JP5224073B2 - Oxide deposition material and method for producing the same - Google Patents

Oxide deposition material and method for producing the same Download PDF

Info

Publication number
JP5224073B2
JP5224073B2 JP2010071801A JP2010071801A JP5224073B2 JP 5224073 B2 JP5224073 B2 JP 5224073B2 JP 2010071801 A JP2010071801 A JP 2010071801A JP 2010071801 A JP2010071801 A JP 2010071801A JP 5224073 B2 JP5224073 B2 JP 5224073B2
Authority
JP
Japan
Prior art keywords
vapor deposition
oxygen
film
oxide
deposition material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010071801A
Other languages
Japanese (ja)
Other versions
JP2011202246A (en
Inventor
能之 阿部
理一郎 和気
正和 ▲桑▼原
健太郎 曽我部
梓 大城
久貴 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010071801A priority Critical patent/JP5224073B2/en
Priority to KR1020127023103A priority patent/KR101322800B1/en
Priority to CN201180014684.5A priority patent/CN102812150B/en
Priority to PCT/JP2011/054413 priority patent/WO2011118334A1/en
Priority to MYPI2012700666A priority patent/MY159313A/en
Priority to TW100107019A priority patent/TWI422696B/en
Publication of JP2011202246A publication Critical patent/JP2011202246A/en
Application granted granted Critical
Publication of JP5224073B2 publication Critical patent/JP5224073B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、電子ビーム蒸着法、イオンプレーティング法や高密度プラズマアシスト蒸着法等の各種真空蒸着法により透明導電膜を製造する際に使用される酸化物蒸着材とその製造方法に係り、例えば、太陽電池の透明電極として有用な低抵抗でかつ可視域での高い透過率を示す透明導電膜を製造するために使用される酸化物蒸着材の改良に関する。 The present invention relates to an oxide vapor deposition material used when producing a transparent conductive film by various vacuum vapor deposition methods such as an electron beam vapor deposition method, an ion plating method and a high density plasma assisted vapor deposition method, and a production method thereof , for example, The present invention relates to an improvement in an oxide vapor deposition material used for producing a transparent conductive film having a low resistance and a high transmittance in the visible region, which is useful as a transparent electrode of a solar cell.

透明導電膜は、高い導電性と可視光領域での高い光透過率を有する。そして、この特性を生かし、上記透明導電膜は、太陽電池、液晶表示素子、その他各種受光素子の電極等に利用され、更に、近赤外線領域での反射吸収特性を生かして、自動車や建築物の窓ガラス等に用いられる熱線反射膜や、各種の帯電防止膜、冷凍ショーケース等の防曇用透明発熱体としても利用されている。   The transparent conductive film has high conductivity and high light transmittance in the visible light region. And taking advantage of this characteristic, the transparent conductive film is used for electrodes of solar cells, liquid crystal display elements, other various light receiving elements, etc., and further, utilizing the reflection / absorption characteristic in the near infrared region, it can be used for automobiles and buildings. It is also used as a heat-reflective film used for window glass, various antistatic films, and a transparent heating element for anti-fogging such as a frozen showcase.

また、上記透明導電膜には、一般に、アンチモンやフッ素をドーパントとして含む酸化錫(SnO2)、アルミニウム、ガリウム、インジウム、スズをドーパントとして含む酸化亜鉛(ZnO)、スズ、タングステン、チタンをドーパントとして含む酸化インジウム(In23)等が広範に利用されている。特に、錫をドーパントとして含む酸化インジウム膜、すなわちIn23−Sn系膜はITO(Indium tin oxide)膜と称され、低抵抗の透明導電膜が容易に得られることからこれまで工業的に幅広く用いられてきた。 The transparent conductive film generally has tin oxide (SnO 2 ) containing antimony or fluorine as a dopant, aluminum, gallium, indium, zinc oxide (ZnO) containing tin as a dopant, tin, tungsten or titanium as a dopant. Indium oxide (In 2 O 3 ) and the like are widely used. In particular, an indium oxide film containing tin as a dopant, that is, an In 2 O 3 —Sn-based film is called an ITO (Indium tin oxide) film, and since a low-resistance transparent conductive film can be easily obtained, it has been industrially used so far. Widely used.

そして、これ等透明導電膜の製造方法としては、真空蒸着法、スパッタリング法、透明導電層形成用塗液を塗布する方法等が一般に用いられている。その中でも真空蒸着法やスパッタリング法は、蒸気圧の低い材料を使用する際や精密な膜厚制御を必要とする際に有効な手法であり、かつ、操作が非常に簡便であるため工業的には有用である。また、真空蒸着法とスパッタリング法を比較すると、真空蒸着法の方が高速に成膜することができるため量産性に優れている。   And as a manufacturing method of these transparent conductive films, the vacuum evaporation method, sputtering method, the method of apply | coating the coating liquid for transparent conductive layer formation, etc. are generally used. Among them, the vacuum vapor deposition method and the sputtering method are effective methods when using a material having a low vapor pressure or when precise film thickness control is required, and because the operation is very simple, Is useful. Further, when the vacuum deposition method and the sputtering method are compared, the vacuum deposition method is superior in mass productivity because it can form a film at a higher speed.

ところで、真空蒸着法は、一般に、10-3〜10-2Pa程度の真空中で、蒸発源である固体または液体を加熱して一度気体分子や原子に分解させた後、再び基板表面上に薄膜として凝縮させる方法である。また、上記蒸発源の加熱方式は種々あるが、抵抗加熱法(RH法)、電子ビーム加熱法(EB法、電子ビーム蒸着法)が一般的である。また、成膜室(チャンバー)内にO2ガス等の反応ガスを導入しながら蒸着する反応性蒸着法もよく知られている。 By the way, in the vacuum deposition method, in general, in a vacuum of about 10 −3 to 10 −2 Pa, a solid or liquid as an evaporation source is heated to be decomposed once into gas molecules and atoms, and then again on the substrate surface. It is a method of condensing as a thin film. Further, although there are various heating methods for the evaporation source, a resistance heating method (RH method) and an electron beam heating method (EB method, electron beam evaporation method) are common. A reactive vapor deposition method is also well known in which vapor deposition is performed while introducing a reactive gas such as O 2 gas into a film forming chamber (chamber).

そして、ITOのような酸化物膜を堆積させる場合、歴史的には、上記電子ビーム蒸着法がよく利用されてきた。すなわち、蒸発源にITOの酸化物蒸着材(ITOタブレットあるいはITOペレットとも呼ぶ)を用い、成膜室(チャンバー)に反応ガスであるO2ガスを導入し、熱電子発生用フィラメント(主にW線)から飛び出した熱電子を電界で加速させてITOの酸化物蒸着材に照射すると、照射された部分は局所的に高温になり、蒸発して基板に堆積される。また、熱電子エミッタやRF放電を用いてプラズマを発生させ、このプラズマで蒸発物や反応ガス(O2ガス等)を活性化させることにより、低温基板上で低抵抗の膜を作製することができる活性化反応性蒸着法(ARE法)もITO成膜には有用な方法である。更に、最近ではプラズマガンを用いた高密度プラズマアシスト蒸着法(HDPE法)もITO成膜に有効な手法であることが明らかとなり、工業的に広範に用いられはじめてきた(非特許文献1参照)。この方法では、プラズマ発生装置(プラズマガン)を用いたアーク放電を利用するが、プラズマガンに内蔵されたカソードと蒸発源の坩堝(アノード)との間でアーク放電が維持される。カソードから放出される電子が磁場により案内(ガイド)されて、坩堝に仕込まれたITOの酸化物蒸着材の局部に集中して照射される。この電子ビームが照射されて局所的に高温となった部分から、蒸発物が蒸発して基板に堆積される。気化した蒸発物や導入したO2ガスは、このプラズマ内で活性化されるため、良好な電気特性を持つITO膜を作製することができる。また、これ等の各種真空蒸着法の別の分類法として、蒸発物や反応ガスのイオン化を伴うものは総称してイオンプレーティング法(IP法)と呼ばれ、低抵抗で高光透過率のITO膜を得る方法として有効である(非特許文献2参照)。 In the case of depositing an oxide film such as ITO, the electron beam evaporation method has been used historically. That is, an ITO oxide vapor deposition material (also referred to as an ITO tablet or an ITO pellet) is used as an evaporation source, an O 2 gas as a reaction gas is introduced into a film forming chamber (chamber), and a thermoelectron generating filament (mainly W When the thermal electrons emitted from the line) are accelerated by an electric field and irradiated onto the ITO oxide vapor deposition material, the irradiated portion becomes locally high in temperature and evaporated to be deposited on the substrate. In addition, it is possible to produce a low-resistance film on a low-temperature substrate by generating plasma using a thermionic emitter or RF discharge and activating evaporates and reactive gases (O 2 gas etc.) with this plasma. An activated reactive vapor deposition method (ARE method) that can be used is also a useful method for forming an ITO film. Furthermore, recently, it has become clear that a high-density plasma-assisted vapor deposition method (HDPE method) using a plasma gun is also an effective method for forming an ITO film, and has begun to be widely used industrially (see Non-Patent Document 1). . In this method, arc discharge using a plasma generator (plasma gun) is used, but arc discharge is maintained between a cathode built in the plasma gun and a crucible (anode) of an evaporation source. Electrons emitted from the cathode are guided (guided) by a magnetic field and are concentrated and irradiated on the local area of the ITO oxide deposition material charged in the crucible. The evaporated material is evaporated and deposited on the substrate from the portion where the electron beam is irradiated and locally heated. Since the evaporated vapor and the introduced O 2 gas are activated in this plasma, an ITO film having good electrical characteristics can be produced. Further, as another classification method of these various vacuum deposition methods, those accompanied by ionization of evaporates and reaction gases are collectively referred to as an ion plating method (IP method), and ITO with low resistance and high light transmittance is used. It is effective as a method for obtaining a film (see Non-Patent Document 2).

ところで、透明導電膜が適用される何れのタイプの太陽電池でも、光が当たる表側の電極には上記透明導電膜が不可欠であり、従来は、上述したITO膜や、アルミニウム、ガリウムがドーピングされた酸化亜鉛(ZnO)膜が利用されてきた。そして、これ等の透明導電膜には、低抵抗であることや、太陽光の光透過率が高いこと等の特性が求められている。また、これ等の透明導電膜の製造方法としては、上述したイオンプレーティング法や高密度プラズマアシスト蒸着法等の真空蒸着法が用いられている。   By the way, in any type of solar cell to which a transparent conductive film is applied, the transparent conductive film is indispensable for the front-side electrode that is exposed to light. Conventionally, the above-described ITO film, aluminum, and gallium are doped. Zinc oxide (ZnO) films have been utilized. These transparent conductive films are required to have characteristics such as low resistance and high light transmittance of sunlight. Further, as a method for producing these transparent conductive films, vacuum deposition methods such as the above-described ion plating method and high-density plasma assist deposition method are used.

そして、上記電子ビーム蒸着法、イオンプレーティング法や高密度プラズマアシスト蒸着法等の真空蒸着法に用いられる酸化物蒸着材は、小さいサイズ(例えば直径が10〜50mmで高さが10〜50mm程度)の焼結体が使われるため、一つの酸化物蒸着材で成膜できる膜量には限界があった。そして、酸化物蒸着材の消耗量が多くなり残量が少なくなると、成膜を中断し、真空中の成膜室を大気導入して未使用の酸化物蒸着材に交換し、かつ、成膜室を再び真空引きする必要があり、生産性を悪くする要因となっていた。   The oxide deposition material used in the vacuum deposition methods such as the electron beam deposition method, ion plating method, and high density plasma assisted deposition method has a small size (for example, a diameter of 10 to 50 mm and a height of about 10 to 50 mm). Therefore, there is a limit to the amount of film that can be formed with one oxide vapor deposition material. Then, when the consumption amount of the oxide vapor deposition material increases and the remaining amount decreases, the film formation is interrupted, the vacuum film formation chamber is introduced into the atmosphere and replaced with an unused oxide vapor deposition material, and the film is formed. It was necessary to evacuate the chamber again, which caused productivity to deteriorate.

そこで、電子ビーム蒸着法、イオンプレーティング法や高密度プラズマアシスト蒸着法等の真空蒸着法にて透明導電膜を量産する場合に必要不可欠な技術として、上記酸化物蒸着材の連続供給法が挙げられ、その一例が、非特許文献1に記載されている。この連続供給法では、円筒形状のハースの内側に円柱状の酸化物蒸着材が連なって収納されており、昇華面の高さが一定に維持されたまま酸化物蒸着材が順次押し出されて連続供給されるようになっている。そして、酸化物蒸着材の連続供給法により、真空蒸着法による透明導電膜の大量生産が実現できるようになった。   Therefore, a continuous supply method of the above-mentioned oxide deposition material is cited as an indispensable technique for mass production of transparent conductive films by vacuum deposition methods such as electron beam deposition, ion plating, and high density plasma assisted deposition. One example is described in Non-Patent Document 1. In this continuous supply method, columnar oxide vapor deposition materials are continuously stored inside a cylindrical hearth, and the oxide vapor deposition materials are sequentially extruded while maintaining the height of the sublimation surface constant. It comes to be supplied. And the mass production of the transparent conductive film by a vacuum evaporation method came to be realizable by the continuous supply method of an oxide vapor deposition material.

そして、原料として用いる酸化物蒸着材に関し、特許文献1では、ITOの蒸着材が紹介されている。実質的には、インジウム、錫および酸素から成るIn23−SnO2系の粒状であり、1粒子の体積が0.01〜0.5cm3、かつ、相対密度が55%以上であること、また、容器に充填したときの嵩密度が2.5g/cm3以下であるITOの蒸着材が提案されている。そして、上記構成とすることによって、電子ビーム蒸着により安定的に低抵抗のITO膜を成膜でき、利用効率が80%以上となり、更に供給機内で詰まることなく連続供給を可能とするITO蒸着材が得られることが記載されている。 And regarding the oxide vapor deposition material used as a raw material, in patent document 1, the vapor deposition material of ITO is introduced. It is substantially an In 2 O 3 —SnO 2 type particle composed of indium, tin and oxygen, and the volume of one particle is 0.01 to 0.5 cm 3 and the relative density is 55% or more. Further, an ITO vapor deposition material having a bulk density of 2.5 g / cm 3 or less when filled in a container has been proposed. With the above configuration, an ITO evaporation material that can stably form a low-resistance ITO film by electron beam evaporation, has a utilization efficiency of 80% or more, and can be continuously supplied without clogging in the supply machine. Is obtained.

更に、特許文献2でも、酸化インジウムと酸化錫からなるITOの蒸着材が紹介されている。特許文献2に記載されたITO蒸着材は、密度が4.9g/cmで、直径が30mm、厚みが40mmの円柱形状の酸化物焼結体で構成され、供給機内で破損することなく連続供給が可能であると記載されている。 Further, Patent Document 2 also introduces an ITO vapor deposition material made of indium oxide and tin oxide. The ITO vapor deposition material described in Patent Document 2 is composed of a cylindrical oxide sintered body having a density of 4.9 g / cm 3 , a diameter of 30 mm, and a thickness of 40 mm, and is continuous without being damaged in the feeder. It is stated that supply is possible.

特開平8−104978号公報(特許請求の範囲、段落0009、段落0017参照)JP-A-8-104978 (see claims, paragraphs 0009 and 0017) 特開2007−84881号公報(特許請求の範囲、段落0007、段落0091、段落0108参照)JP 2007-84881 A (see claims, paragraph 0007, paragraph 0091, paragraph 0108)

「真空」、Vol.44, No.4, 2001年, p. 435-439`` Vacuum '', Vol.44, No.4, 2001, p.435-439 「透明導電膜の技術」、オーム社、1999年刊, p. 205-211"Technology of transparent conductive film", Ohmsha, 1999, p. 205-211

ところで、上記特許文献等に記載された従来のITO蒸着材(酸化物蒸着材)を用いて、電子ビーム蒸着法、イオンプレーティング法や高密度プラズマアシスト蒸着法等の各種真空蒸着法により、低抵抗で高い光透過性を有する透明導電膜を製造する場合、成膜時において成膜真空槽へ酸素ガスを多く導入する必要がある(例えば、特許文献2の段落0007と段落0108等の記載参照)ことから、主に、以下に述べるような問題が生じる。   By the way, by using various conventional vacuum evaporation methods such as an electron beam evaporation method, an ion plating method, and a high density plasma assisted evaporation method using a conventional ITO evaporation material (oxide evaporation material) described in the above-mentioned patent documents, etc. In the case of manufacturing a transparent conductive film having high light transmittance with resistance, it is necessary to introduce a large amount of oxygen gas into a film formation vacuum chamber during film formation (see, for example, description in paragraphs 0007 and 0108 of Patent Document 2). Therefore, the following problems arise mainly.

まず、透明導電膜と酸化物蒸着材との組成ズレが大きくなり、透明導電膜の組成設計が難しくなる。一般に成膜真空槽への導入酸素量が多くなると、透明導電膜と酸化物蒸着材の組成差が大きくなり易いからである。成膜量産工程では、成膜真空槽内の酸素量の変動も生じ易いため、その影響を受けて膜組成の変動も生じ易くなり、膜特性のバラツキにつながる。   First, the composition deviation of a transparent conductive film and an oxide vapor deposition material becomes large, and the composition design of a transparent conductive film becomes difficult. This is because, generally, when the amount of oxygen introduced into the film-forming vacuum chamber increases, the difference in composition between the transparent conductive film and the oxide vapor deposition material tends to increase. In the film formation mass production process, the amount of oxygen in the film formation vacuum chamber is likely to fluctuate. Therefore, the film composition is likely to fluctuate due to the influence thereof, leading to variations in film characteristics.

また、酸素ガスを用いた反応性蒸着成膜では、酸素量が多くなると膜の密度が低下するだけでなく、膜の基板に対する付着力も弱くなる等の問題が生じる。蒸発した金属酸化物が基板に到達するまでに酸化されるとエネルギーを消失してしまうため、酸化の割合が多くなると、緻密でかつ基板に対する高密着な膜が得られ難くなるからである。   In reactive vapor deposition using oxygen gas, when the amount of oxygen increases, not only the density of the film decreases, but also the adhesion of the film to the substrate weakens. This is because if the evaporated metal oxide is oxidized before reaching the substrate, energy is lost, and if the rate of oxidation increases, it becomes difficult to obtain a dense and highly adhesive film with respect to the substrate.

更に、表面が酸化され易い金属膜や有機物膜で覆われた基板上に透明導電膜を形成する場合、成膜真空槽への酸素ガスが多いと、成膜前に基板表面が酸化されてしまい、これに伴い高性能のデバイスを製造することができなくなる。この傾向は、成膜時の基板温度が高いほど顕著となる。例えば、基板と反対側の面から光を入射させてエネルギー変換するような太陽電池を製造する場合、金属薄膜で形成されたPIN素子の上に透明導電膜を形成する必要があるため、酸素導入量の多い成膜を行なったのでは、素子がダメージを受け易く高性能のデバイスを製造することができない。有機薄膜太陽電池やトップエミッション型の有機エレクトロルミネッセンス素子を形成する場合も同様であり、有機物発光層の上に透明導電膜を形成する場合、酸素導入量の多い状況下では有機物発光層が酸化されてダメージを受けてしまうため高性能の素子を実現することができない。   Furthermore, when a transparent conductive film is formed on a substrate covered with a metal film or organic film whose surface is easily oxidized, if there is a large amount of oxygen gas to the film formation vacuum chamber, the substrate surface will be oxidized before film formation. As a result, high-performance devices cannot be manufactured. This tendency becomes more prominent as the substrate temperature during film formation is higher. For example, when manufacturing a solar cell that converts energy by making light incident from the surface opposite to the substrate, it is necessary to form a transparent conductive film on the PIN element formed of a metal thin film. If a large amount of film is formed, the element is easily damaged and a high-performance device cannot be manufactured. The same applies to the formation of organic thin-film solar cells and top-emission type organic electroluminescence elements. When a transparent conductive film is formed on an organic light-emitting layer, the organic light-emitting layer is oxidized under conditions where a large amount of oxygen is introduced. Therefore, a high-performance element cannot be realized.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、スズが添加された酸化インジウムを主成分とし、成膜時に導入する酸素量が少なくても、低抵抗でかつ可視域において高い光透過性を有する透明導電膜が安定して製造できる酸化物蒸着材を提供し、合わせてこの酸化物蒸着材の製造方法を提供することにある。 The present invention has been made paying attention to such problems, and the problem is that the main component is indium oxide to which tin is added, and even if the amount of oxygen introduced at the time of film formation is small, low resistance is achieved. It is another object of the present invention to provide an oxide vapor deposition material capable of stably producing a transparent conductive film having high light transmittance in the visible region, and to provide a method for producing this oxide vapor deposition material.

すなわち、請求項1に係る発明は、
真空蒸着法により透明導電膜を製造する際に使用される酸化物蒸着材において、
酸化インジウムを主成分とし、スズを含むと共に、常圧焼結法で製造された酸化物焼結体により構成され、かつ、スズの含有量がSn/In原子数比で0.001〜0.614であり、CIE1976表色系におけるL値が54〜75であることを特徴とし、
請求項2に係る発明は、
請求項1に記載の酸化物蒸着材において、
上記スズの含有量がSn/In原子数比で0.040〜0.163であることを特徴とする。
That is, the invention according to claim 1
In the oxide vapor deposition material used when producing a transparent conductive film by vacuum vapor deposition,
The main component is indium oxide, tin is included, and the oxide sintered body is manufactured by an atmospheric pressure sintering method. The tin content is 0.001 to 0.00 in terms of the Sn / In atomic ratio. 614, and the L * value in the CIE 1976 color system is 54 to 75,
The invention according to claim 2
In the oxide vapor deposition material according to claim 1,
Content of the said tin is 0.040-0.163 by Sn / In atomic ratio, It is characterized by the above-mentioned.

また、請求項3に係る発明は、
請求項1に記載の酸化物蒸着材において、
上記酸化物焼結体が、炉内容積0.1m 3 当たり5リットル/分以上の割合の酸素を炉に導入しながら1150〜1300℃の温度で焼成する常圧焼結法で製造されていることを特徴とし、
請求項4に係る発明は、
請求項1に記載の酸化物蒸着材の製造方法において、
酸化インジウムと酸化スズの各粉末を原料とし、スズの含有量がSn/In原子数比で0.001〜0.614となるように混合し、造粒して造粒粉末を得た後、得られた造粒粉末を成形する成形体調製工程と、
炉内容積0.1m3当たり5リットル/分以上の割合の酸素を炉に導入しながら上記成形体に対し300〜500℃の温度で脱バインダー処理を行なった後、炉内容積0.1m3当たり5リットル/分以上の割合の酸素を炉に導入しながら1150〜1300℃の温度で焼成処理を行なう脱バインダー・焼成工程と、
酸素とアルゴンの混合比(体積比)がO/Ar=40/60〜90/10の範囲となる条件で、かつ、炉内容積0.1m3当たり5リットル/分以上の割合の酸素とアルゴンの混合ガスを炉内に導入しながら、焼結体に対し900〜1100℃の温度で10時間以上の酸素量調整を行う酸素量調整工程、
の各工程を具備することを特徴とする。
The invention according to claim 3
In the oxide vapor deposition material according to claim 1,
The above oxide sintered body is manufactured by an atmospheric pressure sintering method in which oxygen is burned at a temperature of 1150 to 1300 ° C. while introducing oxygen at a rate of 5 liters / minute or more per 0.1 m 3 of the furnace volume . It is characterized by
The invention according to claim 4
In the manufacturing method of the oxide vapor deposition material of Claim 1,
Using each powder of indium oxide and tin oxide as raw materials, mixing so that the tin content is 0.001 to 0.614 in the Sn / In atomic ratio, and granulating to obtain a granulated powder, A molded body preparation step for molding the obtained granulated powder;
After performing the binder removal treatment at a temperature of 300 to 500 ° C. to the shaped body while introducing oxygen percentage in volume 0.1 m 3 per 5 liters / minute or more furnace into the furnace, furnace capacity 0.1 m 3 A debinding and baking step of performing a baking treatment at a temperature of 1150 to 1300 ° C. while introducing oxygen at a rate of 5 liters / minute or more into the furnace,
The oxygen and argon mixing ratio (volume ratio) is in the range of O 2 / Ar = 40/60 to 90/10, and oxygen at a rate of 5 liters / minute or more per 0.1 m 3 of the furnace volume An oxygen amount adjusting step for adjusting the oxygen amount for 10 hours or more at a temperature of 900 to 1100 ° C. with respect to the sintered body while introducing a mixed gas of argon into the furnace;
It comprises each of these processes.

本発明に係る酸化物蒸着材は、酸化インジウムを主成分とし、スズを含む酸化物焼結体により構成され、スズの含有量がSn/In原子数比で0.001〜0.614であり、CIE1976表色系におけるL値が54〜75であることを特徴とする。 The oxide vapor deposition material according to the present invention is composed of an oxide sintered body containing indium oxide as a main component and containing tin, and the tin content is 0.001 to 0.614 in terms of the Sn / In atomic ratio. The L * value in the CIE 1976 color system is 54 to 75.

そして、CIE1976表色系におけるL値が54〜75である本発明に係る酸化物蒸着材は最適な酸素量を有しているため、この酸化物蒸着材を適用することにより、成膜真空槽への酸素ガス導入量が少なくても、低抵抗で可視域における高透過性の透明導電膜を真空蒸着法で製造することが可能となり、かつ、成膜真空槽への酸素ガスの導入量が少ないため、膜と酸化物蒸着材との組成差を小さくすることが可能となり、目的の膜組成が得易いだけでなく、量産時の膜組成の変動や特性の変動も低減することが可能となる。また、成膜真空槽への酸素ガスの導入量が少ない成膜のため、酸素ガスによる基板へのダメージを低減できることから、高性能のデバイスを実現することが可能となる。特に、太陽電池に有用な高性能の膜を、基板にダメージを与えることなく安定して製造することが可能となる。 Since the oxide vapor deposition material according to the present invention having an L * value of 54 to 75 in the CIE 1976 color system has an optimum oxygen amount, a film formation vacuum can be obtained by applying this oxide vapor deposition material. Even if the amount of oxygen gas introduced into the tank is small, it is possible to produce a transparent conductive film with low resistance and high transparency in the visible region by the vacuum deposition method, and the amount of oxygen gas introduced into the film forming vacuum tank Therefore, it is possible to reduce the difference in composition between the film and the oxide vapor deposition material, making it easy to obtain the desired film composition, as well as reducing fluctuations in film composition and characteristics during mass production. It becomes. In addition, since film formation with a small amount of oxygen gas introduced into the film formation vacuum chamber can reduce damage to the substrate due to oxygen gas, a high-performance device can be realized. In particular, a high-performance film useful for solar cells can be stably produced without damaging the substrate.

(1)酸化物蒸着材
本発明の酸化物蒸着材は、酸化インジウムを主成分とし、かつ、スズがSn/In原子数比で0.001〜0.614の割合で含有された組成を有する。そして、本発明の酸化物蒸着材を用いて真空蒸着法により製造された透明導電膜の組成は、酸化物蒸着材の組成に極めて近いため、製造される膜組成も、酸化インジウムを主成分としかつSn/In原子数比でスズが0.001〜0.614の割合だけ含有する組成となる。スズを上記割合だけ含有させる理由としては、酸化インジウム膜の移動度を増加させることができるからである。膜組成、すなわち酸化物蒸着材組成のスズ含有量(Sn/In原子数比)が0.001未満では、キャリア濃度増加の効果(すなわち移動度増加の効果)が小さくて低抵抗の膜を得ることができない。また、0.614を超えると、膜中のスズ量が多過ぎて、電子移動の際の中性不純物散乱が大きくなってしまい、移動度が低下する影響を受けてしまい低抵抗の膜が得られない。より高いキャリア濃度を発揮して低抵抗の膜を得るためのより好ましいスズの含有量は、Sn/In原子数比で0.040〜0.163であり、更にその膜が結晶膜であることである。
(1) Oxide vapor deposition material The oxide vapor deposition material of the present invention has a composition in which indium oxide is a main component and tin is contained at a ratio of 0.001 to 0.614 in terms of the Sn / In atomic ratio. . And since the composition of the transparent conductive film manufactured by the vacuum evaporation method using the oxide vapor deposition material of the present invention is very close to the composition of the oxide vapor deposition material, the film composition to be manufactured is also composed mainly of indium oxide. And it becomes the composition which tin contains only the ratio of 0.001-0.614 by Sn / In atomic ratio. The reason why tin is contained in the above proportion is that the mobility of the indium oxide film can be increased. When the film composition, that is, the tin content (Sn / In atomic ratio) of the oxide vapor deposition material composition is less than 0.001, the effect of increasing the carrier concentration (that is, the effect of increasing the mobility) is small and a low resistance film is obtained. I can't. On the other hand, if it exceeds 0.614, the amount of tin in the film is too large, and the scattering of neutral impurities during electron transfer becomes large, and the mobility is lowered, resulting in a low resistance film. I can't. A more preferable tin content for exhibiting a higher carrier concentration to obtain a low resistance film is 0.040 to 0.163 in terms of the Sn / In atomic ratio, and the film is a crystal film. It is.

ところで、酸化インジウムを主成分とする透明導電膜はn型の半導体であるが、高い導電性と高い光透過性を発揮させるためには適度な酸素欠損を必要とする。すなわち、膜中の酸素量が多くて酸素欠損量が少ない場合は、例えドーパントを含んでいても導電性を示さない。導電性を示すには膜中に酸素欠損を導入することが必要であるが、酸素欠損量が多過ぎると可視光の光吸収が多くなり着色の原因となる。よって、膜には最適な酸素欠損を持たせる必要がある。膜中の酸素は、原料である酸化物蒸着材から供給される他、成膜時に成膜真空槽に導入される酸素ガスが膜中に取り込まれることによっても供給される。そして、酸化物蒸着材からの供給分が少ないと、成膜真空槽に導入される酸素ガス量を多めにする必要があるが、成膜真空槽に導入される酸素ガス量を多くすると上述した問題が生じてしまう。よって、最適な酸素量を有する酸化物蒸着材が有用となる。   By the way, the transparent conductive film containing indium oxide as a main component is an n-type semiconductor, but an appropriate oxygen deficiency is required in order to exhibit high conductivity and high light transmittance. That is, when the amount of oxygen in the film is large and the amount of oxygen vacancies is small, even if it contains a dopant, it does not exhibit conductivity. In order to exhibit conductivity, it is necessary to introduce oxygen vacancies into the film. However, if the amount of oxygen vacancies is too large, light absorption of visible light increases, which causes coloring. Therefore, the film needs to have an optimal oxygen deficiency. Oxygen in the film is supplied not only from the oxide vapor deposition material as a raw material but also by oxygen gas introduced into the film formation vacuum chamber during film formation being taken into the film. And if there is little supply from an oxide vapor deposition material, it is necessary to increase the amount of oxygen gas introduced into the film-forming vacuum chamber, but as described above, the amount of oxygen gas introduced into the film-forming vacuum chamber is increased. Problems arise. Therefore, an oxide vapor deposition material having an optimal oxygen amount is useful.

そして、本発明に係る酸化物蒸着材は、CIE1976表色系におけるL値で規定していることが最大の特徴である。ここで、CIE1976表色系とは、CIE(国際照明委員会)が1976年に推奨した色空間である。色を、明度Lとクロマネティックス指数a、bからなる均等色空間上の座標で表したものであることから、CIELABとも略記される。明度を示すLは、L=0で黒色、L=100で白の拡散色を示す。またaは、負の値で緑寄り、正の値でマゼンタ寄りを表し、bは、負の値で青寄り、正の値で黄色寄りを表す。 And, the oxide vapor deposition material according to the present invention is characterized in that it is defined by the L * value in the CIE 1976 color system. Here, the CIE 1976 color system is a color space recommended by the CIE (International Commission on Illumination) in 1976. Color, lightness L * and black Manet ticks indices a *, since those expressed in coordinates on a uniform color space of b *, are abbreviated as CIELAB. L * is showing the lightness indicates black, the diffuse color of white in the L * = 100 in L * = 0. Further, a * is a negative value for green, a positive value for magenta, b * is a negative value for blue, and a positive value for yellow.

そして、CIE1976表色系におけるL値で規定した本発明に係る酸化物蒸着材の焼結体表面と焼結体内部の色味は同一であることが好ましいが、仮に最表面と内部で異なった酸化物蒸着材である場合、本発明では焼結体内部についてL値を定めている。 And it is preferable that the color of the sintered body surface and the inside of the sintered body of the oxide vapor deposition material according to the present invention defined by the L * value in the CIE 1976 color system is the same, but it is temporarily different between the outermost surface and the inside. In the present invention, the L * value is determined for the inside of the sintered body.

発明者等による実験によると、酸化物蒸着材の内部のL値が54〜75のとき、成膜真空槽へ導入する酸素量が少なくても高い導電性と可視域の高い透過率を兼ね備えた透明導電膜を得ることができる。また、白っぽい色ほどL値は高く、逆に黒っぽいほどL値は低い。そして、酸化物蒸着材のL値は、酸化物蒸着材内の含有酸素量と相関を有していると考えられ、L値が大きいほど含有酸素量が多く、L値が小さいほど含有酸素量が少ないと考えられる。本発明者等は、製造条件を変えて、種々のL値の酸化物蒸着材を用いて真空蒸着法で透明導電膜を作製する実験を試みたところ、L値が大きいほど、成膜中に導入する最適酸素量(低抵抗で透明度の高い膜を得るための酸素量)は少なかった。これは、L値が大きい酸化物蒸着材ほど、酸化物蒸着材自体から供給される酸素量が多くなるためである。また、膜と酸化物蒸着材の組成差は、酸素導入量が多いほど大きい傾向を示す。従って、L値が大きいほど、組成差は小さくなる。 According to experiments by the inventors, when the L * value inside the oxide vapor deposition material is 54 to 75, it has both high conductivity and high transmittance in the visible region even if the amount of oxygen introduced into the deposition vacuum chamber is small. A transparent conductive film can be obtained. Also, the whitish color has a higher L * value, while the darker the color, the lower the L * value. The L * value of the oxide vapor deposition material is considered to have a correlation with the amount of oxygen contained in the oxide vapor deposition material. The larger the L * value, the greater the amount of oxygen contained, and the smaller the L * value. It is considered that the oxygen content is small. The present inventors have changed the production conditions, was experimented to produce a transparent conductive film by a vacuum deposition method using an oxide evaporation materials of various L * values, as L * value is large, the film formation The optimum amount of oxygen to be introduced into it (the amount of oxygen for obtaining a film with low resistance and high transparency) was small. This is because the larger the L * value, the greater the amount of oxygen supplied from the oxide vapor deposition material itself. Further, the difference in composition between the film and the oxide vapor deposition material tends to increase as the amount of oxygen introduced increases. Therefore, the larger the L * value, the smaller the composition difference.

尚、本発明に係る酸化物蒸着材は導電性を有し、酸化物蒸着材の導電率は含有酸素量にも依存するが、密度、結晶粒径、スズのドーパント効率にも依存する。従って、酸化物蒸着材の導電率とL値は1対1には対応しない。 The oxide vapor deposition material according to the present invention has conductivity, and the conductivity of the oxide vapor deposition material depends on the oxygen content, but also on the density, crystal grain size, and tin dopant efficiency. Therefore, the conductivity and L * value of the oxide vapor deposition material do not correspond one to one.

そして、酸化インジウムを主成分としかつスズを含む本発明に係る酸化物蒸着材からは、真空蒸着の際、主にIn23-X、SnO2-xの形態で蒸発粒子が発生し、チャンバー内の酸素と反応しながら酸素を吸収し、基板に到達して成膜される。また、蒸発粒子の持っているエネルギーは、基板に到達して基板上に堆積する際、物質移動の駆動源となっており、膜の緻密化と基板に対する付着力増強に貢献している。そして、酸化物蒸着材のL値が小さいほど酸化物蒸着材内の酸素が少ないことから、蒸発粒子の酸素欠損が大きくなるため、真空槽へ多くの酸素を導入して基板に到達する前に酸化反応させる割合を多くする必要がある。しかし、蒸発粒子は、飛行中に酸化することでエネルギーが消費されるため、酸素を多く導入した反応性成膜では、緻密でかつ基板に対する密着力の高い膜を得ることが難しくなる。逆に、導入する酸素ガスを極力少なくした反応性蒸着成膜の方が、高密着で高密度の膜を得易く、本発明の酸化物蒸着材はこれを実現することができる。 And, from the oxide vapor deposition material according to the present invention containing indium oxide as a main component and containing tin, during vacuum deposition, evaporated particles are mainly generated in the form of In 2 O 3-x and SnO 2-x , Oxygen is absorbed while reacting with oxygen in the chamber and reaches the substrate to form a film. Further, when the evaporated particles reach the substrate and deposit on the substrate, the energy becomes a driving source for mass transfer, contributing to densification of the film and enhancement of adhesion to the substrate. Since the smaller the L * value of the oxide vapor deposition material, the less oxygen in the oxide vapor deposition material, the greater the oxygen deficiency of the evaporated particles, so that a large amount of oxygen is introduced into the vacuum chamber before reaching the substrate. It is necessary to increase the rate of oxidation reaction. However, since the evaporated particles consume energy by being oxidized during the flight, it is difficult to obtain a dense film having high adhesion to the substrate in the reactive film in which a large amount of oxygen is introduced. On the contrary, the reactive vapor deposition film forming the oxygen gas to be introduced as much as possible is easier to obtain a highly adherent and high density film, and the oxide vapor deposition material of the present invention can realize this.

ここで、上記L値が54未満であると、酸化物蒸着材中の酸素量が少な過ぎるため、低抵抗で透明度の高い膜を得るための成膜真空槽へ導入される最適酸素導入量は多くなり、膜と酸化物蒸着材の組成差が大きくなるだけでなく、成膜中に基板へのダメージが大きくなる等の問題が生じてしまうため好ましくない。逆に、上記L値が75を超えると、酸化物蒸着材中に含まれる酸素量が多過ぎるため、酸化物蒸着材から膜に供給される酸素が多くなり過ぎる結果、最適な酸素欠損を持つ高い導電性の膜が得られなくなる。 Here, when the L * value is less than 54, the amount of oxygen in the oxide vapor deposition material is too small, so the optimum amount of oxygen introduced into the film formation vacuum chamber for obtaining a film with low resistance and high transparency. This is not preferable because not only the compositional difference between the film and the oxide vapor deposition material increases, but also problems such as increased damage to the substrate occur during film formation. On the other hand, if the L * value exceeds 75, the amount of oxygen contained in the oxide deposition material is too large, and as a result, too much oxygen is supplied from the oxide deposition material to the film. It is impossible to obtain a highly conductive film.

ところで、スパッタリング法に係る発明を開示する特開平5−112866号公報(参考公報)には、スズを含有する酸化インジウム焼結体のスパッタターゲットが紹介されているが、参考公報に記載されている製法に従って製造されたスズを含有する酸化インジウム焼結体のL値は38〜49と低い値(比較例3参照)である。従って、このような焼結体を酸化物蒸着材として用いると、最適な膜を得るための成膜真空槽へ導入する酸素導入量を多くする必要があることから、上述した問題が生じてしまうため、本発明の目的を達成するものではなかった。 By the way, JP-A-5-112866 (reference gazette) disclosing an invention related to the sputtering method introduces a sputtering target of an indium oxide sintered body containing tin, but is described in the reference gazette. The L * value of the indium oxide sintered body containing tin produced according to the production method is a low value of 38 to 49 (see Comparative Example 3). Therefore, when such a sintered body is used as an oxide vapor deposition material, it is necessary to increase the amount of oxygen introduced into a film formation vacuum chamber for obtaining an optimum film, and thus the above-described problem occurs. Therefore, the object of the present invention has not been achieved.

ここで、上記L値が54〜75である本発明の蒸着用酸化物焼結体(酸化物蒸着材)は、従来のITO焼結体を製造する技術では製造することができない。真空蒸着法で大量生産に使用するのに適した適度の酸素量(あるいは酸素欠損量)を有する酸化物蒸着材は、以下のような方法で製造することができる。 Here, the oxide sintered body for vapor deposition (oxide vapor deposition material) of the present invention having the L * value of 54 to 75 cannot be produced by a conventional technique for producing an ITO sintered body. An oxide vapor deposition material having an appropriate amount of oxygen (or oxygen deficiency) suitable for use in mass production by a vacuum vapor deposition method can be produced by the following method.

すなわち、酸化インジウムを主成分としかつスズを含む酸化物焼結体は、酸化インジウムと酸化スズの各粉末を原料とし、これ等を混合しかつ成型して圧粉体を形成し、高温に焼成して、反応・焼結させて製造することができる。酸化インジウムと酸化スズの各粉末は特別なものでなく、従来から用いられている酸化物焼結体用原料でよい。また、使用する粉末の平均粒径は1.5μm以下であり、好ましくは0.1〜1.1μmである。   That is, an oxide sintered body containing indium oxide as a main component and containing tin is made of indium oxide and tin oxide powders, mixed and molded to form a green compact, and fired at a high temperature. Then, it can be produced by reaction and sintering. Each powder of indium oxide and tin oxide is not special, and may be a conventionally used raw material for an oxide sintered body. Moreover, the average particle diameter of the powder used is 1.5 micrometers or less, Preferably it is 0.1-1.1 micrometers.

上記酸化物焼結体を製造する際の一般的な原料粉末の混合法として、ボールミル混合法が利用されているが、本発明の焼結体を製造する場合にも有効である。ボールミルは、セラミック等の硬質のボール(ボール径10〜30mm)と材料の粉を容器に入れて回転させることによって、材料をすりつぶしながら混合して微細な混合粉末を作る装置である。ボールミル(粉砕メディア)は、缶体として、鋼、ステンレス、ナイロン等があり、内張りとして、アルミナ、磁気質、天然ケイ石、ゴム、ウレタン等を用いる。ボールは、アルミナを主成分とするアルミナボール、天然ケイ石、鉄芯入りナイロンボール、ジルコニアボール等がある。湿式と乾式の粉砕方法があり、焼結体を得るための原料粉末の混合・粉砕に広範に利用されている。   A ball mill mixing method is used as a general raw material powder mixing method for manufacturing the oxide sintered body, but it is also effective in manufacturing the sintered body of the present invention. The ball mill is a device for making a fine mixed powder by grinding and mixing materials by putting a hard ball (ball diameter: 10 to 30 mm) such as ceramic and powder of the material into a container and rotating the container. Ball mills (grinding media) include steel, stainless steel, nylon, etc. as can bodies, and alumina, magnetic material, natural silica, rubber, urethane, etc. are used as linings. Examples of the balls include alumina balls containing alumina as a main component, natural silica, nylon balls with iron core, and zirconia balls. There are wet and dry pulverization methods, and they are widely used for mixing and pulverizing raw material powders to obtain sintered bodies.

また、ボールミル混合以外の方法としては、ビーズミル法やジェットミル法も有効である。特に、酸化スズ粉末は硬質材料であるため、大きな平均粒径の原料を用いる場合や、短時間で粉砕混合する必要がある場合は非常に有効である。ビーズミル法とは、ベッセルと呼ばれる容器の中に、ビーズ(粉砕メディア、ビーズ径0.005〜3mm)を70〜90%充填しておき、ベッセル中央の回転軸を周速7〜15m/秒で回転させることによりビーズに運動を与える。ここに、原料粉末等の被粉砕物を液体に混ぜたスラリーをポンプで送り込み、ビーズを衝突させることによって微粉砕・分散させる。ビーズミルの場合、被粉砕物に合わせてビーズ径を小さくすれば効率が上がる。一般的に、ビーズミルはボールミルの1千倍近い加速度で微粉砕と混合を実現することができる。このような仕組みのビーズミルは、様々な名称で呼ばれており、例えば、サンドグラインダー、アクアマイザイー、アトライター、パールミル、アベックスミル、ウルトラビスコミル、ダイノーミル、アジテーターミル、コボールミル、スパイクミル、SCミル等が知られており、本発明においてはいずれも使用できる。また、ジェットミルとは、ノズルから音速前後で噴射される高圧の空気あるいは蒸気を、超高速ジェットとして原料粉末等の被粉砕物に対し衝突させ、粒子同士の衝撃によって微粒子に粉砕する方法である。   Further, as a method other than the ball mill mixing, a bead mill method or a jet mill method is also effective. In particular, since tin oxide powder is a hard material, it is very effective when a raw material having a large average particle diameter is used or when it is necessary to pulverize and mix in a short time. In the bead mill method, 70-90% of beads (crushed media, bead diameter: 0.005-3 mm) are filled in a container called a vessel, and the rotation axis at the center of the vessel is set at a peripheral speed of 7-15 m / sec. Giving motion to the beads by rotating. Here, a slurry in which a material to be crushed, such as raw material powder, is mixed with a liquid is fed by a pump and finely pulverized and dispersed by colliding beads. In the case of a bead mill, efficiency can be improved by reducing the bead diameter according to the object to be crushed. In general, a bead mill can achieve pulverization and mixing at an acceleration close to 1,000 times that of a ball mill. The bead mill with such a structure is called by various names. For example, sand grinder, aquamizer, attritor, pearl mill, avex mill, ultra visco mill, dyno mill, agitator mill, coball mill, spike mill, SC mill Etc. are known, and any of them can be used in the present invention. In addition, the jet mill is a method in which high-pressure air or steam injected from a nozzle at around the sonic velocity is collided with an object to be crushed such as raw material powder as an ultra-high speed jet, and pulverized into fine particles by impact between particles. .

上述したように、まず、酸化インジウム粉末と酸化スズ粉末を所望の割合でボールミル用ポットに投入し、乾式あるいは湿式混合して混合粉末を調製する。そして、本発明の酸化物焼結体を得るためには、上記原料粉末の配合割合について、インジウムとスズの含有量がSn/In原子数比で0.001〜0.614となるように調製する。   As described above, first, indium oxide powder and tin oxide powder are put into a ball mill pot at a desired ratio, and mixed powder is prepared by dry or wet mixing. And in order to obtain the oxide sintered compact of this invention, it prepares so that content of an indium and tin may become 0.001-0.614 by Sn / In atomic ratio about the mixture ratio of the said raw material powder. To do.

こうして調製された混合粉末に、水および分散材・バインダー等の有機物を加えてスラリーを製造する。スラリーの粘度は150〜5000cPが好ましく、より好ましくは400〜3000cPである。   A slurry is produced by adding water and an organic substance such as a dispersing agent / binder to the mixed powder thus prepared. The viscosity of the slurry is preferably 150 to 5000 cP, more preferably 400 to 3000 cP.

このようにして得られたスラリーを用い、スプレードライヤー等で乾燥させることにより造粒粉末を得ることができる。しかし、より均一で焼結性の良好な焼結体を得るためには、以下のビーズミルによる粉砕混合処理を行うと更に効果的である。   A granulated powder can be obtained by drying the slurry thus obtained with a spray dryer or the like. However, in order to obtain a sintered body that is more uniform and has good sinterability, it is more effective to perform pulverization and mixing with the following bead mill.

すなわち、得られたスラリーとビーズとをビーズミルの容器に入れて粉砕混合処理する。ビーズ材としては、ジルコニア、アルミナ等を挙げることができるが、耐摩耗性の点でジルコニアが好ましい。ビーズの直径は、粉砕効率の点から1〜3mmが好ましい。パス数は1回でもよいが、2回以上が好ましく、5回以下で十分な効果が得られる。また、処理時間としては、好ましくは10時間以下、更に好ましくは4〜8時間である。   That is, the obtained slurry and beads are placed in a bead mill container and pulverized and mixed. Examples of the bead material include zirconia and alumina. Zirconia is preferable in terms of wear resistance. The diameter of the beads is preferably 1 to 3 mm from the viewpoint of grinding efficiency. The number of passes may be one, but it is preferably two or more, and a sufficient effect can be obtained by five or less. Moreover, as processing time, Preferably it is 10 hours or less, More preferably, it is 4 to 8 hours.

このような処理を行うことによって、スラリー中における酸化インジウム粉末と酸化スズ粉末の粉砕・混合が良好となる。   By performing such treatment, the pulverization and mixing of the indium oxide powder and the tin oxide powder in the slurry are improved.

次に、このようにして処理されたスラリーを用いて成形を行う。成形方法としては、鋳込み成形法、プレス成形法のいずれも採用することができる。鋳込み成形を行う場合、得られたスラリーを鋳込み成型用の型に注入して成形体を製造する。ビーズミルの処理から鋳込みまでの時間は10時間以内とするのが好ましい。こうすることにより得られたスラリーがチクソトロピー性を示すことを防ぐことができるからである。また、プレス成形を行う場合、得られたスラリーにポリビニルアルコール等のバインダー等を添加し、必要に応じて水分調節を行ってからスプレードライヤー等で乾燥させて造粒する。得られた造粒粉末を所定の大きさの金型に充填し、その後、プレス機を用いて9.8〜98MPa(100〜1000kg/cm2)の圧力で1軸加圧成形を行い成形体とする。このときの成形体の厚みは、この後の焼成工程による収縮を考慮して、所定の大きさの焼結体を得ることができる厚さに設定することが好ましい。 Next, it shape | molds using the slurry processed in this way. As the molding method, either a cast molding method or a press molding method can be employed. When cast molding is performed, the obtained slurry is injected into a casting mold to produce a molded body. The time from bead mill treatment to casting is preferably within 10 hours. It is because it can prevent that the slurry obtained by doing in this way shows thixotropic property. Moreover, when performing press molding, binders, such as polyvinyl alcohol, are added to the obtained slurry, moisture adjustment is performed as needed, and it is dried with a spray dryer etc. and granulated. The obtained granulated powder is filled into a mold having a predetermined size, and then subjected to uniaxial pressure molding at a pressure of 9.8 to 98 MPa (100 to 1000 kg / cm 2 ) using a press machine. And The thickness of the molded body at this time is preferably set to a thickness capable of obtaining a sintered body having a predetermined size in consideration of shrinkage caused by the subsequent firing step.

上述の混合粉末から作製した成形体を用いれば、常圧焼結法で本発明の酸化物焼結体を得ることができる。尚、常圧焼結法で焼成して酸化物焼結体を得る場合には以下のようになる。   If the molded object produced from the above-mentioned mixed powder is used, the oxide sintered compact of this invention can be obtained by a normal pressure sintering method. In addition, when baking by an atmospheric pressure sintering method and obtaining an oxide sintered compact, it is as follows.

まず、得られた成形体に対して300〜500℃の温度で5〜20時間程度加熱し、脱バインダー処理を行う。その後、昇温させて焼結を行うが、昇温速度は、効果的に内部の空孔を外部へ放出させるため、150℃/時間以下、好ましくは100℃/時間以下、更に好ましくは80℃/時間以下とする。焼結温度は、1150〜1300℃、好ましくは、1200〜1250℃とし、焼結時間は1〜20時間、好ましくは2〜5時間焼結する。脱バインダー処理〜焼結工程は、炉内容積0.1m3当たり5リットル/分以上の割合の酸素を炉に導入して行うことが重要である。上記焼結工程において酸素を導入して行うのは、焼結体は1150℃以上で酸素を解離し易く、過剰の還元状態に進み易いので、これを阻止するためである。一度この工程で酸素欠損が過剰に導入された焼結体が形成されてしまうと、その後に続く酸素量調整工程で焼結体の酸素欠損量を最適に調整することが困難になってしまう。焼成温度が1300℃を超えた温度で行うと、上述したような酸素雰囲気下でも酸素の解離が激しくなり、過剰の還元状態に進み易くなるため、同様の理由で好ましくない。また、焼成温度が1150℃未満では、温度が低過ぎて焼結に乏しく、十分な強度の焼結体を得ることができないため好ましくない。 First, the obtained molded body is heated at a temperature of 300 to 500 ° C. for about 5 to 20 hours to perform a binder removal treatment. Thereafter, sintering is performed by raising the temperature, but the rate of temperature rise is 150 ° C./hour or less, preferably 100 ° C./hour or less, more preferably 80 ° C., in order to effectively release internal vacancies to the outside. / Hour or less. The sintering temperature is 1150 to 1300 ° C, preferably 1200 to 1250 ° C, and the sintering time is 1 to 20 hours, preferably 2 to 5 hours. It is important that the binder removal process to the sintering process be performed by introducing oxygen into the furnace at a rate of 5 liters / minute or more per 0.1 m 3 of the furnace volume. The reason why oxygen is introduced in the sintering step is to prevent the sintered body from dissociating oxygen at 1150 ° C. or higher and easily proceeding to an excessive reduction state. Once a sintered body into which oxygen deficiency is excessively introduced is formed in this step, it becomes difficult to optimally adjust the oxygen deficiency amount of the sintered body in the subsequent oxygen amount adjusting step. If the calcination temperature is higher than 1300 ° C., oxygen dissociation becomes intense even in the oxygen atmosphere as described above, and it is easy to proceed to an excessive reduction state, which is not preferable for the same reason. Moreover, if the firing temperature is less than 1150 ° C., the temperature is too low and the sintering is poor, and a sintered body with sufficient strength cannot be obtained.

焼結後、焼結体の酸素量調整工程を行う。酸素量調整工程は、900〜1100℃、好ましくは950〜1050℃の加熱温度で行い、加熱時間は10時間以上であることが重要である。上記酸素量調整工程の加熱温度までの冷却は、酸素導入を継続しながら行い、0.1〜20℃/分、好ましくは2〜10℃/分の範囲の降温速度で降温する。   After sintering, an oxygen content adjusting step of the sintered body is performed. It is important that the oxygen amount adjusting step is performed at a heating temperature of 900 to 1100 ° C., preferably 950 to 1050 ° C., and the heating time is 10 hours or more. Cooling to the heating temperature in the oxygen amount adjusting step is performed while continuing the introduction of oxygen, and the temperature is decreased at a temperature decreasing rate of 0.1 to 20 ° C./min, preferably 2 to 10 ° C./min.

焼結体の酸素量調整工程では、炉内雰囲気の制御も特に重要であり、炉への導入ガスは酸素とアルゴンの混合比(体積比)をO/Ar=40/60〜90/10の範囲内で制御して、炉内容積0.1m3当たり5リットル/分以上の割合で炉内に導入することが重要である。このような温度と雰囲気、時間を精密に調整することで、酸化物蒸着材として使用する際に有用な本発明で規定する上記L値を有する焼結体を得ることができる。 In the process of adjusting the amount of oxygen in the sintered body, it is particularly important to control the atmosphere in the furnace, and the gas introduced into the furnace has a mixing ratio (volume ratio) of oxygen and argon of O 2 / Ar = 40/60 to 90/10. Therefore, it is important to control the flow rate within a range of 5 liters / minute or more per 0.1 m 3 of the furnace volume. By precisely adjusting the temperature, atmosphere, and time, a sintered body having the L * value defined in the present invention, which is useful when used as an oxide deposition material, can be obtained.

上記酸素量調整工程における加熱温度は、900℃未満では、酸素の解離・吸着の反応が鈍くて焼結体内部まで均一な還元処理に時間を要してしまうため好ましくなく、1100℃を超えた温度で行うと酸素の解離が激し過ぎて、上記雰囲気による最適な還元処理が不可能となってしまうため好ましくない。また、酸素量調整工程の加熱温度が10時間未満であると、焼結体内部まで均一な還元処理が行えないため好ましくない。また、炉への導入ガスの混合比(O/Ar)が40/60未満であると、酸素の解離による還元化が優勢となり過ぎて、L値が54未満の焼結体となってしまうため好ましくない。逆に、炉への導入ガスの混合比(O/Ar)が90/10を超えると、酸化が優勢となり過ぎて、L値が75を超えた焼結体となってしまうため好ましくない。 When the heating temperature in the oxygen amount adjusting step is less than 900 ° C., the oxygen dissociation / adsorption reaction is slow, and it takes time for uniform reduction treatment to the inside of the sintered body. If it is performed at a temperature, the dissociation of oxygen is too intense, and an optimal reduction treatment in the above atmosphere becomes impossible. Further, if the heating temperature in the oxygen amount adjusting step is less than 10 hours, it is not preferable because uniform reduction treatment cannot be performed to the inside of the sintered body. Further, if the mixing ratio of the gas introduced into the furnace (O 2 / Ar) is less than 40/60, the reduction due to the dissociation of oxygen becomes too dominant, and the sintered body has an L * value of less than 54. Therefore, it is not preferable. On the other hand, if the mixing ratio of the gas introduced into the furnace (O 2 / Ar) exceeds 90/10, the oxidation becomes too dominant and the sintered body having an L * value exceeding 75 is not preferable. .

本発明の酸化物蒸着材を得るためには、上述したように酸素ガスをアルゴンガスで精密に希釈させたガス雰囲気下、すなわち、酸素量が精密に制御された雰囲気下にておいてアニール処理することが重要であるが、雰囲気ガスは必ずしも酸素とアルゴンとの混合ガスである必要はない。例えば、アルゴンの代わりにヘリウムや窒素等の他の不活性ガスを用いても有効である。また、アルゴンの代わりに大気を用いる場合でも、その全体の混合ガス中で酸素含有量が精密に一定制御されていれば有効である。しかし、従来の技術のように、大気にて焼成している炉に酸素ガスを導入するのでは、炉中の雰囲気の酸素含有量を精密に制御できないため有効ではない。本発明で提案しているように、酸素ガスの含有割合が精密に制御された不活性ガスとの混合ガスを導入して炉内を満たすことにより、最適な還元状態を有する酸化物蒸着材を得ることができる。   In order to obtain the oxide vapor deposition material of the present invention, as described above, annealing treatment is performed in a gas atmosphere in which oxygen gas is precisely diluted with argon gas, that is, in an atmosphere in which the amount of oxygen is precisely controlled. It is important that the atmosphere gas is not necessarily a mixed gas of oxygen and argon. For example, it is effective to use other inert gas such as helium or nitrogen instead of argon. Further, even when the atmosphere is used instead of argon, it is effective if the oxygen content is precisely and constantly controlled in the entire mixed gas. However, it is not effective to introduce oxygen gas into a furnace fired in the atmosphere as in the prior art because the oxygen content of the atmosphere in the furnace cannot be precisely controlled. As proposed in the present invention, an oxide vapor deposition material having an optimal reduced state is obtained by introducing a mixed gas with an inert gas whose oxygen gas content is precisely controlled to fill the furnace. Can be obtained.

そして、酸素量調整工程を終えた後は10℃/分で室温まで降温し、室温にて炉から取り出すことができる。得られた焼結体は、所定の寸法に研削等により加工して酸化物蒸着材とすることができる。また、焼結の収縮率も考慮して、焼成後に所定の寸法となるような大きさの成形体を用いれば、焼結後の研削加工を行わなくても酸化物蒸着材として利用することができる。   And after finishing an oxygen amount adjustment process, it can cool to room temperature at 10 degree-C / min, and can take out from a furnace at room temperature. The obtained sintered body can be processed into a predetermined dimension by grinding or the like to obtain an oxide vapor deposition material. Also, considering the shrinkage rate of sintering, if a molded body having a predetermined size after firing is used, it can be used as an oxide deposition material without performing grinding after sintering. it can.

ところで、スパッタリングターゲットの製造法の一つで、高密度の焼結体を得る方法としてホットプレス法が有効であることが知られている。しかし、本発明の材料にホットプレス法を適用した場合、L値が40以下の還元性が強過ぎる焼結体しか得られない。このような焼結体では本発明の目的を達成することはできない。 Incidentally, it is known that the hot press method is effective as a method for obtaining a high-density sintered body as one of the methods for producing a sputtering target. However, when the hot pressing method is applied to the material of the present invention, only a sintered body having an L * value of 40 or less and an excessively strong reducing property can be obtained. With such a sintered body, the object of the present invention cannot be achieved.

また、本発明の酸化物蒸着材については、例えば、直径10〜50mmで高さ10〜50mmの円柱形状のタブレット若しくはペレット形状で使用することも可能であるが、このような焼結体を粉砕した1〜10mm程度の顆粒形状でも利用することもできる。   In addition, the oxide vapor deposition material of the present invention can be used, for example, in the form of a cylindrical tablet or pellet having a diameter of 10 to 50 mm and a height of 10 to 50 mm. Such a sintered body is pulverized. It can also be used in the form of granules of about 1 to 10 mm.

また、本発明に係る酸化物蒸着材については、インジウム、スズ、酸素以外の他の元素として、例えば、タングステン、モリブデン、亜鉛、カドミウム、セリウム等が含まれていても、本発明の特性が損なわれないことを条件に許される。但し、金属イオンの中でも、その酸化物の蒸気圧が酸化インジウムや酸化スズの蒸気圧と較べて極めて高い場合には、各種真空蒸着法で蒸発させることが困難となるため含有されない方が好ましい。例えば、アルミニウム、チタン、シリコンのような金属は、これ等酸化物の蒸気圧が酸化インジウムや酸化スズと較べて極めて高いため、酸化物蒸着材に含ませた場合、酸化インジウムや酸化スズと共に蒸発させることが困難となる。このため、酸化物蒸着材に残存して高濃度化し、最終的には酸化インジウムと酸化スズの蒸発の妨げになる等の悪影響を及ぼすことから含有させてはならない。   In addition, for the oxide vapor deposition material according to the present invention, even if, for example, tungsten, molybdenum, zinc, cadmium, cerium, or the like is included as an element other than indium, tin, and oxygen, the characteristics of the present invention are impaired. It is allowed on condition that it is not possible. However, among metal ions, when the vapor pressure of the oxide is extremely higher than the vapor pressure of indium oxide or tin oxide, it is difficult to evaporate by various vacuum deposition methods, so it is preferable that the oxide is not contained. For example, metals such as aluminum, titanium, and silicon vaporize together with indium oxide and tin oxide when included in an oxide deposition material because the vapor pressure of these oxides is extremely high compared to indium oxide and tin oxide. It becomes difficult to make it. For this reason, it must not be contained because it remains in the oxide vapor deposition material and has a high concentration and ultimately has an adverse effect on the evaporation of indium oxide and tin oxide.

そして、本発明の酸化物蒸着材を適用して各種真空蒸着法により透明導電膜を製造すると、上記酸化物蒸着材内の酸素含有量が最適に調整されているため、成膜真空槽への酸素導入量が少なくても最適な酸素欠損の透明導電膜を得ることができる。従って、透明導電膜と酸化物蒸着材間の組成差が小さく、酸素導入量の変動に伴う特性バラツキの影響も受け難い利点を有する。   And when applying the oxide vapor deposition material of the present invention to produce a transparent conductive film by various vacuum vapor deposition methods, the oxygen content in the oxide vapor deposition material is optimally adjusted. Even if the amount of oxygen introduced is small, an optimal oxygen deficient transparent conductive film can be obtained. Therefore, there is an advantage that the compositional difference between the transparent conductive film and the oxide vapor deposition material is small, and it is difficult to be affected by the characteristic variation accompanying the variation of the oxygen introduction amount.

(2)透明導電膜
酸化インジウムを主成分としスズを含む酸化物焼結体により構成され、スズの含有量がSn/In原子数比で0.001〜0.614で、CIE1976表色系におけるL値が54〜75である本発明に係る酸化物蒸着材を適用し、電子ビーム蒸着法、イオンプレーティング法や高密度プラズマアシスト蒸着法等の各種真空蒸着法により、スズを含有する酸化インジウムの結晶膜(透明導電膜)を製造することができる。
(2) Transparent conductive film It is composed of an oxide sintered body containing indium oxide as a main component and containing tin, and the tin content is 0.001 to 0.614 in terms of the Sn / In atomic ratio, in the CIE 1976 color system. Applying the oxide vapor deposition material according to the present invention having an L * value of 54 to 75, oxidation containing tin is performed by various vacuum vapor deposition methods such as an electron beam vapor deposition method, an ion plating method, and a high density plasma assisted vapor deposition method. An indium crystal film (transparent conductive film) can be manufactured.

結晶膜とすることで、スズが酸化インジウムのインジウムサイトに置換固溶されたときに高い移動度を発揮させることができる。上記結晶膜(透明導電膜)は、成膜中の基板を180℃以上に加熱することで得られるが、基板を加熱しない非加熱の成膜にて得られた膜を180℃以上でアニールする方法でも得ることができる。   By using a crystalline film, high mobility can be exhibited when tin is substituted and dissolved in the indium sites of indium oxide. The crystal film (transparent conductive film) can be obtained by heating the substrate being formed to 180 ° C. or higher, but the film obtained by non-heating film formation without heating the substrate is annealed at 180 ° C. or higher. It can also be obtained by the method.

そして、上記結晶性の透明導電膜は、膜と酸化物蒸着材との組成差が小さい酸化物蒸着材から製造できるため、Sn/In原子数比で0.001〜0.614のスズを含有する酸化インジウム膜である。膜のスズ含有量(Sn/In原子数比)が0.001未満では、キャリア濃度増加の効果(すなわち移動度増加の効果)が小さくて低抵抗の膜を得ることができない。また、0.614を超えると、膜中のスズ量が多過ぎて電子移動の際の中性不純物散乱が大きくなってしまい、移動度が低下する影響を受けてしまい低抵抗の膜が得られない。更に高いキャリア濃度の透明導電膜を得るためには、より好ましいスズの含有量としてSn/In原子数比で0.040〜0.163であることと、膜が結晶膜であることである。このような組成範囲の結晶膜を得ることで、キャリア濃度が7.2×1020cm-3以上で、比抵抗が3.5×10-4Ωcm以下の透明導電膜を実現することができる。また、上記透明導電膜は、波長400〜800nmにおける膜自体の平均透過率は90%以上と非常に高い。 And since the said crystalline transparent conductive film can be manufactured from an oxide vapor deposition material with a small composition difference of a film | membrane and an oxide vapor deposition material, 0.001-0.614 tin is contained by Sn / In atomic ratio. An indium oxide film. When the tin content (Sn / In atomic ratio) of the film is less than 0.001, the effect of increasing the carrier concentration (that is, the effect of increasing the mobility) is small and a low resistance film cannot be obtained. On the other hand, if it exceeds 0.614, the amount of tin in the film is too large, and the scattering of neutral impurities during electron transfer becomes large, and the mobility is lowered, resulting in a low resistance film. Absent. In order to obtain a transparent conductive film having a higher carrier concentration, the more preferable tin content is 0.040 to 0.163 in terms of the Sn / In atomic ratio, and the film is a crystalline film. By obtaining a crystal film having such a composition range, a transparent conductive film having a carrier concentration of 7.2 × 10 20 cm −3 or more and a specific resistance of 3.5 × 10 −4 Ωcm or less can be realized. . The transparent conductive film has an extremely high average transmittance of 90% or more at a wavelength of 400 to 800 nm.

以下、本発明の実施例について具体的に説明する。   Examples of the present invention will be specifically described below.

[実施例1〜4]
酸化物蒸着材の作製
平均粒径が0.8μmのIn粉末、および、平均粒径が1μmのSnO粉末を原料粉末とし、これ等のIn粉末とSnO粉末を、Sn/Inの原子数比が0.048となるような割合で調合し、かつ、樹脂製ポットに入れ、湿式ボールミルで混合した。この際、硬質ZrO2ボールを用い、混合時間を20時間とした。
[Examples 1 to 4]
Preparation of oxide vapor deposition material In 2 O 3 powder having an average particle diameter of 0.8 μm and SnO 2 powder having an average particle diameter of 1 μm as raw material powder, these In 2 O 3 powder and SnO 2 powder were They were blended at a ratio such that the Sn / In atomic ratio was 0.048, placed in a resin pot, and mixed by a wet ball mill. At this time, hard ZrO 2 balls were used, and the mixing time was 20 hours.

混合後、スラリーを取り出し、得られたスラリーにポリビニルアルコールのバインダーを添加し、スプレードライヤー等で乾燥させて造粒した。   After mixing, the slurry was taken out, and a polyvinyl alcohol binder was added to the resulting slurry, which was dried with a spray dryer or the like and granulated.

この造粒物を用いて、98MPa(1ton/cm2)の圧力で1軸加圧成形を行なって直径30mm、厚み40mmの円柱形状の成形体を得た。 Using this granulated product, uniaxial pressure molding was performed at a pressure of 98 MPa (1 ton / cm 2 ) to obtain a cylindrical molded body having a diameter of 30 mm and a thickness of 40 mm.

次に、得られた成形体を以下のようにして焼結した。   Next, the obtained molded body was sintered as follows.

すなわち、焼結炉内の大気中、300℃の温度条件で10時間程度加熱して成形体の脱バインダー処理を行った後、炉内容積0.1m3当たり5リットル/分の割合で酸素を導入する雰囲気で、1℃/分の速度で昇温し、1250℃で2時間焼結した(常圧焼結法)。この際、焼結後における冷却の際にも、酸素を導入しながら、1000℃までを10℃/分で降温した。 That is, after debinding treatment of the molded body by heating for about 10 hours at 300 ° C. in the atmosphere in the sintering furnace, oxygen is supplied at a rate of 5 liters / minute per 0.1 m 3 of the furnace volume. In the atmosphere to be introduced, the temperature was increased at a rate of 1 ° C./min and sintered at 1250 ° C. for 2 hours (atmospheric pressure sintering method). At this time, the temperature was lowered to 1000 ° C. at a rate of 10 ° C./min while introducing oxygen during cooling after sintering.

次に、導入ガスを酸素とアルゴンの混合ガスに切り替え、1000℃にて15時間加熱保持(以後、この工程を焼結体酸素量調整工程と称する)した後、10℃/分で室温まで降温した。   Next, the introduced gas is switched to a mixed gas of oxygen and argon, heated and held at 1000 ° C. for 15 hours (hereinafter, this step is referred to as a sintered body oxygen content adjusting step), and then the temperature is lowered to room temperature at 10 ° C./min. did.

そして、上記混合ガスの酸素とアルゴンの混合割合を変化させることで種々のL値の酸化物焼結体(酸化物蒸着材)を得ることができた。 And the oxide sintered compact (oxide vapor deposition material) of various L * value was able to be obtained by changing the mixing ratio of oxygen of the said mixed gas, and argon.

すなわち、実施例1に係る酸化物蒸着材は酸素ガス/アルゴンガス流量比(すなわち体積比)が「40/60」の条件で製造され、実施例2に係る酸化物蒸着材は上記体積比が「60/40」の条件で製造され、実施例3に係る酸化物蒸着材は上記体積比が「80/20」の条件で製造され、および、実施例4に係る酸化物蒸着材は上記体積比が「90/10」の条件で製造されている。   That is, the oxide vapor deposition material according to Example 1 is manufactured under the condition that the oxygen gas / argon gas flow rate ratio (that is, the volume ratio) is “40/60”, and the oxide vapor deposition material according to Example 2 has the above volume ratio. Manufactured under the condition of “60/40”, the oxide vapor deposition material according to Example 3 is produced under the condition that the volume ratio is “80/20”, and the oxide vapor deposition material according to Example 4 has the above volume. It is manufactured under the condition of the ratio “90/10”.

尚、得られた酸化物焼結体(酸化物蒸着材)の体積と重量を測定して密度を算出したところ、4.8〜5.7g/cm3であった。また、上記酸化物焼結体の破断面の走査型電子顕微鏡による観察から、酸化物焼結体中の100個の結晶粒径の平均値を求めたところ、何れも3〜10μmであった。また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計で表面抵抗を測定して比抵抗を算出したところ、1kΩcm以下であった。更に、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成を有することが分った。また、焼結体表面と焼結体内部について、色差計(BYK−GardnerGmbH社製スペクトロガイド、E−6834)を用いて、CIE1976表色系におけるL値を測定したところ、殆んど同じ値を示した。 When the density was calculated by measuring the volume and weight of the obtained oxide sintered body (oxide vapor deposition material), it was 4.8 to 5.7 g / cm 3 . Moreover, when the average value of 100 crystal grain diameters in an oxide sintered compact was calculated | required from the observation with the scanning electron microscope of the fracture surface of the said oxide sintered compact, all were 3-10 micrometers. Further, the specific resistance was calculated by measuring the surface resistance with respect to the electron beam irradiated surface of the oxide sintered body with a four-end needle method resistivity meter, and it was 1 kΩcm or less. Furthermore, composition analysis was performed on all oxide sintered bodies by ICP emission analysis, and it was found that they had a charged composition. Further, when the L * value in the CIE1976 color system was measured for the sintered body surface and the inside of the sintered body using a color difference meter (Spectroguide manufactured by BYK-Gardner GmbH, E-6834), almost the same value was obtained. showed that.

焼結体酸素量調整工程において導入した混合ガスの酸素ガス/アルゴンガス流量比(すなわち体積比)と、得られた酸化物焼結体(酸化物蒸着材)のL値を表1に示す。 Table 1 shows the oxygen gas / argon gas flow rate ratio (that is, the volume ratio) of the mixed gas introduced in the sintered body oxygen content adjusting step and the L * value of the obtained oxide sintered body (oxide vapor deposition material). .

Figure 0005224073
Figure 0005224073

[透明導電膜の作製と膜特性評価、成膜評価]
(1)透明導電膜の作製には磁場偏向型電子ビーム蒸着装置を用いた。
[Preparation of transparent conductive film, evaluation of film characteristics, evaluation of film formation]
(1) A magnetic field deflection type electron beam evaporation apparatus was used for the production of the transparent conductive film.

真空排気系はロータリーポンプによる低真空排気系とクライオポンプによる高真空排気系から構成されており、5×10-5Paまで排気することが可能である。電子ビームはフィラメントの加熱により発生し、カソード−アノード間に印加された電界によって加速され、永久磁石の磁場中で曲げられた後、タングステン製の坩堝内に設置された酸化物蒸着材に照射される。電子ビームの強度はフィラメントへの印加電圧を変化させることで調整できる。また、カソード−アノード間の加速電圧を変化させるとビームの照射位置を変化させることができる。 The evacuation system is composed of a low evacuation system using a rotary pump and a high evacuation system using a cryopump, and can evacuate up to 5 × 10 −5 Pa. The electron beam is generated by heating the filament, accelerated by an electric field applied between the cathode and anode, bent in the magnetic field of a permanent magnet, and then irradiated onto an oxide deposition material installed in a tungsten crucible. The The intensity of the electron beam can be adjusted by changing the voltage applied to the filament. Further, the irradiation position of the beam can be changed by changing the acceleration voltage between the cathode and the anode.

成膜は以下の条件で実施した。   Film formation was performed under the following conditions.

真空室内にArガスとOガスを導入して圧力を1.5×10-2Paに保持した。この際、真空室内に導入するArガスとOガスの混合割合を変化させて得られる透明導電膜の特性を評価した。タングステン製坩堝に実施例1〜4の円柱状酸化物蒸着材を立てて配置し、酸化物蒸着材の円形面の中央部に電子ビームを照射して、厚み1.1mmのコーニング7059ガラス基板上に膜厚200nmの透明導電膜を形成した。電子銃の設定電圧は9kV、電流値は150mAとし、基板は250℃に加熱した。 Ar gas and O 2 gas were introduced into the vacuum chamber to maintain the pressure at 1.5 × 10 −2 Pa. At this time, the characteristics of the transparent conductive film obtained by changing the mixing ratio of Ar gas and O 2 gas introduced into the vacuum chamber were evaluated. A columnar oxide vapor deposition material of Examples 1 to 4 was placed upright on a tungsten crucible, and the central portion of the circular surface of the oxide vapor deposition material was irradiated with an electron beam on a Corning 7059 glass substrate having a thickness of 1.1 mm. A transparent conductive film having a thickness of 200 nm was formed on the substrate. The set voltage of the electron gun was 9 kV, the current value was 150 mA, and the substrate was heated to 250 ° C.

(2)得られた薄膜(透明導電膜)の特性は以下の手順で評価した。 (2) The characteristics of the obtained thin film (transparent conductive film) were evaluated by the following procedure.

まず、薄膜(透明導電膜)の表面抵抗は、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で測定し、薄膜(透明導電膜)の膜厚は接触式表面粗さ計(テンコール社製)を用いて未成膜部分と成膜部分の段差測定から評価し、「比抵抗(μΩcm)」を算出した。更に、ホール効果測定装置(東陽テクニカ社製 ResiTest)を用いて、Van der Pauw法による膜の室温における「キャリア濃度(cm-3)」、「ホール移動度(cm2/Vs)」を測定した。 First, the surface resistance of the thin film (transparent conductive film) was measured with a four-end needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type). Using a roughness meter (manufactured by Tencor), evaluation was made based on the difference in level between the non-deposited portion and the deposited portion, and “specific resistance (μΩcm)” was calculated. Furthermore, the “carrier concentration (cm −3 )” and “hole mobility (cm 2 / Vs)” of the film at room temperature by the Van der Pauw method were measured using a Hall effect measuring device (ResiTest manufactured by Toyo Corporation). .

次に、分光光度計(日立製作所社製、U−4000)でガラス基板を含めた膜(膜L付ガラス基板B)の透過率[TL+B(%)]を測定し、同様の方法で測定したガラス基板のみ(ガラス基板B)の透過率[(T(%)]から、[TL+B÷T]×100(%)で膜自体の透過率を算出した。 Next, the transmittance [T L + B (%)] of the film (glass substrate B with film L) including the glass substrate is measured with a spectrophotometer (manufactured by Hitachi, Ltd., U-4000), and measured by the same method. The transmittance of the film itself was calculated from [T L + B ÷ T B ] × 100 (%) from the transmittance [(T B (%)] of the glass substrate alone (glass substrate B).

また、膜の結晶性はX線回折測定で評価した。X線回折装置は、X‘PertPROMPD(PANalytical社製)を用い、測定条件は広域測定で、CuKα線を用い、電圧45kV、電流40mAで測定を行った。X線回折ピークの有無から膜の結晶性を評価した。この結果も表1の「膜の結晶性」欄に示す。   The crystallinity of the film was evaluated by X-ray diffraction measurement. As the X-ray diffractometer, X'Pert PROMPD (manufactured by PANalytical) was used, the measurement conditions were wide-area measurement, CuKα rays were used, and measurement was performed at a voltage of 45 kV and a current of 40 mA. The film crystallinity was evaluated from the presence or absence of an X-ray diffraction peak. This result is also shown in the “film crystallinity” column of Table 1.

次に、膜の組成(Sn/Inの原子数比)はICP発光分析法で測定した。また、膜の基板に対する付着力は、JIS C0021に基づき評価した。評価は膜剥がれがない場合は良好(強い)とし、膜剥がれがあるものは不十分(弱い)とした。これ等の結果も表1の「Sn/Inの原子数比」と「膜の基板に対する付着力」の各欄に示す。   Next, the composition of the film (Sn / In atomic ratio) was measured by ICP emission analysis. Further, the adhesion of the film to the substrate was evaluated based on JIS C0021. The evaluation was good (strong) when there was no film peeling, and was insufficient (weak) when there was film peeling. These results are also shown in the columns of “Sn / In atomic ratio” and “Adhesive force of film to substrate” in Table 1.

各薄膜(透明導電膜)の比抵抗と透過率は、成膜中に成膜真空槽に導入するArガスとOガスの混合割合に依存した。Oガスの混合割合[O/(Ar+O)(%)]を0〜50%まで1%刻みで変化させて、最も低い比抵抗を示したOガスの混合割合を最適酸素混合量として決定した。この結果を表1の「最適酸素混合量」欄に示す。 The specific resistance and transmittance of each thin film (transparent conductive film) depended on the mixing ratio of Ar gas and O 2 gas introduced into the film forming vacuum chamber during film forming. The mixing ratio of O 2 gas [O 2 / (Ar + O 2 ) (%)] was changed from 0 to 50% in increments of 1%, and the mixing ratio of O 2 gas showing the lowest specific resistance was determined as the optimum oxygen mixing amount As determined. The results are shown in the “optimum oxygen mixing amount” column of Table 1.

最適酸素混合量より少ない酸素量で作製した薄膜(透明導電膜)は、導電性が悪いだけでなく可視域の透過率も低かった。最適酸素混合量で作製した薄膜(透明導電膜)は、導電性が良好なだけでなく、可視域における透過率も高かった。   A thin film (transparent conductive film) produced with an oxygen amount smaller than the optimum oxygen mixing amount was not only poor in conductivity but also low in the visible region. The thin film (transparent conductive film) produced with the optimum oxygen mixing amount not only has good conductivity, but also has high transmittance in the visible region.

(3)実施例1〜4の酸化物蒸着材を用いて、上記成膜評価を実施したときの、最適酸素混合量と、そのときの膜の比抵抗、可視域(波長400〜800nm)における膜自体の平均透過率を求めた。 (3) Using the oxide vapor deposition materials of Examples 1 to 4, when the above film formation evaluation is performed, the optimum oxygen mixing amount, the specific resistance of the film at that time, in the visible region (wavelength 400 to 800 nm) The average transmittance of the membrane itself was determined.

これ等の評価結果を表1「比抵抗(μΩcm)」と「膜自体の可視域の透過率(%)」欄にそれぞれ示す。   These evaluation results are shown in Table 1 “specific resistance (μΩcm)” and “visible transmittance (%)” of the film itself.

実施例1〜4の酸化物蒸着材を用いた成膜では、最も低抵抗で高透過性の透明導電膜を得るために成膜真空槽に導入すべき最適酸素混合量は非常に少なかった。これは、各酸化物蒸着材内に最適な酸素量を含んでいたからである。また、最適酸素混合量において製造された膜は、酸化物蒸着材と同じ組成を示し、非常に低い比抵抗を示すだけでなく、可視域においても高い透過率を示した。また、膜はビックスバイト型構造の酸化インジウムの結晶膜であることが確認され、基板に対する付着力も強くて実用的には十分であった。   In the film formation using the oxide vapor deposition materials of Examples 1 to 4, the optimum oxygen mixing amount to be introduced into the film formation vacuum chamber in order to obtain the transparent conductive film having the lowest resistance and high permeability was very small. This is because each oxide vapor deposition material contained an optimal amount of oxygen. Further, the film produced at the optimum oxygen mixing amount showed the same composition as the oxide vapor deposition material, and not only showed a very low specific resistance but also a high transmittance in the visible range. Further, it was confirmed that the film was a crystal film of indium oxide having a bixbyite structure, and the adhesion to the substrate was strong, which was practically sufficient.

更に、電子銃の設定電圧は9kV、電流値は150mAとした。60分間の電子ビーム照射後の酸化物蒸着材を観察し、酸化物蒸着材に割れやクラックが入っていないか目視観察した(酸化物蒸着材耐久テスト)。実施例1〜4の酸化物蒸着材は、連続で使用してもクラックが発生(「割れなし」の評価)することがなかった。   Furthermore, the set voltage of the electron gun was 9 kV, and the current value was 150 mA. The oxide vapor deposition material after electron beam irradiation for 60 minutes was observed, and it was visually observed whether the oxide vapor deposition material was cracked or cracked (oxide vapor deposition material durability test). Even if it used continuously for the oxide vapor deposition material of Examples 1-4, a crack did not generate | occur | produce (evaluation of "no crack").

このような透明導電膜は、太陽電池の透明電極として非常に有用といえる。   Such a transparent conductive film can be said to be very useful as a transparent electrode of a solar cell.

[比較例1〜2]
実施例1〜4において、焼結体酸素量調整工程における導入ガスの混合比のみを変えて酸化物焼結体を製造した。すなわち、比較例1では、O/Ar流量比で30/70とし、比較例2では100/0とした。得られた焼結体について、密度、比抵抗、結晶粒経、組成を同様に評価したが実施例1〜4と同等であった。得られた酸化物焼結体の表面と内部の色身は同等であり、そのL値を測定したところ表1のような値を示した。
[Comparative Examples 1-2]
In Examples 1 to 4, oxide sintered bodies were manufactured by changing only the mixing ratio of the introduced gas in the sintered body oxygen content adjusting step. That is, in Comparative Example 1, the O 2 / Ar flow rate ratio was 30/70, and in Comparative Example 2, it was 100/0. About the obtained sintered compact, the density, the specific resistance, the crystal grain size, and the composition were evaluated in the same manner, but were equivalent to those of Examples 1 to 4. The obtained oxide sintered body had the same surface color and internal color, and when its L * value was measured, it showed the values shown in Table 1.

次に、実施例1〜4と同様、成膜評価を実施した。   Next, as in Examples 1 to 4, film formation evaluation was performed.

その結果も上記表1に示した。   The results are also shown in Table 1 above.

比較例1は、L値が本発明の規定範囲(54〜75)よりも小さい値(49)を示した酸化物蒸着材であり、実施例1〜4の酸化物蒸着材と較べて成膜時における最適酸素混合量が多い(15)特徴を有していた。最適酸素混合量における膜の特性は、実施例1〜4と較べて透過率は同等だったが、比抵抗は若干高かった。これは、膜の組成ズレが大きかったことが要因と思われる。更に、比較例1の膜は、基板に対する付着力が実施例1〜4と較べて弱かった。これは、成膜時に酸素を多めに導入した成膜であったことによると思われる。このような酸化物蒸着材は、得られる膜の組成ズレが大きいため、膜組成を設計し難い。また、酸素を多めに成膜真空槽に導入する必要があるため、成膜の量産工程で使用すると、真空槽内の酸素濃度変動の影響を受けて組成や特性の変動が大きくなる。従って、比較例1の酸化物蒸着材は、成膜量産には不向きであることが確認される。 Comparative Example 1 is an oxide vapor deposition material whose L * value showed a value (49) smaller than the specified range (54 to 75) of the present invention, and was compared with the oxide vapor deposition materials of Examples 1 to 4. The optimum oxygen mixing amount at the time of filming was large (15). As for the characteristics of the membrane at the optimum oxygen mixing amount, the transmittance was the same as in Examples 1 to 4, but the specific resistance was slightly higher. This is probably because the compositional deviation of the film was large. Furthermore, the film of Comparative Example 1 had weaker adhesion to the substrate than Examples 1-4. This is probably because the film was formed by introducing a large amount of oxygen during film formation. Such an oxide vapor-deposited material has a large compositional deviation in the resulting film, and thus it is difficult to design the film composition. Further, since it is necessary to introduce a large amount of oxygen into the film formation vacuum chamber, when used in the mass production process of film formation, variations in composition and characteristics increase due to the influence of oxygen concentration variation in the vacuum chamber. Therefore, it is confirmed that the oxide vapor deposition material of Comparative Example 1 is not suitable for film formation mass production.

また、比較例2は、L値が本発明の規定範囲よりも大きい値(79)を示した酸化物蒸着材の例である。成膜時の最適酸素混合量は0%であったが、膜の比抵抗は実施例1〜4と較べて高かった。これは、酸化物蒸着材から膜に供給される酸素が多過ぎて膜中の酸素量が多く、最適な酸素欠損量を導入することができなかったためと思われる。従って、このような酸化物蒸着材を用いて成膜しても、この蒸着材の組成が本来有している高い導電性を発揮する膜を得ることができないことが確認される。 Moreover, the comparative example 2 is an example of the oxide vapor deposition material in which L * value showed the value (79) larger than the prescription | regulation range of this invention. The optimum oxygen mixing amount at the time of film formation was 0%, but the specific resistance of the film was higher than those in Examples 1 to 4. This is presumably because the amount of oxygen supplied from the oxide vapor deposition material to the film was too large and the amount of oxygen in the film was large, so that the optimum amount of oxygen deficiency could not be introduced. Therefore, it is confirmed that even if a film is formed using such an oxide vapor deposition material, a film exhibiting high conductivity inherent in the composition of the vapor deposition material cannot be obtained.

[比較例3]
次に、特開平5−112866号公報(参考公報)に紹介されたスパッタターゲットの焼結体作製技術に従ってスズを含有する酸化インジウム焼結体を製造した。
[Comparative Example 3]
Next, an indium oxide sintered body containing tin was manufactured in accordance with the sputtering target sintered body manufacturing technique introduced in Japanese Patent Application Laid-Open No. 5-112866 (reference publication).

まず、平均粒径が1μm以下のIn粉末および平均粒径が1μm以下のSnO粉末を原料粉末とし、Sn/Inの原子数比が0.048となるような割合でIn粉末とSnO粉末を調合し、かつ、樹脂製ポットに入れて湿式ボールミルで混合した。この際、硬質ZrO2ボールを用い、混合時間を20時間とした。混合後、スラリーを取り出し、濾過、乾燥後、造粒した。 First, the average particle size of In 2 O 3 powder and the average particle size of less than or equal to 1μm is the following SnO 2 powder 1μm as a raw material powder, an In 2 O at a rate such as atomic ratio of Sn / an In becomes 0.048 3 powders and SnO 2 powders were mixed, put into a resin pot, and mixed by a wet ball mill. At this time, hard ZrO 2 balls were used, and the mixing time was 20 hours. After mixing, the slurry was taken out, filtered, dried and granulated.

そして、得られた造粒粉を用い、196MPa(2ton/cm2)の圧力を加えて冷間静水圧プレスで成形を実施し、更に、得られた成形体を焼結炉に入れて、大気中にて1520℃で5時間焼結した。 Then, using the obtained granulated powder, a pressure of 196 MPa ( 2 ton / cm 2 ) is applied and molding is performed by a cold isostatic press, and the obtained molded body is put in a sintering furnace, Sintered at 1520 ° C. for 5 hours.

得られた焼結体を、直径30mm、厚み40mmの大きさの円柱形状に加工した。焼結体の密度は6.0g/cm、比抵抗は0.6mΩcmであった。また、結晶粒経は12〜15μmであり、組成は仕込み組成とほぼ同じであった。得られた焼結体の表面と内部の色身は同等であり、そのL値を測定したところ、表1に示すように極めて低い値(38)であった。これは、酸化物蒸着材中の酸素量が非常に少ないことを示している。 The obtained sintered body was processed into a cylindrical shape having a diameter of 30 mm and a thickness of 40 mm. The density of the sintered body was 6.0 g / cm 3 and the specific resistance was 0.6 mΩcm. The crystal grain size was 12 to 15 μm, and the composition was almost the same as the charged composition. The surface and internal color of the obtained sintered body were equivalent, and its L * value was measured. As a result, it was very low (38) as shown in Table 1. This indicates that the amount of oxygen in the oxide vapor deposition material is very small.

また、実施例1〜4と同様、成膜評価を実施した。   Moreover, film-forming evaluation was implemented similarly to Examples 1-4.

その結果も上記表1に示した。   The results are also shown in Table 1 above.

比較例3は、L値が本発明の規定範囲(54〜75)と較べ著しく小さい値(38)を示している。同じ組成の実施例1〜4の酸化物蒸着材と較べて、成膜時の最適酸素混合量が非常に多い(42)。最適酸素混合量における膜の特性は、実施例1〜4と較べて透過率は同等だったが、比抵抗は高かった。これは、膜の組成ズレが大きかったことが要因と思われる。更に、比較例3の膜は、基板に対する付着力が実施例1〜4と較べて弱かった。これは、成膜時に酸素を多めに導入した成膜であったことによると思われる。このような酸化物蒸着材は、得られる膜の組成ズレが大きいため膜組成を設計し難い。また、酸素を多めに成膜真空槽に導入する必要があるため、成膜の量産工程で使用すると、真空槽内の酸素濃度変動の影響を受けて組成や特性の変動が大きくなる。また、実施例1〜4と同様の条件で酸化物蒸着材耐久テストを行なったところ、連続成膜後の酸化物蒸着材にはクラックが発生(「割れ」の評価)していた。このようなクラックの入った酸化物蒸着材を用いて連続的に成膜を行なうと、成膜速度が大きく変動する等の問題が生じて安定に成膜することができない。 Comparative Example 3 shows a value (38) in which the L * value is significantly smaller than the specified range (54 to 75) of the present invention. Compared with the oxide vapor deposition materials of Examples 1 to 4 having the same composition, the optimum oxygen mixing amount at the time of film formation is very large (42). As for the characteristics of the membrane at the optimum oxygen mixing amount, the transmittance was the same as in Examples 1 to 4, but the specific resistance was high. This is probably because the compositional deviation of the film was large. Furthermore, the film of Comparative Example 3 was weaker in adhesion to the substrate than in Examples 1 to 4. This is probably because the film was formed by introducing a large amount of oxygen during film formation. Such an oxide vapor deposition material is difficult to design the film composition because the composition deviation of the obtained film is large. Further, since it is necessary to introduce a large amount of oxygen into the film formation vacuum chamber, when used in the mass production process of film formation, variations in composition and characteristics increase due to the influence of oxygen concentration variation in the vacuum chamber. Moreover, when the oxide vapor deposition material durability test was performed on the same conditions as Examples 1-4, the oxide vapor deposition material after continuous film-forming had a crack (evaluation of "crack"). When film formation is continuously performed using such an oxide vapor deposition material having cracks, problems such as large fluctuations in the film formation speed occur and stable film formation cannot be achieved.

従って、比較例3の酸化物蒸着材は成膜量産には不向きであることが確認された。   Therefore, it was confirmed that the oxide vapor deposition material of Comparative Example 3 is not suitable for mass production of films.

[実施例5〜8]
In粉末とSnO粉末を調合する際、Sn/Inの原子数比が0.102となるような割合で調合した以外は、焼結体酸素量調整の条件も含めて実施例1〜4と全く同様の条件で実施例5〜8の酸化物焼結体(酸化物蒸着材)を作製した。
[Examples 5 to 8]
Example 1 including the conditions for adjusting the oxygen content of the sintered body, except that when the In 2 O 3 powder and the SnO 2 powder were prepared, the Sn / In atomic ratio was 0.102. The oxide sintered compact (oxide vapor deposition material) of Examples 5-8 was produced on the completely same conditions as -4.

すなわち、実施例5に係る酸化物蒸着材は酸素ガス/アルゴンガス流量比(すなわち体積比)が「40/60」の条件で製造され、実施例6に係る酸化物蒸着材は上記体積比が「60/40」の条件で製造され、実施例7に係る酸化物蒸着材は上記体積比が「80/20」の条件で製造され、および、実施例8に係る酸化物蒸着材は上記体積比が「90/10」の条件で製造されている。   That is, the oxide vapor deposition material according to Example 5 is manufactured under the condition that the oxygen gas / argon gas flow ratio (that is, the volume ratio) is “40/60”, and the oxide vapor deposition material according to Example 6 has the above volume ratio. Manufactured under the condition of “60/40”, the oxide vapor deposition material according to Example 7 is produced under the condition where the volume ratio is “80/20”, and the oxide vapor deposition material according to Example 8 has the above volume. It is manufactured under the condition of the ratio “90/10”.

そして、得られた実施例5〜8の酸化物焼結体(酸化物蒸着材)について、密度、比抵抗、結晶粒経、組成を同様に評価したところ、いずれも実施例1〜4と同等であった。また、得られた酸化物焼結体の表面と内部の色身は同等であった。そのL値を測定した結果を上記表1に示した。 And about the obtained oxide sintered compact (oxide vapor deposition material) of Examples 5-8, when density, specific resistance, crystal grain size, and composition were evaluated similarly, all were equivalent to Examples 1-4. Met. Moreover, the surface and internal color of the obtained oxide sintered body were equivalent. The results of measuring the L * values are shown in Table 1 above.

また、実施例1〜4と同様、成膜評価を実施した。   Moreover, film-forming evaluation was implemented similarly to Examples 1-4.

その結果も上記表1に示した。   The results are also shown in Table 1 above.

実施例5〜8の酸化物蒸着材を用いた成膜では、最も低抵抗で高透過性の透明導電膜を得るために成膜真空槽に導入すべき最適酸素混合量は、実施例1〜4と同様、非常に少なかった。これは、酸化物蒸着材内に最適な酸素量を含んでいたからである。また、最適酸素混合量において製造された膜は、酸化物蒸着材と同じ組成を示し、非常に低い比抵抗を示すだけでなく、可視域においても高い透過率を示した。また、全ての膜は、酸化インジウムのビックスバイト型結晶構造の結晶膜となっており、膜の基板に対する付着力も強くて実用的には十分であった。更に、実施例5〜8の酸化物蒸着材は連続で使用してもクラックが発生することもなかった。   In the film formation using the oxide vapor deposition materials of Examples 5 to 8, the optimum oxygen mixing amount to be introduced into the film formation vacuum chamber in order to obtain the transparent conductive film having the lowest resistance and the high permeability is as described in Examples 1 to 8. Like 4 it was very little. This is because the optimum amount of oxygen was contained in the oxide vapor deposition material. Further, the film produced at the optimum oxygen mixing amount showed the same composition as the oxide vapor deposition material, and not only showed a very low specific resistance but also a high transmittance in the visible range. In addition, all the films were indium oxide bixbite crystal structures, and the adhesion of the films to the substrate was strong and practically sufficient. Furthermore, even if the oxide vapor deposition material of Examples 5-8 was used continuously, a crack did not generate | occur | produce.

このような透明導電膜は、太陽電池の透明電極として非常に有用といえる。   Such a transparent conductive film can be said to be very useful as a transparent electrode of a solar cell.

[比較例4〜5]
比較例1〜2において、In粉末とSnO粉末を調合する際のSn/Inの原子数比を0.102とした以外は、比較例1〜2と同様の条件で酸化物蒸着材を作製した。すなわち、焼結体酸素量調整の条件が、比較例4では、O/Ar流量比で30/70とし、比較例5では100/0とした。得られた焼結体について、密度、比抵抗、結晶粒経、組成を同様に評価したが、実施例5〜8と同等であった。また、得られた焼結体の表面と内部の色身は同等であり、そのL値を測定したところ、表1のような値を示した。
[Comparative Examples 4 to 5]
In Comparative Examples 1 and 2, oxide deposition was performed under the same conditions as in Comparative Examples 1 and 2, except that the atomic ratio of Sn / In in preparing In 2 O 3 powder and SnO 2 powder was set to 0.102. A material was prepared. That is, the conditions for adjusting the amount of oxygen in the sintered body were 30/70 in the O 2 / Ar flow ratio in Comparative Example 4 and 100/0 in Comparative Example 5. About the obtained sintered compact, although the density, specific resistance, crystal grain size, and composition were evaluated similarly, it was equivalent to Examples 5-8. Further, the surface and the internal color of the obtained sintered body were the same, and when the L * value was measured, the values shown in Table 1 were shown.

次に、実施例1〜4と同様、成膜評価を実施した。   Next, as in Examples 1 to 4, film formation evaluation was performed.

その結果も表1に示した。   The results are also shown in Table 1.

比較例4は、L値が本発明の規定範囲(54〜75)よりも小さい値(50)を示した酸化物蒸着材であり、実施例5〜8の酸化物蒸着材を使用したとき較べて、成膜時の最適酸素混合量が(15)と多かった。最適酸素混合量における膜の特性は、実施例5〜8と較べて透過率はほぼ同等だったが、比抵抗は若干高かった。この原因は、膜の組成ズレが大きく、膜中にスズが過剰に含まれていたからと思われる。更に、比較例4の膜は、基板に対する付着力が実施例5〜8と較べて弱かった。このような大きな組成ズレと低付着力の要因は、何れも成膜時に酸素を多めに導入した成膜であったからである。このような酸化物蒸着材は、得られる膜の組成ズレが大きいため膜組成を設計し難い。また、酸素を多めに成膜真空槽に導入する必要があるため、成膜の量産工程で使用すると、真空槽内の酸素濃度変動の影響を受けて組成や特性の変動を顕著に受け易くなる。従って、比較例4の酸化物蒸着材も成膜量産には不向きであることが確認された。 Comparative Example 4 is an oxide vapor deposition material whose L * value showed a value (50) smaller than the specified range (54 to 75) of the present invention, and when the oxide vapor deposition materials of Examples 5 to 8 were used. In comparison, the optimum oxygen mixing amount during film formation was as large as (15). As for the characteristics of the membrane at the optimum oxygen mixing amount, the transmittance was almost the same as in Examples 5 to 8, but the specific resistance was slightly higher. This is presumably because the composition deviation of the film was large and tin was excessively contained in the film. Furthermore, the film of Comparative Example 4 had weaker adhesion to the substrate than Examples 5-8. The reason for such a large compositional deviation and low adhesion is that the film was formed by introducing a large amount of oxygen during film formation. Such an oxide vapor deposition material is difficult to design the film composition because the composition deviation of the obtained film is large. In addition, since it is necessary to introduce a large amount of oxygen into the film formation vacuum chamber, when used in the mass production process of film formation, the composition and characteristics are significantly susceptible to variations due to the influence of oxygen concentration variation in the vacuum chamber. . Therefore, it was confirmed that the oxide vapor deposition material of Comparative Example 4 is also unsuitable for film production.

また、比較例5は、L値が本発明の規定範囲よりも大きい値(82)を示した酸化物蒸着材の例である。成膜時の最適酸素混合量は0%であったが、膜の比抵抗は実施例5〜8と較べて高かった。これは、酸化物蒸着材から膜に供給された酸素が多過ぎて膜中の酸素量が多く、最適な酸素欠損量を導入することができなかったためと思われる。従って、このような酸化物蒸着材を用いて成膜しても、この酸化物蒸着材の組成が本来有する高い導電性を発揮する膜を得ることができないことが確認される。 Moreover, the comparative example 5 is an example of the oxide vapor deposition material in which L * value showed the value (82) larger than the prescription | regulation range of this invention. The optimum oxygen mixing amount at the time of film formation was 0%, but the specific resistance of the film was higher than those in Examples 5-8. This is presumably because the oxygen supplied from the oxide deposition material to the film was too much and the amount of oxygen in the film was so large that the optimum amount of oxygen deficiency could not be introduced. Therefore, it is confirmed that even if a film is formed using such an oxide vapor deposition material, a film exhibiting high conductivity inherent in the composition of the oxide vapor deposition material cannot be obtained.

[比較例6]
比較例3において、In粉末とSnO粉末を調合する際のSn/Inの原子数比を0.102とした以外は、比較例3と同様の条件で酸化物蒸着材を作製した。得られた焼結体について、密度、比抵抗、結晶粒経、組成を同様に評価したが、比較例3と同等であった。また、得られた焼結体の表面と内部の色身は同等であり、そのL値を測定したところ表1のような値を示した。
[Comparative Example 6]
In Comparative Example 3, an oxide vapor deposition material was produced under the same conditions as in Comparative Example 3, except that the Sn / In atomic ratio at the time of preparing In 2 O 3 powder and SnO 2 powder was set to 0.102. . The obtained sintered body was similarly evaluated in terms of density, specific resistance, crystal grain size, and composition, and was equivalent to Comparative Example 3. Further, the surface and the internal color of the obtained sintered body were equivalent, and the L * value was measured, and the values shown in Table 1 were shown.

次に、実施例1〜4と同様、成膜評価を実施した。   Next, as in Examples 1 to 4, film formation evaluation was performed.

その結果も表1に示した。   The results are also shown in Table 1.

比較例6も、L値が本発明の規定範囲(54〜75)より著しく小さい値(49)を示している。同じ組成の実施例5〜8の酸化物蒸着材と較べて、成膜時の最適酸素混合量が(42)と非常に多い。最適酸素混合量における膜の特性は、実施例5〜8と較べて透過率は同等だったが、比抵抗は高かった。これは、膜の組成ズレが大きかったことが要因と思われる。更に、比較例6の膜は、基板に対する付着力が実施例5〜8と較べて弱かった。これは、成膜時に酸素を多めに導入した成膜であったからである。このような酸化物蒸着材は、得られる膜の組成ズレが大きいため膜組成を設計し難い。また、酸素を多めに成膜真空槽に導入する必要があるため、成膜の量産工程で使用すると、真空槽内の酸素濃度変動の影響を受けて組成や特性の変動が大きくなる。また、実施例1〜4と同様の条件で酸化物蒸着材耐久テストを行なったところ、連続成膜後の酸化物蒸着材にはクラックが発生(「割れ」の評価)していた。このようなクラックの入った酸化物蒸着材を用いて連続的に成膜を行なうと、成膜速度が大きく変動する等の問題が生じて安定に成膜することができない。 Comparative Example 6 also shows a value (49) in which the L * value is significantly smaller than the specified range (54 to 75) of the present invention. Compared with the oxide vapor deposition materials of Examples 5 to 8 having the same composition, the optimum oxygen mixing amount at the time of film formation is very large (42). As for the characteristics of the membrane at the optimum oxygen mixing amount, the transmittance was the same as in Examples 5 to 8, but the specific resistance was high. This is probably because the compositional deviation of the film was large. Furthermore, the film of Comparative Example 6 had weaker adhesion to the substrate than Examples 5-8. This is because the film was formed by introducing a large amount of oxygen during film formation. Such an oxide vapor deposition material is difficult to design the film composition because the composition deviation of the obtained film is large. Further, since it is necessary to introduce a large amount of oxygen into the film formation vacuum chamber, when used in the mass production process of film formation, variations in composition and characteristics increase due to the influence of oxygen concentration variation in the vacuum chamber. Moreover, when the oxide vapor deposition material durability test was performed on the same conditions as Examples 1-4, the oxide vapor deposition material after continuous film-forming had a crack (evaluation of "crack"). When film formation is continuously performed using such an oxide vapor deposition material having cracks, problems such as large fluctuations in the film formation speed occur and stable film formation cannot be achieved.

以上のことから、比較例6の酸化物蒸着材も成膜量産には不向きであることが確認される。   From the above, it is confirmed that the oxide vapor deposition material of Comparative Example 6 is also unsuitable for film formation mass production.

[実施例9〜14]
In粉末とSnO粉末を調合する際の配合割合が、Sn/In原子数比で0.001(実施例9)、0.009(実施例10)、0.028(実施例11)、0.163(実施例12)、0.230(実施例13)および0.614(実施例14)となるように変化させた以外は、実施例2と同じ条件(すなわち、酸素ガス/アルゴンガス流量比が「60/40」の条件)で実施例9〜14の酸化物焼結体(酸化物蒸着材)を作製した。
[Examples 9 to 14]
The blending ratio when blending In 2 O 3 powder and SnO 2 powder is 0.001 (Example 9), 0.009 (Example 10), 0.028 (Example 11) in terms of the Sn / In atomic ratio. ), 0.163 (Example 12), 0.230 (Example 13), and 0.614 (Example 14). The same conditions as in Example 2 (ie, oxygen gas / The oxide sintered bodies (oxide vapor deposition materials) of Examples 9 to 14 were manufactured under the conditions of an argon gas flow rate ratio of “60/40”.

そして、得られた実施例9〜14の酸化物焼結体(酸化物蒸着材)について、密度、比抵抗、結晶粒経、組成を同様に評価したところ、いずれも実施例2と同等であった。また、得られた酸化物焼結体の表面と内部の色身は同等であった。そのL値を測定した結果を上記表1に示した。 And about the obtained oxide sintered compact (oxide vapor deposition material) of Examples 9-14, when density, specific resistance, crystal grain size, and composition were evaluated similarly, all were equivalent to Example 2. It was. Moreover, the surface and internal color of the obtained oxide sintered body were equivalent. The results of measuring the L * values are shown in Table 1 above.

また、実施例1〜4と同様、成膜評価を実施した。   Moreover, film-forming evaluation was implemented similarly to Examples 1-4.

その結果も上記表1に示した。   The results are also shown in Table 1 above.

実施例9〜14の酸化物蒸着材を用いた成膜では、最も低抵抗で高透過性の透明導電膜を得るために成膜真空槽に導入すべき最適酸素混合量は、実施例1〜4と同様、非常に少なかった。これは、酸化物蒸着材内に最適な酸素量を含んでいたからである。また、最適酸素混合量において製造された膜は、酸化物蒸着材と同じ組成を示し、非常に低い比抵抗を示すだけでなく、可視域において高い透過率を示した。また、全ての膜は、酸化インジウムのビックスバイト型結晶構造の結晶膜であることが確認され、膜の基板に対する付着力も強くて実用的には十分であった。また、実施例1〜4と同様の条件で酸化物蒸着材耐久テストを行なったが、実施例9〜14の酸化物蒸着材は連続で使用してもクラックが発生することがなかった。   In the film formation using the oxide vapor deposition materials of Examples 9 to 14, the optimum oxygen mixing amount to be introduced into the film formation vacuum chamber in order to obtain the transparent conductive film having the lowest resistance and the high permeability is the values of Examples 1 to Like 4 it was very little. This is because the optimum amount of oxygen was contained in the oxide vapor deposition material. In addition, the film manufactured at the optimum oxygen mixing amount showed the same composition as the oxide vapor deposition material, and not only showed a very low specific resistance, but also showed a high transmittance in the visible region. Further, it was confirmed that all the films were indium oxide bixbite type crystal structures, and the adhesion of the films to the substrate was strong and practically sufficient. Moreover, although the oxide vapor deposition material durability test was done on the conditions similar to Examples 1-4, the oxide vapor deposition material of Examples 9-14 did not generate | occur | produce a crack even if it used continuously.

このような透明導電膜は、太陽電池の透明電極として非常に有用といえる。   Such a transparent conductive film can be said to be very useful as a transparent electrode of a solar cell.

[比較例7]
次に、特開平8−104978号公報(特許文献1)に紹介されたITO酸化物蒸着材を製造して同様の評価を行った。
[Comparative Example 7]
Next, an ITO oxide vapor deposition material introduced in JP-A-8-104978 (Patent Document 1) was produced and evaluated in the same manner.

すなわち、平均粒径0.1μmの酸化インジウム粉末中に平均粒径1μmの酸化スズ粉末をSn/In原子数比で0.102となるように配合し、2質量%の酢酸ビニール系バインダーを添加した。これを湿式ボールミル中で16時間混合し、乾燥および粉砕した後、造粒粉末とした。更に、この造粒粉を用いて、冷間静水圧プレスで49MPa(500kgf/cm)の圧力を加えて円柱状の成形体とした。この成形体を大気中で焼結を行った。焼結工程は、室温から600℃までを10時間にて昇温して、1450℃まで4時間40分にて温度上昇させた。そして1450℃にて10時間保持して焼結体を得た。 That is, tin oxide powder with an average particle diameter of 1 μm is blended in an indium oxide powder with an average particle diameter of 0.1 μm so that the Sn / In atomic ratio is 0.102, and a 2 mass% vinyl acetate binder is added. did. This was mixed in a wet ball mill for 16 hours, dried and pulverized to obtain a granulated powder. Furthermore, using this granulated powder, a pressure of 49 MPa (500 kgf / cm 2 ) was applied by a cold isostatic press to form a cylindrical molded body. This molded body was sintered in the atmosphere. In the sintering process, the temperature was raised from room temperature to 600 ° C. in 10 hours, and the temperature was increased to 1450 ° C. in 4 hours and 40 minutes. And it hold | maintained at 1450 degreeC for 10 hours, and obtained the sintered compact.

得られた焼結体を、直径30mm、厚み40mmの大きさの円柱形状に加工して、ITO酸化物蒸着材とした。焼結体の密度は、4.4g/cm3、比抵抗は1.2mΩcmであった。結晶粒経は12〜16μmであり、組成は仕込み組成とほぼ同じであった。焼結体の表面と内部の色身は同等であり、そのL値を測定したところ、表1に示すように極めて低い値(49)であった。これは、酸化物蒸着材中の酸素量が非常に少ないことを示している。 The obtained sintered body was processed into a cylindrical shape having a diameter of 30 mm and a thickness of 40 mm to obtain an ITO oxide vapor deposition material. The density of the sintered body was 4.4 g / cm 3 and the specific resistance was 1.2 mΩcm. The crystal grain size was 12-16 μm, and the composition was almost the same as the charged composition. The surface color and the internal color of the sintered body were the same, and when the L * value was measured, it was an extremely low value (49) as shown in Table 1. This indicates that the amount of oxygen in the oxide vapor deposition material is very small.

また、実施例1〜4と同様、成膜評価を実施した。   Moreover, film-forming evaluation was implemented similarly to Examples 1-4.

その結果も上記表1に示した。   The results are also shown in Table 1 above.

比較例7も、L値が本発明の規定範囲(54〜75)と較べ上述したように著しく小さな値(49)を示し、実施例5〜8の酸化物蒸着材と較べて、成膜時の最適酸素混合量が(42)と非常に多い。最適酸素混合量における膜の特性は、実施例5〜8と較べて可視域の透過率は同等だったが、比抵抗は高かった。これは、膜の組成ズレが大きかったことが要因と思われる。更に、比較例7の膜は、基板に対する付着力が実施例5〜8と較べて弱かった。これは、成膜時に酸素を多めに導入した成膜であったからである。このような酸化物蒸着材は、得られる膜の組成ズレが大きいため膜組成を設計し難い。また、酸素を多めに成膜真空槽に導入する必要があるため、成膜の量産工程で使用すると、真空槽内の酸素濃度変動の影響を受けて組成や特性の変動が大きくなる。また、実施例1〜4と同様の条件で酸化物蒸着材耐久テストを行なったところ、連続成膜後の酸化物蒸着材にはクラックが発生(「割れ」の評価)していた。このようなクラックの入った酸化物蒸着材を用いて連続的に成膜を行なうと、成膜速度が大きく変動する等の問題が生じて安定に成膜することができない。 In Comparative Example 7, the L * value also shows a significantly small value (49) as described above compared with the specified range (54 to 75) of the present invention, and film formation is performed as compared with the oxide vapor deposition materials of Examples 5 to 8. The optimum oxygen mixing amount at that time is very large (42). As for the characteristics of the membrane at the optimum oxygen mixing amount, the transmittance in the visible region was the same as in Examples 5 to 8, but the specific resistance was high. This is probably because the compositional deviation of the film was large. Furthermore, the film of Comparative Example 7 had weaker adhesion to the substrate than Examples 5-8. This is because the film was formed by introducing a large amount of oxygen during film formation. Such an oxide vapor deposition material is difficult to design the film composition because the composition deviation of the obtained film is large. Further, since it is necessary to introduce a large amount of oxygen into the film formation vacuum chamber, when used in the mass production process of film formation, variations in composition and characteristics increase due to the influence of oxygen concentration variation in the vacuum chamber. Moreover, when the oxide vapor deposition material durability test was performed on the same conditions as Examples 1-4, the oxide vapor deposition material after continuous film-forming had a crack (evaluation of "crack"). When film formation is continuously performed using such an oxide vapor deposition material having cracks, problems such as large fluctuations in the film formation speed occur and stable film formation cannot be achieved.

以上のことから、比較例7の酸化物蒸着材も成膜量産には不向きであることが確認される。   From the above, it is confirmed that the oxide vapor deposition material of Comparative Example 7 is also unsuitable for film formation mass production.

[比較例8]
また、特開2007−84881号公報(特許文献2)に紹介されたITO酸化物蒸着材を製造して同様の評価を行った。
[Comparative Example 8]
Moreover, the ITO oxide vapor deposition material introduced by Unexamined-Japanese-Patent No. 2007-84881 (patent document 2) was manufactured, and the same evaluation was performed.

すなわち、平均粒径1μm以下の酸化インジウム粉末中に平均粒径1μm以下の酸化スズ粉末をSn/In原子数比で0.102となるように配合し、2質量%の酢酸ビニール系バインダーを添加した。これを、硬質ZrOボールを用いた湿式ボールミル中で18時間混合し、乾燥および粉砕した後、造粒粉末とした。更に、この造粒粉を用いて、冷間静水圧プレスで94MPa(3ton/cm2)の圧力を加えて円柱状の成形体とした。 That is, tin oxide powder with an average particle size of 1 μm or less is blended in an indium oxide powder with an average particle size of 1 μm or less so that the Sn / In atomic ratio is 0.102, and a 2 mass% vinyl acetate binder is added. did. This was mixed for 18 hours in a wet ball mill using hard ZrO 2 balls, dried and ground, and then granulated powder. Furthermore, using this granulated powder, a pressure of 94 MPa (3 ton / cm 2 ) was applied by a cold isostatic press to obtain a cylindrical shaped body.

得られた成形体を、焼結炉に入れて、炉内容積0.1m当たり5リットル/分の割合で酸素を導入して雰囲気を作り、1100℃で2時間、常圧焼結した。この際、この際、1℃/分で昇温し、焼結後の冷却の際は、酸素導入を止め、1000℃までを10℃/分で降温した。 The obtained molded body was put into a sintering furnace, an atmosphere was created by introducing oxygen at a rate of 5 liters / minute per 0.1 m 3 of the furnace volume, and atmospheric pressure sintering was performed at 1100 ° C. for 2 hours. At this time, the temperature was raised at 1 ° C./min. During cooling after sintering, the introduction of oxygen was stopped and the temperature was lowered to 1000 ° C. at 10 ° C./min.

得られた酸化物焼結体を、立形マニシングセンタを用いて、直径30mm、厚み40mmの大きさの円柱形状に加工し、体積と重量を測定して密度を算出した。   The obtained oxide sintered body was processed into a cylindrical shape with a diameter of 30 mm and a thickness of 40 mm using a vertical machining center, and the volume and weight were measured to calculate the density.

焼結体の密度は4.8g/cm3であった。また、焼結体の表面と内部の色身は同等であり、そのL値を測定したところ、表1に示すように本発明の規定範囲(54〜75)と較べ大きな値(79)を示した。これは、酸化物蒸着材中の酸素量が非常に多いことを示している。 The density of the sintered body was 4.8 g / cm 3 . Further, the surface color and the internal color of the sintered body are the same, and when the L * value thereof was measured, as shown in Table 1, a larger value (79) than the specified range (54 to 75) of the present invention was obtained. Indicated. This indicates that the amount of oxygen in the oxide deposition material is very large.

このように作製した酸化物蒸着材を用いて実施例1〜4と同様に成膜評価を実施した。   Film formation evaluation was carried out in the same manner as in Examples 1 to 4 using the oxide vapor deposition material thus prepared.

成膜時の最適酸素混合量は比較例2と同様に0%であったが、膜の比抵抗は実施例5〜8と較べて高かった。これは、酸化物蒸着材から膜に供給される酸素が多過ぎて膜中の酸素量が多く、最適な酸素欠損量を導入することができなかったためと思われる。従って、このような酸化物蒸着材を用いて成膜しても、この蒸着材の組成が本来有している高い導電性を発揮する膜を得ることができないことが確認される。   The optimum oxygen mixing amount at the time of film formation was 0% as in Comparative Example 2, but the specific resistance of the film was higher than in Examples 5-8. This is presumably because the amount of oxygen supplied from the oxide vapor deposition material to the film was too large and the amount of oxygen in the film was large, so that the optimum amount of oxygen deficiency could not be introduced. Therefore, it is confirmed that even if a film is formed using such an oxide vapor deposition material, a film exhibiting high conductivity inherent in the composition of the vapor deposition material cannot be obtained.

本発明に係る酸化物蒸着材を適用することにより、可視域において高い光透過性を示しながら高い導電性を示す透明導電膜を真空蒸着法で製造することが可能になるため、各種太陽電池の透明電極を形成するための酸化物蒸着材として利用される産業上の利用可能性を有している。   By applying the oxide vapor deposition material according to the present invention, it becomes possible to produce a transparent conductive film exhibiting high conductivity while exhibiting high light transmittance in the visible range by a vacuum vapor deposition method. It has industrial applicability to be used as an oxide vapor deposition material for forming a transparent electrode.

Claims (4)

真空蒸着法により透明導電膜を製造する際に使用される酸化物蒸着材において、
酸化インジウムを主成分とし、スズを含むと共に、常圧焼結法で製造された酸化物焼結体により構成され、かつ、スズの含有量がSn/In原子数比で0.001〜0.614であり、CIE1976表色系におけるL値が54〜75であることを特徴とする酸化物蒸着材。
In the oxide vapor deposition material used when producing a transparent conductive film by vacuum vapor deposition,
The main component is indium oxide, tin is included, and the oxide sintered body is manufactured by an atmospheric pressure sintering method. The tin content is 0.001 to 0.00 in terms of the Sn / In atomic ratio. The oxide vapor deposition material characterized by being 614 and having an L * value of 54 to 75 in the CIE 1976 color system.
上記スズの含有量がSn/In原子数比で0.040〜0.163であることを特徴とする請求項1に記載の酸化物蒸着材。   2. The oxide vapor deposition material according to claim 1, wherein the tin content is 0.040 to 0.163 in terms of the Sn / In atomic ratio. 上記酸化物焼結体が、炉内容積0.1mThe oxide sintered body has a furnace internal volume of 0.1 m. 3Three 当たり5リットル/分以上の割合の酸素を炉に導入しながら1150〜1300℃の温度で焼成する常圧焼結法で製造されていることを特徴とする請求項1に記載の酸化物蒸着材。2. The oxide vapor deposition material according to claim 1, wherein the oxide vapor deposition material is manufactured by an atmospheric pressure sintering method in which oxygen is fired at a temperature of 1150 to 1300 ° C. while introducing oxygen at a rate of 5 liters / minute or more into the furnace. . 請求項1に記載の酸化物蒸着材の製造方法において、
酸化インジウムと酸化スズの各粉末を原料とし、スズの含有量がSn/In原子数比で0.001〜0.614となるように混合し、造粒して造粒粉末を得た後、得られた造粒粉末を成形する成形体調製工程と、
炉内容積0.1m3当たり5リットル/分以上の割合の酸素を炉に導入しながら上記成形体に対し300〜500℃の温度で脱バインダー処理を行なった後、炉内容積0.1m3当たり5リットル/分以上の割合の酸素を炉に導入しながら1150〜1300℃の温度で焼成処理を行なう脱バインダー・焼成工程と、
酸素とアルゴンの混合比(体積比)がO/Ar=40/60〜90/10の範囲となる条件で、かつ、炉内容積0.1m3当たり5リットル/分以上の割合の酸素とアルゴンの混合ガスを炉内に導入しながら、焼結体に対し900〜1100℃の温度で10時間以上の酸素量調整を行う酸素量調整工程、
の各工程を具備することを特徴とする酸化物蒸着材の製造方法。
In the manufacturing method of the oxide vapor deposition material of Claim 1,
Using each powder of indium oxide and tin oxide as raw materials, mixing so that the tin content is 0.001 to 0.614 in the Sn / In atomic ratio, and granulating to obtain a granulated powder, A molded body preparation step for molding the obtained granulated powder;
After performing the binder removal treatment at a temperature of 300 to 500 ° C. to the shaped body while introducing oxygen percentage in volume 0.1 m 3 per 5 liters / minute or more furnace into the furnace, furnace capacity 0.1 m 3 A debinding and baking step of performing a baking treatment at a temperature of 1150 to 1300 ° C. while introducing oxygen at a rate of 5 liters / minute or more into the furnace,
The oxygen and argon mixing ratio (volume ratio) is in the range of O 2 / Ar = 40/60 to 90/10, and oxygen at a rate of 5 liters / minute or more per 0.1 m 3 of the furnace volume An oxygen amount adjusting step for adjusting the oxygen amount for 10 hours or more at a temperature of 900 to 1100 ° C. with respect to the sintered body while introducing a mixed gas of argon into the furnace;
The manufacturing method of the oxide vapor deposition material characterized by comprising each process of these.
JP2010071801A 2010-03-26 2010-03-26 Oxide deposition material and method for producing the same Expired - Fee Related JP5224073B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010071801A JP5224073B2 (en) 2010-03-26 2010-03-26 Oxide deposition material and method for producing the same
KR1020127023103A KR101322800B1 (en) 2010-03-26 2011-02-21 Oxide deposition material and transparent conductive film
CN201180014684.5A CN102812150B (en) 2010-03-26 2011-02-21 Oxide deposition material and transparent conductive film
PCT/JP2011/054413 WO2011118334A1 (en) 2010-03-26 2011-02-21 Oxide deposition material and transparent conductive film
MYPI2012700666A MY159313A (en) 2010-03-26 2011-02-21 Oxide evaporation material and method for producing the same
TW100107019A TWI422696B (en) 2010-03-26 2011-03-03 Oxide vapor deposition material and transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010071801A JP5224073B2 (en) 2010-03-26 2010-03-26 Oxide deposition material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011202246A JP2011202246A (en) 2011-10-13
JP5224073B2 true JP5224073B2 (en) 2013-07-03

Family

ID=44672904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010071801A Expired - Fee Related JP5224073B2 (en) 2010-03-26 2010-03-26 Oxide deposition material and method for producing the same

Country Status (6)

Country Link
JP (1) JP5224073B2 (en)
KR (1) KR101322800B1 (en)
CN (1) CN102812150B (en)
MY (1) MY159313A (en)
TW (1) TWI422696B (en)
WO (1) WO2011118334A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480953B (en) * 2012-03-30 2015-04-11 Hannstouch Solution Inc Composite transparent oxide film and manufacturing method for the same
JPWO2013183564A1 (en) * 2012-06-07 2016-01-28 日東電工株式会社 Transparent conductive film
KR20150039753A (en) 2012-07-31 2015-04-13 스미토모 긴조쿠 고잔 가부시키가이샤 Oxide Sintered Body and Tablet Obtained by Processing Same
WO2017082229A1 (en) * 2015-11-09 2017-05-18 日東電工株式会社 Optically transparent electroconductive film and light control film
JP2017154910A (en) * 2016-02-29 2017-09-07 住友金属鉱山株式会社 Oxide sintered body and sputtering target
JP6841088B2 (en) * 2017-03-01 2021-03-10 堺化学工業株式会社 Conductive material and electrode material
CN108987482B (en) 2017-05-31 2022-05-17 乐金显示有限公司 Thin film transistor, gate driver including the same, and display device including the gate driver
CN107266041B (en) * 2017-06-16 2019-06-28 福建阿石创新材料股份有限公司 A kind of conductive material and preparation method thereof
CN109148592B (en) 2017-06-27 2022-03-11 乐金显示有限公司 Thin film transistor including oxide semiconductor layer, method of manufacturing the same, and display device including the same
JP7378938B2 (en) * 2019-02-22 2023-11-14 日東電工株式会社 Light-transparent conductive film
JP7378937B2 (en) * 2019-02-22 2023-11-14 日東電工株式会社 Light-transparent conductive film
JP7205313B2 (en) * 2019-03-11 2023-01-17 セイコーエプソン株式会社 Cables and ultrasound equipment
CN112466509B (en) * 2020-11-20 2022-04-15 无锡晶睿光电新材料有限公司 Low-temperature high-wear-resistance conductive silver paste and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340756A (en) * 1986-08-07 1988-02-22 旭硝子株式会社 Indium oxide sintered body for tin-containing physical vapor deposition
JPH0765167B2 (en) * 1989-07-13 1995-07-12 株式会社ジャパンエナジー Sputtering target for ITO transparent conductive film
JPH06239659A (en) * 1991-04-24 1994-08-30 Tosoh Corp Metal oxide sintered product and its production and sputtering target using the same
JP4736032B2 (en) * 2005-08-26 2011-07-27 ハクスイテック株式会社 Ion plating target for manufacturing zinc oxide-based conductive film and its manufacturing method, and manufacturing method of zinc oxide-based conductive film
JP4475209B2 (en) * 2005-09-22 2010-06-09 住友金属鉱山株式会社 Oxide sintered tablet for deposition
JP4617506B2 (en) * 2006-03-24 2011-01-26 Dowaエレクトロニクス株式会社 ITO powder and manufacturing method thereof, coating material for ITO conductive film, and transparent conductive film
KR101646488B1 (en) * 2007-07-06 2016-08-08 스미토모 긴조쿠 고잔 가부시키가이샤 Oxide sintered body and production method therefor, target, and transparent conductive film and transparent conductive substrate obtained by using the same

Also Published As

Publication number Publication date
MY159313A (en) 2016-12-30
JP2011202246A (en) 2011-10-13
CN102812150A (en) 2012-12-05
KR20130008023A (en) 2013-01-21
CN102812150B (en) 2014-09-17
TW201200610A (en) 2012-01-01
TWI422696B (en) 2014-01-11
WO2011118334A1 (en) 2011-09-29
KR101322800B1 (en) 2013-10-29

Similar Documents

Publication Publication Date Title
JP5224073B2 (en) Oxide deposition material and method for producing the same
JP5257372B2 (en) Oxide deposition material, transparent conductive film, and solar cell
TWI460297B (en) Tablet for ion plating method and production method therefor, and transparent conductive film
JP5339100B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
KR101766852B1 (en) Oxide evaporation material and high-refractive-index transparent film
JP4760154B2 (en) Oxide sintered body, oxide transparent conductive film, and production method thereof
JP5764828B2 (en) Oxide sintered body and tablet processed the same
US8941002B2 (en) Oxide evaporation material, vapor-deposited thin film, and solar cell
TWI452027B (en) Zinc oxide sintered tablet and manufacturing method thereof
JP2009096713A (en) Zno vapor deposition material, its production method, and zno film and the like formed therefrom
JP6160396B2 (en) Method for producing transparent conductive film
JP5505642B2 (en) Oxide deposition material
JP5761253B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
EP2881379A1 (en) Oxide sintered body and tablet obtained by processing same
WO2013042747A1 (en) Oxide sintered body, method for producing same, and oxide transparent conductive film
JP2012025990A (en) Oxide evaporation material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120113

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120113

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Ref document number: 5224073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees