JP2003077398A - Manufacturing method of plasma display panel and furnace equipment for same - Google Patents

Manufacturing method of plasma display panel and furnace equipment for same

Info

Publication number
JP2003077398A
JP2003077398A JP2001263038A JP2001263038A JP2003077398A JP 2003077398 A JP2003077398 A JP 2003077398A JP 2001263038 A JP2001263038 A JP 2001263038A JP 2001263038 A JP2001263038 A JP 2001263038A JP 2003077398 A JP2003077398 A JP 2003077398A
Authority
JP
Japan
Prior art keywords
furnace
work
temperature
temperature profile
furnaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001263038A
Other languages
Japanese (ja)
Inventor
Yoshimichi Ishii
好道 石井
Original Assignee
Matsushita Electric Ind Co Ltd
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd, 松下電器産業株式会社 filed Critical Matsushita Electric Ind Co Ltd
Priority to JP2001263038A priority Critical patent/JP2003077398A/en
Publication of JP2003077398A publication Critical patent/JP2003077398A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a plasma display panel and its furnace equipment which can reduce floor area at a workshop as well as realize energy saving. SOLUTION: In putting works 10 used for manufacturing of the plasma display panel under temperature treatment based on a temperature profile targeted, the works 10 as treatment objects are conveyed to one furnace 2 of one end of the furnace equipment 1 consisting of a plurality of furnaces 2, 3, 4 arrayed in series and each adjusted to temperature of a plurality of temperature zones divided according to the above temperature profile, and then to another in turn, sending the works already conveyed in each furnace 2, 3 step by step over to another furnace 3, 4 and carrying out the work 10 in the furnace 4 at the other end, while the work 10 in each furnace 2, 3, 4 is to be held there for a given time without movement. Since the furnace equipment 1 is made up of each blocked furnace 2, 3, 4, heat fluctuation of the works 10 inside the face can be reduced even if the furnace equipment 1 is long.

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明は、プラズマディスプ
レイパネルの製造方法およびそのための炉設備に関す
る。
TECHNICAL FIELD The present invention relates to a method of manufacturing a plasma display panel and a furnace equipment therefor.
【0002】[0002]
【従来の技術】プラズマディスプレイパネルの製造工程
では、基板に電極材料などを印刷し、乾燥し、露光して
現像し、焼成する、と言った加工工程を何工程も繰り返
して前面パネル、背面パネルが製造され、最後に前面パ
ネルと背面パネルとが封着されている。
2. Description of the Related Art In a plasma display panel manufacturing process, a front panel and a rear panel are repeatedly processed by printing electrode materials on a substrate, drying, exposing, developing and baking. Is manufactured, and finally, the front panel and the back panel are sealed.
【0003】その際に、たとえば電極材料を印刷した基
板であるワークの焼成工程では、脱バインダ並びにガラ
ス質物質の溶融と固化が起こるように、昇温区間,焼成
(温度保持)区間,徐冷区間を順次に設けたトンネル状
の炉設備が用いられ、その内部をワークが一定方向に搬
送されている。他の焼成工程、乾燥工程、封着工程で
も、同様のトンネル状の炉設備が用いられている。
In this case, for example, in a firing process of a work, which is a substrate on which an electrode material is printed, a temperature rising section, a firing (temperature holding) section, and a gradual cooling so that the binder and the vitreous substance are melted and solidified. A tunnel-shaped furnace facility in which sections are sequentially provided is used, and a work is conveyed in a fixed direction inside the furnace facility. Similar tunnel-shaped furnace equipment is used in other firing, drying, and sealing processes.
【0004】昇温区間,焼成区間ではワークは連続的に
搬送されているが、徐冷区間では、ワークを連続送りす
るとワークの先端と後端とで温度差が生じワークが変形
してしまうため、複数の徐冷ゾーンが設けられ、各徐冷
ゾーンを受け持つ炉にワークが間欠搬送されている。
The work is continuously conveyed in the temperature rising section and the firing section, but in the slow cooling section, when the work is continuously fed, a temperature difference occurs between the front end and the rear end of the work and the work is deformed. A plurality of gradual cooling zones are provided, and the work is intermittently conveyed to a furnace which is in charge of each gradual cooling zone.
【0005】[0005]
【発明が解決しようとする課題】ところが、上記したト
ンネル状の炉設備は、目的の温度プロファイルが実行さ
れるように上記したような各区間を設けるので、数分程
度のタクトでワークを処理しようとすると必然的に炉長
が長くなり、乾燥用のもので長さ15〜20メートル、
焼成用のもので長さ50メートルにもなる。しかも各工
程で、他の工程の塵が混入しないよう別個の炉設備を使
用する必要がある。
However, since the above-mentioned tunnel-shaped furnace equipment is provided with the respective sections as described above so that the desired temperature profile is executed, the work should be processed with a takt time of about several minutes. Inevitably, the length of the furnace becomes long, and the length for drying is 15 to 20 meters,
It is for firing and can be as long as 50 meters. Moreover, it is necessary to use separate furnace equipment in each process so that dust from other processes is not mixed.
【0006】したがって、複数の乾燥工程,複数の焼成
工程,封着工程を実施するプラズマディスプレイパネル
の製造工程では非常に長い搬送経路を要し、製造工場の
レイアウトにおいて炉設備に大きな設置床面積が必要で
ある。また、消費エネルギーも多大である。
Therefore, a very long transfer route is required in the manufacturing process of the plasma display panel which carries out a plurality of drying processes, a plurality of baking processes and a sealing process, and a large installation floor area is required for the furnace equipment in the layout of the manufacturing plant. is necessary. Also, the energy consumption is large.
【0007】このため、複数の炉を上下に多段に配置し
た炉設備も見られるが、1段の炉高が高いと、空間的な
制限から段数を多くできないだけでなく、処理能力が低
くなり、現状の1段500mm程度の炉高ではせいぜい2
〜3段である。
For this reason, furnace equipment in which a plurality of furnaces are vertically arranged is also seen, but when the height of one furnace is high, not only the number of stages cannot be increased due to space limitation, but also the processing capacity becomes low. At the current furnace height of about 500 mm per stage, at most 2
~ 3 stages.
【0008】本発明は上記問題を解決するもので、製造
工場での床面積を低減できるとともに、省エネルギーを
実現できるプラズマディスプレイパネルの製造方法およ
び炉設備を提供することを目的とする。
The present invention solves the above problems, and an object of the present invention is to provide a method of manufacturing a plasma display panel and furnace equipment capable of reducing the floor area in a manufacturing factory and realizing energy saving.
【0009】[0009]
【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の本発明は、プラズマディスプレイパ
ネルの製造に使用するワークを目的の温度プロファイル
に基づいて温度処理する際に、前記温度プロファイルに
従って分割された複数の温度ゾーンの温度にそれぞれ調
節され、直列に配列された複数の炉からなる炉設備に、
処理対象のワークを前記直列に配列された複数の炉の一
端から順次に搬入し、搬入に伴って、先に各炉に搬入さ
れていたワークを後続の炉にステップ搬送し、前記直列
に配列された複数の炉の他端のワークを搬出するととも
に、各炉に搬入したワークは移送することなく所定時間
だけ保持する。この構成によれば、各炉をブロック化し
た炉設備を利用するので、炉長が短い炉設備であって
も、ワーク面内の熱バラツキを低減できる。
In order to solve the above-mentioned problems, the present invention according to claim 1 is characterized in that when a workpiece used for manufacturing a plasma display panel is subjected to a temperature treatment based on an intended temperature profile, The temperature of each of the temperature zones divided according to the temperature profile is adjusted, and the furnace equipment consists of multiple furnaces arranged in series.
The workpieces to be treated are sequentially loaded from one end of the plurality of furnaces arranged in series, and the workpieces previously loaded into each furnace are step-transported to the subsequent furnaces along with the loading, and arranged in series. The workpieces at the other ends of the plurality of furnaces are carried out, and the workpieces carried into each furnace are held for a predetermined time without being transferred. According to this configuration, since the furnace equipment in which each furnace is made into a block is used, it is possible to reduce the thermal variation in the work surface even if the furnace equipment has a short furnace length.
【0010】請求項2記載の本発明は、プラズマディス
プレイパネルの製造に使用するワークを目的の温度プロ
ファイルに基づいて温度処理する際に、前記温度プロフ
ァイルに従って分割された複数の温度ゾーンの温度にそ
れぞれ調節され、直列に配列された複数の炉を1段とし
て、これを複数段積層した炉設備に、処理対象のワーク
を各段において一端の炉から順次に搬入し、搬入に伴っ
て、先に各炉に搬入されていたワークを後続の炉にステ
ップ搬送し、他端の炉のワークを搬出するとともに、各
炉に搬入したワークは移送することなく所定時間だけ保
持する。この構成によれば、各炉をブロック化した炉設
備を利用するので、炉長が短い炉設備であっても、ワー
ク面内の熱バラツキを低減できる。また、各段で並行し
てワークを処理するので、1段の炉設備に比べてタクト
を短くすることができ、逆に、タクトを一定とするな
ら、炉長がより短い炉設備であっても、ワーク面内の熱
バラツキを低減できる。熱エネルギーのロスも少ない。
According to the second aspect of the present invention, when a workpiece used for manufacturing a plasma display panel is subjected to temperature treatment based on a target temperature profile, the temperature is divided into a plurality of temperature zones divided according to the temperature profile. A plurality of furnaces that have been adjusted and arranged in series are set as one stage, and the workpieces to be processed are sequentially loaded from one end of the furnace in each stage to the furnace equipment in which a plurality of these are stacked. The work carried in each furnace is step-transferred to the subsequent furnace, the work in the furnace at the other end is carried out, and the work carried in each furnace is held for a predetermined time without being transferred. According to this configuration, since the furnace equipment in which each furnace is made into a block is used, it is possible to reduce the thermal variation in the work surface even if the furnace equipment has a short furnace length. Moreover, since the work is processed in parallel in each stage, the tact can be shortened compared to the one-stage furnace equipment. On the contrary, if the tact is constant, the furnace length is shorter. Also, it is possible to reduce the thermal variation in the work surface. There is little loss of heat energy.
【0011】請求項3記載の本発明は、請求項1または
請求項2のいずれかに記載のプラズマディスプレイパネ
ルの製造方法において、各炉に、予め決めた同一または
異なるガス雰囲気を形成するもので、各炉においてワー
クを最適なガス雰囲気中で処理できる。
According to a third aspect of the present invention, in the plasma display panel manufacturing method according to the first or second aspect, a predetermined same or different gas atmosphere is formed in each furnace. , The work can be processed in each furnace in the optimum gas atmosphere.
【0012】請求項4記載の本発明は、請求項3記載の
プラズマディスプレイパネルの製造方法において、目的
の温度プロファイルの昇温区間を受け持つ炉には、酸素
リッチな空気または前記温度プロファイルの焼成区間を
受け持つ炉よりも多量の空気を供給し、前記温度プロフ
ァイルの焼成区間を受け持つ炉には、不活性ガスまたは
酸素プアーな空気または前記温度プロファイルの昇温区
間を受け持つ炉よりも少量の空気を供給することを特徴
とするもので、昇温区間を受け持つ炉において、ワーク
への印刷物から効率よく脱バインダし、焼成区間を受け
持つ炉において、同印刷物の酸化を抑制できる。
According to a fourth aspect of the present invention, in the method of manufacturing a plasma display panel according to the third aspect, the furnace which is in charge of the temperature raising section of the target temperature profile has oxygen rich air or a firing section of the temperature profile. A larger amount of air is supplied to the furnace that is in charge of the firing section of the temperature profile, and a smaller amount of air is supplied to the furnace that is in charge of the firing section of the temperature profile than the furnace that is in charge of the inert gas or oxygen poor or the temperature rising section of the temperature profile. In the furnace which is in charge of the temperature rising section, the printed matter on the work is efficiently debindered, and in the furnace which is in charge of the firing section, the oxidation of the printed matter can be suppressed.
【0013】請求項5記載の本発明は、請求項3記載の
プラズマディスプレイパネルの製造方法において、目的
の温度プロファイルの昇温区間を受け持つ炉には、酸素
リッチな空気または前記温度プロファイルの焼成区間を
受け持つ炉よりも多量の空気を供給し、前記温度プロフ
ァイルの焼成区間を受け持つ炉には給気しないことを特
徴とするもので、昇温区間を受け持つ炉において、ワー
クへの印刷材料から効率よく脱バインダし、焼成区間を
受け持つ炉において、同印刷材料の酸化を抑制できる。
According to a fifth aspect of the present invention, in the method of manufacturing a plasma display panel according to the third aspect, the furnace which is in charge of the temperature raising section of the target temperature profile has oxygen rich air or a firing section of the temperature profile. It is characterized in that it supplies a larger amount of air than the furnace that is in charge of the heating, and does not supply air to the furnace that is in charge of the firing section of the temperature profile. Oxidation of the printing material can be suppressed in the furnace that removes the binder and takes charge of the firing section.
【0014】請求項6記載の本発明は、プラズマディス
プレイパネルの製造に使用するワークを目的の温度プロ
ファイルに基づいて温度処理する炉設備であって、前記
温度プロファイルに従って分割された複数の温度ゾーン
の温度にそれぞれ調節され、直列に配列された複数の炉
からなる炉本体と、前記炉本体でのワークの搬送を制御
する搬送制御手段とを設け、前記搬送制御手段は、処理
対象のワークを前記直列に配列された複数の炉の一端か
ら順次に搬入し、搬入に伴って、先に各炉に搬入されて
いたワークを後続の炉にステップ搬送し、前記直列に配
列された複数の炉の他端のワークを搬出するとともに、
各炉に搬入したワークは移送することなく所定時間だけ
保持するよう構成したもので、各炉をブロック化してい
るので、従来の平面配置型の炉設備に比べて炉長が短く
て済み、それにより、省スペース、省エネルギーを実現
できる。
According to a sixth aspect of the present invention, there is provided furnace equipment for temperature-treating a work used for manufacturing a plasma display panel based on a target temperature profile, wherein a plurality of temperature zones divided according to the temperature profile are provided. Each of the furnaces is adjusted to a temperature, and a furnace main body including a plurality of furnaces arranged in series, and a transfer control means for controlling the transfer of the work in the furnace main body are provided, and the transfer control means is a work target. Carrying in sequentially from one end of the plurality of furnaces arranged in series, and along with carrying in, step-transferring the work previously carried into each furnace to the subsequent furnaces, of the plurality of furnaces arranged in series. While carrying out the work on the other end,
The work carried into each furnace is configured to be held for a predetermined time without being transferred, and since each furnace is made into blocks, the furnace length can be shorter than that of the conventional flat arrangement type furnace equipment. Therefore, space saving and energy saving can be realized.
【0015】請求項7記載の本発明は、プラズマディス
プレイパネルの製造に使用するワークを目的の温度プロ
ファイルに基づいて温度処理する炉設備であって、前記
温度プロファイルに従って分割された複数の温度ゾーン
の温度にそれぞれ調節される複数の炉を直列に配列し、
前記配列した複数の炉を複数段積層した炉本体と、前記
炉本体でのワークの搬送を制御する搬送制御手段とを設
け、前記搬送制御手段は、処理対象のワークを各段にお
いて一端の炉から順次に搬入し、搬入に伴って、先に各
炉に搬入されていたワークを後続の炉にステップ搬送
し、他端の炉のワークを搬出するとともに、各炉に搬入
したワークは移送することなく所定時間だけ保持するよ
う構成したもので、各炉をブロック化しているので、従
来の平面配置型の炉設備に比べて炉長が短くて済み、省
スペース、省エネルギーを実現することができる。しか
も多段に積層しているので、より省エネルギーを図れる
とともに、短いタクトに十分に対応できる。
According to a seventh aspect of the present invention, there is provided furnace equipment for temperature-treating a work used for manufacturing a plasma display panel based on a target temperature profile, wherein a plurality of temperature zones are divided according to the temperature profile. Arrange multiple furnaces, each of which is controlled by temperature, in series,
A furnace main body in which a plurality of the arranged plurality of furnaces are stacked and a transfer control means for controlling the transfer of the work in the furnace main body are provided, and the transfer control means is a furnace at one end of the work to be processed in each step. The workpieces that were previously loaded into each furnace are step-transported to the subsequent furnaces along with the loading, and the workpieces in the furnaces at the other end are unloaded, and the workpieces loaded into each furnace are transferred. It is configured to hold for a predetermined time without using each furnace, and each furnace is divided into blocks, so the furnace length can be shortened compared to the conventional planar arrangement type furnace equipment, and space saving and energy saving can be realized. . Moreover, since it is laminated in multiple stages, it is possible to further save energy and sufficiently cope with a short tact.
【0016】請求項8記載の本発明は、請求項6記載の
炉設備において、ワーク搬送方向における各炉の前後
に、ワーク搬入搬出時のみ開放されるシャッター、また
はワーク通過孔が開口した断熱壁を設け、温度プロファ
イルの昇温区間を受け持つ各炉および焼成区間を受け持
つ各炉を構成する少なくとも天部の壁にヒータを仕込
み、前記昇温区間または焼成区間を受け持つ各炉に、ワ
ークを昇温または温度保持するよう温度調節された気体
を供給する給気管を設け、温度プロファイルの徐冷区間
を受け持つ各炉に、ワークを徐冷するよう温度調節され
た気体を供給する給気管を設けたもので、シャッターま
たは断熱壁の存在によって各炉の温度および給排気条件
を確実に一定に制御可能となり、ヒータの輻射熱と給気
管からワークに送られる気体とでワークを所望温度に調
節できる。
According to an eighth aspect of the present invention, in the furnace facility according to the sixth aspect, a shutter that is opened only when loading and unloading a work or a heat insulating wall having a work passage hole is provided before and after each furnace in the work transfer direction. A heater is installed in at least the top wall of each furnace that is responsible for the temperature rising section of the temperature profile and each furnace that is responsible for the firing section, and the work is heated in each furnace that is responsible for the temperature raising section or the firing section. Alternatively, an air supply pipe for supplying a gas whose temperature is controlled so as to maintain the temperature is provided, and each furnace which is in charge of the slow cooling section of the temperature profile is provided with an air supply pipe for supplying a gas whose temperature is controlled so as to gradually cool the work. With the presence of shutters or heat insulating walls, the temperature and supply / exhaust conditions of each furnace can be reliably controlled to be constant, and the radiant heat from the heater and the air supply pipe are sent to the work. In a gas can adjust the workpiece to a desired temperature.
【0017】請求項9記載の本発明は、請求項7記載の
炉設備において、ワーク搬送方向における各炉の前後
に、ワーク搬入搬出時のみ開放されるシャッター、また
はワーク通過孔が開口した断熱壁を設け、温度プロファ
イルの昇温区間を受け持つ各炉と焼成区間を受け持つ各
炉と徐冷区間を受け持つ各炉のそれぞれを隔壁で互いに
上下段に仕切り、前記昇温区間を受け持つ各炉および焼
成区間を受け持つ各炉を構成する少なくとも天部の壁に
ヒータを仕込み、前記前記昇温区間または焼成区間を受
け持つ各炉に、ワークを昇温または温度保持するよう温
度調節された気体を供給する給気管を設け、前記徐冷区
間を受け持つ各炉に、ワークを徐冷するよう温度調節さ
れた気体を供給する給気管を設けたもので、シャッター
または断熱壁の存在によって各炉の温度および給排気条
件を確実に一定に制御可能となり、ヒータの輻射熱と給
気管からワークに送られる気体とでワークを所望温度に
調節できる。
According to a ninth aspect of the present invention, in the furnace facility according to the seventh aspect, a shutter that is opened only when loading and unloading a work is installed in front of and behind each furnace in the work transfer direction, or a heat insulating wall in which a work passage hole is opened. Each of the furnaces responsible for the temperature rising section of the temperature profile, the furnaces responsible for the firing section, and the furnaces responsible for the slow cooling section are respectively partitioned into upper and lower stages by partition walls, and each furnace and the firing section responsible for the temperature rising section. An air supply pipe in which a heater is installed in at least the wall of the top portion of each furnace that is in charge of heating, and a gas whose temperature is controlled so as to raise or maintain the temperature of the work is supplied to each furnace that is in charge of the temperature raising section or the firing section. In addition, each furnace that is responsible for the slow cooling section is provided with an air supply pipe for supplying a gas whose temperature is controlled to slowly cool the work. Thus it can be controlled to ensure constant temperature and supply and exhaust conditions for each furnace can be adjusted workpiece to a desired temperature in the gas fed from the air supply pipe and radiant heat of the heater to work.
【0018】請求項10記載の本発明は、請求項8また
は請求項9のいずれかに記載の炉設備において、各炉に
設けた給気管の給気口は、ワークに背反する天部あるい
は底部に向けて、または断熱壁あるいはシャッターに向
けて配置したもので、給気口から噴出された気体は、天
部、底部、断熱壁あるいはシャッターに当たって反射す
ることで拡散し、ワークに均一に送られるので、ワーク
の面内温度を均一にできる。
According to a tenth aspect of the present invention, in the furnace facility according to any one of the eighth and ninth aspects, the air supply port of the air supply pipe provided in each furnace has a top portion or a bottom portion that is against the work. The gas ejected from the air supply port diffuses by being reflected by the top, bottom, heat insulating wall or shutter, and then sent uniformly to the workpiece. Therefore, the in-plane temperature of the work can be made uniform.
【0019】請求項11記載の本発明は、請求項8から
請求項10のいずれかに記載の炉設備において、徐冷区
間を構成する炉の給気管を、ワークを載置して搬入され
るセッターの下方に設けたもので、給気管からの気体に
よってセッターを介してワークを間接的に冷却するの
で、ワークの面内温度を均一にできる。
The present invention according to claim 11 is the furnace equipment according to any one of claims 8 to 10, wherein the furnace air supply pipe constituting the slow cooling section is loaded with a work placed thereon. Since it is provided below the setter, the work is indirectly cooled by the gas from the air supply pipe through the setter, so that the in-plane temperature of the work can be made uniform.
【0020】請求項12記載の本発明は、請求項11記
載の炉設備において、給気管の給気口は、ワークの中央
部に対応するセッターの下面に向けて配置したもので、
周縁部に比べて冷えにくいワークの中央部を効率的に冷
却することができ、ワークの面内温度を均一にできる。
According to a twelfth aspect of the present invention, in the furnace facility according to the eleventh aspect, the air supply port of the air supply pipe is arranged toward the lower surface of the setter corresponding to the central portion of the work.
It is possible to efficiently cool the central part of the work, which is harder to cool than the peripheral part, and to make the in-plane temperature of the work uniform.
【0021】請求項13記載の本発明は、請求項8また
は請求項9のいずれかに記載の炉設備において、徐冷区
間を受け持つ炉を構成する天部と底部の少なくとも一方
の壁を熱伝導度が良好な材料で構成し、この壁を冷却す
る冷却手段を設けたもので、ワークからの放熱を吸収し
やすい隔壁を冷却手段で冷却するので、炉内雰囲気を速
やかに所望温度に調節できる。
According to a thirteenth aspect of the present invention, in the furnace facility according to any one of the eighth and ninth aspects, at least one wall of a top portion and a bottom portion of the furnace which is responsible for the slow cooling section is made to conduct heat. It is made of a material with a good degree and is provided with cooling means for cooling this wall. Since the partition wall that easily absorbs the heat radiation from the work is cooled by the cooling means, the atmosphere in the furnace can be quickly adjusted to the desired temperature. .
【0022】請求項14記載の本発明は、請求項6また
は請求項7のいずれかに記載の炉設備において、ワーク
を載置して各炉に搬入されたセッターを搬送方向に沿っ
て揺動させる揺動手段を設けたもので、ワークの面内温
度をより均一にできる。
According to a fourteenth aspect of the present invention, in the furnace facility according to the sixth or seventh aspect, the setter loaded with the work and carried into each furnace is rocked along the carrying direction. The in-plane temperature of the work can be made more uniform by providing the swinging means for causing the work.
【0023】[0023]
【発明の実施の形態】以下、本発明の実施の形態を、図
面を参照しながら説明する。図1はプラズマディスプレ
イパネルの前面板に関する焼成の温度プロファイルの一
例を示すグラフであり、ワークを目的温度まで昇温させ
てその温度を保持し、その後に冷却させるようにしてい
る。従来のトンネル炉での温度プロファイルも併せて示
す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a graph showing an example of a temperature profile of firing for a front plate of a plasma display panel, in which a work is heated to a target temperature, kept at that temperature, and then cooled. The temperature profile of a conventional tunnel furnace is also shown.
【0024】たとえば図2に示すように温度プロファイ
ルを実現して温度処理する炉設備1(すなわち焼成炉)
は、前記温度プロファイルにしたがって分割された複数
の温度ゾーン、たとえば昇温ゾーン(400℃)、焼成
ゾーン(600℃)、徐冷ゾーン(400℃)の温度に
それぞれ調節される昇温炉2、焼成炉3、降温炉4を直
列に配列し、その配列を1段として複数段に積層した炉
本体5と、この炉本体5に連通する閉塞可能な空間とし
ての搬送部6とを備えている。
For example, as shown in FIG. 2, a furnace facility 1 (that is, a firing furnace) that realizes a temperature profile and carries out a temperature treatment.
Is a temperature-raising furnace 2, which is adjusted to the temperatures of a plurality of temperature zones divided according to the temperature profile, for example, a temperature raising zone (400 ° C.), a firing zone (600 ° C.), and a slow cooling zone (400 ° C.), The firing furnace 3 and the temperature lowering furnace 4 are arranged in series, and the furnace body 5 is formed by stacking a plurality of layers with the arrangement being one stage, and the transfer section 6 as a closable space communicating with the furnace body 5. .
【0025】搬送部6は、昇温炉2の側方に上下方向に
設けられ搬入搬出口7aを有した第1リフタ部7と、降
温炉4の側方に上下方向に設けられた第2リフタ部8
と、第1リフタ部7および第2リフタ部8の下部に連通
して横方向に設けられたリターン部9とからなる。第1
リフタ部7,第2リフタ部8には上下方向の搬送手段と
してリフタ装置(図示せず)が設置され、リターン部9
には横送り手段としてのコンベヤ装置(図示せず)が設
置されている。
The transfer section 6 is provided vertically on the side of the temperature raising furnace 2 and has a first lifter section 7 having a loading / unloading port 7a, and on the side of the temperature lowering furnace 4 is a second lifter section. Lifter part 8
And a return portion 9 which is provided in a lateral direction and communicates with lower portions of the first lifter portion 7 and the second lifter portion 8. First
A lifter device (not shown) is installed in the lifter section 7 and the second lifter section 8 as a vertical conveying means, and a return section 9 is provided.
A conveyor device (not shown) as a lateral feeding means is installed in the.
【0026】そしてそれにより、搬入搬出口7aを通じ
て第1リフタ部7内に順次に供給されるワーク10を上
下方向に搬送して各昇温炉2に側方から搬入する一方
で、各徐冷炉4から側方に第2リフタ部8内に搬出され
るワーク10を下方に搬送し、第2リフタ部8の下部ま
で搬送されたワーク10をリターン部9を通って第1リ
フタ部7に戻し、搬入搬出口7aを通じて炉設備1外へ
排出するようになっている。
As a result, the works 10 sequentially supplied into the first lifter section 7 through the carry-in / carry-out port 7a are vertically conveyed and laterally carried into the temperature raising furnaces 2, while the slow cooling furnaces 4 are supplied. The work 10 carried out into the second lifter unit 8 from the side to the lower side, and the work 10 carried to the lower part of the second lifter unit 8 is returned to the first lifter unit 7 through the return unit 9, The material is discharged to the outside of the furnace equipment 1 through the carry-in / carry-out port 7a.
【0027】各昇温炉2,焼成炉3,降温炉4の内部に
は、複数のセラミック製ローラ11が並列に水平方向の
軸心廻りに回転可能に設けられ、各段ごとに間欠的に回
転するように制御されている。そして、これらのローラ
11が、第1リフタ部7によって各段ごとに昇温炉2に
搬入されるワーク10を、焼成炉3、降温炉4、第2リ
フタ部8へとこの順にステップ搬送するとともに、昇温
炉2,焼成炉3,降温炉4内に搬入したワーク10を移
送することなく所定時間だけ保持し、その保持期間に適
宜に搬送方向に沿って揺動させる。なお、図示を省略し
たが、ローラ11は各炉2,3,4に設けられており、
ワーク10は各炉2,3,4の全て、あるいは大部分に
搬入されている。
Inside each of the temperature raising furnace 2, the firing furnace 3 and the temperature lowering furnace 4, a plurality of ceramic rollers 11 are provided in parallel so as to be rotatable about a horizontal axis, and intermittently for each stage. It is controlled to rotate. Then, these rollers 11 carry stepwise the work 10 carried into the temperature raising furnace 2 by the first lifter unit 7 to the temperature raising furnace 3, the temperature lowering furnace 4, and the second lifter unit 8 in this order. At the same time, the work 10 carried into the temperature raising furnace 2, the firing furnace 3, and the temperature lowering furnace 4 is held for a predetermined time without being transferred, and is appropriately rocked along the carrying direction during the holding period. Although not shown, the roller 11 is provided in each of the furnaces 2, 3 and 4,
The work 10 is carried in all or most of the furnaces 2, 3 and 4.
【0028】図3に示したように、昇温炉2はそれぞ
れ、ワーク通過孔12aが形成された断熱壁12によっ
てワーク搬送方向における前後が仕切られるとともに、
ヒータ13が仕込まれた隔壁14によって互いに上下段
に仕切られている。ワーク通過孔12aおよび上記した
ローラ11は、一回り大きい平板状の断熱ガラス製搬送
具であるセッタ15に載置されたワーク10が、天面お
よび底面との間に適当な間隙を形成し、またワーク通過
孔12aをスムーズに通過できるように配置されてい
る。隔壁14においては、ダストを生じないマッフル層
(断熱ガラス層)14aが外表面に配され、この隔壁1
4によって仕切られた上下の炉2の相互の温度影響を抑
制するための断熱材層14bがマッフル層(断熱ガラス
層)14aの下層に配されている。なお、隔壁14につ
いては、図4に示すように、ワーク10の下面からも加
熱できるように、独立して温度制御可能なヒータ13を
断熱材層14bの上下に配することも可能である。
As shown in FIG. 3, in the temperature rising furnace 2, the heat insulating wall 12 in which the work passage holes 12a are formed divides the front and rear in the work transfer direction.
The partition wall 14 in which the heater 13 is placed is divided into upper and lower stages. The work passing hole 12a and the roller 11 described above form a proper gap between the work 10 placed on the setter 15, which is a slightly larger flat plate-shaped heat insulating glass carrier, between the top surface and the bottom surface. Further, it is arranged so that it can smoothly pass through the work passage hole 12a. In the partition wall 14, a muffle layer (insulating glass layer) 14a that does not generate dust is arranged on the outer surface.
A heat insulating material layer 14b for suppressing a mutual temperature effect of the upper and lower furnaces 2 partitioned by 4 is arranged below the muffle layer (heat insulating glass layer) 14a. As for the partition wall 14, as shown in FIG. 4, it is possible to dispose heaters 13 whose temperature can be controlled independently above and below the heat insulating material layer 14b so that the lower surface of the work 10 can be heated.
【0029】昇温炉2の内部には、ガス温度、ガス流量
が調節された気体を供給する給気管16が天面に沿っ
て、またワーク搬送方向と交わる方向に沿って、互いに
並行に配列されており、炉内を排気する排気管17が断
熱壁12に沿って配置されている。給気管16に開口し
た複数の給気口16aは斜め上方を向いていて(横向き
でもよい)、噴出された気体が隔壁14(最上段の昇温
炉2である場合には外郭を構成する断熱壁)に当たって
炉内に拡散し、ワーク10に均一に降下するようになっ
ている。2本の排気管17に開口した複数の排気口17
aは、互いに対向する横向きである。
Inside the temperature raising furnace 2, air supply pipes 16 for supplying a gas whose gas temperature and gas flow rate are adjusted are arranged in parallel with each other along the ceiling surface and along the direction intersecting with the work transfer direction. An exhaust pipe 17 for exhausting the inside of the furnace is arranged along the heat insulating wall 12. The plurality of air supply ports 16a opened in the air supply pipe 16 are directed obliquely upward (or may be in a horizontal direction), and the jetted gas is the partition wall 14 (in the case of the uppermost heating furnace 2, heat insulation forming an outer shell). It hits the wall and diffuses into the furnace so as to uniformly drop onto the work 10. A plurality of exhaust ports 17 opened in two exhaust pipes 17
a is in a lateral direction facing each other.
【0030】このため、各昇温炉2の内部に搬入された
ワーク10は上記したようにして所定時間だけ保持され
る間に、ヒータ13の輻射熱と給気管16から均一に送
られる気体とによって、上述した温度プロファイルに沿
った傾きで昇温ゾーンの目標温度(400℃)まで昇温
する。そしてその間に、ワーク10に印刷されていた電
極材料中の溶媒、バインダなどは分解、脱離し、排気管
17を通って流出していく。
For this reason, the work 10 carried into each heating furnace 2 is held by the radiant heat of the heater 13 and the gas uniformly sent from the air supply pipe 16 while being held for a predetermined time as described above. Then, the temperature is raised to the target temperature (400 ° C.) of the temperature raising zone with an inclination along the above-mentioned temperature profile. In the meantime, the solvent, binder, etc. in the electrode material printed on the work 10 are decomposed and desorbed, and flow out through the exhaust pipe 17.
【0031】焼成炉3はそれぞれ昇温炉2と同様に構成
されているので、図3を援用して説明を省略する。各焼
成炉3の内部に搬入されたワーク10は所定時間だけ留
まる間に、ヒータ13の輻射熱と給気管16から均一に
送られる気体とによって、上述した温度プロファイルに
沿った傾きで焼成ゾーンの目標温度(600℃)まで昇
温し、その温度で保持される。そしてその間に、ワーク
10に印刷されていた電極材料中のガラス質物質が溶融
する。
Since the firing furnaces 3 have the same structure as the temperature raising furnaces 2, their description will be omitted by referring to FIG. While the work 10 carried into each firing furnace 3 stays for a predetermined time, the radiant heat of the heater 13 and the gas uniformly fed from the air supply pipe 16 cause the work zone 10 to have an inclination along the above-mentioned temperature profile. The temperature is raised to the temperature (600 ° C.) and maintained at that temperature. Then, during that time, the glassy substance in the electrode material printed on the work 10 is melted.
【0032】降温炉4はそれぞれ、図5に示したよう
に、ワーク通過孔12aが形成された断熱壁12によっ
てワーク搬送方向における前後が仕切られるとともに、
隔壁18によって互いに上下段に仕切られている。ワー
ク通過孔12aおよび上記したローラ11は、セッタ1
5に載置されたワーク10が天面および底面との間に適
当な間隙を有し、ワーク通過孔12aをスムーズに通過
できるように配置されている。隔壁18は、アルミニウ
ムで製作されていて(他の材料からなる隔壁に赤外吸収
塗膜を施してもよい)、ワーク10からの放熱を容易に
吸収する。
As shown in FIG. 5, each of the temperature lowering furnaces 4 is partitioned by the heat insulating wall 12 in which the work passage holes 12a are formed in the front and rear in the work transfer direction.
The partitions 18 separate the upper and lower layers. The work passage hole 12a and the roller 11 described above are used for the setter 1.
The work 10 placed on the sheet 5 has an appropriate gap between the top surface and the bottom surface and is arranged so that it can smoothly pass through the work passage hole 12a. The partition 18 is made of aluminum (the partition made of another material may be coated with an infrared absorption coating), and easily absorbs heat radiation from the work 10.
【0033】降温炉4の内部には、図6にも示したよう
に、冷却水が通流される水冷管19が天面に接触して、
ワーク搬送方向と交わる方向に、互いに並行に配列され
ており、これらの水冷管19の間に、ガス温度、ガス流
量が調節された気体を供給する給気管16が配列されて
いる。排気管17は断熱壁12に沿って配置されてい
る。
Inside the temperature lowering furnace 4, as shown in FIG. 6, a water cooling pipe 19 through which cooling water flows is brought into contact with the top surface,
The water cooling pipes 19 are arranged in parallel with each other in a direction intersecting with the work transfer direction, and an air supply pipe 16 for supplying a gas whose gas temperature and gas flow rate are adjusted is arranged between these water cooling pipes 19. The exhaust pipe 17 is arranged along the heat insulating wall 12.
【0034】水冷管19,給気管16はワーク10の中
央部に対応する位置に配置され、また給気管16の給気
口16aはワーク10の中央部に対応する位置に密に、
斜め上向きに開口していて、水冷管19が隔壁18を介
して炉内雰囲気を温度調節するだけでなく、水冷管19
と給気管16からの気体とが、降温しにくいワーク10
の中央部を効率よく冷却する。その一方で、ワーク10
の周縁部に対応する口型のヒータ20が天面に断熱材2
1を介して配置されていて、降温しやすいワーク10の
周縁部の冷却を抑える。
The water cooling pipe 19 and the air supply pipe 16 are arranged at positions corresponding to the central portion of the work 10, and the air supply port 16a of the air supply pipe 16 is closely arranged at the position corresponding to the central portion of the work 10.
Not only is the water cooling pipe 19 opening obliquely upward and the temperature of the atmosphere in the furnace controlled via the partition wall 18,
It is difficult for the work 10 and the gas from the air supply pipe 16 to cool down.
Efficiently cool the central part of. On the other hand, the work 10
The heater 20 of the mouth type corresponding to the peripheral portion of the
1, which suppresses the cooling of the peripheral portion of the workpiece 10 where the temperature is easily lowered.
【0035】このため、各降温炉4の内部に搬入された
ワーク10は所定時間だけ留まる間に、水冷管19と給
気管16とヒータ20とによって、上記した温度プロフ
ァイルに沿った傾きで徐冷ゾーンの目標温度(少なくと
も400℃以下、場合によって250℃以下、100℃
以下)まで面内均一に降温する。そしてその間に、ワー
ク10に印刷されていた電極材料中のガラス質物質が固
化する。よってその際にワーク10の変形は生じない。
For this reason, the work 10 carried into each of the temperature lowering furnaces 4 is gradually cooled by the water cooling pipe 19, the air supply pipe 16 and the heater 20 with the inclination according to the above-mentioned temperature profile while remaining for a predetermined time. Zone target temperature (at least 400 ° C or less, sometimes 250 ° C or less, 100 ° C
The temperature is uniformly reduced in the plane until (below). In the meantime, the glassy substance in the electrode material printed on the work 10 solidifies. Therefore, at that time, the work 10 is not deformed.
【0036】各降温炉4のワーク10は第2リフタ部8
内に搬出され、リターン部9を経て第1リフタ部7に送
られ、その間に50〜60℃まで降温し、搬入搬出口7
aから炉設備1外へ搬出される。
The work 10 of each temperature lowering furnace 4 has a second lifter section 8
It is carried into the inside and is sent to the first lifter unit 7 via the return unit 9, and in the meantime, the temperature is lowered to 50 to 60 ° C.
It is carried out of the furnace equipment 1 from a.
【0037】なお、給気管16からの気体は、昇温炉2
では、印刷された材料中のバインダー(樹脂)等を酸化
させてCO2として排出するために、O2リッチな空気、
あるいは焼成炉3よりも多量の通常空気とされることが
多い。焼成炉3では、印刷された材料の酸化を抑制する
ために、酸素プアーな空気、N2リッチな空気、昇温炉
2よりも少量の通常空気、不活性ガスのいずれかとされ
ることが多い。降温炉4では、通常空気、不活性ガスの
いずれかとされることが多く、場合によっては乾燥空気
が供給される。全く給気されないこともある。
The gas from the air supply pipe 16 is the temperature rising furnace 2.
Then, in order to oxidize the binder (resin) etc. in the printed material and discharge it as CO 2 , O 2 -rich air,
Alternatively, a large amount of normal air is often used as compared with the firing furnace 3. In the firing furnace 3, oxygen-poor air, N 2 -rich air, a smaller amount of normal air than the temperature raising furnace 2, or an inert gas is often used in order to suppress the oxidation of the printed material. . In the temperature-falling furnace 4, either normal air or an inert gas is often used, and dry air is supplied in some cases. It may not be supplied at all.
【0038】この炉設備1では、昇温炉2,焼成炉3,
降温炉4の間を断熱壁12で仕切ってブロック化したこ
とにより、各炉2,3,4の内部で温度、給排気条件を
一定にすることが可能になった。温度、給排気条件を一
定にできるのは、断熱壁12などの仕切り部材、給気管
16、排気管17、水冷管19、ヒータ13,20、隔
壁18などを上記したような材料、形状、配置としたこ
とによる。
In this furnace facility 1, the temperature raising furnace 2, the firing furnace 3,
By partitioning the space between the temperature-lowering furnaces 4 by the heat insulating wall 12, it is possible to make the temperature and supply / exhaust conditions constant inside each of the furnaces 2, 3 and 4. The temperature and supply / exhaust conditions can be kept constant by the partition member such as the heat insulating wall 12, the air supply pipe 16, the exhaust pipe 17, the water cooling pipe 19, the heaters 13 and 20, the partition wall 18 and the like, the material, the shape and the arrangement as described above. It depends on
【0039】そしてそれにより、ワーク10を各炉2,
3,4にステップ(間欠)送りすること、および各炉
2,3,4の内部で所定時間だけ保持することで、ワー
ク10の面内での熱バラツキを低減可能になった。
As a result, the work 10 is placed in each furnace 2,
By performing step (intermittent) feeding to the furnaces 3 and 4 and holding the furnaces 2, 3 and 4 for a predetermined time, it is possible to reduce the thermal variation in the surface of the work 10.
【0040】このことより逆に、従来の平面配置型の炉
設備に比べて炉長が短くて済み、炉設備1の設置面積、
したがって製造工場の床面積を低減できるようになっ
た。また、各炉2,3,4の炉高を抑えることができ、
従来よりも多段な炉構成とすることが可能になった。た
とえばワーク10の厚み2〜3mmにセッター15の高
さを加えた全高が約7mmの場合、炉高150〜200
mm程度が可能である。
Contrary to this, the length of the furnace is shorter than that of the conventional plane arrangement type furnace equipment, and the installation area of the furnace equipment 1 is
Therefore, the floor area of the manufacturing plant can be reduced. Also, the furnace height of each furnace 2, 3, 4 can be suppressed,
It has become possible to have a multi-stage furnace configuration than before. For example, when the total height of the work 10 including the thickness of 2 to 3 mm and the height of the setter 15 is about 7 mm, the furnace height is 150 to 200.
It is possible to be about mm.
【0041】その結果、各段の炉2,3,4で並行して
多数のワーク10を処理することが可能になり、タクト
の短い処理に対応できるようになった。また中段の炉が
上下を他の炉で挟まれていること、また炉長が短いこと
によって、炉設備1全体としての表面積が従来の平面配
置型に比べて少なくなり、温度管理が容易になるととも
に、熱効率も大幅に改善される。
As a result, it becomes possible to process a large number of workpieces 10 in parallel in the furnaces 2, 3 and 4 in each stage, and it is possible to cope with the processing with a short tact time. In addition, since the middle furnace is sandwiched between other furnaces at the top and bottom and the furnace length is short, the surface area of the furnace equipment 1 as a whole is smaller than that of the conventional flat arrangement type, and the temperature control is facilitated. At the same time, the thermal efficiency is greatly improved.
【0042】なお、上記したようなワーク通過孔12a
が開口した断熱壁12に代えて、図7(a) に示すよう
に、ワーク10の搬入搬出時のみ開放される断熱シャッ
ター22を設けてもよい。また、図7(b) に示すよう
に、ワーク通過用の間隙23aを設けて管体23を配列
し、管体23内部に温度調節気体を通流させてもよく、
それにより温度調節を効率よく行なえる。さらに、図7
(c) に示すように、上記したような排気管17を設けず
に、排気口24aを形成した断熱管24を断熱壁12に
代えて設ければ、排気管17の分だけ、炉をコンパクト
にできる。
The work passage hole 12a as described above is used.
Instead of the heat insulating wall 12 that is open, a heat insulating shutter 22 that is opened only when the work 10 is loaded and unloaded may be provided as shown in FIG. 7A. Further, as shown in FIG. 7 (b), the pipes 23 may be arranged with a gap 23a for passing a work, and the temperature control gas may be allowed to flow inside the pipe 23.
Thereby, the temperature can be adjusted efficiently. Furthermore, FIG.
As shown in (c), if the heat insulating pipe 24 having the exhaust port 24a is provided instead of the heat insulating wall 12 without providing the exhaust pipe 17 as described above, the furnace can be made compact by the amount of the exhaust pipe 17. You can
【0043】なお、炉高をある程度高くできる場合は、
図7(b)(c)に示すように給気口16aがワーク10の上
面に対向するように給気管16を配置しても、ワーク1
0をスポット的に冷却することを回避できる。しかしそ
の場合も、望ましくは、図7(b) に示すように給気管1
6からワーク10への垂線に対して45度以上の角度で
ガスを吹出すように給気口16aを配置する。
If the furnace height can be increased to some extent,
Even if the air supply pipe 16 is arranged so that the air supply port 16a faces the upper surface of the work 10 as shown in FIGS.
Spot cooling of 0 can be avoided. However, even in that case, as shown in FIG.
The air supply port 16a is arranged so that the gas is blown out at an angle of 45 degrees or more with respect to the perpendicular line from 6 to the work 10.
【0044】図8に示したように、降温炉4において、
排気管17を仕切り部材の一部とすることで炉のコンパ
クト化を図ってもよい。降温炉4では、図9に示すよう
に、セッタ15の下方に給気管16、水冷管19を配列
し、給気管16の給気口16aをセッタ15に向けて開
口させてもよく、それによりワーク10をセッタ15を
介して間接的に、したがってワーク10をスポット的に
ではなく面内均一に冷却することができる。
As shown in FIG. 8, in the temperature lowering furnace 4,
The furnace may be made compact by using the exhaust pipe 17 as a part of the partition member. In the cooling furnace 4, as shown in FIG. 9, an air supply pipe 16 and a water cooling pipe 19 may be arranged below the setter 15, and the air supply port 16a of the air supply pipe 16 may be opened toward the setter 15. It is possible to cool the work 10 indirectly via the setter 15, and thus to uniformly cool the work 10 in-plane rather than spotwise.
【0045】さらに、上記においては、温度プロファイ
ルにしたがって分割された昇温ゾーン、焼成ゾーン、徐
冷ゾーンの温度にそれぞれ調節される昇温炉2、焼成炉
3、降温炉4を直列に配列したものを1段として、多段
に積層した炉構成としたが、1段のみの炉構成も可能で
ある。
Furthermore, in the above, the temperature raising furnace 2, the firing furnace 3, and the temperature lowering furnace 4 which are respectively adjusted to the temperature of the temperature rising zone, the firing zone, and the slow cooling zone divided according to the temperature profile are arranged in series. Although the furnace has a multi-layered furnace structure with one as a single stage, a furnace structure with only one stage is also possible.
【0046】また、たとえば図10に示したように焼成
ゾーンや徐冷ゾーンをさらに分割して、昇温ゾーン、焼
成ゾーン(1) 、焼成ゾーン(2) 、徐冷ゾーン(1) 、徐冷
ゾーン(2) などを設けたプロファイルの場合は、これら
の各ゾーンの温度に調節される炉を直列に配列して、1
段あるいは多段の炉設備を構成する。ゾーン数(したが
って炉数)が多い方が処理のタクトタイムが短くなり、
設備能力が向上する。またたとえば、焼成ゾーン(1) 、
焼成ゾーン(2) の昇温プロファイルが徐冷ゾーン(1) 、
徐冷ゾーン(2) のように2段階で昇温させる昇温ファイ
ルであってもよく、昇温時の中間温度で時間をかける処
理に好都合となる。
Further, for example, as shown in FIG. 10, the calcination zone and the gradual cooling zone are further divided into a temperature raising zone, calcination zone (1), calcination zone (2), gradual cooling zone (1) and gradual cooling. In the case of profiles with zones (2), etc., the furnaces controlled by the temperature of each of these zones should be arranged in series and
Configure a multi-stage or multi-stage furnace facility. The larger the number of zones (and therefore the number of furnaces), the shorter the tact time of processing,
Equipment capacity is improved. Also, for example, the firing zone (1),
The heating profile of the firing zone (2) is the slow cooling zone (1),
It may be a temperature raising file in which the temperature is raised in two steps like the slow cooling zone (2), which is convenient for a process that takes time at an intermediate temperature during temperature raising.
【0047】上記したように焼成に用いる他に、同様の
構成の炉設備で乾燥、封着も実施できる。
Besides using for firing as described above, drying and sealing can be carried out in a furnace facility having the same structure.
【0048】[0048]
【発明の効果】以上のように本発明によれば、ワークを
焼成などの温度処理に付す際に、目的の温度プロファイ
ルに従って分割された複数の温度ゾーンの温度にそれぞ
れ調節される複数の炉を直列に配列した炉設備を使用し
て、ワークを各炉にステップ送りするとともに、各炉内
で所定時間だけ保持するようにしたことにより、炉長が
短い炉設備であっても、ワーク面内の熱バラツキを低減
可能となった。
As described above, according to the present invention, when a work is subjected to a temperature treatment such as firing, a plurality of furnaces each adjusted to the temperature of a plurality of temperature zones divided according to a desired temperature profile are provided. Using the furnace equipment arranged in series, the work is step-fed to each furnace and held in each furnace for a predetermined time. It has become possible to reduce the thermal variation of the.
【0049】また、上記したような直列配列の複数の炉
を1段として多段に積層した炉設備を使用して、各段ご
とに、ワークを各炉にステップ送りするとともに、各炉
内で所定時間だけ保持するようにしたことにより、1段
の炉設備に比べて、タクトの短い処理にも十分に対応可
能となった。
Further, by using the furnace equipment in which a plurality of furnaces arranged in series as described above are stacked in multiple stages, the work is step-fed to each furnace at each stage, and the predetermined work is performed in each furnace. By holding for only a period of time, compared to the one-stage furnace equipment, it became possible to sufficiently deal with processing with a short tact time.
【0050】したがって、このような炉設備とすること
で、従来の平面配置型の炉設備に比べて炉長を短くする
ことができ、その設置面積、したがって製造工場の床面
積を低減できるだけでなく、省エネルギーも実現でき
る。
Therefore, by using such a furnace facility, the length of the furnace can be shortened as compared with the conventional plane arrangement type furnace facility, and the installation area thereof, and hence the floor area of the manufacturing plant can be reduced. Energy saving can also be realized.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明で使用する温度プロファイルの一例を示
す時間対温度のグラフ
FIG. 1 is a graph of time versus temperature showing an example of a temperature profile used in the present invention.
【図2】本発明の一実施形態における炉設備の全体構成
を示す断面図
FIG. 2 is a cross-sectional view showing the overall configuration of furnace equipment according to an embodiment of the present invention.
【図3】図2の炉設備における昇温炉の構成を示す断面
FIG. 3 is a cross-sectional view showing the configuration of a temperature raising furnace in the furnace equipment of FIG.
【図4】図2の炉設備における昇温炉に使用可能な別の
上下仕切り構造を示す断面図
FIG. 4 is a cross-sectional view showing another upper and lower partition structure that can be used for the temperature rising furnace in the furnace equipment of FIG.
【図5】図2の炉設備における降温炉の構成を示す断面
5 is a cross-sectional view showing the configuration of the temperature lowering furnace in the furnace equipment of FIG.
【図6】図4の降温炉のA−A断面図6 is a cross-sectional view taken along the line AA of the temperature lowering furnace of FIG.
【図7】図2の昇温炉に使用可能な別の仕切り構造を示
す断面図
7 is a cross-sectional view showing another partition structure that can be used in the temperature rising furnace of FIG.
【図8】図3の降温炉に代えて使用可能な別の降温炉の
断面図
FIG. 8 is a cross-sectional view of another cooling furnace that can be used instead of the cooling furnace of FIG.
【図9】図3の降温炉に代えて使用可能なさらに別の降
温炉の断面図
9 is a cross-sectional view of still another cooling furnace that can be used in place of the cooling furnace of FIG. 3.
【図10】本発明で使用する温度プロファイルの別の例を
示す時間対温度のグラフ
FIG. 10 is a graph of time versus temperature showing another example of the temperature profile used in the present invention.
【符号の説明】[Explanation of symbols]
1 炉設備 2 昇温炉 3 焼成炉 4 降温炉 5 炉本体 10 ワーク 11 ローラ(搬送制御手段) 12 断熱壁 13 ヒータ 14 隔壁 15 セッター 16 給気管 16a 給気口 17 排気管 18 隔壁 19 水冷管 20 ヒータ 22 シャッター 1 furnace equipment 2 heating furnace 3 firing furnace 4 temperature lowering furnace 5 furnace body 10 work 11 rollers (transport control means) 12 Insulation wall 13 heater 14 bulkhead 15 setter 16 Air supply pipe 16a Air supply port 17 Exhaust pipe 18 bulkhead 19 Water cooling tube 20 heater 22 shutter
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F27B 9/26 F27B 9/26 9/36 9/36 9/40 9/40 F27D 1/12 F27D 1/12 Z 7/02 7/02 7/06 7/06 B H01J 9/38 H01J 9/38 A 11/02 11/02 B Fターム(参考) 4K050 AA02 BA16 CA11 CC07 CD06 CD16 CG01 CG28 EA01 4K051 AA04 AB01 AB05 HA00 4K063 AA05 AA15 BA12 CA01 CA03 CA04 DA00 DA14 DA22 5C012 AA09 BD05 5C040 GC19 JA21 MA26 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) F27B 9/26 F27B 9/26 9/36 9/36 9/40 9/40 F27D 1/12 F27D 1 / 12 Z 7/02 7/02 7/06 7/06 B H01J 9/38 H01J 9/38 A 11/02 11/02 BF Term (reference) 4K050 AA02 BA16 CA11 CC07 CD06 CD16 CG01 CG28 EA01 4K051 AA04 AB01 AB05 HA00 4K063 AA05 AA15 BA12 CA01 CA03 CA04 DA00 DA14 DA22 5C012 AA09 BD05 5C040 GC19 JA21 MA26

Claims (14)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 プラズマディスプレイパネルの製造に使
    用するワークを目的の温度プロファイルに基づいて温度
    処理する際に、 前記温度プロファイルに従って分割された複数の温度ゾ
    ーンの温度にそれぞれ調節され、直列に配列された複数
    の炉からなる炉設備に、処理対象のワークを前記直列に
    配列された複数の炉の一端から順次に搬入し、搬入に伴
    って、先に各炉に搬入されていたワークを後続の炉にス
    テップ搬送し、前記直列に配列された複数の炉の他端の
    ワークを搬出するとともに、各炉に搬入したワークは移
    送することなく所定時間だけ保持するプラズマディスプ
    レイパネルの製造方法。
    1. When a workpiece used for manufacturing a plasma display panel is subjected to temperature treatment based on a target temperature profile, the temperature of each of a plurality of temperature zones divided according to the temperature profile is adjusted and arranged in series. The workpieces to be processed are sequentially loaded into the furnace equipment composed of a plurality of furnaces from one end of the plurality of furnaces arranged in series, and the workpieces previously loaded into the respective furnaces are successively transferred along with the loading. A method of manufacturing a plasma display panel, comprising step-transporting to a furnace, carrying out a work at the other end of the plurality of furnaces arranged in series, and holding the work carried into each furnace for a predetermined time without transferring.
  2. 【請求項2】 プラズマディスプレイパネルの製造に使
    用するワークを目的の温度プロファイルに基づいて温度
    処理する際に、 前記温度プロファイルに従って分割された複数の温度ゾ
    ーンの温度にそれぞれ調節され、直列に配列された複数
    の炉を1段として、これを複数段積層した炉設備に、処
    理対象のワークを各段において一端の炉から順次に搬入
    し、搬入に伴って、先に各炉に搬入されていたワークを
    後続の炉にステップ搬送し、他端の炉のワークを搬出す
    るとともに、各炉に搬入したワークは移送することなく
    所定時間だけ保持するプラズマディスプレイパネルの製
    造方法。
    2. When a workpiece used for manufacturing a plasma display panel is subjected to a temperature treatment based on a target temperature profile, the temperatures of a plurality of temperature zones divided according to the temperature profile are respectively adjusted and arranged in series. In addition, a plurality of furnaces were set as one stage, and the work to be treated was sequentially loaded into the furnace equipment in which each stage was stacked from one end of the furnace, and the work was previously loaded into each furnace along with the loading. A method of manufacturing a plasma display panel, in which a work is transferred to a subsequent furnace stepwise, the work in the other furnace is carried out, and the work carried into each furnace is held for a predetermined time without being transferred.
  3. 【請求項3】 各炉に、予め決めた同一または異なるガ
    ス雰囲気を形成する請求項1または請求項2のいずれか
    に記載のプラズマディスプレイパネルの製造方法。
    3. The method of manufacturing a plasma display panel according to claim 1, wherein a predetermined same or different gas atmosphere is formed in each furnace.
  4. 【請求項4】 目的の温度プロファイルの昇温区間を受
    け持つ炉には、酸素リッチな空気または前記温度プロフ
    ァイルの焼成区間を受け持つ炉よりも多量の空気を供給
    し、前記温度プロファイルの焼成区間を受け持つ炉に
    は、不活性ガスまたは酸素プアーな空気または前記温度
    プロファイルの昇温区間を受け持つ炉よりも少量の空気
    を供給する請求項3記載のプラズマディスプレイパネル
    の製造方法。
    4. The furnace which is in charge of the heating section of the desired temperature profile is supplied with oxygen-rich air or a larger amount of air than the furnace which is in charge of the firing section of the temperature profile, and is in charge of the firing section of the temperature profile. 4. The method of manufacturing a plasma display panel according to claim 3, wherein the furnace is supplied with an inert gas, oxygen-poor air, or a smaller amount of air than the furnace which is responsible for the temperature rising section of the temperature profile.
  5. 【請求項5】 目的の温度プロファイルの昇温区間を受
    け持つ炉には、酸素リッチな空気または前記温度プロフ
    ァイルの焼成区間を受け持つ炉よりも多量の空気を供給
    し、前記温度プロファイルの焼成区間を受け持つ炉には
    給気しない請求項3記載のプラズマディスプレイパネル
    の製造方法。
    5. The furnace which is in charge of the heating section of the desired temperature profile is supplied with oxygen-rich air or a larger amount of air than the furnace which is in charge of the firing section of the temperature profile, and is in charge of the firing section of the temperature profile. The method of manufacturing a plasma display panel according to claim 3, wherein no air is supplied to the furnace.
  6. 【請求項6】 プラズマディスプレイパネルの製造に使
    用するワークを目的の温度プロファイルに基づいて温度
    処理する炉設備であって、 前記温度プロファイルに従って分割された複数の温度ゾ
    ーンの温度にそれぞれ調節され、直列に配列された複数
    の炉からなる炉本体と、前記炉本体でのワークの搬送を
    制御する搬送制御手段とを設け、 前記搬送制御手段は、処理対象のワークを前記直列に配
    列された複数の炉の一端から順次に搬入し、搬入に伴っ
    て、先に各炉に搬入されていたワークを後続の炉にステ
    ップ搬送し、前記直列に配列された複数の炉の他端のワ
    ークを搬出するとともに、各炉に搬入したワークは移送
    することなく所定時間だけ保持するよう構成した炉設
    備。
    6. Furnace equipment for temperature-treating a work used for manufacturing a plasma display panel based on a target temperature profile, wherein the furnace facilities are respectively adjusted to temperatures of a plurality of temperature zones divided according to the temperature profile, and are connected in series. A furnace main body composed of a plurality of furnaces arranged in a, and a transfer control means for controlling the transfer of the work in the furnace main body, the transfer control means, a plurality of workpieces to be processed are arranged in series Sequentially carry in from one end of the furnace, and along with carrying in, the work previously carried into each furnace is step-transferred to the subsequent furnace, and the work at the other end of the plurality of furnaces arranged in series is carried out. In addition, the furnace equipment is configured to hold the work carried into each furnace for a predetermined time without transferring it.
  7. 【請求項7】 プラズマディスプレイパネルの製造に使
    用するワークを目的の温度プロファイルに基づいて温度
    処理する炉設備であって、 前記温度プロファイルに従って分割された複数の温度ゾ
    ーンの温度にそれぞれ調節される複数の炉を直列に配列
    し、前記配列した複数の炉を複数段積層した炉本体と、
    前記炉本体でのワークの搬送を制御する搬送制御手段と
    を設け、 前記搬送制御手段は、処理対象のワークを各段において
    一端の炉から順次に搬入し、搬入に伴って、先に各炉に
    搬入されていたワークを後続の炉にステップ搬送し、他
    端の炉のワークを搬出するとともに、各炉に搬入したワ
    ークは移送することなく所定時間だけ保持するよう構成
    した炉設備。
    7. Furnace equipment for temperature-treating a work used for manufacturing a plasma display panel based on a target temperature profile, wherein a plurality of furnaces are adjusted to temperatures in a plurality of temperature zones divided according to the temperature profile. A furnace body in which the furnaces are arranged in series, and a plurality of the arranged furnaces are stacked in a plurality of stages,
    A transfer control unit that controls the transfer of the work in the furnace body is provided, and the transfer control unit sequentially loads the work to be processed from the furnace at one end in each stage, and in association with the transfer, each furnace is first transferred. Furnace equipment configured to carry the work carried in to the subsequent furnace stepwise, carry out the work in the furnace at the other end, and hold the work carried into each furnace for a predetermined time without transferring.
  8. 【請求項8】 ワーク搬送方向における各炉の前後に、
    ワーク搬入搬出時のみ開放されるシャッター、またはワ
    ーク通過孔が開口した断熱壁を設け、温度プロファイル
    の昇温区間を受け持つ各炉および焼成区間を受け持つ各
    炉を構成する少なくとも天部の壁にヒータを仕込み、前
    記昇温区間または焼成区間を受け持つ各炉に、ワークを
    昇温または温度保持するよう温度調節された気体を供給
    する給気管を設け、温度プロファイルの徐冷区間を受け
    持つ各炉に、ワークを徐冷するよう温度調節された気体
    を供給する給気管を設けた請求項6記載の炉設備。
    8. Before and after each furnace in the work transfer direction,
    A shutter that is opened only when loading and unloading the work, or a heat insulating wall with an open work passage hole is provided, and a heater is installed on at least the top wall that constitutes each furnace responsible for the temperature rising section of the temperature profile and each furnace responsible for the firing section. A furnace is provided for each of the charging section and the heating section or the firing section, which is provided with an air supply pipe for supplying a gas whose temperature is controlled so as to raise or maintain the temperature of the work. The furnace equipment according to claim 6, further comprising an air supply pipe for supplying a gas whose temperature is controlled so as to gradually cool the gas.
  9. 【請求項9】 ワーク搬送方向における各炉の前後に、
    ワーク搬入搬出時のみ開放されるシャッター、またはワ
    ーク通過孔が開口した断熱壁を設け、温度プロファイル
    の昇温区間を受け持つ各炉と焼成区間を受け持つ各炉と
    徐冷区間を受け持つ各炉のそれぞれを隔壁で互いに上下
    段に仕切り、前記昇温区間を受け持つ各炉および焼成区
    間を受け持つ各炉を構成する少なくとも天部の壁にヒー
    タを仕込み、前記前記昇温区間または焼成区間を受け持
    つ各炉に、ワークを昇温または温度保持するよう温度調
    節された気体を供給する給気管を設け、前記徐冷区間を
    受け持つ各炉に、ワークを徐冷するよう温度調節された
    気体を供給する給気管を設けた請求項7記載の炉設備。
    9. Before and after each furnace in the work transfer direction,
    A shutter that is opened only when loading and unloading the work, or a heat insulating wall with an open work passage hole is provided, and each furnace that is responsible for the temperature rise section of the temperature profile, each furnace that is responsible for the firing section, and each furnace that is responsible for the slow cooling section are provided. Partitioning each other in the upper and lower stages by partition walls, charging a heater to at least the wall of the top part constituting each furnace responsible for the heating section and each furnace responsible for the firing section, in each furnace responsible for the heating section or firing section, An air supply pipe for supplying a temperature-controlled gas to raise or maintain the temperature of the work is provided, and an air supply pipe for supplying a temperature-controlled gas to slowly cool the work is provided in each furnace that is in charge of the slow cooling section. The furnace equipment according to claim 7.
  10. 【請求項10】 各炉に設けた給気管の給気口は、ワー
    クに背反する天部あるいは底部に向けて、または断熱壁
    あるいはシャッターに向けて配置した請求項8または請
    求項9のいずれかに記載の炉設備。
    10. The air supply port of the air supply pipe provided in each furnace is arranged toward the top or bottom opposite to the work, or toward the heat insulating wall or shutter, according to claim 8. Furnace equipment described in.
  11. 【請求項11】 徐冷区間を構成する炉の給気管を、ワ
    ークを載置して搬入されるセッターの下方に設けた請求
    項8から請求項10のいずれかに記載の炉設備。
    11. The furnace equipment according to any one of claims 8 to 10, wherein an air supply pipe of a furnace constituting the slow cooling section is provided below a setter on which a work is placed and carried in.
  12. 【請求項12】 給気管の給気口は、ワークの中央部に
    対応するセッターの下面に向けて配置した請求項11記
    載の炉設備。
    12. The furnace equipment according to claim 11, wherein the air supply port of the air supply pipe is arranged toward the lower surface of the setter corresponding to the central portion of the work.
  13. 【請求項13】 徐冷区間を受け持つ炉を構成する天部
    と底部の少なくとも一方の壁を熱伝導度が良好な材料で
    構成し、この壁を冷却する冷却手段を設けた請求項8ま
    たは請求項9のいずれかに記載の炉設備。
    13. The method according to claim 8, wherein at least one wall of a top portion and a bottom portion of the furnace which is responsible for the slow cooling section is made of a material having good thermal conductivity, and cooling means for cooling the wall is provided. Item 10. The furnace equipment according to any one of items 9.
  14. 【請求項14】 ワークを載置して各炉に搬入されたセ
    ッターを搬送方向に沿って揺動させる揺動手段を設けた
    請求項6または請求項7のいずれかに記載の炉設備。
    14. The furnace facility according to claim 6 or 7, further comprising rocking means for rocking a setter on which a work is placed and carried into each furnace along the transport direction.
JP2001263038A 2001-08-31 2001-08-31 Manufacturing method of plasma display panel and furnace equipment for same Pending JP2003077398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001263038A JP2003077398A (en) 2001-08-31 2001-08-31 Manufacturing method of plasma display panel and furnace equipment for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001263038A JP2003077398A (en) 2001-08-31 2001-08-31 Manufacturing method of plasma display panel and furnace equipment for same

Publications (1)

Publication Number Publication Date
JP2003077398A true JP2003077398A (en) 2003-03-14

Family

ID=19089856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001263038A Pending JP2003077398A (en) 2001-08-31 2001-08-31 Manufacturing method of plasma display panel and furnace equipment for same

Country Status (1)

Country Link
JP (1) JP2003077398A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1511061A2 (en) * 2003-08-25 2005-03-02 Fujitsu Hitachi Plasma Display Limited Method and apparatus for manufacturing plasma display panel
JP2006009087A (en) * 2004-06-25 2006-01-12 Fuji Heavy Ind Ltd Multistage continuous carburizing and quenching furnace and continuous carburizing and quenching method
US7764872B2 (en) 2004-03-23 2010-07-27 Canon Kabushiki Kaisha Cooling device, and apparatus and method for manufacturing image display panel using cooling device
US20120225204A1 (en) * 2011-03-01 2012-09-06 Applied Materials, Inc. Apparatus and Process for Atomic Layer Deposition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1511061A2 (en) * 2003-08-25 2005-03-02 Fujitsu Hitachi Plasma Display Limited Method and apparatus for manufacturing plasma display panel
EP1511061A3 (en) * 2003-08-25 2007-09-05 Fujitsu Hitachi Plasma Display Limited Method and apparatus for manufacturing plasma display panel
US7764872B2 (en) 2004-03-23 2010-07-27 Canon Kabushiki Kaisha Cooling device, and apparatus and method for manufacturing image display panel using cooling device
JP2006009087A (en) * 2004-06-25 2006-01-12 Fuji Heavy Ind Ltd Multistage continuous carburizing and quenching furnace and continuous carburizing and quenching method
JP4540406B2 (en) * 2004-06-25 2010-09-08 富士重工業株式会社 Multi-stage continuous carburizing and quenching furnace and continuous carburizing and quenching method
US20120225204A1 (en) * 2011-03-01 2012-09-06 Applied Materials, Inc. Apparatus and Process for Atomic Layer Deposition
JP2014508225A (en) * 2011-03-01 2014-04-03 アプライド マテリアルズ インコーポレイテッド Apparatus and process for atomic layer deposition

Similar Documents

Publication Publication Date Title
JP5877358B2 (en) Heat treatment equipment
JP2004218956A (en) Method of heat-treating substrate and heat treatment furnace
JP3667270B2 (en) Substrate heat treatment method and furnace equipment therefor
JP3683166B2 (en) Substrate heat treatment method and continuous heat treatment furnace used therefor
JP2002243368A (en) Continuous kiln for flat sheet glass
JP4170632B2 (en) Firing furnace
JP2005114284A (en) Kiln
JP2003077398A (en) Manufacturing method of plasma display panel and furnace equipment for same
JP2004333074A (en) Base plate heat-treatment apparatus
KR101546320B1 (en) apparatus for firing substrates
JP2010236779A (en) Method of burning workpiece by roller hearth kiln
JP4936567B2 (en) Heat treatment equipment
JP6484664B2 (en) Drying apparatus and drying method using the drying apparatus
JP3662893B2 (en) Heat treatment equipment
JP2004037044A (en) Vacuum heating furnace for flat panel display
JPH1163838A (en) Hybrid heat treatment apparatus
JP2000208053A (en) Baking furnace for plasma display panel
TWI471966B (en) Substrate processing system and substrate processing method
JP2008256229A (en) Firing furnace and firing method
JP2002206863A (en) Continuously heat treating furnace
JP5355808B2 (en) Substrate processing system
JP2011007462A (en) Heat treatment furnace
JP2020112336A (en) Heat treatment furnace
KR100415166B1 (en) Manufacturing Furnace for Ceramic Elctronic Components
JP3866929B2 (en) Continuous firing furnace