JP5505642B2 - Oxide deposition material - Google Patents

Oxide deposition material Download PDF

Info

Publication number
JP5505642B2
JP5505642B2 JP2010170731A JP2010170731A JP5505642B2 JP 5505642 B2 JP5505642 B2 JP 5505642B2 JP 2010170731 A JP2010170731 A JP 2010170731A JP 2010170731 A JP2010170731 A JP 2010170731A JP 5505642 B2 JP5505642 B2 JP 5505642B2
Authority
JP
Japan
Prior art keywords
film
vapor deposition
oxygen
oxide
deposition material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010170731A
Other languages
Japanese (ja)
Other versions
JP2012031460A (en
Inventor
正和 ▲桑▼原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010170731A priority Critical patent/JP5505642B2/en
Publication of JP2012031460A publication Critical patent/JP2012031460A/en
Application granted granted Critical
Publication of JP5505642B2 publication Critical patent/JP5505642B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Description

本発明は、電子ビーム蒸着法、イオンプレーティング法や高密度プラズマアシスト蒸着法等の各種真空蒸着法にて透明導電膜を製造する際に使用される酸化物蒸着材に係り、特に、太陽電池の透明電極として有用な低抵抗で可視〜近赤外域まで高い透過率を示す高品質の透明導電膜を製造するための酸化物蒸着材の改良に関する。 The present invention relates to an oxide vapor deposition material used for producing a transparent conductive film by various vacuum vapor deposition methods such as an electron beam vapor deposition method, an ion plating method, and a high density plasma assisted vapor deposition method, and more particularly to a solar cell. The present invention relates to an improvement in an oxide vapor deposition material for producing a high-quality transparent conductive film having a low resistance and a high transmittance from the visible to the near infrared region, which is useful as a transparent electrode.

透明導電膜は、高い導電性と可視光領域での高い光透過率を有する。そして、この特性を生かし、上記透明導電膜は、太陽電池、液晶表示素子、その他各種受光素子の電極等に利用され、更に、近赤外線領域での反射吸収特性を生かして、自動車や建築物の窓ガラス等に用いられる熱線反射膜や、各種の帯電防止膜、冷凍ショーケース等の防曇用透明発熱体としても利用されている。   The transparent conductive film has high conductivity and high light transmittance in the visible light region. And taking advantage of this characteristic, the transparent conductive film is used for electrodes of solar cells, liquid crystal display elements, other various light receiving elements, etc., and further, utilizing the reflection / absorption characteristic in the near infrared region, it can be used for automobiles and buildings. It is also used as a heat-reflective film used for window glass, various antistatic films, and a transparent heating element for anti-fogging such as a frozen showcase.

また、上記透明導電膜には、一般に、アンチモンやフッ素をドーパントとして含む酸化錫(SnO2)、アルミニウム、ガリウム、インジウム、スズをドーパントとして含む酸化亜鉛(ZnO)、スズ、タングステン、チタンをドーパントとして含む酸化インジウム(In23)等が広範に利用されている。特に、スズ(錫)をドーパントとして含む酸化インジウム膜、すなわちIn23−Sn系膜はITO(Indium tin oxide)膜と称され、低抵抗の透明導電膜が容易に得られることから幅広く使用されている。 The transparent conductive film generally has tin oxide (SnO 2 ) containing antimony or fluorine as a dopant, aluminum, gallium, indium, zinc oxide (ZnO) containing tin as a dopant, tin, tungsten or titanium as a dopant. Indium oxide (In 2 O 3 ) and the like are widely used. In particular, an indium oxide film containing tin (tin) as a dopant, that is, an In 2 O 3 —Sn film, is called an ITO (Indium tin oxide) film, and is widely used because a transparent conductive film with low resistance can be easily obtained. Has been.

これ等透明導電膜の製造方法としては、一般に真空蒸着法やスパッタリング法等が用いられている。そして、これ等方法は、蒸気圧の低い材料を使用する際や精密な膜厚制御を必要とする際に有効な手法であり、かつ、操作が非常に簡便であるため工業的には有用である。また、真空蒸着法とスパッタリング法を比較すると、真空蒸着法の方が高速に成膜することができるため量産性に優れている。   As a method for producing these transparent conductive films, a vacuum deposition method, a sputtering method, or the like is generally used. These methods are effective when using materials with low vapor pressure or when precise film thickness control is required, and are industrially useful because they are very simple to operate. is there. Further, when the vacuum deposition method and the sputtering method are compared, the vacuum deposition method is superior in mass productivity because it can form a film at a higher speed.

ところで、真空蒸着法は、一般に、10-3〜10-2Pa程度の真空中で、蒸発源である固体または液体を加熱して一度気体分子や原子に分解させた後、再び基板表面上に薄膜として凝縮させる方法である。また、上記蒸発源の加熱方式は種々あるが、抵抗加熱法(RH法)、電子ビーム加熱法(EB法、電子ビーム蒸着法)が一般的である。また、成膜室(チャンバー)内にO2ガス等の反応ガスを導入しながら蒸着する反応性蒸着法もよく知られている。 By the way, in the vacuum deposition method, in general, in a vacuum of about 10 −3 to 10 −2 Pa, a solid or liquid as an evaporation source is heated to be decomposed once into gas molecules and atoms, and then again on the substrate surface. It is a method of condensing as a thin film. Further, although there are various heating methods for the evaporation source, a resistance heating method (RH method) and an electron beam heating method (EB method, electron beam evaporation method) are common. A reactive vapor deposition method is also well known in which vapor deposition is performed while introducing a reactive gas such as O 2 gas into a film forming chamber (chamber).

そして、ITOのような酸化物膜を堆積させる場合、歴史的には、上記電子ビーム蒸着法がよく利用されてきた。すなわち、蒸発源にITOの酸化物蒸着材(ITOタブレットあるいはITOペレットとも呼ぶ)を用い、成膜室(チャンバー)に反応ガスであるO2ガスを導入し、熱電子発生用フィラメント(主にW線)から飛び出した熱電子を電界で加速させてITOの酸化物蒸着材に照射すると、照射された部分は局所的に高温になり、蒸発して基板に堆積される。また、熱電子エミッタやRF放電を用いてプラズマを発生させ、このプラズマで蒸発物や反応ガス(O2ガス等)を活性化させることにより、低温基板上で低抵抗の膜を作製することができる活性化反応性蒸着法(ARE法)もITO成膜には有用な方法である。更に、最近ではプラズマガンを用いた高密度プラズマアシスト蒸着法(HDPE法)もITO成膜に有効な手法であることが明らかとなり、工業的に広範に用いられはじめてきた(非特許文献1参照)。この方法では、プラズマ発生装置(プラズマガン)を用いたアーク放電を利用するが、プラズマガンに内蔵されたカソードと蒸発源の坩堝(アノード)との間でアーク放電が維持される。カソードから放出される電子が磁場により案内(ガイド)されて、坩堝に仕込まれたITOの酸化物蒸着材の局部に集中して照射される。この電子ビームが照射されて局所的に高温となった部分から、蒸発物が蒸発して基板に堆積される。気化した蒸発物や導入したO2ガスは、このプラズマ内で活性化されるため、良好な電気特性を持つITO膜を作製することができる。また、これ等の各種真空蒸着法の別の分類法として、蒸発物や反応ガスのイオン化を伴うものは総称してイオンプレーティング法(IP法)と呼ばれ、低抵抗で高光透過率のITO膜を得る方法として有効である(非特許文献2参照)。 In the case of depositing an oxide film such as ITO, the electron beam evaporation method has been used historically. That is, an ITO oxide vapor deposition material (also referred to as an ITO tablet or an ITO pellet) is used as an evaporation source, an O 2 gas as a reaction gas is introduced into a film forming chamber (chamber), and a thermoelectron generating filament (mainly W When the thermal electrons emitted from the line) are accelerated by an electric field and irradiated onto the ITO oxide vapor deposition material, the irradiated portion becomes locally high in temperature and evaporated to be deposited on the substrate. In addition, it is possible to produce a low-resistance film on a low-temperature substrate by generating plasma using a thermionic emitter or RF discharge and activating evaporates and reactive gases (O 2 gas etc.) with this plasma. An activated reactive vapor deposition method (ARE method) that can be used is also a useful method for forming an ITO film. Furthermore, recently, it has become clear that a high-density plasma-assisted vapor deposition method (HDPE method) using a plasma gun is also an effective method for forming an ITO film, and has begun to be widely used industrially (see Non-Patent Document 1). . In this method, arc discharge using a plasma generator (plasma gun) is used, but arc discharge is maintained between a cathode built in the plasma gun and a crucible (anode) of an evaporation source. Electrons emitted from the cathode are guided (guided) by a magnetic field and are concentrated and irradiated on the local area of the ITO oxide deposition material charged in the crucible. The evaporated material is evaporated and deposited on the substrate from the portion where the electron beam is irradiated and locally heated. Since the evaporated vapor and the introduced O 2 gas are activated in this plasma, an ITO film having good electrical characteristics can be produced. Further, as another classification method of these various vacuum deposition methods, those accompanied by ionization of evaporates and reaction gases are collectively referred to as an ion plating method (IP method), and ITO with low resistance and high light transmittance is used. It is effective as a method for obtaining a film (see Non-Patent Document 2).

ところで、透明導電膜が適用される何れのタイプの太陽電池でも、光が当たる表側の電極には上記透明導電膜が不可欠であり、従来は、上述したITO膜等が利用されてきた。そして、これ等の透明導電膜には、低抵抗であることや、太陽光の光透過率が高いこと等の特性が求められている。また、これ等の透明導電膜の製造方法としては、上述したイオンプレーティング法や高密度プラズマアシスト蒸着法等の真空蒸着法が用いられている。   By the way, in any type of solar cell to which the transparent conductive film is applied, the transparent conductive film is indispensable for the front side electrode to which light hits, and conventionally, the above-described ITO film or the like has been used. These transparent conductive films are required to have characteristics such as low resistance and high light transmittance of sunlight. Further, as a method for producing these transparent conductive films, vacuum deposition methods such as the above-described ion plating method and high-density plasma assist deposition method are used.

そして、上記電子ビーム蒸着法、イオンプレーティング法や高密度プラズマアシスト蒸着法等の真空蒸着法に用いられる酸化物蒸着材は、小さいサイズ(例えば直径が10〜50mmで高さが10〜50mm程度)の焼結体が使われるため、一つの酸化物蒸着材で成膜できる膜量には限界があった。そして、酸化物蒸着材の消耗量が多くなり残量が少なくなると、成膜を中断し、真空中の成膜室を大気導入して未使用の酸化物蒸着材に交換し、かつ、成膜室を再び真空引きする必要があり、生産性を悪くする要因となっていた。   The oxide deposition material used in the vacuum deposition methods such as the electron beam deposition method, ion plating method, and high density plasma assisted deposition method has a small size (for example, a diameter of 10 to 50 mm and a height of about 10 to 50 mm). Therefore, there is a limit to the amount of film that can be formed with one oxide vapor deposition material. Then, when the consumption amount of the oxide vapor deposition material increases and the remaining amount decreases, the film formation is interrupted, the vacuum film formation chamber is introduced into the atmosphere and replaced with an unused oxide vapor deposition material, and the film is formed. It was necessary to evacuate the chamber again, which caused productivity to deteriorate.

そこで、電子ビーム蒸着法、イオンプレーティング法や高密度プラズマアシスト蒸着法等の真空蒸着法にて透明導電膜を量産する場合に必要不可欠な技術として、上記酸化物蒸着材の連続供給法が挙げられ、その一例が、非特許文献1に記載されている。この連続供給法では、円筒形状のハースの内側に円柱状の酸化物蒸着材が連なって収納されており、昇華面の高さが一定に維持されたまま酸化物蒸着材が順次押し出されて連続供給されるようになっている。そして、酸化物蒸着材の連続供給法により、真空蒸着法による透明導電膜の大量生産が実現できるようになった。   Therefore, a continuous supply method of the above-mentioned oxide deposition material is cited as an indispensable technique for mass production of transparent conductive films by vacuum deposition methods such as electron beam deposition, ion plating, and high density plasma assisted deposition. One example is described in Non-Patent Document 1. In this continuous supply method, columnar oxide vapor deposition materials are continuously stored inside a cylindrical hearth, and the oxide vapor deposition materials are sequentially extruded while maintaining the height of the sublimation surface constant. It comes to be supplied. And the mass production of the transparent conductive film by a vacuum evaporation method came to be realizable by the continuous supply method of an oxide vapor deposition material.

原料として用いる上記酸化物蒸着材に関して、特許文献1では、ITOの蒸着材が紹介されている。実質的には、インジウム、錫および酸素から成るIn23−SnO2系の粒状であり、1粒子の体積が0.01〜0.5cm3、かつ、相対密度が55%以上であること、また、容器に充填したときの嵩密度が2.5g/cm3以下であるITOの蒸着材が提案されている。そして、上記構成とすることによって、電子ビーム蒸着により安定的に低抵抗のITO膜を成膜でき、利用効率が80%以上となり、更に供給機内で詰まることなく連続供給を可能とするITO蒸着材が得られることが記載されている。 Regarding the oxide vapor deposition material used as a raw material, Patent Document 1 introduces an ITO vapor deposition material. It is substantially an In 2 O 3 —SnO 2 type particle composed of indium, tin and oxygen, and the volume of one particle is 0.01 to 0.5 cm 3 and the relative density is 55% or more. Further, an ITO vapor deposition material having a bulk density of 2.5 g / cm 3 or less when filled in a container has been proposed. With the above configuration, an ITO evaporation material that can stably form a low-resistance ITO film by electron beam evaporation, has a utilization efficiency of 80% or more, and can be continuously supplied without clogging in the supply machine. Is obtained.

また、ITO以外の酸化インジウム系透明導電膜としては、スパッタ法による原料、すなわちスパッタターゲット材として種々の組成のものが紹介されている。例えば、特許文献2や特許文献3には、セリウムを含有した酸化インジウムのスパッタターゲット材(In−Ce−O)と、このスパッタターゲット材からスパッタ法で得られる透明導電膜に関する技術が紹介されている。そして、特許文献2で紹介されたセリウムを含む酸化インジウム系透明導電膜は、Agとの反応性が乏しいことからAg系極薄膜と積層することで、高透過性で耐熱性に優れた透明導電膜を実現できることが紹介され、また、特許文献3では、エッチング性に優れた膜が得られること等が紹介されている。また、特許文献4には、タングステンを含有した酸化インジウムから成る結晶性の透明導電膜(結晶性In−W−O)が、太陽電池の透明電極用として有用であると紹介されている。更には、パルスレーザー堆積法により得られたガドリニウムを含有した酸化インジウムからなる透明導電膜が、高い導電性と可視〜近赤外域の高い透過率を兼ね備えており、太陽電池の透明電極用として有用であることが最近明らかとなってきた(非特許文献3参照)。   In addition, as the indium oxide-based transparent conductive film other than ITO, materials having various compositions have been introduced as a raw material by sputtering, that is, as a sputtering target material. For example, Patent Document 2 and Patent Document 3 introduce a technique relating to a cerium-containing indium oxide sputter target material (In-Ce-O) and a transparent conductive film obtained by sputtering from the sputter target material. Yes. And since the indium oxide type transparent conductive film containing cerium introduced in Patent Document 2 has poor reactivity with Ag, the transparent conductive film having high permeability and excellent heat resistance is laminated by stacking with an Ag type ultrathin film. It is introduced that a film can be realized, and Patent Document 3 introduces that a film excellent in etching property can be obtained. Patent Document 4 introduces that a crystalline transparent conductive film (crystalline In—W—O) made of indium oxide containing tungsten is useful for a transparent electrode of a solar cell. Furthermore, the transparent conductive film made of indium oxide containing gadolinium obtained by the pulse laser deposition method has both high conductivity and high transmittance in the visible to near-infrared region and is useful as a transparent electrode for solar cells. It has recently become clear (see Non-Patent Document 3).

そして、ITO以外のこれ等酸化インジウム系透明導電膜は、低抵抗で、可視光領域に光透過性能が優れているだけでなく、従来使用されてきた前述のITO膜や酸化亜鉛系膜と較べて、近赤外線領域における光透過性能に優れていて、このような透明導電膜を太陽電池の表側の電極に用いると、近赤外光のエネルギーも有効に利用することができる。   These indium oxide-based transparent conductive films other than ITO have a low resistance and excellent light transmission performance in the visible light region, as well as compared to the ITO films and zinc oxide-based films that have been used conventionally. The light transmission performance in the near-infrared region is excellent, and when such a transparent conductive film is used for the front electrode of the solar cell, the energy of near-infrared light can also be used effectively.

特開平8−104978号公報JP-A-8-104978 特許第3445891号公報Japanese Patent No. 3445891 特開2005−290458号公報JP 2005-290458 A 特開2004−43851号公報JP 2004-43851 A

「真空」、Vol.44, No.4, 2001年, p. 435-439`` Vacuum '', Vol.44, No.4, 2001, p.435-439 「透明導電膜の技術」、オーム社、1999年刊, p. 205-211"Technology of transparent conductive film", Ohmsha, 1999, p. 205-211 R. K. Gupta et al., “High mobility, transparent, conducting Gd-doped In2O3thin films by pulsed laser deposition”, Thin Solid Films 516 (2008) 3204-3209R. K. Gupta et al., “High mobility, transparent, conducting Gd-doped In2O3thin films by pulsed laser deposition”, Thin Solid Films 516 (2008) 3204-3209

しかし、ITO以外の上述した酸化インジウム系透明導電膜を真空蒸着法で安定して成膜するための酸化物蒸着材に関する技術は乏しく、特に、近年、太陽電池の世界的な需要の高まりがあるものの、太陽電池の透明電極として有用な透明導電膜を蒸着法により有効に製造できる酸化物蒸着材や蒸着膜に関する技術は極めて乏しかった。   However, there are few technologies relating to oxide vapor deposition materials for stably forming the above-described indium oxide-based transparent conductive films other than ITO by vacuum vapor deposition, and in particular, there has been an increasing worldwide demand for solar cells in recent years. However, there have been very few techniques relating to oxide vapor deposition materials and vapor deposition films that can effectively produce a transparent conductive film useful as a transparent electrode for solar cells by vapor deposition.

このため、真空蒸着法で使われる酸化物蒸着材に関しては、これまでスパッタリングターゲットの焼結体の製造技術が転用されてきた。しかしながら、このような転用技術で製造された従来の酸化物蒸着材を用い、電子ビーム蒸着法、イオンプレーティング法や高密度プラズマアシスト蒸着法等の各種真空蒸着法にて、低抵抗で高い光透過性を有する透明導電膜を製造する場合、成膜時に成膜真空槽へ酸素ガスを多く導入する必要があることから、主に、以下に述べるような問題が生じる。   For this reason, the manufacturing technology of the sintered compact of a sputtering target has been diverted until now about the oxide vapor deposition material used with a vacuum evaporation method. However, using a conventional oxide vapor deposition material manufactured by such a diversion technique, low resistance and high light can be achieved by various vacuum vapor deposition methods such as electron beam vapor deposition, ion plating, and high density plasma assisted vapor deposition. When manufacturing a transparent conductive film having transparency, it is necessary to introduce a large amount of oxygen gas into a film-forming vacuum chamber during film formation, and thus the following problems arise mainly.

まず、透明導電膜と酸化物蒸着材との組成ズレが大きくなり、透明導電膜の組成設計が難しくなる。一般に成膜真空槽への導入酸素量が多くなると、透明導電膜と酸化物蒸着材の組成差が大きくなり易いからである。成膜量産工程では、成膜真空槽内の酸素量の変動も生じ易いため、その影響をうけて膜組成の変動も生じ易くなり、膜特性のバラツキにつながる。   First, the composition deviation of a transparent conductive film and an oxide vapor deposition material becomes large, and the composition design of a transparent conductive film becomes difficult. This is because, generally, when the amount of oxygen introduced into the film-forming vacuum chamber increases, the difference in composition between the transparent conductive film and the oxide vapor deposition material tends to increase. In the film formation mass production process, the amount of oxygen in the film formation vacuum chamber is likely to fluctuate, and accordingly, the film composition is likely to fluctuate due to the influence thereof, leading to variations in film characteristics.

また、酸素ガスを用いた反応性蒸着成膜では、酸素量が多くなると膜の密度が低下するだけでなく、膜の基板に対する付着力も弱くなる等の問題が生じる。蒸発した金属酸化物が基板に到達するまでに酸化されるとエネルギーを消失してしまうため、酸化の割合が多くなると、緻密でかつ基板に対する高密着な膜が得られ難くなるからである。   In reactive vapor deposition using oxygen gas, when the amount of oxygen increases, not only the density of the film decreases, but also the adhesion of the film to the substrate weakens. This is because if the evaporated metal oxide is oxidized before reaching the substrate, energy is lost, and if the rate of oxidation increases, it becomes difficult to obtain a dense and highly adhesive film with respect to the substrate.

更に、表面が酸化され易い金属膜や有機物膜で覆われた基板上に透明導電膜を形成する場合、成膜真空槽への酸素ガスが多いと、成膜前に基板表面が酸化されてしまい、これに伴い高性能のデバイスを製造することができなくなる。この傾向は、成膜時の基板温度が高いほど顕著となる。例えば、基板と反対側の面から光を入射させてエネルギー変換するような太陽電池を製造する場合、金属薄膜で形成されたPIN素子の上に透明導電膜を形成する必要があるため、酸素導入量の多い成膜を行なったのでは、素子がダメージを受け易く高性能のデバイスを製造することができない。有機薄膜太陽電池やトップエミッション型の有機エレクトロルミネッセンス素子を形成する場合も同様であり、有機物発光層の上に透明導電膜を形成する場合、酸素導入量の多い状況下では有機物発光層が酸化されてダメージを受けてしまうため高性能の素子を実現することができない。   Furthermore, when a transparent conductive film is formed on a substrate covered with a metal film or organic film whose surface is easily oxidized, if there is a large amount of oxygen gas to the film formation vacuum chamber, the substrate surface will be oxidized before film formation. As a result, high-performance devices cannot be manufactured. This tendency becomes more prominent as the substrate temperature during film formation is higher. For example, when manufacturing a solar cell that converts energy by making light incident from the surface opposite to the substrate, it is necessary to form a transparent conductive film on the PIN element formed of a metal thin film. If a large amount of film is formed, the element is easily damaged and a high-performance device cannot be manufactured. The same applies to the formation of organic thin-film solar cells and top-emission type organic electroluminescence elements. When a transparent conductive film is formed on an organic light-emitting layer, the organic light-emitting layer is oxidized under conditions where a large amount of oxygen is introduced. Therefore, a high-performance element cannot be realized.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、ガドリニウムが添加された酸化インジウムを主成分とし、成膜時に導入する酸素量が少なくても、低抵抗で、可視域だけでなく近赤外域においても高い光透過性を有する透明導電膜が安定して製造できる酸化物蒸着材を提供することにある。 The present invention has been made paying attention to such problems, and the problem is that the main component is indium oxide to which gadolinium is added, and low resistance is achieved even if the amount of oxygen introduced during film formation is small. Then, it is providing the oxide vapor deposition material which can manufacture stably the transparent conductive film which has a high light transmittance not only in a visible region but in a near infrared region.

すなわち、請求項1に係る発明は、
酸化物蒸着材において、
酸化インジウムを主成分とし、ガドリニウムを含む焼結体により構成され、かつ、ガドリニウムの含有量がGd/In原子数比で0.001〜0.070で、CIE1976表色系におけるL値が60〜94であることを特徴とし、
請求項2に係る発明は、
請求項1に記載の発明に係る酸化物蒸着材において、
上記ガドリニウム含有量がGd/In原子数比で0.030〜0.050であることを特徴とする。
That is, the invention according to claim 1
In oxide vapor deposition materials,
It is composed of a sintered body containing indium oxide as a main component and containing gadolinium, and the gdolinium content is 0.001 to 0.070 in terms of Gd / In atomic ratio, and the L * value in the CIE1976 color system is 60. ~ 94,
The invention according to claim 2
In the oxide vapor deposition material according to the invention of claim 1,
The gadolinium content is 0.030 to 0.050 in terms of Gd / In atomic ratio.

本発明に係る酸化物蒸着材は、酸化インジウムを主成分とし、ガドリニウムを含む焼結体により構成され、ガドリニウムの含有量がGd/In原子数比で0.001〜0.070で、CIE1976表色系におけるL値が60〜94であることを特徴とする。 The oxide vapor deposition material according to the present invention is composed of a sintered body containing indium oxide as a main component and containing gadolinium, the gadolinium content is 0.001 to 0.070 in terms of Gd / In atomic ratio, and the CIE 1976 table. The L * value in the color system is 60 to 94.

そして、CIE1976表色系におけるL値が60〜94である本発明に係る酸化物蒸着材は最適な酸素量を有しているため、この酸化物蒸着材を適用することにより、成膜真空槽への酸素ガス導入量が少なくても、低抵抗で可視〜近赤外域における高透過性の透明導電膜を真空蒸着法で製造することが可能となり、かつ、成膜真空槽への酸素ガスの導入量が少ないため、膜と酸化物蒸着材との組成差を小さくすることが可能となり、目的の膜組成が得易いだけでなく、量産時の膜組成の変動や特性の変動も低減することが可能となる。また、成膜真空槽への酸素ガスの導入量が少ない成膜のため、酸素ガスによる基板へのダメージを低減できることから、高性能のデバイスを実現することが可能となる。特に、太陽電池に有用な高性能の膜を、基板にダメージを与えることなく安定して製造することが可能となる。 And since the oxide vapor deposition material which concerns on this invention whose L * value in a CIE1976 colorimetric system is 60-94 has the optimal oxygen amount, film-forming vacuum is applied by applying this oxide vapor deposition material. Even if the amount of oxygen gas introduced into the tank is small, it becomes possible to produce a transparent conductive film having a low resistance and a high permeability in the visible to near infrared region by the vacuum deposition method, and the oxygen gas to the film forming vacuum tank Since the introduction amount of the material is small, it is possible to reduce the difference in composition between the film and the oxide vapor deposition material, and it is easy not only to obtain the target film composition but also to reduce the fluctuation of the film composition and the characteristic during mass production. It becomes possible. In addition, since film formation with a small amount of oxygen gas introduced into the film formation vacuum chamber can reduce damage to the substrate due to oxygen gas, a high-performance device can be realized. In particular, a high-performance film useful for solar cells can be stably produced without damaging the substrate.

また、本発明に係る酸化物蒸着材を適用することにより、可視域だけでなく近赤外域における高い光透過性を示しながら高い導電性を示す透明導電膜を真空蒸着法で製造することが可能となる。   In addition, by applying the oxide vapor deposition material according to the present invention, it is possible to produce a transparent conductive film exhibiting high conductivity while exhibiting high light transmittance not only in the visible region but also in the near infrared region by a vacuum deposition method. It becomes.

本発明に係る酸化物蒸着材が適用された透明導電膜を電極層として用いたシリコン系太陽電池の概略構成を示す説明図。Explanatory drawing which shows schematic structure of the silicon-type solar cell using the transparent conductive film to which the oxide vapor deposition material which concerns on this invention was applied as an electrode layer. 本発明に係る酸化物蒸着材が適用された透明導電膜により構成される電極層をガラス基板側に用いた化合物薄膜系太陽電池の概略構成を示す説明図。Explanatory drawing which shows schematic structure of the compound thin film type solar cell which used the electrode layer comprised by the transparent conductive film to which the oxide vapor deposition material which concerns on this invention was applied for the glass substrate side. 本発明に係る酸化物蒸着材が適用された透明導電膜により構成される電極層をガラス基板とは反対側に用いた化合物薄膜系太陽電池の概略構成を示す説明図。Explanatory drawing which shows schematic structure of the compound thin film type solar cell which used the electrode layer comprised by the transparent conductive film to which the oxide vapor deposition material which concerns on this invention was applied on the opposite side to a glass substrate.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(1)酸化物蒸着材
本発明の酸化物蒸着材は、酸化インジウムを主成分とし、かつ、ガドリニウムがGd/In原子数比で0.001〜0.070の割合で含有された組成を有する。そして、本発明の酸化物蒸着材を用いて真空蒸着法により製造された透明導電膜の組成は、酸化物蒸着材の組成に極めて近いため、製造される膜組成も、酸化インジウムを主成分としかつガドリニウムの組成が0.001〜0.070の割合だけ含有する組成となる。ガドリニウムを上記割合だけ含有させる理由としては、酸化インジウム膜の移動度を増加させることができるからである。膜組成、すなわち酸化物蒸着材組成のガドリニウム含有量(Gd/In原子数比)が0.001未満では、移動度増加の効果が小さくて低抵抗の膜を得ることができない。また、0.070を超えると、膜中のガドリニウム量が多過ぎて、電子移動の際の中性不純物散乱が大きくなってしまい、移動度が低下して低抵抗の膜が得られない。更に、より高い移動度を発揮して低抵抗の膜を得るためのより好ましいガドリニウムの含有量は、Gd/In原子数比で0.030〜0.050である。
(1) Oxide vapor deposition material The oxide vapor deposition material of the present invention has a composition in which indium oxide is a main component and gadolinium is contained in a Gd / In atomic ratio of 0.001 to 0.070. . And since the composition of the transparent conductive film manufactured by the vacuum evaporation method using the oxide vapor deposition material of the present invention is very close to the composition of the oxide vapor deposition material, the film composition to be manufactured is also composed mainly of indium oxide. And it becomes a composition which the composition of gadolinium contains only in the ratio of 0.001-0.070. The reason why gadolinium is contained in the above ratio is that the mobility of the indium oxide film can be increased. When the film composition, that is, the gadolinium content (Gd / In atomic ratio) of the oxide vapor deposition material composition is less than 0.001, the effect of increasing the mobility is small and a low resistance film cannot be obtained. On the other hand, if it exceeds 0.070, the amount of gadolinium in the film is too large, and neutral impurity scattering at the time of electron transfer increases, so that the mobility is lowered and a low resistance film cannot be obtained. Furthermore, the more preferable content of gadolinium for exhibiting higher mobility to obtain a low resistance film is 0.030 to 0.050 in terms of the Gd / In atomic ratio.

ところで、酸化インジウムを主成分とする透明導電膜はn型の半導体であるが、高い導電性と高い光透過性を発揮させるためには適度な酸素欠損を必要とする。すなわち、膜中の酸素量が多くて酸素欠損量が少ない場合は、例えドーパントを含んでいても導電性を示さない。導電性を示すには膜中に酸素欠損を導入することが必要であるが、酸素欠損量が多過ぎると可視光の光吸収が多くなり着色の原因となる。よって、膜には最適な酸素欠損を持たせる必要がある。膜中の酸素は、原料である酸化物蒸着材から供給される他、成膜時に成膜真空槽に導入される酸素ガスが膜中に取り込まれることによっても供給される。そして、酸化物蒸着材からの供給分が少ないと、成膜真空槽に導入される酸素ガス量を多めにする必要があるが、成膜真空槽に導入される酸素ガス量を多くすると上述した問題が生じてしまう。よって、最適な酸素量を有する酸化物蒸着材が有用となる。   By the way, the transparent conductive film containing indium oxide as a main component is an n-type semiconductor, but an appropriate oxygen deficiency is required in order to exhibit high conductivity and high light transmittance. That is, when the amount of oxygen in the film is large and the amount of oxygen vacancies is small, even if it contains a dopant, it does not exhibit conductivity. In order to exhibit conductivity, it is necessary to introduce oxygen vacancies into the film. However, if the amount of oxygen vacancies is too large, light absorption of visible light increases, which causes coloring. Therefore, the film needs to have an optimal oxygen deficiency. Oxygen in the film is supplied not only from the oxide vapor deposition material as a raw material but also by oxygen gas introduced into the film formation vacuum chamber during film formation being taken into the film. And if there is little supply from an oxide vapor deposition material, it is necessary to increase the amount of oxygen gas introduced into the film-forming vacuum chamber, but as described above, the amount of oxygen gas introduced into the film-forming vacuum chamber is increased. Problems arise. Therefore, an oxide vapor deposition material having an optimal oxygen amount is useful.

そして、本発明に係る酸化物蒸着材は、CIE1976表色系におけるL値で規定していることが最大の特徴である。ここで、CIE1976表色系とは、CIE(国際照明委員会)が1976年に推奨した色空間である。色を、明度Lとクロマネティックス指数a、bからなる均等色空間上の座標で表したものであることから、CIELABとも略記される。明度を示すLは、L=0で黒色、L=100で白の拡散色を示す。またaは、負の値で緑寄り、正の値でマゼンタ寄りを表し、bは、負の値で青寄り、正の値で黄色寄りを表す。 And, the oxide vapor deposition material according to the present invention is characterized in that it is defined by the L * value in the CIE 1976 color system. Here, the CIE 1976 color system is a color space recommended by the CIE (International Commission on Illumination) in 1976. Color, lightness L * and black Manet ticks indices a *, since those expressed in coordinates on a uniform color space of b *, are abbreviated as CIELAB. L * is showing the lightness indicates black, the diffuse color of white in the L * = 100 in L * = 0. Further, a * is a negative value for green, a positive value for magenta, b * is a negative value for blue, and a positive value for yellow.

そして、CIE1976表色系におけるL値で規定した本発明に係る酸化物蒸着材の焼結体表面と焼結体内部の色味は同一であることが好ましいが、仮に最表面と内部で異なった酸化物蒸着材である場合、本発明では焼結体内部についてL値を定めている。 And it is preferable that the color of the sintered body surface and the inside of the sintered body of the oxide vapor deposition material according to the present invention defined by the L * value in the CIE 1976 color system is the same, but it is temporarily different between the outermost surface and the inside. In the present invention, the L * value is determined for the inside of the sintered body.

発明者による実験によると、酸化物蒸着材の内部のL値が60〜94のとき、成膜真空槽へ導入する酸素量が少なくても高い導電性と可視〜近赤外域の高い透過率を兼ね備えた透明導電膜を得ることができる。また、白っぽい色ほどL値は高く、逆に黒っぽいほどL値は低い。そして、酸化物蒸着材のL値は、酸化物蒸着材内の含有酸素量と相関を有していると考えられ、L値が大きいほど含有酸素量が多く、L値が小さいほど含有酸素量が少ないと考えられる。本発明者は、製造条件を変えて、種々のL値の酸化物蒸着材を用いて真空蒸着法で透明導電膜を作製する実験を試みたところ、L値が大きいほど、成膜中に導入する最適酸素量(低抵抗で透明度の高い膜を得るための酸素量)は少なかった。これは、L値が大きい酸化物蒸着材ほど、酸化物蒸着材自体から供給される酸素量が多くなるためである。また、膜と酸化物蒸着材の組成差は、酸素導入量が多いほど大きい傾向を示す。従って、L値が大きいほど、組成差は小さくなる。 According to an experiment by the inventors, when the L * value inside the oxide vapor deposition material is 60 to 94, high conductivity and high transmittance in the visible to near infrared region even if the amount of oxygen introduced into the deposition vacuum chamber is small. Can be obtained. Also, the whitish color has a higher L * value, while the darker the color, the lower the L * value. The L * value of the oxide vapor deposition material is considered to have a correlation with the amount of oxygen contained in the oxide vapor deposition material. The larger the L * value, the greater the amount of oxygen contained, and the smaller the L * value. It is considered that the oxygen content is small. The present inventor has changed manufacturing conditions, was experimented to produce a transparent conductive film by a vacuum deposition method using an oxide evaporation materials of various L * values, as L * value is large, during the film formation The optimum amount of oxygen to be introduced into (the amount of oxygen for obtaining a low resistance and high transparency film) was small. This is because the larger the L * value, the greater the amount of oxygen supplied from the oxide vapor deposition material itself. Further, the difference in composition between the film and the oxide vapor deposition material tends to increase as the amount of oxygen introduced increases. Therefore, the larger the L * value, the smaller the composition difference.

尚、本発明に係る酸化物蒸着材は導電性を有し、酸化物蒸着材の導電率は含有酸素量にも依存するが、密度、結晶粒径、ガドリニウムのドーパント効率にも依存する。従って、酸化物蒸着材の導電率とL値は1対1には対応しない。 The oxide vapor deposition material according to the present invention has conductivity, and the conductivity of the oxide vapor deposition material depends on the oxygen content, but also on the density, the crystal grain size, and the gadolinium dopant efficiency. Therefore, the conductivity and L * value of the oxide vapor deposition material do not correspond one to one.

そして、酸化インジウムを主成分としかつガドリニウムを含む本発明に係る酸化物蒸着材からは、真空蒸着の際、主にIn23-x、Gd23-xの形態で蒸発粒子が発生し、チャンバー内の酸素と反応しながら酸素を吸収し、基板に到達して成膜される。また、蒸発粒子の持っているエネルギーは、基板に到達して基板上に堆積する際、物質移動の駆動源となっており、膜の緻密化と基板に対する付着力増強に貢献している。そして、酸化物蒸着材のL値が小さいほど酸化物蒸着材内の酸素が少ないことから、蒸発粒子の酸素欠損が大きくなるため、真空槽へ多くの酸素を導入して基板に到達する前に酸化反応させる割合を多くする必要がある。しかし、蒸発粒子は、飛行中に酸化することでエネルギーが消費されるため、酸素を多く導入した反応性成膜では、緻密でかつ基板に対する密着力の高い膜を得ることが難しくなる。逆に、導入する酸素ガスを極力少なくした反応性蒸着成膜の方が、高密着で高密度の膜を得易く、本発明の酸化物蒸着材はこれを実現することができる。 The oxide deposition material according to the present invention containing indium oxide as a main component and containing gadolinium generates evaporated particles mainly in the form of In 2 O 3-x and Gd 2 O 3-x during vacuum deposition. Then, oxygen is absorbed while reacting with oxygen in the chamber, and reaches the substrate to form a film. Further, when the evaporated particles reach the substrate and deposit on the substrate, the energy becomes a driving source for mass transfer, contributing to densification of the film and enhancement of adhesion to the substrate. Since the smaller the L * value of the oxide vapor deposition material, the less oxygen in the oxide vapor deposition material, the greater the oxygen deficiency of the evaporated particles, so that a large amount of oxygen is introduced into the vacuum chamber before reaching the substrate. It is necessary to increase the rate of oxidation reaction. However, since the evaporated particles consume energy by being oxidized during the flight, it is difficult to obtain a dense film having high adhesion to the substrate in the reactive film in which a large amount of oxygen is introduced. On the contrary, the reactive vapor deposition film forming the oxygen gas to be introduced as much as possible is easier to obtain a highly adherent and high density film, and the oxide vapor deposition material of the present invention can realize this.

ここで、上記L値が60未満であると、酸化物蒸着材中の酸素量が少な過ぎるため、低抵抗で透明度の高い膜を得るための成膜真空槽へ導入される最適酸素導入量は多くなり、膜と酸化物蒸着材の組成差が大きくなるだけでなく、成膜中に基板へのダメージが大きくなる等の問題が生じてしまうため好ましくない。逆に、上記L値が94を超えると、酸化物蒸着材中に含まれる酸素量が多過ぎるため、酸化物蒸着材から膜に供給される酸素が多くなり過ぎる結果、最適な酸素欠損を持つ高い導電性の膜が得られなくなる。 Here, when the L * value is less than 60, the amount of oxygen in the oxide vapor deposition material is too small, so the optimum amount of oxygen introduced into the film formation vacuum chamber for obtaining a film with low resistance and high transparency. This is not preferable because not only the compositional difference between the film and the oxide vapor deposition material increases, but also problems such as increased damage to the substrate occur during film formation. On the other hand, if the L * value exceeds 94, the amount of oxygen contained in the oxide deposition material is too large, so that too much oxygen is supplied from the oxide deposition material to the film, resulting in an optimal oxygen deficiency. It is impossible to obtain a highly conductive film.

ところで、特開2005−290458号公報(特許文献3)には、上述したようにセリウムを含有する酸化インジウム焼結体のスパッタターゲットが紹介されているが、特許文献3に記載されている製法に従ってガドリニウムを含有する酸化インジウムの焼結体を製造した場合、ガドリニウムを含有する酸化インジウム焼結体のL値は35〜55と低い値である。従って、このような焼結体を酸化物蒸着材として用いると、最適な膜を得るための成膜真空槽へ導入する酸素導入量を多くする必要があることから、上述した問題が生じてしまうため、本発明の目的を達成するものではなかった。 By the way, as described above, JP 2005-290458 A (Patent Document 3) introduces a sputtering target of an indium oxide sintered body containing cerium, but according to the manufacturing method described in Patent Document 3. When an indium oxide sintered body containing gadolinium is produced, the L * value of the indium oxide sintered body containing gadolinium is a low value of 35 to 55. Therefore, when such a sintered body is used as an oxide vapor deposition material, it is necessary to increase the amount of oxygen introduced into a film formation vacuum chamber for obtaining an optimum film, and thus the above-described problem occurs. Therefore, the object of the present invention has not been achieved.

ここで、上記L値が60〜94である本発明の蒸着用酸化物焼結体(酸化物蒸着材)は、従来のスパッタリングターゲットを製造する技術では製造することができない。真空蒸着法で大量生産に使用するのに適した適度の酸素量(あるいは酸素欠損量)を有する酸化物蒸着材は、以下のような方法で製造することができる。 Here, the oxide sintered body for vapor deposition (oxide vapor deposition material) of the present invention having the L * value of 60 to 94 cannot be produced by a conventional technique for producing a sputtering target. An oxide vapor deposition material having an appropriate amount of oxygen (or oxygen deficiency) suitable for use in mass production by a vacuum vapor deposition method can be produced by the following method.

すなわち、酸化インジウムを主成分としかつガドリニウムを含む酸化物焼結体は、酸化インジウムと酸化ガドリニウムの各粉末を原料とし、これ等を混合しかつ成型して圧粉体を形成し、高温に焼成して、反応・焼結させて製造することができる。酸化インジウムと酸化ガドリニウムの各粉末は、特別なものでなく、従来から用いられている酸化物焼結体用原料でよい。また、使用する粉末の平均粒径は1.5μm以下であり、好ましくは0.1〜1.1μmである。   That is, an oxide sintered body containing indium oxide as a main component and containing gadolinium is obtained by using indium oxide and gadolinium oxide powders as raw materials, mixing and molding these to form a green compact, and firing it at a high temperature. Then, it can be produced by reaction and sintering. Each powder of indium oxide and gadolinium oxide is not special, and may be a conventionally used raw material for an oxide sintered body. Moreover, the average particle diameter of the powder used is 1.5 micrometers or less, Preferably it is 0.1-1.1 micrometers.

上記酸化物焼結体を製造する際の一般的な原料粉末の混合法として、ボールミル混合法が利用されているが、本発明の焼結体を製造する場合にも有効である。ボールミルは、セラミック等(主にジルコニア等)の硬質のボール(ボール径1〜5mm)と材料の粉を容器にいれて回転させることによって、材料をすりつぶしながら混合して微細な混合粉末を作る装置である。ボールミル(粉砕メディア)は、缶体として、鋼、ステンレス、ナイロン等があり、内張りとして、アルミナ、磁気質、天然ケイ石、ゴム、ウレタン等を用いる。ボールは、アルミナを主成分とするアルミナボール、天然ケイ石、鉄芯入りナイロンボール、ジルコニアボール等がある湿式と乾式の粉砕方法があり、焼結体を得るための原料粉末の混合・粉砕に広範に利用されている。   A ball mill mixing method is used as a general raw material powder mixing method for manufacturing the oxide sintered body, but it is also effective in manufacturing the sintered body of the present invention. A ball mill is a device that makes a fine mixed powder by grinding and mixing materials by putting hard balls (ball diameter 1 to 5 mm) such as ceramics (mainly zirconia) and material powder into a container and rotating them. It is. Ball mills (grinding media) include steel, stainless steel, nylon, etc. as can bodies, and alumina, magnetic material, natural silica, rubber, urethane, etc. are used as linings. There are wet and dry pulverization methods such as alumina balls with alumina as the main component, natural silica, nylon balls with iron core, zirconia balls, etc., for mixing and pulverizing raw material powder to obtain a sintered body Widely used.

また、ボールミル混合以外の方法としては、ビーズミル法やジェットミル法も有効である。特に、大きな平均粒径の原料を用いる場合や、短時間で粉砕混合する必要がある場合は非常に有効である。ビーズミル法とは、ベッセルと呼ばれる容器の中に、ビーズ(粉砕メディア、ビーズ径0.005〜3mm)を70〜90%充填しておき、ベッセル中央の回転軸を周速7〜15m/秒で回転させることによりビーズに運動を与える。ここに、原料粉末等の被粉砕物を液体に混ぜたスラリーをポンプで送り込み、ビーズを衝突させることによって微粉砕・分散させる。ビーズミルの場合、被粉砕物に合わせてビーズ径を小さくすれば効率が上がる。一般的に、ビーズミルはボールミルの1千倍近い加速度で微粉砕と混合を実現することができる。このような仕組みのビーズミルは、様々な名称で呼ばれており、例えば、サンドグラインダー、アクアマイザイー、アトライター、パールミル、アベックスミル、ウルトラビスコミル、ダイノーミル、アジテーターミル、コボールミル、スパイクミル、SCミル等が知られており、本発明においてはいずれも使用できる。また、ジェットミルとは、ノズルから音速前後で噴射される高圧の空気あるいは蒸気を、超高速ジェットとして原料粉末等の被粉砕物に対し衝突させ、粒子同士の衝撃によって微粒子に粉砕する方法である。   Further, as a method other than the ball mill mixing, a bead mill method or a jet mill method is also effective. In particular, it is very effective when a raw material having a large average particle diameter is used or when it is necessary to pulverize and mix in a short time. In the bead mill method, 70-90% of beads (crushed media, bead diameter: 0.005-3 mm) are filled in a container called a vessel, and the rotation axis at the center of the vessel is set at a peripheral speed of 7-15 m / sec. Giving motion to the beads by rotating. Here, a slurry in which a material to be crushed, such as raw material powder, is mixed with a liquid is fed by a pump and finely pulverized and dispersed by colliding beads. In the case of a bead mill, efficiency can be improved by reducing the bead diameter according to the object to be crushed. In general, a bead mill can achieve pulverization and mixing at an acceleration close to 1,000 times that of a ball mill. The bead mill with such a structure is called by various names. For example, sand grinder, aquamizer, attritor, pearl mill, avex mill, ultra visco mill, dyno mill, agitator mill, coball mill, spike mill, SC mill Etc. are known, and any of them can be used in the present invention. In addition, the jet mill is a method in which high-pressure air or steam injected from a nozzle at around the sonic velocity is collided with an object to be crushed such as raw material powder as an ultra-high speed jet, and pulverized into fine particles by impact between particles. .

上述したように、まず、酸化インジウム粉末と酸化ガドリニウム粉末を所望の割合でボールミル用ポットに投入し、乾式あるいは湿式混合して混合粉末を調製する。そして、本発明の酸化物焼結体を得るためには、上記原料粉末の配合割合について、インジウムとガドリニウムの含有量がGd/In原子数比で0.001〜0.070となるように調製する。   As described above, first, indium oxide powder and gadolinium oxide powder are put into a ball mill pot at a desired ratio, and mixed powder is prepared by dry or wet mixing. And in order to obtain the oxide sintered compact of this invention, it prepares so that content of an indium and gadolinium may be 0.001-0.070 by Gd / In atomic ratio about the mixture ratio of the said raw material powder. To do.

こうして調製された混合粉末に、水および分散材・バインダー等の有機物を加えてスラリーを製造する。スラリーの粘度は150〜5000cPが好ましく、より好ましくは400〜3000cPである。   A slurry is produced by adding water and an organic substance such as a dispersing agent / binder to the mixed powder thus prepared. The viscosity of the slurry is preferably 150 to 5000 cP, more preferably 400 to 3000 cP.

次に、得られたスラリーとビーズとをビーズミルの容器に入れて処理する。ビーズ材としては、ジルコニア、アルミナ等を挙げることができるが、耐摩耗性の点でジルコニアが好ましい。ビーズの直径は、粉砕効率の点から1〜3mmが好ましい。パス数は1回でもよいが、2回以上が好ましく、5回以下で十分な効果が得られる。また、処理時間としては、好ましくは10時間以下、更に好ましくは4〜8時間である。   Next, the obtained slurry and beads are placed in a bead mill container and processed. Examples of the bead material include zirconia and alumina. Zirconia is preferable in terms of wear resistance. The diameter of the beads is preferably 1 to 3 mm from the viewpoint of grinding efficiency. The number of passes may be one, but it is preferably two or more, and a sufficient effect can be obtained by five or less. Moreover, as processing time, Preferably it is 10 hours or less, More preferably, it is 4 to 8 hours.

このような処理を行うことによって、スラリー中における酸化インジウム粉末と酸化ガドリニウム粉末の粉砕・混合が良好となる。   By performing such a treatment, the pulverization and mixing of the indium oxide powder and the gadolinium oxide powder in the slurry are improved.

次に、このようにして処理されたスラリーを用いて成形を行う。成形方法としては、鋳込み成形法、プレス成形法のいずれも採用することができる。鋳込み成形を行う場合、得られたスラリーを鋳込み成型用の型に注入して成形体を製造する。ビーズミルの処理から鋳込みまでの時間は10時間以内とするのが好ましい。こうすることにより得られたスラリーがチクソトロピー性を示すことを防ぐことができるからである。また、プレス成形を行う場合、得られたスラリーにポリビニルアルコール等のバインダー等を添加し、必要に応じて水分調節を行ってからスプレードライヤー等で乾燥させて造粒する。得られた造粒粉末を所定の大きさの金型に充填し、その後、プレス機を用いて100〜1000kg/cm2の圧力で1軸加圧成形を行い成形体とする。このときの成形体の厚みは、この後の焼成工程による収縮を考慮して、所定の大きさの焼結体を得ることができる厚さに設定することが好ましい。 Next, it shape | molds using the slurry processed in this way. As the molding method, either a cast molding method or a press molding method can be employed. When cast molding is performed, the obtained slurry is injected into a casting mold to produce a molded body. The time from bead mill treatment to casting is preferably within 10 hours. It is because it can prevent that the slurry obtained by doing in this way shows thixotropic property. Moreover, when performing press molding, binders, such as polyvinyl alcohol, are added to the obtained slurry, moisture adjustment is performed as needed, and it is dried with a spray dryer etc. and granulated. The obtained granulated powder is filled in a metal mold of a predetermined size, and thereafter, uniaxial pressure molding is performed at a pressure of 100 to 1000 kg / cm 2 using a press machine to obtain a molded body. The thickness of the molded body at this time is preferably set to a thickness capable of obtaining a sintered body having a predetermined size in consideration of shrinkage caused by the subsequent firing step.

上述の混合粉末から作製した成形体を用いて酸化物焼結体を製造する場合、製造コストが低い常圧焼結法で製造することが好ましい。この常圧焼結法で焼成して酸化物焼結体を得る場合には以下のようになる。   When manufacturing an oxide sintered compact using the molded object produced from the above-mentioned mixed powder, it is preferable to manufacture by an atmospheric pressure sintering method with low manufacturing cost. When an oxide sintered body is obtained by firing by this normal pressure sintering method, it is as follows.

まず、得られた成形体に対して300〜500℃の温度で5〜20時間程度加熱し、脱バインダー処理を行う。その後、昇温させて焼結を行うが、昇温速度は、効果的に内部の空孔を外部へ放出させるため、150℃/時間以下、好ましくは100℃/時間以下、更に好ましくは80℃/時間以下とする。焼結温度は、1150〜1300℃、好ましくは、1200〜1250℃とし、焼結時間は1〜20時間、好ましくは2〜5時間焼結する。脱バインダー処理〜焼結工程は、炉内容積0.1m3当たり5リットル/分以上の割合の酸素を炉に導入して行うことが重要である。上記焼結工程において酸素を導入して行うのは、焼結体は1150℃以上で酸素を解離し易く、過剰の還元状態に進み易いので、これを阻止するためである。酸素の解離は焼成温度が高くなるほど激しくなり、焼結体の中心に比べ表面側ほど酸素欠損が生じ易い。そのため、1300℃を超えた温度で焼成を行うと、焼結体における酸素欠損濃度にむらが発生し易くなる。酸素欠損濃度むらが大きいと、その後に続く酸素調整工程で、焼結体の最表面だけでなく焼結体内部においても酸素欠損濃度むらが解消されないことがあり、好ましくない。また、焼成温度が1150℃未満では、温度が低過ぎて焼結に乏しく、十分な強度の焼結体を得ることができないため好ましくない。 First, the obtained molded body is heated at a temperature of 300 to 500 ° C. for about 5 to 20 hours to perform a binder removal treatment. Thereafter, sintering is performed by raising the temperature, but the rate of temperature rise is 150 ° C./hour or less, preferably 100 ° C./hour or less, more preferably 80 ° C., in order to effectively release internal vacancies to the outside. / Hour or less. The sintering temperature is 1150 to 1300 ° C, preferably 1200 to 1250 ° C, and the sintering time is 1 to 20 hours, preferably 2 to 5 hours. It is important that the binder removal process to the sintering process be performed by introducing oxygen into the furnace at a rate of 5 liters / minute or more per 0.1 m 3 of the furnace volume. The reason why oxygen is introduced in the sintering step is to prevent the sintered body from dissociating oxygen at 1150 ° C. or higher and easily proceeding to an excessive reduction state. The dissociation of oxygen becomes more severe as the firing temperature becomes higher, and oxygen vacancies are more likely to occur on the surface side than the center of the sintered body. Therefore, when firing is performed at a temperature exceeding 1300 ° C., unevenness in the oxygen deficiency concentration in the sintered body tends to occur. If the oxygen deficiency concentration unevenness is large, the oxygen deficiency concentration unevenness may not be eliminated not only in the outermost surface of the sintered body but also in the sintered body in the subsequent oxygen adjusting step, which is not preferable. Moreover, if the firing temperature is less than 1150 ° C., the temperature is too low and the sintering is poor, and a sintered body with sufficient strength cannot be obtained.

焼結後、焼結体の酸素量調整工程を行う。酸素量調整工程は、900〜1100℃、好ましくは950〜1050℃の加熱温度で行い、加熱時間は10時間以上であることが重要である。上記酸素量調整工程の加熱温度までの冷却は、酸素導入を継続しながら行い、0.1〜20℃/分、好ましくは2〜10℃/分の範囲の降温速度で降温する。   After sintering, an oxygen content adjusting step of the sintered body is performed. It is important that the oxygen amount adjusting step is performed at a heating temperature of 900 to 1100 ° C., preferably 950 to 1050 ° C., and the heating time is 10 hours or more. Cooling to the heating temperature in the oxygen amount adjusting step is performed while continuing the introduction of oxygen, and the temperature is decreased at a temperature decreasing rate of 0.1 to 20 ° C./min, preferably 2 to 10 ° C./min.

焼結体の酸素量調整工程では、炉内雰囲気の制御も特に重要であり、炉への導入ガスは酸素とアルゴンの混合比(体積比)をO/Ar=40/60〜90/10の範囲内で制御して、炉内容積0.1m3当たり5リットル/分以上の割合で炉内に導入することが重要である。このような温度と雰囲気、時間を精密に調整することで、酸化物蒸着材として使用する際に有用な本発明で規定する上記L値を有する焼結体を得ることができる。 In the process of adjusting the amount of oxygen in the sintered body, it is particularly important to control the atmosphere in the furnace, and the gas introduced into the furnace has a mixing ratio (volume ratio) of oxygen and argon of O 2 / Ar = 40/60 to 90/10. Therefore, it is important to control the flow rate within a range of 5 liters / minute or more per 0.1 m 3 of the furnace volume. By precisely adjusting the temperature, atmosphere, and time, a sintered body having the L * value defined in the present invention, which is useful when used as an oxide deposition material, can be obtained.

上記酸素量調整工程における加熱温度は、900℃未満では、酸素の解離・吸着の反応が鈍くて焼結体内部まで均一な還元処理に時間を要してしまうため好ましくなく、1100℃を超えた温度で行うと酸素の解離が激し過ぎて、上記雰囲気による最適な還元処理が不可能となってしまうため好ましくない。また、酸素量調整工程の加熱温度が10時間未満であると、焼結体内部まで均一な還元処理が行えないため好ましくない。また、炉への導入ガスの混合比(O/Ar)が40/60未満であると、酸素の解離による還元化が優勢となり過ぎて、L値が60未満の焼結体となってしまうため好ましくない。逆に、炉への導入ガスの混合比(O/Ar)が90/10を超えると、酸化が優勢となり過ぎて、L値が94を超えた焼結体となってしまうため好ましくない。 When the heating temperature in the oxygen amount adjusting step is less than 900 ° C., the oxygen dissociation / adsorption reaction is slow, and it takes time for uniform reduction treatment to the inside of the sintered body. If it is performed at a temperature, the dissociation of oxygen is too intense, and an optimal reduction treatment in the above atmosphere becomes impossible. Further, if the heating temperature in the oxygen amount adjusting step is less than 10 hours, it is not preferable because uniform reduction treatment cannot be performed to the inside of the sintered body. Further, if the mixing ratio (O 2 / Ar) of the gas introduced into the furnace is less than 40/60, the reduction due to the dissociation of oxygen becomes too dominant, and the sintered body has an L * value of less than 60. Therefore, it is not preferable. On the contrary, if the mixing ratio of the gas introduced into the furnace (O 2 / Ar) exceeds 90/10, the oxidation becomes too dominant and the L * value exceeds 94, which is not preferable. .

本発明の酸化物蒸着材を得るためには、上述したように酸素ガスをアルゴンガスで精密に希釈させたガス雰囲気下、すなわち、酸素量が精密に制御された雰囲気下にておいてアニール処理することが重要であるが、雰囲気ガスは必ずしも酸素とアルゴンとの混合ガスである必要はない。例えば、アルゴンの代わりにヘリウムや窒素等の他の不活性ガスを用いても有効である。また、アルゴンの代わりに大気を用いる場合でも、その全体の混合ガス中で酸素含有量が精密に一定制御されていれば有効である。しかし、従来の技術のように、大気にて焼成している炉に酸素ガスを導入するのでは、炉中の雰囲気の酸素含有量を精密に制御できないため有効ではない。本発明で提案しているように、酸素ガスの含有割合が精密に制御された不活性ガスとの混合ガスを導入して炉内を満たすことにより、最適な還元状態を有する酸化物蒸着材を得ることができる。   In order to obtain the oxide vapor deposition material of the present invention, as described above, annealing treatment is performed in a gas atmosphere in which oxygen gas is precisely diluted with argon gas, that is, in an atmosphere in which the amount of oxygen is precisely controlled. It is important that the atmosphere gas is not necessarily a mixed gas of oxygen and argon. For example, it is effective to use other inert gas such as helium or nitrogen instead of argon. Further, even when the atmosphere is used instead of argon, it is effective if the oxygen content is precisely and constantly controlled in the entire mixed gas. However, it is not effective to introduce oxygen gas into a furnace fired in the atmosphere as in the prior art because the oxygen content of the atmosphere in the furnace cannot be precisely controlled. As proposed in the present invention, an oxide vapor deposition material having an optimal reduced state is obtained by introducing a mixed gas with an inert gas whose oxygen gas content is precisely controlled to fill the furnace. Can be obtained.

そして、酸素量調整工程を終えた後は10℃/分で室温まで降温し、室温にて炉から取り出すことができる。得られた焼結体は、所定の寸法に研削等により加工して酸化物蒸着材とすることができる。また、焼結の収縮率も考慮して、焼成後に所定の寸法となるような大きさの成形体を用いれば、焼結後の研削加工を行わなくても酸化物蒸着材として利用することができる。   And after finishing an oxygen amount adjustment process, it can cool to room temperature at 10 degree-C / min, and can take out from a furnace at room temperature. The obtained sintered body can be processed into a predetermined dimension by grinding or the like to obtain an oxide vapor deposition material. Also, considering the shrinkage rate of sintering, if a molded body having a predetermined size after firing is used, it can be used as an oxide deposition material without performing grinding after sintering. it can.

ところで、スパッタリングターゲットの製造法の一つで、高密度の焼結体を得る方法として、ホットプレス法が有効であることが知られている。しかし、本発明の材料にホットプレス法を適用した場合、L値が40以下の還元性が強過ぎる焼結体しか得られない。このような焼結体では本発明の目的を達成することはできない。 By the way, it is known that the hot press method is effective as a method for obtaining a high-density sintered body as one of the methods for producing a sputtering target. However, when the hot pressing method is applied to the material of the present invention, only a sintered body having an L * value of 40 or less and an excessively strong reducing property can be obtained. With such a sintered body, the object of the present invention cannot be achieved.

また、本発明の酸化物蒸着材については、例えば、直径10〜50mmで高さ10〜50mmの円柱形状のタブレット若しくはペレット形状で使用することも可能であるが、このような焼結体を粉砕した1〜10mm程度の顆粒形状でも利用することもできる。   In addition, the oxide vapor deposition material of the present invention can be used, for example, in the form of a cylindrical tablet or pellet having a diameter of 10 to 50 mm and a height of 10 to 50 mm. Such a sintered body is pulverized. It can also be used in the form of granules of about 1 to 10 mm.

また、本発明に係る酸化物蒸着材については、インジウム、ガドリニウム、酸素以外の他の元素として、例えば、スズ、タングステン、モリブデン、亜鉛、チタン、イットリウム等が含まれていても、本発明の特性が損なわれないことを条件に許される。但し、金属イオンの中でも、その酸化物の蒸気圧が酸化インジウムや酸化ガドリニウムの蒸気圧と較べて極めて高い場合には、各種真空蒸着法で蒸発させることが困難となるため含有されない方が好ましい。例えば、アルミニウム、チタン、シリコンのような金属は、これ等酸化物の蒸気圧が酸化インジウムや酸化ガドリニウムと較べて極めて高いため、酸化物蒸着材に含ませた場合、酸化インジウムや酸化ガドリニウムと共に蒸発させることが困難となる。このため、酸化物蒸着材に残存して高濃度化し、最終的には酸化インジウムと酸化ガドリニウムの蒸発の妨げになる等の悪影響を及ぼすことから含有させてはならない。   In addition, the oxide vapor deposition material according to the present invention has the characteristics of the present invention even if, for example, tin, tungsten, molybdenum, zinc, titanium, yttrium, etc. are contained as elements other than indium, gadolinium, and oxygen. Is allowed on condition that it will not be damaged. However, among metal ions, when the vapor pressure of the oxide is extremely higher than the vapor pressure of indium oxide or gadolinium oxide, it is difficult to evaporate by various vacuum deposition methods, so it is preferable not to contain it. For example, metals such as aluminum, titanium, and silicon have vapor pressures of these oxides that are extremely high compared to indium oxide and gadolinium oxide. Therefore, when they are included in an oxide deposition material, they vaporize together with indium oxide and gadolinium oxide. It becomes difficult to make it. For this reason, it must remain in the oxide vapor deposition material to increase the concentration, and ultimately it should not be contained because it adversely affects the evaporation of indium oxide and gadolinium oxide.

また、本発明に係る酸化物蒸着材において、ガドリニウムがインジウムサイトに置換した酸化インジウム相のみで形成されていてもよいし、ガドリニウムがインジウムサイトに置換した酸化インジウム相と酸化ガドリニウム相が混合された形態でもよく、更に、それらにガドリニウムとインジウムの酸化物化合物相が混在していてもよい。   Further, in the oxide vapor deposition material according to the present invention, it may be formed of only an indium oxide phase in which gadolinium is replaced with indium sites, or an indium oxide phase in which gadolinium is replaced with indium sites and a gadolinium oxide phase are mixed. The form may be sufficient and the oxide compound phase of gadolinium and indium may be mixed in them.

そして、本発明の酸化物蒸着材を適用して各種真空蒸着法により透明導電膜を製造すると、上記酸化物蒸着材内の酸素含有量が最適に調整されているため、成膜真空槽への酸素導入量が少なくても最適な酸素欠損の透明導電膜を得ることができる。従って、透明導電膜と酸化物蒸着材間の組成差が小さく、酸素導入量の変動に伴う特性バラツキの影響も受け難い利点を有する。   And when applying the oxide vapor deposition material of the present invention to produce a transparent conductive film by various vacuum vapor deposition methods, the oxygen content in the oxide vapor deposition material is optimally adjusted. Even if the amount of oxygen introduced is small, an optimal oxygen deficient transparent conductive film can be obtained. Therefore, there is an advantage that the compositional difference between the transparent conductive film and the oxide vapor deposition material is small, and it is difficult to be affected by the characteristic variation accompanying the variation of the oxygen introduction amount.

(2)透明導電膜
酸化インジウムを主成分としかつガドリニウムを含む焼結体により構成され、ガドリニウムの含有量がGd/In原子数比で0.001〜0.070で、CIE1976表色系におけるL値が60〜94である本発明に係る酸化物蒸着材を適用し、電子ビーム蒸着法、イオンプレーティング法や高密度プラズマアシスト蒸着法等の各種真空蒸着法により、ガドリニウムを含有する酸化インジウムの結晶膜を製造することができる。
(2) Transparent conductive film It is composed of a sintered body containing indium oxide as a main component and containing gadolinium, and the gadolinium content is 0.001 to 0.070 in terms of Gd / In atomic ratio, and L in the CIE1976 color system. * Indium oxide containing gadolinium by applying the oxide deposition material according to the present invention having a value of 60 to 94 and various vacuum deposition methods such as an electron beam deposition method, an ion plating method and a high density plasma assisted deposition method. The crystal film can be manufactured.

結晶膜とすることで、ガドリニウムが酸化インジウムのインジウムサイトに置換固溶されたときに高い移動度を発揮させることができる。上記結晶膜は、成膜中の基板を180℃以上に加熱することで得られるが、基板を加熱しない非加熱の成膜にて得られた膜を180℃以上でアニールする方法でも得ることができる。 By using a crystal film, high mobility can be exhibited when gadolinium is substituted and dissolved in the indium sites of indium oxide. The crystal film can be obtained by heating the substrate being formed to 180 ° C. or higher, but can also be obtained by annealing the film obtained by non-heated film formation without heating the substrate at 180 ° C. or higher. it can.

そして、上記結晶性の透明導電膜は、膜と酸化物蒸着材との組成差を小さくできる本発明の酸化物蒸着材から製造できるため、Gd/In原子数比で0.001〜0.070のガドリニウムを含有する酸化インジウム膜である。膜のガドリニウム含有量(Gd/In原子数比)が0.001未満では、移動度増加の効果が小さくて低抵抗の膜を得ることができない。また、0.070を超えると、膜中のガドリニウム量が多過ぎて電子移動の際の中性不純物散乱が大きくなってしまい、移動度が低下して低抵抗の膜が得られない。更に高い移動度の透明導電膜を得るためのより好ましいガドリニウムの含有量は、Gd/In原子数比で0.030〜0.050である。このような組成範囲にすることで、ホール移動度が65cm2/V・s以上で、比抵抗が5×10-4Ωcm以下の透明導電膜を実現することができる。また、上記ガドリニウムの含有量がGd/In原子数比で0.030〜0.050である透明導電膜は、キャリア濃度が低いため、波長400〜1200nmにおける膜自体の平均透過率は85%以上と非常に高い。 And since the said crystalline transparent conductive film can be manufactured from the oxide vapor deposition material of this invention which can make a composition difference of a film | membrane and an oxide vapor deposition material small, it is 0.001-0.070 by Gd / In atomic ratio. This is an indium oxide film containing gadolinium. When the gadolinium content (Gd / In atomic ratio) of the film is less than 0.001, the effect of increasing the mobility is small and a low resistance film cannot be obtained. On the other hand, if it exceeds 0.070, the amount of gadolinium in the film is so large that neutral impurity scattering during electron transfer becomes large, and the mobility is lowered and a low resistance film cannot be obtained. A more preferable content of gadolinium for obtaining a transparent conductive film with higher mobility is 0.030 to 0.050 in terms of the Gd / In atomic ratio. With such a composition range, a transparent conductive film having a hole mobility of 65 cm 2 / V · s or more and a specific resistance of 5 × 10 −4 Ωcm or less can be realized. Moreover, since the transparent conductive film in which the gadolinium content is 0.030 to 0.050 in terms of the Gd / In atomic ratio has a low carrier concentration, the average transmittance of the film itself at a wavelength of 400 to 1200 nm is 85% or more. And very high.

(3)太陽電池
太陽電池は、上記透明導電膜を電極として用いている光電変換素子である。太陽電池素子の構造は特に限定されず、p型半導体とn型半導体を積層したPN接合型、p型半導体とn型半導体の間に絶縁層(I層)を介在させたPIN接合型等が挙げられる。
(3) Solar cell
Solar cell is a photoelectric conversion element that has use of the transparent conductive film as an electrode. The structure of the solar cell element is not particularly limited, and includes a PN junction type in which a p-type semiconductor and an n-type semiconductor are stacked, a PIN junction type in which an insulating layer (I layer) is interposed between the p-type semiconductor and the n-type semiconductor, and the like. Can be mentioned.

また、太陽電池は、半導体の種類によって大別され、単結晶シリコン、多結晶シリコン、アモルファスシリコン等のシリコン系半導体を光電変換素子として用いた太陽電池、CuInSe系やCu(In,Ga)Se系、Ag(In,Ga)Se系、CuInS系、Cu(In,Ga)S系、Ag(In,Ga)S系やこれらの固溶体、GaAs系、CdTe系等で代表される化合物半導体の薄膜を光電変換素子として用いた化合物薄膜系太陽電池、および、有機色素を用いた色素増感型太陽電池(グレッツェルセル型太陽電池とも呼ばれる)に分類され、上述した透明導電膜を電極として用いることで高効率を実現できる。特に、アモルファスシリコンを用いた太陽電池や化合物薄膜系太陽電池では、太陽光が入射する側(受光部側、表側)の電極には透明導電膜が必要不可欠であり、上記透明導電膜を用いることで高い変換効率の特性を発揮することができる。 Solar cells are broadly classified according to the type of semiconductor. Solar cells using silicon-based semiconductors such as single crystal silicon, polycrystalline silicon, and amorphous silicon as photoelectric conversion elements, CuInSe systems, and Cu (In, Ga) Se systems , Ag (In, Ga) Se, CuInS, Cu (In, Ga) S, Ag (In, Ga) S and their solid solutions, GaAs, CdTe, and other compound semiconductor thin films It is classified into a compound thin film solar cell used as a photoelectric conversion element and a dye-sensitized solar cell using an organic dye (also referred to as a Gretzel cell solar cell). Efficiency can be realized. In particular, in a solar cell using amorphous silicon or a compound thin film solar cell, a transparent conductive film is indispensable for the electrode on which sunlight is incident (light receiving part side, front side), and the transparent conductive film is used. Can exhibit high conversion efficiency characteristics.

上記シリコン系の太陽電池について概説すると、PN接合型の太陽電池素子は、例えば厚み0.2〜0.5mm程度、大きさ180mm角程度の単結晶や多結晶のシリコン基板が用いられ、素子のシリコン基板内部にはボロン等のP型不純物を多く含んだP層と、リン等のN型不純物を多く含んだN層が接したPN接合が形成される。   When the silicon solar cell is outlined, the PN junction type solar cell element uses, for example, a monocrystalline or polycrystalline silicon substrate having a thickness of about 0.2 to 0.5 mm and a size of about 180 mm square. A PN junction in which a P layer containing a large amount of P-type impurities such as boron and an N layer containing a large amount of N-type impurities such as phosphorus are in contact with each other is formed inside the silicon substrate.

また、上記シリコン基板の代わりに、ガラス板、樹脂板、樹脂フィルム等の透明基板も使用される。この場合、基板に上記透明導電膜を電極として形成した後、アモルファスあるいは多結晶のシリコンが積層されて、薄膜シリコン系太陽電池として分類される。 In place of the silicon substrate, a glass plate, a resin plate, a transparent substrate such as a resin film also Ru is used. In this case , after forming the transparent conductive film as an electrode on the substrate, amorphous or polycrystalline silicon is laminated and classified as a thin film silicon solar cell.

アモルファスシリコンでは、PN接合の間に絶縁層(I層)が介在したPIN接合とされる。すなわち、図1に示すように、ガラス基板1の上に、表側(受光部側)透明電極膜2と、p型アモルファスシリコン膜または水素化アモルファスシリコンカーバイド膜3と、不純物を含まないアモルファスシリコン膜4と、n型アモルファスシリコン膜5と、裏側透明電極膜(接触改善層)6と、裏側金属電極すなわち裏面電極7が積層された構造を有している。尚、上記p型アモルファスシリコン膜または水素化アモルファスシリコンカーバイド膜3、不純物を含まないアモルファスシリコン膜4、および、n型アモルファスシリコン膜5は、通常、プラズマCVD法によって形成される。これ等のアモルファスシリコン膜と水素化アモルファスシリコン膜には、光吸収波長を制御するためにゲルマニウム、炭素、窒素、スズ等が含まれていてもよい。   Amorphous silicon is a PIN junction in which an insulating layer (I layer) is interposed between PN junctions. That is, as shown in FIG. 1, on a glass substrate 1, a front side (light receiving part side) transparent electrode film 2, a p-type amorphous silicon film or a hydrogenated amorphous silicon carbide film 3, and an amorphous silicon film containing no impurities 4, an n-type amorphous silicon film 5, a back-side transparent electrode film (contact improvement layer) 6, and a back-side metal electrode, that is, a back-side electrode 7. The p-type amorphous silicon film or hydrogenated amorphous silicon carbide film 3, the amorphous silicon film 4 containing no impurities, and the n-type amorphous silicon film 5 are usually formed by plasma CVD. These amorphous silicon film and hydrogenated amorphous silicon film may contain germanium, carbon, nitrogen, tin or the like in order to control the light absorption wavelength.

尚、シリコン薄膜を用いた薄膜太陽電池は、シリコン薄膜を含む光電変換層(すなわちPIN接合層)が、アモルファスシリコン系薄膜で構成されたもの、微結晶シリコン系薄膜で構成されたもの、アモルファスシリコン系薄膜で構成された光電変換層と微結晶シリコン系薄膜で構成された光電変換層の積層で構成されたもの(タンデム型薄膜系光電変換層)に分類される。光電変換層の積層数が3層以上で構成された太陽電池も存在する。その他、単結晶シリコン板あるいは多結晶シリコン板の光電変換層と、上記薄膜系光電変換層が積層されたハイブリッド型の光電変換層を有するものも存在するIn addition, a thin film solar cell using a silicon thin film has a photoelectric conversion layer including a silicon thin film (that is, a PIN junction layer) formed of an amorphous silicon thin film, a film formed of a microcrystalline silicon thin film, amorphous silicon It is classified into a layer (tandem type thin film photoelectric conversion layer) composed of a laminate of a photoelectric conversion layer composed of a thin film and a photoelectric conversion layer composed of a microcrystalline silicon thin film. There is also a solar cell in which the number of stacked photoelectric conversion layers is three or more . Other, a photoelectric conversion layer of a single-crystal silicon plate or polycrystalline silicon plate, there shall have a photoelectric conversion layer of the hybrid type in which the thin-film photoelectric conversion layers are stacked.

次に、上記化合物薄膜系太陽電池について説明する。化合物薄膜を用いた太陽電池は、通常は広いバンドギャップを持つ化合物半導体薄膜(n型半導体の中間層)と狭いバンドギャップを持つ化合物半導体(p型半導体の光吸収層)のヘテロ結合で構成されている。一般的な構造は、表面電極(透明導電膜)/窓層/中間層/光吸収層/裏面電極(金属または透明導電膜)となる。   Next, the compound thin film solar cell will be described. A solar cell using a compound thin film is usually composed of a heterojunction of a compound semiconductor thin film (n-type semiconductor intermediate layer) having a wide band gap and a compound semiconductor (p-type semiconductor light absorbing layer) having a narrow band gap. ing. The general structure is: front electrode (transparent conductive film) / window layer / intermediate layer / light absorption layer / back electrode (metal or transparent conductive film).

具体的には、図2に示すように、ガラス基板12の上に、上記透明導電膜から成る透明電極膜11と、窓層10と、半導体の中間層9と、p型半導体の光吸収層8と、裏面電極7が積層されている。また、図3には、ガラス基板12の上に、下部電極すなわち裏面電極13と、p型半導体の光吸収層8と、半導体の中間層9と、窓層10と、上記透明導電膜から成る透明電極膜11が積層されている。いずれの構造も、透明電極膜11側が太陽光線の入射方向となっている。 Specifically, as shown in FIG. 2, on a glass substrate 12, a transparent electrode film 11 made of the transparent conductive film , a window layer 10, a semiconductor intermediate layer 9, and a p-type semiconductor light absorption layer. 8 and the back electrode 7 are laminated. Also, in FIG. 3, a glass substrate 12 is formed with a lower electrode, that is, a back electrode 13, a p-type semiconductor light absorption layer 8, a semiconductor intermediate layer 9, a window layer 10, and the transparent conductive film. A transparent electrode film 11 is laminated. In any structure, the transparent electrode film 11 side is the incident direction of sunlight.

尚、基板としては、上記ガラス、樹脂、金属、セラミック等その材質によって特に限定されず、透明でも非透明でもよいが、透明基板が好ましい。樹脂の場合、板状、フィルム等様々な形状のものが使用でき、例えば150℃以下の低融点のものであってもよい。金属の場合、ステンレス鋼、アルミニウム等が挙げられ、セラミックとしては、アルミナ、酸化亜鉛、カーボン、窒化珪素、炭化珪素等を挙げることができる。アルミナ、酸化亜鉛以外の酸化物として、Ga,Y,In,La,Si,Ti,Ge,Zr,Sn,NbまたはTaから選ばれる酸化物を含んだものでもよい。これ等の酸化物としては、例えば、Ga23,Y23,In23,La23,SiO2,TiO2,GeO2,ZrO2,SnO2,Nb25,Ta25等を挙げることができる。本明細書においては、これ等ガラス、樹脂、セラミック製の基板を非金属基板と称する。基板表面は、少なくとも一方に山型の凹凸を設けること、エッチング等で粗面化することにより、入射する太陽光線を反射し易くしておくことが望ましい。 The substrate is not particularly limited depending on the material such as glass, resin, metal, ceramic, etc., and may be transparent or non-transparent, but a transparent substrate is preferable. In the case of a resin, those having various shapes such as a plate shape and a film can be used. In the case of metals, examples include stainless steel and aluminum, and examples of ceramics include alumina, zinc oxide, carbon, silicon nitride, and silicon carbide. As oxides other than alumina and zinc oxide, oxides selected from Ga, Y, In, La, Si, Ti, Ge, Zr, Sn, Nb or Ta may be used. Examples of these oxides include Ga 2 O 3 , Y 2 O 3 , In 2 O 3 , La 2 O 3 , SiO 2 , TiO 2 , GeO 2 , ZrO 2 , SnO 2 , Nb 2 O 5 , Ta 2 O 5 and the like can be mentioned. In this specification, these glass, resin, and ceramic substrates are referred to as non-metallic substrates. It is desirable that the surface of the substrate is provided with a mountain-shaped unevenness on at least one side, and is roughened by etching or the like so as to easily reflect incident sunlight.

また、上記裏面電極7、13としては、Mo、Ag、Au、Al、Ti、Pd、Ni、これ等の合金等導電性電極材料が使用され、Mo、Ag、AuまたはAlのいずれかが好ましい。通常、0.5〜5μm、好ましくは1〜3μmの厚さとされる。その形成手段は、特に限定されないが、例えば、直流マグネトロンスパッタ法、真空蒸着法やCVD法等が利用できる。   Further, as the back electrodes 7 and 13, conductive electrode materials such as Mo, Ag, Au, Al, Ti, Pd, Ni, and alloys thereof are used, and any of Mo, Ag, Au, or Al is preferable. . Usually, the thickness is 0.5 to 5 μm, preferably 1 to 3 μm. The forming means is not particularly limited, and for example, a direct current magnetron sputtering method, a vacuum deposition method, a CVD method, or the like can be used.

また、上記光吸収層8を構成するp型半導体としては、CuInSe2、CuInS2、CuGaSe2、CuGaS2、AgInSe2、AgInS2、AgGaSe2、AgGaS2およびこれ等の固溶体やCdTeが利用可能である。より高いエネルギー変換効率を得るために必要とされる条件は、より多くの光電流を得るための光学的な最適設計と、界面または特に吸収層においてキャリアの再結合のない高品質なヘテロ接合および薄膜を作ることである。通常、1〜5μm、好ましくは2〜3μmの厚さとされる。その形成手段としては特に限定されないが、例えば、真空蒸着法やCVD法等が利用できる。また、高品質なヘテロ界面は中間層/吸収層の組み合わせと関係が深く、CdS/CdTe系やCdS/CuInSe2系、CdS/Cu(In,Ga)Se2系、CdS/Ag(In,Ga)Se2系等において有用なヘテロ接合が得られる。 As the p-type semiconductor constituting the light absorption layer 8, CuInSe 2 , CuInS 2 , CuGaSe 2 , CuGaSe 2 , AgInSe 2 , AgInS 2 , AgGaSe 2 , AgGaS 2, and their solid solutions and CdTe can be used. is there. The conditions required to obtain higher energy conversion efficiency are the optimal optical design to obtain more photocurrent, high quality heterojunction without carrier recombination at the interface or especially the absorbing layer and It is to make a thin film. Usually, the thickness is 1 to 5 μm, preferably 2 to 3 μm. The forming means is not particularly limited, and for example, a vacuum deposition method, a CVD method, or the like can be used. Further, the high-quality heterointerface has a deep relationship with the combination of the intermediate layer / absorbing layer, and is a CdS / CdTe system, CdS / CuInSe 2 system, CdS / Cu (In, Ga) Se 2 system, CdS / Ag (In, Ga). ) Heterojunctions useful in Se 2 systems and the like can be obtained.

また、太陽電池を高効率化するには、より広いバンドギャップをもつ半導体、例えば、中間層9を構成する半導体薄膜としてCdSやCdZnS等が用いられる。これ等半導体薄膜によって、太陽光における短波長の感度向上を図ることができる。通常、10〜200nm、好ましくは30〜100nmの厚さとされる。上記中間層9の形成手段としては特に限定されないが、CdS薄膜の場合、溶液析出法で、CdI2、NH4Cl2、NH3およびチオ尿素の混合溶液を用いて形成される。更に、中間層9であるCdSや(Cd,Zn)Sの入射光側には、これ等の薄膜よりもバンドギャップの大きな半導体を窓層10として配置することができる。これにより、再現性の高い高性能な太陽電池となる。上記窓層10は、例えばZnOや(Zn,Mg)O薄膜等その導電率がCdS薄膜と同程度の薄膜で構成され、通常、50〜300nm、好ましくは100〜200nmの厚さとされる。また、窓層10の形成手段としては特に限定されないが、ZnO等のターゲットとスパッタガスとしてArを用いた直流マグネトロンスパッタ法等により形成される。 In order to increase the efficiency of the solar cell, a semiconductor having a wider band gap, for example, CdS, CdZnS, or the like is used as a semiconductor thin film constituting the intermediate layer 9. These semiconductor thin films can improve sensitivity of short wavelengths in sunlight. Usually, the thickness is 10 to 200 nm, preferably 30 to 100 nm. The means for forming the intermediate layer 9 is not particularly limited. In the case of a CdS thin film, it is formed by a solution deposition method using a mixed solution of CdI 2 , NH 4 Cl 2 , NH 3 and thiourea. Further, on the incident light side of CdS or (Cd, Zn) S which is the intermediate layer 9, a semiconductor having a larger band gap than these thin films can be disposed as the window layer 10. Thereby, it becomes a high-performance solar cell with high reproducibility. The window layer 10 is composed of a thin film having a conductivity similar to that of a CdS thin film, such as a ZnO or (Zn, Mg) O thin film, and is usually 50 to 300 nm, preferably 100 to 200 nm thick. The window layer 10 is not particularly limited as a means for forming, but is formed by a direct current magnetron sputtering method using a target such as ZnO and Ar as a sputtering gas.

上記太陽電池は、化合物薄膜系太陽電池においてその太陽光が入射する側(表面および/または裏面)の電極に本発明の酸化物蒸着材を適用して形成された透明導電膜を用いたものであり、上記透明導電膜は従来の透明導電膜よりも低抵抗で透過率が高いため高い変換効率を実現できる。 The solar cell uses a transparent conductive film formed by applying the oxide vapor deposition material of the present invention to an electrode (front surface and / or back surface) on which the sunlight enters in a compound thin film solar cell. In addition, since the transparent conductive film has lower resistance and higher transmittance than the conventional transparent conductive film, high conversion efficiency can be realized.

ところで、上述したいずれの型の太陽電池素子でも、その受光面(表面)側および裏面側には、銀ペーストを用いたスクリーンプリント法等によりバスバー電極とフィンガー電極がそれぞれ形成され、かつ、これ等電極表面は、その保護と接続タブを取り付け易くするため、そのほぼ全面に亘りハンダコートされる。尚、太陽電池素子がシリコン基板の場合、受光面側に、ガラス板、樹脂板、樹脂フィルム等の透明な保護材が設けられる。   By the way, in any type of solar cell element described above, a bus bar electrode and a finger electrode are formed on the light receiving surface (front surface) side and the back surface side by a screen printing method using a silver paste, respectively. The electrode surface is solder coated over almost the entire surface in order to facilitate its protection and connection tab attachment. When the solar cell element is a silicon substrate, a transparent protective material such as a glass plate, a resin plate, or a resin film is provided on the light receiving surface side.

また、電極を構成する上記透明導電膜の厚さについては、特に制限されることはなく、材料の組成等にもよるが、150〜1500nm、特に200〜900nmであることが望ましい。そして、上記透明導電膜は、低抵抗であり、波長400nm〜1200nmの可視光線から近赤外線までを含む太陽光の透過率が高いため、太陽光の光エネルギーを極めて有効に電気エネルギーに変換することができる。 Further, the thickness of the transparent conductive film constituting the electrode is not particularly limited and is preferably 150 to 1500 nm, particularly preferably 200 to 900 nm, although it depends on the composition of the material. And since the said transparent conductive film is low resistance and has the high transmittance | permeability of the sunlight which contains visible light of a wavelength of 400 nm-1200 nm to near infrared rays, it converts sunlight light energy into electrical energy very effectively. Can do.

尚、上記透明導電膜は、太陽電池以外に、光検出素子、タッチパネル、フラットパネルディスプレイ(LCD、PDP、EL等)、発光デバイス(LED、LD等)の透明電極としても有用である。例えば、光検出素子の場合、ガラス電極、光入射側の透明電極、赤外線等の光検知材料層、裏面電極を積層させた構造を含んでいる。赤外線を検出するための上記光検知材料層には、GeやInGeAsをベースとする半導体材料を用いたタイプ[フォトダイオード(PD)やアバランシェフォトダイオード(APD)]、アルカリ土類金属元素の硫化物あるいはセレン化物に、Eu、Ce、Mn、Cuの中から選ばれる1種類以上の元素と、Sm、Bi、Pbの中から選ばれる1種類以上の元素を添加した材料等を用いるタイプがある。この他に、非晶質珪素ゲルマニウムと非晶質珪素との積層体を用いたAPDも知られており、いずれも使用できる。 In addition to the solar cell, the transparent conductive film is also useful as a transparent electrode of a light detection element, a touch panel, a flat panel display (LCD, PDP, EL, etc.), and a light emitting device (LED, LD, etc.). For example, in the case of a photodetection element, it includes a structure in which a glass electrode, a transparent electrode on the light incident side, a photodetection material layer such as infrared rays, and a back electrode are laminated. The photo-sensitive material layer for detecting infrared rays is a type using a semiconductor material based on Ge or InGeAs [photodiode (PD) or avalanche photodiode (APD)], sulfide of an alkaline earth metal element Alternatively, there is a type that uses a material in which one or more elements selected from Eu, Ce, Mn, and Cu and one or more elements selected from Sm, Bi, and Pb are added to the selenide. In addition, an APD using a laminate of amorphous silicon germanium and amorphous silicon is also known, and any of them can be used.

以下、本発明の実施例について具体的に説明する。   Examples of the present invention will be specifically described below.

[実施例1〜4]
酸化物蒸着材の作製
平均粒径が0.8μmのIn23粉末、および、平均粒径が1μmのGd23粉末を原料粉末とし、これ等のIn23粉末とGd23粉末を、Gd/Inの原子数比が0.030となるような割合で調合し、かつ、樹脂製ポットに入れ、湿式ボールミルで混合した。この際、硬質ZrO2ボールを用い、混合時間を20時間とした。
[Examples 1 to 4]
Preparation of oxide vapor deposition material In 2 O 3 powder having an average particle diameter of 0.8 μm and Gd 2 O 3 powder having an average particle diameter of 1 μm are used as raw material powders. These In 2 O 3 powder and Gd 2 O The three powders were prepared in such a ratio that the atomic ratio of Gd / In was 0.030, put into a resin pot, and mixed by a wet ball mill. At this time, hard ZrO 2 balls were used, and the mixing time was 20 hours.

混合後、スラリーを取り出し、得られたスラリーにポリビニルアルコールのバインダーを添加し、スプレードライヤー等で乾燥させて造粒した。   After mixing, the slurry was taken out, and a polyvinyl alcohol binder was added to the resulting slurry, which was dried with a spray dryer or the like and granulated.

この造粒物を用いて、1ton/cm2の圧力で1軸加圧成形を行なって直径30mm、厚み40mmの円柱形状の成形体を得た。 Using this granulated material, uniaxial pressure molding was performed at a pressure of 1 ton / cm 2 to obtain a cylindrical shaped body having a diameter of 30 mm and a thickness of 40 mm.

次に、得られた成形体を以下のようにして焼結した。   Next, the obtained molded body was sintered as follows.

すなわち、焼結炉内の大気中、300℃の温度条件で10時間程度加熱して成形体の脱バインダー処理を行った後、炉内容積0.1m3当たり5リットル/分の割合で酸素を導入する雰囲気で、1℃/分の速度で昇温し、1250℃で2時間焼結した(常圧焼結法)。この際、焼結後における冷却の際にも、酸素を導入しながら、1000℃までを10℃/分で降温した。 That is, after debinding treatment of the molded body by heating for about 10 hours at 300 ° C. in the atmosphere in the sintering furnace, oxygen is supplied at a rate of 5 liters / minute per 0.1 m 3 of the furnace volume. In the atmosphere to be introduced, the temperature was increased at a rate of 1 ° C./min and sintered at 1250 ° C. for 2 hours (atmospheric pressure sintering method). At this time, the temperature was lowered to 1000 ° C. at a rate of 10 ° C./min while introducing oxygen during cooling after sintering.

次に、導入ガスを酸素とアルゴンの混合ガスに切り替え、1000℃にて15時間加熱保持(以後、この工程を焼結体酸素量調整工程と称する)した後、10℃/分で室温まで降温した。   Next, the introduced gas is switched to a mixed gas of oxygen and argon, heated and held at 1000 ° C. for 15 hours (hereinafter, this step is referred to as a sintered body oxygen content adjusting step), and then the temperature is lowered to room temperature at 10 ° C./min. did.

そして、上記混合ガスの酸素とアルゴンの混合割合を変化させることで種々のL値の酸化物焼結体(酸化物蒸着材)を得ることができた。 And the oxide sintered compact (oxide vapor deposition material) of various L * value was able to be obtained by changing the mixing ratio of oxygen of the said mixed gas, and argon.

すなわち、実施例1に係る酸化物蒸着材は酸素ガス/アルゴンガス流量比(すなわち体積比)が「40/60」の条件で製造され、実施例2に係る酸化物蒸着材は上記体積比が「60/40」の条件で製造され、実施例3に係る酸化物蒸着材は上記体積比が「80/20」の条件で製造され、および、実施例4に係る酸化物蒸着材は上記体積比が「90/10」の条件で製造されている。   That is, the oxide vapor deposition material according to Example 1 is manufactured under the condition that the oxygen gas / argon gas flow rate ratio (that is, the volume ratio) is “40/60”, and the oxide vapor deposition material according to Example 2 has the above volume ratio. Manufactured under the condition of “60/40”, the oxide vapor deposition material according to Example 3 is produced under the condition that the volume ratio is “80/20”, and the oxide vapor deposition material according to Example 4 has the above volume. It is manufactured under the condition of the ratio “90/10”.

尚、得られた酸化物焼結体(酸化物蒸着材)の体積と重量を測定して密度を算出したところ、4.3〜5.0g/cm3であった。また、上記酸化物焼結体の破断面の走査型電子顕微鏡による観察から、酸化物焼結体中の100個の結晶粒径の平均値を求めたところ、何れも2〜7μmであった。また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計で表面抵抗を測定して比抵抗を算出したところ、1kΩcm以下であった。更に、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成を有することが分った。また、焼結体表面と焼結体内部について、色差計(BYK−GardnerGmbH社製スペクトロガイド、E−6834)を用いて、CIE1976表色系におけるL値を測定したところ、殆んど同じ値を示した。 In addition, it was 4.3-5.0 g / cm < 3 > when the volume was calculated by measuring the volume and weight of the obtained oxide sintered compact (oxide vapor deposition material). Moreover, when the average value of 100 crystal grain diameters in an oxide sintered compact was calculated | required from the observation with the scanning electron microscope of the fracture surface of the said oxide sintered compact, all were 2-7 micrometers. Further, the specific resistance was calculated by measuring the surface resistance with respect to the electron beam irradiated surface of the oxide sintered body with a four-end needle method resistivity meter, and it was 1 kΩcm or less. Furthermore, composition analysis was performed on all oxide sintered bodies by ICP emission analysis, and it was found that they had a charged composition. Further, when the L * value in the CIE1976 color system was measured for the sintered body surface and the inside of the sintered body using a color difference meter (Spectroguide manufactured by BYK-Gardner GmbH, E-6834), almost the same value was obtained. showed that.

焼結体酸素量調整工程において導入した混合ガスの酸素ガス/アルゴンガス流量比(すなわち体積比)と、得られた酸化物焼結体(酸化物蒸着材)のL値を表1に示す。 Table 1 shows the oxygen gas / argon gas flow rate ratio (that is, the volume ratio) of the mixed gas introduced in the sintered body oxygen content adjusting step and the L * value of the obtained oxide sintered body (oxide vapor deposition material). .

Figure 0005505642
Figure 0005505642

[透明導電膜の作製と膜特性評価、成膜評価]
(1)透明導電膜の作製には磁場偏向型電子ビーム蒸着装置を用いた。
真空排気系はロータリーポンプによる低真空排気系とクライオポンプによる高真空排気系から構成されており、5×10-5Paまで排気することが可能である。電子ビームはフィラメントの加熱により発生し、カソード−アノード間に印加された電界によって加速され、永久磁石の磁場中で曲げられた後、タングステン製の坩堝内に設置された酸化物蒸着材に照射される。電子ビームの強度はフィラメントへの印加電圧を変化させることで調整できる。また、カソード−アノード間の加速電圧を変化させるとビームの照射位置を変化させることができる。
[Preparation of transparent conductive film, evaluation of film characteristics, evaluation of film formation]
(1) A magnetic field deflection type electron beam evaporation apparatus was used for the production of the transparent conductive film.
The evacuation system is composed of a low evacuation system using a rotary pump and a high evacuation system using a cryopump, and can evacuate up to 5 × 10 −5 Pa. The electron beam is generated by heating the filament, accelerated by an electric field applied between the cathode and anode, bent in the magnetic field of a permanent magnet, and then irradiated onto an oxide deposition material installed in a tungsten crucible. The The intensity of the electron beam can be adjusted by changing the voltage applied to the filament. Further, the irradiation position of the beam can be changed by changing the acceleration voltage between the cathode and the anode.

成膜は以下の条件で実施した。   Film formation was performed under the following conditions.

真空室内にArガスとOガスを導入して圧力を1.5×10-2Paに保持した。この際、真空室内に導入するArガスとOガスの混合割合を変化させて得られる透明導電膜の特性を評価した。タングステン製坩堝に実施例1〜4の円柱状酸化物蒸着材を立てて配置し、酸化物蒸着材の円形面の中央部に電子ビームを照射して、厚み1.1mmのコーニング7059ガラス基板上に膜厚200nmの透明導電膜を形成した。電子銃の設定電圧は9kV、電流値は150mAとし、基板は250℃に加熱した。 Ar gas and O 2 gas were introduced into the vacuum chamber to maintain the pressure at 1.5 × 10 −2 Pa. At this time, the characteristics of the transparent conductive film obtained by changing the mixing ratio of Ar gas and O 2 gas introduced into the vacuum chamber were evaluated. A columnar oxide vapor deposition material of Examples 1 to 4 was placed upright on a tungsten crucible, and the central portion of the circular surface of the oxide vapor deposition material was irradiated with an electron beam on a Corning 7059 glass substrate having a thickness of 1.1 mm. A transparent conductive film having a thickness of 200 nm was formed on the substrate. The set voltage of the electron gun was 9 kV, the current value was 150 mA, and the substrate was heated to 250 ° C.

(2)得られた薄膜(透明導電膜)の特性は以下の手順で評価した。
まず、薄膜(透明導電膜)の表面抵抗は、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で測定し、かつ、薄膜(透明導電膜)の膜厚は接触式表面粗さ計(テンコール社製)を用いて未成膜部分と成膜部分の段差測定から評価し、比抵抗を算出した。また、ホール効果測定装置(東陽テクニカ社製 ResiTest)を用いて、Van der Pauw法による膜の室温におけるキャリア濃度、ホール移動度を測定した。
(2) The characteristics of the obtained thin film (transparent conductive film) were evaluated by the following procedure.
First, the surface resistance of the thin film (transparent conductive film) was measured with a four-end needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type), and the film thickness of the thin film (transparent conductive film) was contacted. The specific resistance was calculated by evaluating the difference in level between the non-deposited portion and the deposited portion using a type surface roughness meter (manufactured by Tencor). Moreover, the carrier concentration and the hole mobility at room temperature of the film | membrane by the Van der Pauw method were measured using the Hall effect measuring apparatus (Toyo Technica ResiTest).

次に、分光光度計(日立製作所社製、U−4000)でガラス基板を含めた膜(膜L付ガラス基板B)の透過率[TL+B(%)]を測定し、同様の方法で測定したガラス基板のみ(ガラス基板B)の透過率[T(%)]から、[TL+B÷T]×100(%)で膜自体の透過率を算出した。 Next, the transmittance [T L + B (%)] of the film (glass substrate B with film L) including the glass substrate is measured with a spectrophotometer (manufactured by Hitachi, Ltd., U-4000), and measured by the same method. From the transmittance [T B (%)] of only the glass substrate (glass substrate B), the transmittance of the film itself was calculated as [T L + B ÷ T B ] × 100 (%).

また、膜の結晶性はX線回折測定で評価した。X線回折装置は、X‘PertPROMPD(PANalytical社製)を用い、測定条件は広域測定で、CuKα線を用い、電圧45kV、電流40mAで測定を行った。X線回折ピークの有無から膜の結晶性を評価した。この結果も表1の「膜の結晶性」欄に示す。   The crystallinity of the film was evaluated by X-ray diffraction measurement. As the X-ray diffractometer, X'Pert PROMPD (manufactured by PANalytical) was used, the measurement conditions were wide-area measurement, CuKα rays were used, and measurement was performed at a voltage of 45 kV and a current of 40 mA. The film crystallinity was evaluated from the presence or absence of an X-ray diffraction peak. This result is also shown in the “film crystallinity” column of Table 1.

次に、膜の組成(Gd/Inの原子数比)はICP発光分析法で測定した。また、膜の基板に対する付着力は、JIS C0021に基づき評価した。評価は膜剥がれがない場合は良好(強い)とし、膜剥がれがあるものは不十分(弱い)とした。これ等の結果も表1の「Gd/Inの原子数比」と「膜の基板に対する付着力」の各欄に示す。   Next, the composition of the film (Gd / In atomic ratio) was measured by ICP emission spectrometry. Further, the adhesion of the film to the substrate was evaluated based on JIS C0021. The evaluation was good (strong) when there was no film peeling, and was insufficient (weak) when there was film peeling. These results are also shown in the columns of “Gd / In atomic ratio” and “Adhesive force of film to substrate” in Table 1.

各薄膜(透明導電膜)の比抵抗と透過率は、成膜中に成膜真空槽に導入するArガスとOガスの混合割合に依存した。Oガスの混合割合[O2/(Ar+O2)(%)]を0〜50%まで1%刻みで変化させて、最も低い比抵抗を示したOガスの混合割合を最適酸素混合量として決定した。この結果を表1の「最適酸素混合量」欄に示す。 The specific resistance and transmittance of each thin film (transparent conductive film) depended on the mixing ratio of Ar gas and O 2 gas introduced into the film forming vacuum chamber during film forming. The mixing ratio of O 2 gas [O 2 / (Ar + O 2 ) (%)] was changed from 0 to 50% in increments of 1%, and the mixing ratio of O 2 gas showing the lowest specific resistance was determined as the optimum oxygen mixing amount As determined. The results are shown in the “optimum oxygen mixing amount” column of Table 1.

最適酸素混合量より少ない酸素量で作製した薄膜(透明導電膜)は、導電性が悪いだけでなく可視域の透過率も低かった。最適酸素混合量で作製した薄膜(透明導電膜)は、導電性が良好なだけでなく、可視〜近赤外における透過率も高かった。   A thin film (transparent conductive film) produced with an oxygen amount smaller than the optimum oxygen mixing amount was not only poor in conductivity but also low in the visible region. The thin film (transparent conductive film) produced with the optimum oxygen mixing amount not only has good conductivity, but also has high transmittance in the visible to near infrared.

(3)実施例1〜4の酸化物蒸着材を用いて、上記成膜評価を実施したときの、最適酸素混合量と、そのときの膜の比抵抗、可視域(波長400〜800nm)と近赤外域(波長800〜1200nm)における膜自体の平均透過率を求めた。 (3) Using the oxide vapor deposition materials of Examples 1 to 4, the optimum oxygen mixing amount, the specific resistance of the film at that time, and the visible region (wavelength 400 to 800 nm) when performing the above-described film formation evaluation The average transmittance of the film itself in the near infrared region (wavelength 800-1200 nm) was determined.

これらの評価結果を表1の「比抵抗」と「膜自体の透過率」欄にそれぞれ示す。   These evaluation results are shown in the “specific resistance” and “transmittance of the membrane itself” columns of Table 1, respectively.

実施例1〜4の酸化物蒸着材を用いた成膜では、最も低抵抗で高透過性の透明導電膜を得るために成膜真空槽に導入すべき最適酸素混合量は非常に少なかった。これは、各酸化物蒸着材内に最適な酸素量を含んでいたからである。また、最適酸素混合量において製造された膜は、酸化物蒸着材と同じ組成を示し、非常に低い比抵抗を示すだけでなく、可視〜赤外域においても高い透過率を示した。また、膜はビックスバイト型構造の酸化インジウムの結晶膜であることが確認され、基板に対する付着力も強くて実用的には十分であった。   In the film formation using the oxide vapor deposition materials of Examples 1 to 4, the optimum oxygen mixing amount to be introduced into the film formation vacuum chamber in order to obtain the transparent conductive film having the lowest resistance and high permeability was very small. This is because each oxide vapor deposition material contained an optimal amount of oxygen. In addition, the film produced at the optimum oxygen mixing amount showed the same composition as the oxide vapor deposition material, and not only showed a very low specific resistance, but also showed a high transmittance in the visible to infrared region. Further, it was confirmed that the film was a crystal film of indium oxide having a bixbyite structure, and the adhesion to the substrate was strong, which was practically sufficient.

更に、電子銃の設定電圧は9kV、電流値は150mAとした。60分間の電子ビーム照射後の酸化物蒸着材を観察し、酸化物蒸着材に割れやクラックが入っていないか目視観察した(酸化物蒸着材耐久テスト)。実施例1〜4の酸化物蒸着材は、連続で使用してもクラックが発生(「割れなし」の評価)することがなかった。   Furthermore, the set voltage of the electron gun was 9 kV, and the current value was 150 mA. The oxide vapor deposition material after electron beam irradiation for 60 minutes was observed, and it was visually observed whether the oxide vapor deposition material was cracked or cracked (oxide vapor deposition material durability test). Even if it used continuously for the oxide vapor deposition material of Examples 1-4, a crack did not generate | occur | produce (evaluation of "no crack").

このような透明導電膜は、太陽電池の透明電極として非常に有用といえる。   Such a transparent conductive film can be said to be very useful as a transparent electrode of a solar cell.

[比較例1〜2]
実施例1〜4において、焼結体酸素量調整工程における導入ガスの混合比のみを変えて酸化物焼結体を製造した。すなわち、比較例1では、O2/Ar流量比で30/70とし、比較例2では100/0とした。得られた焼結体について、密度、比抵抗、結晶粒経、組成を同様に評価したが実施例1〜4と同等であった。得られた酸化物焼結体の表面と内部の色身は同等であり、そのL値を測定したところ表1のような値を示した。
[Comparative Examples 1-2]
In Examples 1 to 4, oxide sintered bodies were manufactured by changing only the mixing ratio of the introduced gas in the sintered body oxygen content adjusting step. That is, in Comparative Example 1, the O 2 / Ar flow rate ratio was 30/70, and in Comparative Example 2, it was 100/0. About the obtained sintered compact, the density, the specific resistance, the crystal grain size, and the composition were evaluated in the same manner, but were equivalent to those of Examples 1 to 4. The obtained oxide sintered body had the same surface color and internal color, and when its L * value was measured, it showed the values shown in Table 1.

次に、実施例1〜4と同様、成膜評価を実施した。
その結果も上記表1に示した。
Next, as in Examples 1 to 4, film formation evaluation was performed.
The results are also shown in Table 1 above.

比較例1は、L値が本発明の規定範囲(60〜94)よりも小さい値(55)を示した酸化物蒸着材であり、実施例1〜4の酸化物蒸着材と較べて成膜時における最適酸素混合量が多い(16)特徴を有していた。最適酸素混合量における膜の特性は、実施例1〜4と較べて透過率は同等だったが、比抵抗は若干高かった。これは、膜の組成ズレが大きかったことが要因と思われる。更に、比較例1の膜は、基板に対する付着力が実施例1〜4と較べて弱かった。これは、成膜時に酸素を多めに導入した成膜であったことによると思われる。このような酸化物蒸着材は、得られる膜の組成ズレが大きいため、膜組成を設計し難い。また、酸素を多めに成膜真空槽に導入する必要があるため、成膜の量産工程で使用すると、真空槽内の酸素濃度変動の影響を受けて組成や特性の変動が大きくなる。従って、比較例1の酸化物蒸着材は、成膜量産には不向きであることが確認される。 Comparative Example 1 is an oxide vapor deposition material having an L * value that is smaller than the specified range (60 to 94) of the present invention (55), compared to the oxide vapor deposition materials of Examples 1 to 4. The optimum oxygen mixing amount at the time of filming was large (16). As for the characteristics of the membrane at the optimum oxygen mixing amount, the transmittance was the same as in Examples 1 to 4, but the specific resistance was slightly higher. This is probably because the compositional deviation of the film was large. Furthermore, the film of Comparative Example 1 had weaker adhesion to the substrate than Examples 1-4. This is probably because the film was formed by introducing a large amount of oxygen during film formation. Such an oxide vapor-deposited material has a large compositional deviation in the resulting film, and thus it is difficult to design the film composition. Further, since it is necessary to introduce a large amount of oxygen into the film formation vacuum chamber, when used in the mass production process of film formation, variations in composition and characteristics increase due to the influence of oxygen concentration variation in the vacuum chamber. Therefore, it is confirmed that the oxide vapor deposition material of Comparative Example 1 is not suitable for film formation mass production.

また、比較例2は、L値が本発明の規定範囲よりも大きい値(98)を示した酸化物蒸着材の例である。成膜時の最適酸素混合量は0%であったが、膜の比抵抗は実施例1〜4と較べて高かった。これは、酸化物蒸着材から膜に供給される酸素が多過ぎて膜中の酸素量が多く、最適な酸素欠損量を導入することができなかったためと思われる。従って、このような酸化物蒸着材を用いて成膜しても、この蒸着材の組成が本来有している高い導電性を発揮する膜を得ることができないことが確認される。 Moreover, the comparative example 2 is an example of the oxide vapor deposition material in which L * value showed the value (98) larger than the prescription | regulation range of this invention. The optimum oxygen mixing amount at the time of film formation was 0%, but the specific resistance of the film was higher than those in Examples 1 to 4. This is presumably because the amount of oxygen supplied from the oxide vapor deposition material to the film was too large and the amount of oxygen in the film was large, so that the optimum amount of oxygen deficiency could not be introduced. Therefore, it is confirmed that even if a film is formed using such an oxide vapor deposition material, a film exhibiting high conductivity inherent in the composition of the vapor deposition material cannot be obtained.

[比較例3]
次に、特開2005−290458号公報(特許文献3)に紹介されたスパッタターゲットの焼結体作製技術に従って、ガドリニウムを含有する酸化インジウム焼結体を製造した。
[Comparative Example 3]
Next, an indium oxide sintered body containing gadolinium was manufactured according to the sputtering target sintered body manufacturing technique introduced in JP-A-2005-290458 (Patent Document 3).

まず、平均粒径が0.8μmのIn23粉末および平均粒径が1μmのGd23粉末を原料粉末とし、Gd/Inの原子数比が0.030となるような割合でIn23粉末とGd23粉末を調合し、かつ、樹脂製ポットに入れて湿式ボールミルで混合した。この際、硬質ZrO2ボールを用い、混合時間を20時間とした。混合後、スラリーを取り出し、濾過、乾燥後、造粒した。そして、得られた造粒粉を用い、3t/cmの圧力を加えて冷間静水圧プレスで成形を実施した。 First, an In 2 O 3 powder having an average particle diameter of 0.8 μm and a Gd 2 O 3 powder having an average particle diameter of 1 μm are used as raw material powders, and the Ind ratio is adjusted so that the Gd / In atomic ratio is 0.030. 2 O 3 powder and Gd 2 O 3 powder were prepared and placed in a resin pot and mixed by a wet ball mill. At this time, hard ZrO 2 balls were used, and the mixing time was 20 hours. After mixing, the slurry was taken out, filtered, dried and granulated. And using the obtained granulated powder, the pressure of 3 t / cm < 2 > was added and it shape | molded with the cold isostatic press.

得られた成形体を、焼結炉に入れて、炉内容積0.1m当たり5リットル/分の割合で酸素を導入して雰囲気を作り、1450℃で8時間焼結した。この際、1000℃までを1℃/分、1000〜1450℃を2℃/分で昇温した。その後、酸素導入をとめて、1450〜1300℃を5℃/分で降温した。そして、炉内容積0.1m当たり10リットル/分の割合でアルゴンガスを導入する雰囲気で、1300℃を3時間保持した後、放冷した。 The obtained compact was put in a sintering furnace, oxygen was introduced at a rate of 5 liters / minute per 0.1 m 3 of the furnace volume, and an atmosphere was created, and sintering was performed at 1450 ° C. for 8 hours. At this time, the temperature was increased up to 1000 ° C. at 1 ° C./min and 1000 to 1450 ° C. at 2 ° C./min. Thereafter, oxygen introduction was stopped, and the temperature was decreased from 1450 to 1300 ° C. at 5 ° C./min. And in the atmosphere which introduce | transduces argon gas in the ratio of 10 liters / min per furnace internal volume 0.1m < 3 >, after holding 1300 degreeC for 3 hours, it stood to cool.

得られた焼結体を、直径30mm、厚み40mmの大きさの円柱形状に加工した。焼結体の密度は6.6g/cm、比抵抗は1.1mΩcmであった。また、結晶粒経は10〜15μmであり、組成は仕込み組成とほぼ同じであった。得られた焼結体の表面と内部の色身は同等であり、そのL値を測定したところ、表1に示すように極めて低い値(49)であった。これは、酸化物蒸着材中の酸素量が非常に少ないことを示している。 The obtained sintered body was processed into a cylindrical shape having a diameter of 30 mm and a thickness of 40 mm. The density of the sintered body was 6.6 g / cm 3 and the specific resistance was 1.1 mΩcm. The crystal grain size was 10 to 15 μm, and the composition was almost the same as the charged composition. The surface and internal color of the obtained sintered body were equivalent, and its L * value was measured. As a result, it was very low (49) as shown in Table 1. This indicates that the amount of oxygen in the oxide vapor deposition material is very small.

また、実施例1〜4と同様、成膜評価を実施した。
その結果も上記表1に示した。
Moreover, film-forming evaluation was implemented similarly to Examples 1-4.
The results are also shown in Table 1 above.

比較例3は、L値が本発明の規定範囲(60〜94)と較べて著しく小さい値(49)を示している。同じ組成の実施例1〜4の酸化物蒸着材と較べて、成膜時の最適酸素混合量が非常に多い(35)。最適酸素混合量における膜の特性は、実施例1〜4と較べて透過率は同等だったが、比抵抗は高かった。これは、膜の組成ズレが大きかったことが要因と思われる。更に、比較例3の膜は、基板に対する付着力が実施例1〜4と較べて弱かった。これは、成膜時に酸素を多めに導入した成膜であったことによると思われる。このような酸化物蒸着材は、得られる膜の組成ズレが大きいため膜組成を設計し難い。また、酸素を多めに成膜真空槽に導入する必要があるため、成膜の量産工程で使用すると、真空槽内の酸素濃度変動の影響を受けて組成や特性の変動が大きくなる。また、実施例1〜4と同様の条件で酸化物蒸着材耐久テストを行なったところ、連続成膜後の酸化物蒸着材にはクラックが発生(「割れ」の評価)していた。このようなクラックの入った酸化物蒸着材を用いて連続的に成膜を行なうと、成膜速度が大きく変動する等の問題が生じて安定に成膜することができない。 Comparative Example 3 shows a value (49) in which the L * value is significantly smaller than the specified range (60 to 94) of the present invention. Compared with the oxide vapor deposition materials of Examples 1 to 4 having the same composition, the optimum oxygen mixing amount during film formation is very large (35). As for the characteristics of the membrane at the optimum oxygen mixing amount, the transmittance was the same as in Examples 1 to 4, but the specific resistance was high. This is probably because the compositional deviation of the film was large. Furthermore, the film of Comparative Example 3 was weaker in adhesion to the substrate than in Examples 1 to 4. This is probably because the film was formed by introducing a large amount of oxygen during film formation. Such an oxide vapor deposition material is difficult to design the film composition because the composition deviation of the obtained film is large. Further, since it is necessary to introduce a large amount of oxygen into the film formation vacuum chamber, when used in the mass production process of film formation, variations in composition and characteristics increase due to the influence of oxygen concentration variation in the vacuum chamber. Moreover, when the oxide vapor deposition material durability test was performed on the same conditions as Examples 1-4, the oxide vapor deposition material after continuous film-forming had a crack (evaluation of "crack"). When film formation is continuously performed using such an oxide vapor deposition material having cracks, problems such as large fluctuations in the film formation speed occur and stable film formation cannot be achieved.

従って、比較例3の酸化物蒸着材は成膜量産には不向きであることが確認された。   Therefore, it was confirmed that the oxide vapor deposition material of Comparative Example 3 is not suitable for mass production of films.

[実施例5〜8]
In23粉末とGd23粉末を調合する際、Gd/Inの原子数比が0.050となるような割合で調合した以外は、焼結体酸素量調整の条件も含めて実施例1〜4と全く同様の条件で実施例5〜8の酸化物焼結体(酸化物蒸着材)を作製した。
[Examples 5 to 8]
When preparing the In 2 O 3 powder and the Gd 2 O 3 powder, it was carried out including the conditions for adjusting the oxygen content of the sintered body, except that the ratio was such that the Gd / In atomic ratio was 0.050. Under the same conditions as in Examples 1 to 4, oxide sintered bodies (oxide vapor deposition materials) of Examples 5 to 8 were produced.

すなわち、実施例5に係る酸化物蒸着材は酸素ガス/アルゴンガス流量比(すなわち体積比)が「40/60」の条件で製造され、実施例6に係る酸化物蒸着材は上記体積比が「60/40」の条件で製造され、実施例7に係る酸化物蒸着材は上記体積比が「80/20」の条件で製造され、および、実施例8に係る酸化物蒸着材は上記体積比が「90/10」の条件で製造されている。   That is, the oxide vapor deposition material according to Example 5 is manufactured under the condition that the oxygen gas / argon gas flow ratio (that is, the volume ratio) is “40/60”, and the oxide vapor deposition material according to Example 6 has the above volume ratio. Manufactured under the condition of “60/40”, the oxide vapor deposition material according to Example 7 is produced under the condition where the volume ratio is “80/20”, and the oxide vapor deposition material according to Example 8 has the above volume. It is manufactured under the condition of the ratio “90/10”.

そして、得られた実施例5〜8の酸化物焼結体(酸化物蒸着材)について、密度、比抵抗、結晶粒経、組成を同様に評価したところ、いずれも実施例1〜4と同等であった。また、得られた酸化物焼結体の表面と内部の色身は同等であった。そのL値を測定した結果を上記表1に示した。 And about the obtained oxide sintered compact (oxide vapor deposition material) of Examples 5-8, when density, specific resistance, crystal grain size, and composition were evaluated similarly, all were equivalent to Examples 1-4. Met. Moreover, the surface and internal color of the obtained oxide sintered body were equivalent. The results of measuring the L * values are shown in Table 1 above.

また、実施例1〜4と同様、成膜評価を実施した。
その結果も上記表1に示した。
Moreover, film-forming evaluation was implemented similarly to Examples 1-4.
The results are also shown in Table 1 above.

実施例5〜8の酸化物蒸着材を用いた成膜では、最も低抵抗で高透過性の透明導電膜を得るために成膜真空槽に導入すべき最適酸素混合量は、実施例1〜4と同様、非常に少なかった。これは、酸化物蒸着材内に最適な酸素量を含んでいたからである。また、最適酸素混合量において製造された膜は、酸化物蒸着材と同じ組成を示し、非常に低い比抵抗を示すだけでなく、可視〜赤外域においても高い透過率を示した。また、全ての膜は、酸化インジウムのビックスバイト型結晶構造の結晶膜となっており、膜の基板に対する付着力も強くて実用的には十分であった。更に、実施例5〜8の酸化物蒸着材は連続で使用してもクラックが発生することもなかった。   In the film formation using the oxide vapor deposition materials of Examples 5 to 8, the optimum oxygen mixing amount to be introduced into the film formation vacuum chamber in order to obtain the transparent conductive film having the lowest resistance and the high permeability is as described in Examples 1 to 8. Like 4 it was very little. This is because the optimum amount of oxygen was contained in the oxide vapor deposition material. In addition, the film produced at the optimum oxygen mixing amount showed the same composition as the oxide vapor deposition material, and not only showed a very low specific resistance, but also showed a high transmittance in the visible to infrared region. In addition, all the films were indium oxide bixbite crystal structures, and the adhesion of the films to the substrate was strong and practically sufficient. Furthermore, even if the oxide vapor deposition material of Examples 5-8 was used continuously, a crack did not generate | occur | produce.

このような透明導電膜は、太陽電池の透明電極として非常に有用といえる。   Such a transparent conductive film can be said to be very useful as a transparent electrode of a solar cell.

[比較例4〜5]
比較例1〜2において、In23粉末とGd23粉末を調合する際のGd/Inの原子数比を0.050とした以外は、比較例1〜2と同様の条件で酸化物蒸着材を作製した。すなわち、焼結体酸素量調整の条件が、比較例4では、O/Ar流量比で30/70とし、比較例5では100/0とした。得られた焼結体について、密度、比抵抗、結晶粒経、組成を同様に評価したが、実施例5〜8と同等であった。また、得られた焼結体の表面と内部の色身は同等であり、そのL値を測定したところ、表1のような値を示した。
[Comparative Examples 4 to 5]
In Comparative Examples 1 and 2 , oxidation was performed under the same conditions as in Comparative Examples 1 and 2, except that the atomic ratio of Gd / In in preparing In 2 O 3 powder and Gd 2 O 3 powder was 0.050. A material vapor deposition material was produced. That is, the conditions for adjusting the amount of oxygen in the sintered body were 30/70 in the O 2 / Ar flow ratio in Comparative Example 4 and 100/0 in Comparative Example 5. About the obtained sintered compact, although the density, specific resistance, crystal grain size, and composition were evaluated similarly, it was equivalent to Examples 5-8. Further, the surface and the internal color of the obtained sintered body were the same, and when the L * value was measured, the values shown in Table 1 were shown.

次に、実施例1〜4と同様、成膜評価を実施した。
その結果も表1に示した。
Next, as in Examples 1 to 4, film formation evaluation was performed.
The results are also shown in Table 1.

比較例4は、L値が本発明の規定範囲よりも小さい値(56)を示した酸化物蒸着材であり、実施例5〜8の酸化物蒸着材を使用したとき較べて、成膜時の最適酸素混合量が多かった。最適酸素混合量における膜の特性は、実施例5〜8と較べて透過率はほぼ同等だったが、比抵抗は若干高かった。この原因は、膜の組成ズレが大きく、膜中にガドリニウムが過剰に含まれていたからと思われる。更に、比較例4の膜は、基板に対する付着力が実施例5〜8と較べて弱かった。このような大きな組成ズレと低付着力の要因は、何れも成膜時に酸素を多めに導入した成膜であったからである。このような酸化物蒸着材は、得られる膜の組成ズレが大きいため膜組成を設計し難い。また、酸素を多めに成膜真空槽に導入する必要があるため、成膜の量産工程で使用すると、真空槽内の酸素濃度変動の影響を受けて組成や特性の変動を顕著に受け易くなる。従って、比較例4の酸化物蒸着材も成膜量産には不向きであることが確認された。 Comparative Example 4 is an oxide vapor deposition material having an L * value that is smaller than the specified range of the present invention (56). Compared with the case where the oxide vapor deposition materials of Examples 5 to 8 are used, film formation is performed. There was a lot of optimal oxygen mixing amount at the time. As for the characteristics of the membrane at the optimum oxygen mixing amount, the transmittance was almost the same as in Examples 5 to 8, but the specific resistance was slightly higher. This is probably because the composition deviation of the film is large and gadolinium is excessively contained in the film. Furthermore, the film of Comparative Example 4 had weaker adhesion to the substrate than Examples 5-8. The reason for such a large compositional deviation and low adhesion is that the film was formed by introducing a large amount of oxygen during film formation. Such an oxide vapor deposition material is difficult to design the film composition because the composition deviation of the obtained film is large. In addition, since it is necessary to introduce a large amount of oxygen into the film formation vacuum chamber, when used in the mass production process of film formation, the composition and characteristics are significantly susceptible to variations due to the influence of oxygen concentration variation in the vacuum chamber. . Therefore, it was confirmed that the oxide vapor deposition material of Comparative Example 4 is also unsuitable for film production.

また、比較例5は、L値が本発明の規定範囲よりも大きい値(98)を示した酸化物蒸着材の例である。成膜時の最適酸素混合量は0%であったが、膜の比抵抗は実施例5〜8と較べて高かった。これは、酸化物蒸着材から膜に供給された酸素が多過ぎて膜中の酸素量が多く、最適な酸素欠損量を導入することができなかったためと思われる。従って、このような酸化物蒸着材を用いて成膜しても、この酸化物蒸着材の組成が本来有する高い導電性を発揮する膜を得ることができないことが確認される。 Moreover, the comparative example 5 is an example of the oxide vapor deposition material in which L * value showed the value (98) larger than the prescription | regulation range of this invention. The optimum oxygen mixing amount at the time of film formation was 0%, but the specific resistance of the film was higher than those in Examples 5-8. This is presumably because the oxygen supplied from the oxide deposition material to the film was too much and the amount of oxygen in the film was so large that the optimum amount of oxygen deficiency could not be introduced. Therefore, it is confirmed that even if a film is formed using such an oxide vapor deposition material, a film exhibiting high conductivity inherent in the composition of the oxide vapor deposition material cannot be obtained.

[比較例6]
比較例3において、In23粉末とGd23粉末を調合する際のGd/Inの原子数比を0.050とした以外は、比較例3と同様の条件で酸化物蒸着材を作製した。得られた焼結体について、密度、比抵抗、結晶粒経、組成を同様に評価したが、比較例3と同等であった。また、得られた焼結体の表面と内部の色身は同等であり、そのL値を測定したところ表1のような値を示した。
[Comparative Example 6]
In Comparative Example 3, the oxide vapor deposition material was formed under the same conditions as in Comparative Example 3 except that the atomic ratio of Gd / In when preparing In 2 O 3 powder and Gd 2 O 3 powder was 0.050. Produced. The obtained sintered body was similarly evaluated in terms of density, specific resistance, crystal grain size, and composition, and was equivalent to Comparative Example 3. Further, the surface and the internal color of the obtained sintered body were equivalent, and the L * value was measured, and the values shown in Table 1 were shown.

次に、実施例1〜4と同様、成膜評価を実施した。
その結果も表1に示した。
Next, as in Examples 1 to 4, film formation evaluation was performed.
The results are also shown in Table 1.

比較例6も、L値が本発明の規定範囲と較べて著しく小さい値(48)を示している。同じ組成の実施例5〜8の酸化物蒸着材と較べて、成膜時の最適酸素混合量が非常に多い(40)。最適酸素混合量における膜の特性は、実施例5〜8と較べて透過率は同等だったが、比抵抗は高かった。これは、膜の組成ズレが大きかったことが要因と思われる。更に、比較例6の膜は、基板に対する付着力が実施例5〜8と較べて弱かった。これは、成膜時に酸素を多めに導入した成膜であったからである。このような酸化物蒸着材は、得られる膜の組成ズレが大きいため膜組成を設計し難い。また、酸素を多めに成膜真空槽に導入する必要があるため、成膜の量産工程で使用すると、真空槽内の酸素濃度変動の影響を受けて組成や特性の変動が大きくなる。また、実施例1〜4と同様の条件で酸化物蒸着材耐久テストを行なったところ、連続成膜後の酸化物蒸着材にはクラックが発生(「割れ」の評価)していた。このようなクラックの入った酸化物蒸着材を用いて連続的に成膜を行なうと、成膜速度が大きく変動する等の問題が生じて安定に成膜することができない。 Comparative Example 6 also shows a value (48) in which the L * value is significantly smaller than the specified range of the present invention. Compared with the oxide vapor deposition materials of Examples 5 to 8 having the same composition, the optimum oxygen mixing amount during film formation is very large (40). As for the characteristics of the membrane at the optimum oxygen mixing amount, the transmittance was the same as in Examples 5 to 8, but the specific resistance was high. This is probably because the compositional deviation of the film was large. Furthermore, the film of Comparative Example 6 had weaker adhesion to the substrate than Examples 5-8. This is because the film was formed by introducing a large amount of oxygen during film formation. Such an oxide vapor deposition material is difficult to design the film composition because the composition deviation of the obtained film is large. Further, since it is necessary to introduce a large amount of oxygen into the film formation vacuum chamber, when used in the mass production process of film formation, variations in composition and characteristics increase due to the influence of oxygen concentration variation in the vacuum chamber. Moreover, when the oxide vapor deposition material durability test was performed on the same conditions as Examples 1-4, the oxide vapor deposition material after continuous film-forming had a crack (evaluation of "crack"). When film formation is continuously performed using such an oxide vapor deposition material having cracks, problems such as large fluctuations in the film formation speed occur and stable film formation cannot be achieved.

以上のことから、比較例6の酸化物蒸着材も成膜量産には不向きであることが確認される。   From the above, it is confirmed that the oxide vapor deposition material of Comparative Example 6 is also unsuitable for film formation mass production.

[実施例9〜13]
In23粉末とGd23粉末を調合する際の配合割合が、Gd/In原子数比で0.001(実施例9)、0.005(実施例10)、0.010(実施例11)、0.060(実施例12)、0.070(実施例13)となるように変化させた以外は、実施例2と同じ条件(すなわち、酸素ガス/アルゴンガス流量比が「60/40」の条件)で実施例9〜13の酸化物焼結体(酸化物蒸着材)を作製した。
[Examples 9 to 13]
The blending ratio when blending In 2 O 3 powder and Gd 2 O 3 powder is 0.001 (Example 9), 0.005 (Example 10), 0.010 (implementation) in terms of the Gd / In atomic ratio. Ex. 11), 0.060 (Example 12), and 0.070 (Example 13), except that the conditions were the same as in Example 2 (that is, the oxygen gas / argon gas flow rate ratio was “60”. / 40 "conditions) oxide sintered bodies (oxide vapor deposition materials) of Examples 9 to 13 were produced.

そして、得られた実施例9〜13の酸化物焼結体(酸化物蒸着材)について、密度、比抵抗、結晶粒経、組成を同様に評価したところ、いずれも実施例2と同等であった。また、得られた酸化物焼結体の表面と内部の色身は同等であった。そのL値を測定した結果を上記表1に示した。 And about the obtained oxide sintered compact (oxide vapor deposition material) of Examples 9-13, when the density, specific resistance, crystal grain size, and composition were evaluated similarly, all were equivalent to Example 2. It was. Moreover, the surface and internal color of the obtained oxide sintered body were equivalent. The results of measuring the L * values are shown in Table 1 above.

また、実施例1〜4と同様、成膜評価を実施した。
その結果も上記表1に示した。
Moreover, film-forming evaluation was implemented similarly to Examples 1-4.
The results are also shown in Table 1 above.

実施例9〜13の酸化物蒸着材を用いた成膜では、最も低抵抗で高透過性の透明導電膜を得るために成膜真空槽に導入すべき最適酸素混合量は、実施例1〜4と同様、非常に少なかった。これは、酸化物蒸着材内に最適な酸素量を含んでいたからである。また、最適酸素混合量において製造された膜は、酸化物蒸着材と同じ組成を示し、非常に低い比抵抗を示すだけでなく、可視〜赤外域においても高い透過率を示した。また、全ての膜は、酸化インジウムのビックスバイト型結晶構造の結晶膜であることが確認され、膜の基板に対する付着力も強くて実用的には十分であった。また、実施例1〜4と同様の条件で酸化物蒸着材耐久テストを行なったが、実施例9〜13の酸化物蒸着材は連続で使用してもクラックが発生することがなかった。   In the film formation using the oxide vapor deposition materials of Examples 9 to 13, the optimum oxygen mixing amount to be introduced into the film formation vacuum chamber in order to obtain the transparent conductive film having the lowest resistance and the high permeability is as described in Examples 1 to 3. Like 4 it was very little. This is because the optimum amount of oxygen was contained in the oxide vapor deposition material. In addition, the film produced at the optimum oxygen mixing amount showed the same composition as the oxide vapor deposition material, and not only showed a very low specific resistance, but also showed a high transmittance in the visible to infrared region. Further, it was confirmed that all the films were indium oxide bixbite type crystal structures, and the adhesion of the films to the substrate was strong and practically sufficient. Moreover, although the oxide vapor deposition material durability test was done on the conditions similar to Examples 1-4, the oxide vapor deposition material of Examples 9-13 did not generate | occur | produce a crack even if it used continuously.

このような透明導電膜は、太陽電池の透明電極として非常に有用といえる。   Such a transparent conductive film can be said to be very useful as a transparent electrode of a solar cell.

本発明に係る酸化物蒸着材を適用することにより、可視域だけでなく近赤外域における高い光透過性を示しながら高い導電性を示す透明導電膜を真空蒸着法で製造することが可能になるため、各種太陽電池の透明電極を形成するための酸化物蒸着材として利用される産業上の利用可能性を有している。   By applying the oxide vapor deposition material according to the present invention, it becomes possible to produce a transparent conductive film exhibiting high conductivity while exhibiting high light transmittance not only in the visible region but also in the near infrared region by a vacuum deposition method. Therefore, it has the industrial applicability utilized as an oxide vapor deposition material for forming the transparent electrode of various solar cells.

1 ガラス基板
2 表側(受光部側)透明電極膜
3 p型アモルファスシリコン膜または水素化アモルファスシリコンカーバイド膜
4 不純物を含まないアモルファスシリコン膜
5 n型アモルファスシリコン膜
6 裏側透明電極膜(接触改善層)
7 裏側金属電極(裏面電極)
8 光吸収層
9 半導体の中間層
10 窓層
11 透明電極膜
12 ガラス基板
13 下部電極
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Front side (light-receiving part side) Transparent electrode film 3 P-type amorphous silicon film or hydrogenated amorphous silicon carbide film 4 Amorphous silicon film not containing impurities 5 N-type amorphous silicon film 6 Back side transparent electrode film (contact improvement layer)
7 Back side metal electrode (back side electrode)
8 Light absorption layer 9 Semiconductor intermediate layer 10 Window layer 11 Transparent electrode film 12 Glass substrate 13 Lower electrode

Claims (2)

酸化インジウムを主成分とし、ガドリニウムを含む焼結体により構成され、かつ、ガドリニウムの含有量がGd/In原子数比で0.001〜0.070で、CIE1976表色系におけるL値が60〜94であることを特徴とする酸化物蒸着材。 It is composed of a sintered body containing indium oxide as a main component and containing gadolinium, and the gdolinium content is 0.001 to 0.070 in terms of Gd / In atomic ratio, and the L * value in the CIE1976 color system is 60. It is -94, The oxide vapor deposition material characterized by the above-mentioned. 上記ガドリニウムの含有量がGd/In原子数比で0.030〜0.050であることを特徴とする請求項1に記載の酸化物蒸着材。   2. The oxide vapor deposition material according to claim 1, wherein the gadolinium content is 0.030 to 0.050 in terms of a Gd / In atomic ratio.
JP2010170731A 2010-07-29 2010-07-29 Oxide deposition material Expired - Fee Related JP5505642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010170731A JP5505642B2 (en) 2010-07-29 2010-07-29 Oxide deposition material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010170731A JP5505642B2 (en) 2010-07-29 2010-07-29 Oxide deposition material

Publications (2)

Publication Number Publication Date
JP2012031460A JP2012031460A (en) 2012-02-16
JP5505642B2 true JP5505642B2 (en) 2014-05-28

Family

ID=45845212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010170731A Expired - Fee Related JP5505642B2 (en) 2010-07-29 2010-07-29 Oxide deposition material

Country Status (1)

Country Link
JP (1) JP5505642B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008262A (en) * 2013-05-27 2015-01-15 株式会社デンソー Photovoltaic element and method of manufacturing the same
JP5967016B2 (en) * 2013-05-29 2016-08-10 住友金属鉱山株式会社 Vapor deposition tablet and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225366A (en) * 1989-02-28 1990-09-07 Tosoh Corp Production of oxide sintered compact
JPH0648815A (en) * 1992-07-27 1994-02-22 Mitsubishi Materials Corp Target for sputtering made of indium oxide-tin oxide sintered compact
JP4556407B2 (en) * 2002-10-04 2010-10-06 住友金属鉱山株式会社 Oxide transparent electrode film and method for producing the same, transparent conductive substrate, solar cell, and photodetector
JP5306179B2 (en) * 2007-03-20 2013-10-02 出光興産株式会社 Sputtering target, oxide semiconductor film, and semiconductor device

Also Published As

Publication number Publication date
JP2012031460A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5257372B2 (en) Oxide deposition material, transparent conductive film, and solar cell
JP4231967B2 (en) Oxide sintered body, method for producing the same, transparent conductive film, and solar cell obtained using the same
JP5381744B2 (en) Oxide evaporation material, evaporation thin film, and solar cell
JP5224073B2 (en) Oxide deposition material and method for producing the same
US9399815B2 (en) Sintered oxide material, method for manufacturing same, sputtering target, oxide transparent electrically conductive film, method for manufacturing same, and solar cell
WO2014097963A1 (en) Zinc oxide-based transparent conductive film
JP4968318B2 (en) Oxide deposition material
JP5505642B2 (en) Oxide deposition material
EP2921467B1 (en) Oxide sinter, sputtering target using same, and oxide film
JP2012025990A (en) Oxide evaporation material
JP6160396B2 (en) Method for producing transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140304

R150 Certificate of patent or registration of utility model

Ref document number: 5505642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees