Seiko Epson Corp Method for producing granulated powder, and granulated powder
JP2010031384A (en) * 2009-11-09 2010-02-12 Toshiba Corp Optical thin film and optical component
JP2010261094A (en) * 2009-05-11 2010-11-18 Mitsubishi Materials Corp GRANULAR MATERIAL FOR VAPOR-DEPOSITING Au-Sn ALLOY, AND METHOD FOR PRODUCING THE SAME
JP5553763B2 (en) * 2008-09-24 2014-07-16 出光興産株式会社 Composite organic electroluminescent material
JP6829340B1 (en) * 2020-10-01 2021-02-10 松田産業株式会社 Gold vapor deposition material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1408528A2 (en) * 2002-10-10 2004-04-14 Lg Electronics Inc. Polycrystalline MgO deposition material having adjusted Si concentration
US6995104B2 (en) * 2002-10-10 2006-02-07 Lg Electronics Inc. Polycrystalline MgO deposition material having adjusted Si concentration
EP1408528A3 (en) * 2002-10-10 2007-07-18 Lg Electronics Inc. Polycrystalline MgO deposition material having adjusted Si concentration
JP2007302911A (en) * 2006-05-08 2007-11-22 Seiko Epson Corp Method for producing granulated powder, and granulated powder
JP5553763B2 (en) * 2008-09-24 2014-07-16 出光興産株式会社 Composite organic electroluminescent material
JP2010261094A (en) * 2009-05-11 2010-11-18 Mitsubishi Materials Corp GRANULAR MATERIAL FOR VAPOR-DEPOSITING Au-Sn ALLOY, AND METHOD FOR PRODUCING THE SAME
JP2010031384A (en) * 2009-11-09 2010-02-12 Toshiba Corp Optical thin film and optical component
JP6829340B1 (en) * 2020-10-01 2021-02-10 松田産業株式会社 Gold vapor deposition material
WO2022070433A1 (en) * 2020-10-01 2022-04-07 松田産業株式会社 Gold vapor deposition material

Similar Documents

Publication Publication Date Title
JP3314728B2 (en) Polycrystalline MgO deposited material
JP5224073B2 (en) Oxide deposition material and method for producing the same
JPH10306367A (en) Zno-ga2o3 sintered body for sputtering target and its production
JP3470633B2 (en) Deposition material containing MgO as a main component and method for producing the same
JP3893793B2 (en) MgO vapor deposition material and method for producing the same
JP2005129521A (en) MgO PELLET FOR PLASMA DISPLAY PANEL PROTECTING FILM, AND PLASMA DISPLAY PANEL USING THIS
JPH10291854A (en) Polycrystalline mgo vapor depositing material and its production
JPH10130827A (en) Mgo target and its production
JP3331584B2 (en) Polycrystalline MgO deposited material
JPWO2004079036A1 (en) Sputtering target and manufacturing method thereof
JP2000169956A (en) Magnesium oxide target for sputtering and its production
JPH10297955A (en) Material having evaporated magnesium oxide layer and its production
JPH1129355A (en) Polycrystalline magnesium oxide vacuum-deposition material and its production
JPH1129857A (en) Polycrystalline magnesium oxide vapor deposition material and its production
JPH10158826A (en) Mgo target and its production
JP2005343758A (en) Single crystal magnesium oxide sintered compact, manufacturing method thereof,and protective film for use in plasma display panel
JP2004169098A (en) Vapor depositing material, and optical thin film and optical component obtained by using the same
JP2004043955A (en) MgO VAPOR DEPOSITION MATERIAL AND ITS MANUFACTURING PROCESS, MANUFACTURING PROCESS OF MgO DEPOSITION FILM
JP4419343B2 (en) Deposition material for protective film of FPD and method for producing the same
JPH1192212A (en) Magnesium oxide sintered compact, its production and magnesium oxide thin film
JP4147988B2 (en) Deposition material for protective film of FPD and method for producing the same
JP3494205B2 (en) Target material containing MgO as a main component and method for producing the same
JPH10130828A (en) Mgo target and its production
JP4823475B2 (en) Vapor deposition material, MgO vapor deposition material, manufacturing method thereof, and film formation method
JPH11100660A (en) Ito pellet for vapor deposition and its production