JPWO2017126025A1 - 実装装置および撮像処理方法 - Google Patents

実装装置および撮像処理方法 Download PDF

Info

Publication number
JPWO2017126025A1
JPWO2017126025A1 JP2017562192A JP2017562192A JPWO2017126025A1 JP WO2017126025 A1 JPWO2017126025 A1 JP WO2017126025A1 JP 2017562192 A JP2017562192 A JP 2017562192A JP 2017562192 A JP2017562192 A JP 2017562192A JP WO2017126025 A1 JPWO2017126025 A1 JP WO2017126025A1
Authority
JP
Japan
Prior art keywords
processing
image
resolution
super
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017562192A
Other languages
English (en)
Other versions
JP6795520B2 (ja
Inventor
雅史 天野
雅史 天野
一也 小谷
一也 小谷
龍平 神尾
龍平 神尾
勇介 山蔭
勇介 山蔭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2017126025A1 publication Critical patent/JPWO2017126025A1/ja
Application granted granted Critical
Publication of JP6795520B2 publication Critical patent/JP6795520B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0812Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4053Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0813Controlling of single components prior to mounting, e.g. orientation, component geometry

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Theoretical Computer Science (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

実装装置は、基準マークの位置の取得に用いられるマーク画像に含まれる部品60の本体部の粗位置に基づいて超解像処理の処理領域を設定して、超解像処理を行う。これにより、超解像処理の処理領域が部品60の本体部に対して必要以上に大きくなるのを防止して適切に設定することができる。また、超解像処理に用いられる部品画像とは異なる撮像条件で撮像されるマーク画像を用いて超解像処理の処理領域を定めるから、部品画像は超解像処理に適した撮像条件としたままで、処理領域を適切に設定することができる。したがって、超解像処理を行う処理領域をより適切に設定し、超解像処理を効率よく行うことができる。

Description

本発明は、実装装置および撮像処理方法に関する。
従来、保持した電子部品を移動させて基板に実装する実装装置において、保持した電子部品の位置や角度などの保持状態を精度よく取得するために、電子部品を撮像した撮像画像よりも解像度の高い超解像画像を生成するものが提案されている(例えば、特許文献1参照)。この実装装置では、電子部品の外形に対して所定の余裕をもたせた処理領域を設定し、処理領域に対して所定の超解像処理を行うことで超解像画像を生成している。
WO2015/049723号公報
このような超解像処理では、電子部品が正常な位置や角度からずれた状態で保持されていても処理領域に電子部品を含むようにするため、所定の余裕として十分な余裕をもたせる必要がある。しかしながら、そのような余裕をもたせて処理領域を設定すると、電子部品の位置や角度の取得に必要のない領域についても超解像処理を行うことになるから、処理時間が必要以上に長くなってしまう。
本発明は、超解像処理の対象である処理領域をより適切に設定することで、超解像処理を効率よく行うことを主目的とする。
本発明の実装装置は、
基準マークに基づいて複数の低解像画像を用いて電子部品の高解像画像を生成する超解像処理により、前記電子部品の保持状態を取得して前記電子部品を基板に実装する実装装置であって、
前記電子部品を保持する保持部材と前記基準マークとを有するヘッドと、
前記保持部材に保持された電子部品と前記基準マークとを撮像範囲に含む撮像装置と、
前記基準マークの位置の取得に用いられるマーク画像と、前記超解像処理に用いられる低解像画像とを、異なる撮像条件で撮像するよう前記撮像装置を制御し、前記マーク画像に含まれる前記電子部品の画像領域に基づいて前記超解像処理の対象となる処理領域を設定する制御装置と、
を備えることを要旨とする。
本発明の実装装置は、基準マークの位置の取得に用いられるマーク画像と、超解像処理に用いられる低解像画像とを異なる撮像条件で撮像する。また、実装装置は、マーク画像に含まれる電子部品の画像領域に基づいて超解像処理の対象となる処理領域を設定し、低解像画像内の処理領域に対して超解像処理を行う。これにより、超解像処理の対象となる処理領域が電子部品に対して必要以上に大きくなることなく、処理領域を適切に設定することができる。また、超解像処理に用いられる低解像画像とは異なる撮像条件で撮像されるマーク画像を用いて処理領域を定めるから、低解像画像は超解像処理に適した撮像条件としたままで、処理領域を適切に設定することができる。したがって、超解像処理を行う処理領域をより適切に設定し、超解像処理を効率よく行って高速処理を実現することができる。
本発明の実装装置において、前記超解像処理により前記高解像画像から前記電子部品の精密位置を含む保持状態を取得し、前記制御装置は、前記マーク画像に含まれる前記電子部品の画像領域に基づいて前記電子部品の粗位置を取得し、該取得した前記電子部品の粗位置に基づいて前記処理領域を設定するものとしてもよい。こうすれば、超解像処理の処理領域を電子部品の粗位置に基づいて簡易な処理で設定することができる。
本発明の実装装置において、前記制御装置は、前記電子部品の粗位置として前記本体部の粗位置を取得し、該取得した前記本体部の粗位置に基づいて前記処理領域を設定するものとしてもよい。こうすれば、超解像処理の処理領域を、電子部品の本体部の画像処理に必要な領域とすることができるから、超解像処理をより効率のよいものとすることができる。
本発明の実装装置において、前記制御装置は、前記電子部品の前記本体部に対する電極の位置を定めた部品情報を取得し、該取得した部品情報と前記本体部の粗位置とに基づいて、前記電極の粗位置を導出し、該導出した前記電極の粗位置に基づいて前記処理領域を設定するものとしてもよい。こうすれば、超解像処理の処理領域を、電子部品内の電極の画像処理に必要な領域とすることができるから、超解像処理を更に効率のよいものとすることができる。
本発明の実装装置において、前記制御装置は、前記撮像範囲内の第1位置に前記ヘッドが位置している場合に前記マーク画像と前記超解像処理に用いられる低解像画像とをこの順で撮像してから、前記撮像範囲内の前記第1位置とは異なる第2位置に前記ヘッドが位置している場合に前記マーク画像と前記超解像処理に用いられる低解像画像とを撮像するよう前記撮像装置を制御し、前記第1位置で撮像された前記マーク画像を用いて前記処理領域を設定するものとしてもよい。こうすれば、制御装置が並行処理を行うことにより、第1位置で撮像したマーク画像から超解像処理の処理領域を設定している間に、第1位置の低解像画像の撮像や第2位置のマーク画像および低解像画像の撮像が可能となる。即ち、処理領域の設定を画像の撮像と並行して行うことができるから、画像の一部に処理領域を設定する場合でも、超解像処理に要する時間が長くなるのを防止することができる。
本発明の撮像処理方法は、
基準マークに基づいて、複数の低解像画像を用いて電子部品の高解像画像を生成する超解像処理を行う撮像処理方法であって、
前記基準マークの位置の取得に用いられるマーク画像と、前記超解像処理に用いられる低解像画像とを、異なる撮像条件で撮像するステップと、
前記マーク画像に含まれる前記電子部品の画像領域に基づいて前記超解像処理の対象となる処理領域を設定するステップと、
を含むことを要旨とする。
本発明の撮像処理方法は、上述した実装装置と同様に、超解像処理を行う処理領域をより適切に設定して、超解像処理を効率よく行うことができる。
本発明の撮像処理方法において、前記マーク画像を、前記高解像画像の生成に用いられる低解像画像の撮像よりも先に撮像し、前記超解像処理に用いられる低解像画像を、前記処理領域の設定と並行して撮像するものとしてもよい。こうすれば、処理領域の設定を画像の撮像と並行して行うことができるから、画像の一部に処理領域を設定する場合でも、超解像処理に要する時間が長くなるのを防止することができる。
実装システム10の一例を表す概略説明図。 実装ヘッド22及び撮像ユニット30の説明図。 実装装置11の構成を表すブロック図。 実装処理ルーチンの一例を示すフローチャート。 超解像処理に必要な画像を撮像する様子を示す説明図。 画像処理ルーチンの一例を示すフローチャート。 実施形態の超解像処理の処理領域を示す説明図。 比較例の超解像処理の処理領域を示す説明図。 変形例の画像処理ルーチンを示すフローチャート。 変形例の処理領域を示す説明図。 変形例の処理領域を示す説明図。
次に、本発明の実施の形態を図面を用いて説明する。図1は、実装システム10の一例を表す概略説明図である。図2は、実装ヘッド22及び撮像ユニット30の説明図である。図3は、実装装置11の構成を表すブロック図である。実装システム10は、例えば、部品60を基板Sに実装する処理を実行するシステムである。この実装システム10は、実装装置11と、管理コンピュータ(PC)50とを備える。実装システム10は、電子部品を基板Sに実装する実装処理を実施する複数の実装装置11が上流から下流に配置されている。図1では、説明の便宜のため実装装置11を1台のみ示している。なお、実装処理とは、部品を基板上に配置、装着、挿入、接合、接着する処理などを含む。また、本実施形態において、左右方向(X軸)、前後方向(Y軸)及び上下方向(Z軸)は、図1、図2に示した通りとする。
実装装置11は、図1〜3に示すように、基板搬送ユニット12と、実装ユニット13と、部品供給ユニット14と、撮像ユニット30と、制御装置40とを備える。基板搬送ユニット12は、基板Sの搬入、搬送、実装位置での固定、搬出を行うユニットである。基板搬送ユニット12は、図1の前後に間隔を開けて設けられ左右方向に架け渡された一対のコンベアベルトを有している。基板Sはこのコンベアベルトにより搬送される。
実装ユニット13は、電子部品(以下、部品60ともいう)を部品供給ユニット14から採取し、基板搬送ユニット12に固定された基板Sへ配置するものである。部品60は、例えば、図1に示すように、板状の本体の下部に半球状のバンプ61(電極)が複数設けられたBGA部品である。なお、部品60がチップ部品やリード部品の場合もある。実装ユニット13は、ヘッド移動部20と、実装ヘッド22と、吸着ノズル24とを備える。ヘッド移動部20は、ガイドレールに導かれてXY方向へ移動するスライダと、スライダを駆動するモータとを備える。実装ヘッド22は、スライダに取り外し可能に装着されており、ヘッド移動部20によりXY方向へ移動する。実装ヘッド22の下面には、1以上の吸着ノズル24が取り外し可能に装着される。ここでは、実装ヘッド22が4つの吸着ノズル24a〜24dを装着する場合を説明する(図2)。また、吸着ノズル24a〜24dを吸着ノズル24と総称する。吸着ノズル24は、負圧を利用して部品60を保持するものであり、実装ヘッド22に取り外し可能に装着されている。この実装ヘッド22は、Z軸モータ23を内蔵しており、このZ軸モータ23によってZ軸に沿って吸着ノズル24の高さを調整する。また、実装ヘッド22は、図示しない駆動モータによって吸着ノズル24を回転(自転)させる回転装置を備え、吸着ノズル24に保持(吸着)された部品の角度を調整可能となっている。
実装ヘッド22は、図2に示すように、その下面に、保持された部品の位置の基準となる基準マーク25が、実装ヘッド22の内周側である中央部に配設されている。なお、基準マーク25は、実装ヘッド22の外周側、即ち、撮像ユニット30の撮像範囲の隅に配設されてもよい。この基準マーク25は、4つの円形状のマークで構成されている。基準マーク25の中心は、吸着ノズル24と所定の位置関係、例えば、所定距離で配設されている。吸着ノズル24a〜24dは、基準マーク25と所定の位置関係(距離や配置位置)を有するから、基準マーク25の位置が認識できれば、それぞれの吸着ノズル24の位置を認識することができる。
部品供給ユニット14は、複数のリールを備え、実装装置11の前側に着脱可能に取り付けられている。各リールには、テープが巻き付けられ、テープの表面には、複数の部品がテープの長手方向に沿って保持されている。このテープは、リールから後方に向かって巻きほどかれ、部品が露出した状態で、吸着ノズル24で吸着される供給位置にフィーダ部により送り出される。この部品供給ユニット14は、部品を複数配列して載置するトレイを有するトレイユニットを備える。トレイユニットは、トレイをパレットに固定して図示しないマガジンカセットから引きだし、所定の供給位置へトレイを移動する移動機構を備える。トレイには、多数の矩形のキャビティが形成されており、このキャビティに部品を収容している。このトレイに収容される部品は、リールに収容される部品に比して高さや大きさが大きいものである。部品60は、トレイユニットのトレイに収納されている。
撮像ユニット30は、実装ヘッド22の吸着ノズル24に吸着された部品や基準マーク25を撮像するユニットである。この撮像ユニット30は、部品供給ユニット14と基板搬送ユニット12との間に配置されている。撮像ユニット30の撮像範囲は、撮像ユニット30の上方であり、吸着ノズル24に吸着された部品と基準マーク25とを含む。撮像ユニット30は、照明部31と、照明制御部32と、撮像素子33と、画像処理部34とを備える。照明部31は、実装ヘッド22に保持された部品60に対して複数の照明状態で光を照射可能に構成されている。照明部31は、例えば、上、中、下段に配設されたランプ、及び図示しない落射ランプを光源として有し、吸着ノズル24に吸着された部品へ照射される光の明るさ(光量)、光の波長及び光の照射位置などを調整可能な光源ユニットである。照明部31は、上段のランプを点灯すると側方から光を照射し、下段のランプを点灯すると側方且つ下方から光を照射し、落射ランプを点灯すると下方から光を照射し、全部のランプを点灯すると全体がより明るくなるよう光を照射する。照明制御部32は、所定の照明条件に基づき、吸着ノズル24に吸着された部品に応じた照明状態になるように照明部31を制御する。撮像素子33は、受光により電荷を発生させ発生した電荷を出力する素子である。撮像素子33は、露光後の電荷の転送処理と次画像の露光処理とをオーバーラップさせることにより高速な連続取込み処理をすることができるCMOSイメージセンサとしてもよい。画像処理部34は、入力された電荷に基づいて画像データを生成する処理を行う。撮像ユニット30は、部品を吸着した吸着ノズル24が撮像ユニット30の上方を通過する際、実装ヘッド22を移動しながら、あるいは実装ヘッド22を停止した状態で、1以上の画像を撮像し、撮像画像データを制御装置40へ出力する。
制御装置40は、図3に示すように、CPU41を中心とするマイクロプロセッサとして構成されており、処理プログラムを記憶するROM42、各種データを記憶するHDD43、作業領域として用いられるRAM44、外部装置と電気信号のやり取りを行うための入出力インタフェース45などを備える。これらはバス46を介して接続されている。この制御装置40は、基板搬送ユニット12、実装ユニット13、部品供給ユニット14、撮像ユニット30へ制御信号を出力し、実装ユニット13や部品供給ユニット14、撮像ユニット30からの信号を入力する。
管理PC50は、実装システム10の各装置の情報を管理するコンピュータである。管理PC50は、作業者が各種指令を入力するキーボード及びマウス等の入力装置52と、各種情報を表示するディスプレイ54とを備える。
次に、こうして構成された本実施形態の実装システム10の動作、具体的には、実装装置11の実装処理について説明する。図4は、制御装置40のCPU41により実行される実装処理ルーチンの一例を表すフローチャートである。このルーチンは、制御装置40のHDD43に記憶され、作業者による開始指示により実行される。ここでは、吸着ノズル24a〜24dのそれぞれに部品60を吸着し、これを基板Sに実装する場合を主として説明する。このルーチンを開始すると、制御装置40のCPU41は、まず、実装ジョブ情報を管理PC50から取得する(S100)。実装ジョブ情報には、部品の実装順、実装する部品の種別及びその部品の特徴などの部品情報、部品を吸着する吸着ノズル24の情報、撮像ユニット30での撮像条件(照明条件も含む)などが含まれている。部品の特徴には、部品のサイズの情報やバンプ61の配置や数、サイズ(バンプ径)の情報、正常な形状の部品の画像であるリファレンス画像なども含まれる。
次に、CPU41は、基板Sの搬入処理を行い(S110)、吸着する部品を設定し、その部品の部品情報を実装ジョブ情報から取得する(S120)。次に、CPU41は、必要に応じて実装ヘッド22に吸着ノズル24を装着させ、設定した部品の吸着処理を行う(S130)。吸着処理では、CPU41は、該当する部品が収納されている部品供給ユニット14の供給位置まで実装ヘッド22を移動させ、吸着ノズル24を下降させて吸着ノズル24に部品を吸着させる処理を行う。この吸着処理では、1以上の部品60を吸着ノズル24a〜24dに吸着させるものとしてもよい。
次に、CPU41は、超解像処理を必要とする部品であるか否かを判定する(S140)。この判定は、S120で取得した部品情報に基づいて行われる。実装対象の部品には、光学的特性(例えば、表面の輝度や光の反射率など)や、電極の形状や配置が異なるものがあり、撮像時の露光時間や使用照明の変更を要するものがある。そのような部品に合わせた撮像条件では、基準マーク25を明瞭に撮像できない場合がある。なお、撮像条件には、例えば、照明部31の点灯位置、照明の色、露光時間及び焦点距離のうち1以上が含まれる。また、実装対象の部品は、様々な大きさを有しており、撮像ユニット30が大きな部品を撮像可能な視野範囲を有するものとすると、小さな部品を撮像する際に十分な解像度が得られないことがある。実装装置11では、そのような小さな部品を撮像する際に、低解像度の画像を複数用い基準マーク25で位置決めして高解像度の画像を得る超解像処理を行う。S140では、CPU41は、実装ヘッド22に吸着された部品が、基準マーク25と撮像条件が異なり且つ高解像度の画像を要するか否かに基づいて、超解像処理を必要とするか否かを判定する。ここで、部品60は、バンプ61と基準マーク25とで照明の適切な照射角度が異なるため、基準マーク25と部品60とで異なる撮像条件になる。また、CPU41は、部品60が正常であるかを判断するために、比較的小さなバンプ61の欠損や変形などを検出する必要がある。さらに、比較的小さなバンプ61を有する部品60は、基板Sに搭載する際の僅かな位置ずれにより接触不良が生じるから、高い搭載精度が要求される部品といえる。したがって、比較的小さなバンプ61を有する部品60は、高解像度の画像を要するものであり、超解像処理を必要とする部品であるといえる。
CPU41は、S140で超解像処理が必要でないと判定すると、所定の撮像条件で撮像ユニット30により画像を撮像させる(S150)。S140で超解像処理が必要でないと判定された部品が、チップ部品やリード部品の場合には、所定の撮像条件として第1撮像条件を用いる。第1撮像条件は、例えば、基準マーク25や部品の外形を十分明瞭に撮像可能な条件とすることができ、照明部31のすべてのランプを点灯し全方向から光が照射されるよう設定されている。この場合、CPU41は、S150で実装ヘッド22を移動させながら撮像ユニット30により部品を撮像させてもよい。こうすれば、実装ヘッド22を停止させて撮像する場合に比して、撮像時間をより短縮することができる。CPU41は、吸着ノズル24に吸着されている部品に対し、撮像画像を用いて位置ずれや形状異常などを求める画像処理を行う。また、S140で超解像処理が必要でないと判定された部品が、サイズ(バンプ径)が比較的大きく、高い搭載精度が要求されないBGA部品の場合には、所定の撮像条件として第2撮像条件を用いる。第2撮像条件は、例えば、半球状のバンプ61が十分明瞭に撮像可能な条件とすることができ、照明部31の上段のランプを点灯し側方から光が照射されるよう設定されている。この場合、CPU41は、実装ヘッド22を停止させて第2撮像条件で画像を撮像させるものとし、第2撮像条件の撮像画像からバンプの位置や形状異常などを求める画像処理を行う。一方、CPU41は、実装ヘッド22を移動させながら撮像ユニット30により撮像させてもよく、その場合には、撮像ユニット30に第1撮像条件での撮像と第2撮像条件での撮像とを行わせるものとする。CPU41は、第1撮像条件の撮像画像から基準マーク25の位置を認識する画像処理を行い、認識した基準マーク25の位置に基づいて第2撮像条件の撮像画像からバンプの位置や形状異常などを求める画像処理を行う。
一方、CPU41は、部品60が比較的小さなバンプ61を有するものであるなど、S140で超解像処理が必要であると判定すると、以下に説明するように超解像処理に必要な画像の撮像を行い、画像の撮像と並行して後述の画像処理を行う。図5は、超解像処理に必要な画像を撮像する様子を示す説明図である。画像の撮像では、CPU41は、まず、撮像ユニット30の撮像領域内の第1位置に実装ヘッド22を移動させてから(S160)、撮像ユニット30により第1撮像条件で基準マーク25の画像(マーク画像LR11)を撮像させる(S170,図5(a))。続いて、CPU41は、実装ヘッド22を第1位置としたまま、撮像ユニット30により第2撮像条件で部品60の画像(部品画像LR12)を撮像させる(S180,図5(b))。第1撮像条件は、基準マーク25や部品の外形を十分明瞭に撮像可能な条件が設定される。また、第2撮像条件は、半球状のバンプ61が十分明瞭に撮像が可能な条件が設定される。このため、第2撮像条件は、例えば、照明部31の上段のランプを点灯し側方から光が照射されるような条件が設定されることになり、第2撮像条件で撮像された画像は、バンプ61以外の部分は殆ど映り込まないことになる。このように、CPU41は、マーク画像LR11と部品画像LR12とを異なる撮像条件で、同じ第1位置で撮像する。
次に、CPU41は、撮像ユニット30の撮像領域内に設定され、第1位置とは異なる第2位置に実装ヘッド22を移動させる(S190)。この第2位置は、マルチフレームの超解像処理を実行できるように、第1位置で撮像する第1画像に対して1/Xピクセル(但し1<X、例えばX=2)ずらした第2画像を撮像できる位置に設定されていてもよい。実装ヘッド22が第2位置に移動すると、CPU41は、S170と同様に、撮像ユニット30により第1撮像条件で基準マーク25の画像(マーク画像LR21)を撮像させる(S200,図5(c))。続いて、CPU41は、実装ヘッド22を第2位置としたまま、S180と同様に、撮像ユニット30により第2撮像条件で部品60の画像(部品画像LR22)を撮像させる(S210,図5(d))。このようにして、超解像処理に必要な画像の撮像が行われる。CPU41は、第1位置で撮像されたマーク画像LR11と部品画像LR12とを用いて、第1位置での基準マーク25及び部品60の相対位置を求めることができる。また、CPU41は、第2位置で撮像されたマーク画像LR21と部品画像LR22とを用いて、第2位置での基準マーク25及び部品60の相対位置を求めることができる。また、CPU41は、前述したように、画像の撮像と並行して画像処理を行う。図6は、制御装置40のCPU41により実行される画像処理ルーチンの一例を表すフローチャートである。
このルーチンを開始すると、制御装置40のCPU41は、まず、マーク画像LR11の処理開始タイミングであるか否かを判定する(S300)。CPU41は、図4の実装処理ルーチンのS170で撮像されたマーク画像LR11が撮像ユニット30から入力された場合に、S300で肯定判定する。CPU41は、マーク画像LR11の処理開始タイミングであると判定すると、マーク画像LR11における基準マーク25の位置を決める位置決め処理を行い(S310)、処理対象の部品の画像領域があるか否かを判定する(S320)。前述したように、吸着ノズル24a〜24dは、基準マーク25と所定の位置関係にあるから、位置決め処理により求めた基準マーク25の位置に基づいて、吸着ノズル24a〜24dにそれぞれ吸着されている部品の位置を認識することができる。このため、CPU41は、S320では、吸着ノズル24a〜24dにそれぞれ吸着されている部品を、吸着ノズル24a〜24dの順に処理対象に設定し、設定した処理対象の部品の位置を基準マーク25の位置から認識し、その処理対象の部品の位置に背景領域と画素値が異なる部品の画像領域があるか否かを判定する。
CPU41は、S320で処理対象の部品の画像領域があると判定すると、マーク画像LR11における部品60の粗位置を決める粗位置決め処理を行う(S330)。CPU41は、S330では、マーク画像LR11から、S320で認識した部品60の画像領域を抽出し、抽出した部品60の本体部(外形)の隅の座標を取得することにより、部品60の粗位置を決定する。例えば、部品60の本体部の形状が矩形状であれば、四隅の座標を取得することにより、部品60の粗位置を決定する。なお、各座標は、基準マーク25の中心位置を基準としたXY座標で定めるものとしてもよい。前述したように、マーク画像LR11は、基準マーク25の検出に加え部品60の外形の検出に適した撮像条件で撮像されている。このため、CPU41は、マーク画像LR11から部品60の本体部の粗位置を容易に決定することができる。部品60の本体部の粗位置を決定すると、CPU41は、粗位置決め結果に基づいて超解像処理の処理領域(超解像領域)を設定する(S340)。ここでは、粗位置として決定した部品60の本体部の隅の座標に基づいて、部品60の本体部の隅を含む最小の矩形状の領域を処理領域に設定する。勿論、部品60の本体部の隅を含む最小の矩形状の領域に、検出誤差や画像精度などに基づく若干のマージンを加えた領域を処理領域に設定してもよい。また、CPU41は、S320で処理対象の部品の画像領域がないと判定すると、吸着ノズル24に部品60を吸着していない吸着ミスが生じていると判断して、処理対象の部品を超解像処理のスキップ対象に設定する(S350)。
図7,図8は、超解像処理の処理領域を示す説明図である。図7は本実施形態の処理領域であり、図8は比較例の処理領域である。比較例では、部品60の粗位置に基づいて処理領域を設定するものではなく、一定の大きさの処理領域を設定するものである。吸着ノズル24に吸着されている部品60は、吸着ノズル24に対して位置ずれしている場合がある。このため、比較例では、図8に示すように、部品60が左上(実線)や右下(点線)などに位置ずれしていても、部品60が処理領域に含まれるよう、部品60に対して比較的大きな領域を超解像処理の処理領域に設定している。このため、超解像処理の処理領域の大部分が、部品60が存在しない超解像処理の不要な領域となる。これに対し、本実施形態では、マーク画像LR11から部品60の本体部(外形)の粗位置を決め、その粗位置に基づいて処理領域を設定する。このため、図7に示すように、部品60の本体部における四隅の座標((x1,y1),(x2,y2),(x3,y3),(x4,y4))に基づいて、四隅を含む最小の矩形状の領域における四隅の座標(例えば、(x2,y1),(x2,y3),(x4,y3),(x4,y1))を求めて処理領域を設定する。このように、超解像処理を行う処理領域を、部品60の粗位置に基づく比較的小さな領域として定めるから、超解像処理を行う領域を必要な領域に限定して、超解像処理を効率よく行うことができる。
S340またはS350の処理を行うと、CPU41は、吸着ノズル24(24a〜24d)に吸着されている各部品の処理が完了したか否かを判定し(S360)、各部品の処理が完了していないと判定すると、S320に戻り次の処理対象の部品の処理を行う。また、CPU41は、各部品の処理が完了したと判定すると、次のS370の処理に進む。なお、CPU41は、S300でマーク画像LR11の処理開始タイミングでないと判定すると、S310〜S360の処理をスキップして、S370の処理に進む。
次に、CPU41は、マーク画像LR21の処理開始タイミングであるか否かを判定する(S370)。CPU41は、図4の実装処理ルーチンのS200で撮像されたマーク画像LR21が撮像ユニット30から入力され、且つ、他の画像を画像処理していない場合に、S370で肯定判定する。CPU41は、マーク画像LR21の処理開始タイミングであると判定すると、S310と同様に、マーク画像LR21における基準マーク25の位置を求める位置決め処理を行う(S380)。なお、CPU41は、マーク画像LR21については、部品60の粗位置決め処理や超解像処理の処理領域の設定処理は行わない。また、CPU41は、S370でマーク画像LR21の処理開始タイミングでないと判定すると、S380の処理をスキップする。
続いて、CPU41は、部品画像LR12,LR22の処理開始タイミングであるか否かを判定する(S390)。CPU41は、図4の実装処理ルーチンのS180,S210で撮像された部品画像LR12,LR22が撮像ユニット30から入力され、且つ、他の画像を画像処理してない場合に、S390で肯定判定する。CPU41は、部品画像LR21,LR22の処理開始タイミングであると判定すると、処理対象の部品が超解像処理のスキップ対象であるか否かを判定する(S400)。S400では、CPU41は、吸着ノズル24a〜24dの順に処理対象の部品を設定し、設定した処理対象の部品がS350でスキップ対象に設定されているか否かを判定する。
CPU41は、処理対象の部品60がスキップ対象に設定されていないと判定すると、各部品画像LR12,LR22の処理領域内の画素値を取得し(S410)、取得した処理領域内の画素値を用いて基準マーク25の位置に基づいて超解像画像SRを生成する超解像処理を行う(S420)。超解像処理では、撮像ユニット30により撮像された第1解像度(低解像度)の部品画像を用いて、第1解像度よりも高解像度である第2解像度(高解像度)の画像を生成する。この超解像処理は、例えば、複数(ここでは2つ)の画像の処理領域を用い、基準マーク25の位置を基準に画像(処理領域)が正確に重なる位置を求め、モーション推定処理、レジストレーションなどの処理を行い仮の高解像度画像を生成する。そして、この仮の画像に対してぼけ推定処理、再構成処理を行い、撮像した画像に比して高解像度の画像を生成する。なお、超解像処理が画像処理部34により行われるものとしてもよい。低解像度画像を1ピクセル未満の範囲でずらして撮像した画像を重ね合わせると、画素間の情報をより増やすことができる。また、実際に撮像した画像を用いるため、画素間の情報を推定により補間するものに比して、信頼性の高い超解像画像SRを生成することができる。前述したように、実装装置11は、比較的小さなチップ部品から比較的大きな部品まで実装している。一般的に、撮像ユニット30は、高解像度の画像を撮像しようとすると撮像範囲(視野)が狭くなり大型部品を撮像できず、大型部品を撮像しようとすると小さな部品の解像度が不足する。この実装装置11では、大型部品を撮像する際の撮像範囲を十分に確保すると共に、超解像処理により小型部品や小さな部位(バンプ61などの特徴部分)を撮像する際の画像解像度を十分確保することができる。
こうして超解像画像SRを生成すると、CPU41は、超解像画像SRにおける部品60の精密位置を決定する精密位置決めを行うと共にバンプ61などの形状を確認する(S430)。精密位置は、例えば、部品60の中心位置と吸着ノズル24の中心位置とのX軸、Y軸の座標値の差として求めることができる。部品形状の確認は、例えば、撮像に基づく画像とリファレンス画像とのマッチングを行い、バンプ61の欠損や変形に基づくマッチング度に基づいて行うことができる。また、CPU41は、S400で処理対象の部品がスキップ対象であると判定すると、S410〜S430の処理をスキップして、部品を吸着していない吸着ノズル24(24a〜24dのいずれか)に対応付けて部品吸着ミスの情報を登録する(S440)。このように、マーク画像LR11から超解像処理の処理領域を設定する際に部品60の吸着の有無を合わせて判定しているから、吸着されていない部品60について超解像処理を省略することができる。このため、無駄な超解像処理を行うのを防止することができる。
そして、CPU41は、吸着ノズル24(24a〜24d)に吸着されている各部品の処理が完了したか否かを判定し(S450)、各部品の処理が完了していないと判定すると、S400に戻り次の処理対象の部品の処理を行う。また、CPU41は、各部品の処理が完了したと判定すると、画像処理ルーチンを終了する。なお、CPU41は、S390で部品画像LR12,LR22の処理開始タイミングでないと判定すると、S400〜S450の処理をスキップして、画像処理ルーチンを終了する。
図4の実装処理ルーチンの説明に戻る。実装処理ルーチンでは、CPU41は、画像処理の結果が取得されるのを待つ(S220)。CPU41は、吸着ノズル24(24a〜24d)に吸着されている各部品について、図6の画像処理ルーチンのS430またはS440の処理が行われて画像処理ルーチンが終了した場合に、S220で肯定的に判定する。また、CPU41は、S150の処理で撮像された撮像画像を用いた画像処理が終了した場合に、S220で肯定的に判定する。CPU41は、画像処理の結果が取得されると、その画像処理の結果(部品60の精密位置など)に基づいて位置ずれ量及び部品形状が許容範囲内であるか否かを判定する(S230)。許容範囲は、例えば、部品を適正に基板Sに配置できる位置ずれ量の範囲や、部品の特性を損なわない形状範囲を経験的に求め、この範囲に設定されている。CPU41は、実装ヘッド22に吸着された部品の位置ずれ量及び部品形状が許容範囲内であると判定すると、位置ずれ量を補正した位置に部品を実装(配置)する処理を実行する(S240)。一方、実装ヘッド22に吸着された部品の位置ずれ量及び部品形状が許容範囲内でないときには、CPU41は、その部品60が不具合の生じる部品であるとして廃棄処理を行う(S250)。なお、CPU41は、吸着ノズル24a〜24dのいずれかに吸着されている部品60が廃棄処理の対象である場合には、その部品60を廃棄処理してから他の正常な部品60を実装するなどの処理を行う。また、吸着ノズル24a〜24dのいずれかに部品吸着ミスの情報が対応付けて登録されている場合には、CPU41は、部品吸着ミスの吸着ノズル24を除いてS240の実装処理を行う。なお、CPU41は、部品吸着ミスの情報や部品を廃棄処理した旨の情報を、管理PC50に送信することができる。
CPU41は、S240またはS250の処理を実行すると、現基板Sの実装処理が完了したか否かを判定し(S260)、現基板Sの実装処理が完了していないと判定すると、S120以降の処理を実行する。即ち、CPU41は、次に吸着する部品を設定し、この部品を吸着したのち、必要に応じて撮像ユニット30で画像を撮像し超解像処理を行って、部品の吸着位置ずれや形状を判定する。一方、CPU41は、S260で現基板Sの実装処理が完了したと判定すると、実装処理が完了した基板Sを排出して(S270)、基板Sの生産が完了したか否かを判定する(S280)。CPU41は、基板Sの生産が完了していないと判定すると、S110以降の処理を実行する。即ち、CPU41は、新たな基板Sを搬入し、S120以降の処理を実行する。一方、CPU41は、S280で基板Sの生産が完了したと判定すると、実装処理ルーチンを終了する。
ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態の吸着ノズル24が本発明の保持部材に相当し、基準マーク25が基準マークに相当し、実装ヘッド22がヘッドに相当し、撮像ユニット30が撮像装置に相当し、制御装置40が制御装置に相当する。なお、本実施形態では、実装装置11の動作を説明することにより本発明の撮像処理方法の一例も明らかにしている。
以上説明した実施形態の実装装置11は、マーク画像に含まれる部品60の本体部の粗位置に基づいて超解像処理の対象となる処理領域を設定して、超解像処理を行う。これにより、超解像処理の処理領域が部品60の本体部に対して必要以上に大きくなるのを防止して、処理領域を適切に設定することができる。また、超解像処理に用いられる部品画像とは異なる撮像条件で撮像されるマーク画像を用いて超解像処理の処理領域を定めるから、部品画像は超解像処理に適した撮像条件としたままで、処理領域を適切に設定することができる。したがって、超解像処理を効率よく行うことができる。
また、実装装置11は、撮像範囲内の第1位置でマーク画像LR11と部品画像LR12とをこの順で撮像してから、撮像範囲内の第2位置でマーク画像LR21と部品画像LR22とをこの順で撮像し、マーク画像LR11を用いて超解像処理の処理領域を設定する。このため、超解像処理に必要な画像(部品画像LR12、マーク画像LR21、部品画像LR22)を撮像している間に、超解像処理の処理領域を並行して設定することができるから、超解像処理に要する時間が長くなるのを防止することができる。また、マーク画像LR11から粗位置を検出することができない場合には、部品60の吸着ミスとして超解像処理を実行しないから、超解像処理が無駄に行われるのを防止することができる。
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
例えば、上述した実施形態では、部品60の本体部の粗位置に基づいて超解像処理の処理領域を設定するものとしたが、これに限られるものではなく、部品60の画像領域に基づいて取得された部品60の粗位置に基づいて処理領域を設定するものであればよい。例えば、部品60の側方にリード端子(電極)が突出しているものであれば、そのリード端子を含む部品60の外形の粗位置に基づいて処理領域を設定してもよい。また、次のように、バンプ61(電極)の部分のみの処理領域を設定してもよい。図9は変形例の画像処理ルーチンを示すフローチャートである。図9の画像処理ルーチンでは、一部を除いて図6の画像処理ルーチンと同じ処理が行われるため、同じ処理についての説明は省略する。
図9の変形例の画像処理ルーチンでは、CPU41は、S330で部品の本体部の粗位置決めを行うと、図4の実装処理ルーチンのS120で取得した部品情報と本体部の粗位置とに基づいてバンプ61(電極)の粗位置決めを行う(S335)。ここで、前述したように、実装ジョブ情報から取得される部品情報には、バンプ61などの電極の配置やサイズ(バンプ径など)に関する情報が含まれている。このため、CPU41は、本体部の粗位置から本体部の基準位置(例えば、中心位置)を定め、その基準位置に基づいてバンプ61の粗位置を決めることができる。CPU41は、1つの部品60に対し、バンプ61の粗位置を複数(ここでは4つ)決めることになる。また、CPU41は、各バンプ61の粗位置決め結果に基づいて、部品60内の各バンプ61の領域を超解像処理の処理領域に設定する(S340a)。CPU41は、バンプ61の粗位置を中心として、バンプ61のサイズ(バンプ径)に応じた矩形状の領域を超解像処理の処理領域に設定する。図10は、変形例の超解像処理の処理領域を示す説明図である。図示するように、部品60内に、各バンプ61に対応する4つの処理領域が設定されている。そして、CPU41はS360〜S400の処理を行うと、部品画像LR12,LR22の部品の本体部内における各処理領域内の画素値を取得し(S410a)、S420で各処理領域に対してそれぞれ超解像処理を行って超解像画像SRを生成する。
このように、変形例では、部品60のバンプ61(電極)の粗位置に基づいて超解像処理の処理領域を設定するのである。このため、超解像処理の処理領域をさらに小さな領域に限定することができるから、超解像処理をより効率のよいものとして、超解像画像SRの生成時間を更に高速化することができる。ここで、この変形例では、超解像画像は部品60の本体部内における処理領域(バンプ61とその近傍の領域)のみ生成されるが、本体部内における処理領域以外の領域の画素値を設定して超解像画像と合成することにより、部品60の全体の画像を生成してもよい。例えば、本体部内における処理領域以外の領域の画素値として、所定の固定値(例えば値0)を用いて、バンプ61の超解像画像と合成して部品60の画像を生成してもよい。あるいは、処理領域以外の領域の画素値として、部品画像LR12,LR22の画素値をバイリニアやバイキュービックなどで補間した値を用いて、バンプ61の超解像画像と合成して部品60の画像を生成してもよい。このようにすれば、超解像画像の画像処理の結果を表示部(実装装置11の図示しない表示部や管理PC50のディスプレイ54など)に表示する場合に、部品60の一部の超解像画像だけでなく、超解像画像を含む部品60の全体の画像を表示することができる。
また、この変形例では、部品60のバンプ61毎に超解像処理の処理領域を設定するものとしたが、これに限られるものではない。図11は、変形例の超解像処理の処理領域を示す説明図である。図示するように、複数のバンプ61を含むバンプ群の領域を、超解像処理の処理領域に設定している。ここで、CPU41は、隣接するバンプ61の間隔(バンプピッチ)が所定間隔以上であれば1つのバンプ61を含む処理領域を設定し、隣接するバンプ61の間隔が所定間隔未満であれば複数のバンプ61を含む処理領域を設定するものなどとすることができる。このように、CPU41は、バンプ群(電極群)毎に超解像処理の処理領域を設定することができる。こうすれば、バンプ61毎に超解像処理の処理領域を設定すると、バンプ61の間隔が狭いために処理領域に重なりが生じて、重複した領域に対して超解像処理が行われる場合があるなど、却って処理効率が低下するのを適切に防止することができる。
上述した実施形態では、マーク画像LR11から超解像処理の処理領域を設定する処理と並行して、部品画像LR12やマーク画像LR21,部品画像LR22の撮像を行うものとした。即ち、超解像処理の処理領域の設定と、画像の撮像とを並行して行うものとしたが、これに限定されるものではない。制御装置40のCPU41は、超解像処理に必要な画像の撮像が終了してから、超解像処理の処理領域を設定するものなどとしてもよい。なお、超解像処理の処理時間の短縮の観点から、CPU41は、超解像処理の処理領域の設定と、画像の撮像とを並行して行うことが望ましい。
上述した実施形態では、第1位置と第2位置の2つの位置で撮像した画像に基づいて超解像画像SRを生成するものとしたが、これに限られず、第3位置や第4位置など3以上の位置で撮像した画像に基づいて超解像画像SRを生成するものとしてもよい。
上述した実施形態では、保持部材を吸着ノズル24として説明したが、部品を保持するものであれば特にこれに限定されず、例えば、部品を機械的に挟持して保持するメカニカルチャックなどとしてもよい。
本発明は、部品を基板上に配置する実装処理を行う装置に利用可能である。
10 実装システム、11 実装装置、12 基板搬送ユニット、13 実装ユニット、14 部品供給ユニット、20 ヘッド移動部、22 実装ヘッド、23 Z軸モータ、24,24a〜24d 吸着ノズル、25 基準マーク、30 撮像ユニット、31 照明部、32 照明制御部、33 撮像素子、34 画像処理部、40 制御装置、41 CPU、42 ROM、43 HDD、44 RAM、45 入出力インタフェース、46 バス、50 管理コンピュータ、52 入力装置、54 ディスプレイ、60 部品、61 バンプ、LR11,LR21 マーク画像、LR12,LR22 部品画像、S 基板。

Claims (7)

  1. 基準マークに基づいて複数の低解像画像を用いて電子部品の高解像画像を生成する超解像処理により、前記電子部品の保持状態を取得して前記電子部品を基板に実装する実装装置であって、
    前記電子部品を保持する保持部材と前記基準マークとを有するヘッドと、
    前記保持部材に保持された電子部品と前記基準マークとを撮像範囲に含む撮像装置と、
    前記基準マークの位置の取得に用いられるマーク画像と、前記超解像処理に用いられる低解像画像とを、異なる撮像条件で撮像するよう前記撮像装置を制御し、前記マーク画像に含まれる前記電子部品の画像領域に基づいて前記超解像処理の対象となる処理領域を設定する制御装置と、
    を備える実装装置。
  2. 請求項1に記載の実装装置であって、
    前記超解像処理により、前記高解像画像から前記電子部品の精密位置を含む保持状態を取得するものであり、
    前記制御装置は、前記マーク画像に含まれる前記電子部品の画像領域に基づいて前記電子部品の粗位置を取得し、該取得した前記電子部品の粗位置に基づいて前記処理領域を設定する
    実装装置。
  3. 請求項2に記載の実装装置であって、
    前記制御装置は、前記電子部品の粗位置として前記本体部の粗位置を取得し、該取得した前記本体部の粗位置に基づいて前記処理領域を設定する
    実装装置。
  4. 請求項3に記載の実装装置であって、
    前記制御装置は、前記電子部品の前記本体部に対する電極の位置を定めた部品情報を取得し、該取得した部品情報と前記本体部の粗位置とに基づいて、前記電極の粗位置を導出し、該導出した前記電極の粗位置に基づいて前記処理領域を設定する
    実装装置。
  5. 請求項1ないし4いずれか1項に記載の実装装置であって、
    前記制御装置は、前記撮像範囲内の第1位置に前記ヘッドが位置している場合に前記マーク画像と前記超解像処理に用いられる低解像画像とをこの順で撮像してから、前記撮像範囲内の前記第1位置とは異なる第2位置に前記ヘッドが位置している場合に前記マーク画像と前記超解像処理に用いられる低解像画像とを撮像するよう前記撮像装置を制御し、前記第1位置で撮像された前記マーク画像を用いて前記処理領域を設定する
    実装装置。
  6. 基準マークに基づいて複数の低解像画像を用いて電子部品の高解像画像を生成する超解像処理を行う撮像処理方法であって、
    前記基準マークの位置の取得に用いられるマーク画像と、前記超解像処理に用いられる低解像画像とを、異なる撮像条件で撮像するステップと、
    前記マーク画像に含まれる前記電子部品の画像領域に基づいて前記超解像処理の対象となる処理領域を設定するステップと、
    を含むことを特徴とする撮像処理方法。
  7. 請求項6に記載の撮像処理方法であって、
    前記マーク画像を、前記高解像画像の生成に用いられる低解像画像の撮像よりも先に撮像し、
    前記超解像処理に用いられる低解像画像を、前記処理領域の設定と並行して撮像する
    撮像処理方法。
JP2017562192A 2016-01-19 2016-01-19 実装装置および撮像処理方法 Active JP6795520B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051394 WO2017126025A1 (ja) 2016-01-19 2016-01-19 実装装置および撮像処理方法

Publications (2)

Publication Number Publication Date
JPWO2017126025A1 true JPWO2017126025A1 (ja) 2018-11-08
JP6795520B2 JP6795520B2 (ja) 2020-12-02

Family

ID=59362187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017562192A Active JP6795520B2 (ja) 2016-01-19 2016-01-19 実装装置および撮像処理方法

Country Status (5)

Country Link
US (1) US10869421B2 (ja)
EP (1) EP3407696B1 (ja)
JP (1) JP6795520B2 (ja)
CN (1) CN108702867B (ja)
WO (1) WO2017126025A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6903268B2 (ja) * 2016-12-27 2021-07-14 株式会社Nsテクノロジーズ 電子部品搬送装置および電子部品検査装置
CN114424685B (zh) * 2019-09-26 2023-07-04 株式会社富士 图像处理装置
CN110913682A (zh) * 2019-11-29 2020-03-24 深圳市智微智能软件开发有限公司 Smt换料方法及系统
WO2022254696A1 (ja) * 2021-06-04 2022-12-08 株式会社Fuji 実装装置及び画像処理装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124264A (ja) * 1998-10-20 2000-04-28 Matsushita Electric Ind Co Ltd バンプ付電子部品の実装装置
WO2015019487A1 (ja) * 2013-08-09 2015-02-12 富士機械製造株式会社 実装装置及び部品検出方法
WO2015049723A1 (ja) * 2013-10-01 2015-04-09 富士機械製造株式会社 組立機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191157A (ja) * 1997-12-25 1999-07-13 Toshiba Corp 画像処理装置
JP4103921B2 (ja) * 2006-08-11 2008-06-18 オムロン株式会社 フィレット検査のための検査基準データの設定方法、およびこの方法を用いた基板外観検査装置
JP5917941B2 (ja) * 2012-02-21 2016-05-18 ヤマハ発動機株式会社 スクリーン印刷装置
EP2967298A4 (en) * 2013-03-15 2016-11-23 Lantos Technologies Inc SCAN PROCEDURE FOR THE ASSAY AND MEASUREMENT OF ANATOMIC CAVITIES
EP2989607B1 (en) * 2013-04-25 2019-01-09 Thomson Licensing Method and device for performing super-resolution on an input image
EP3079452B1 (en) * 2013-12-02 2018-03-14 Fuji Machine Mfg. Co., Ltd. Assembly machine
EP3118572B1 (en) * 2014-03-13 2021-08-25 FUJI Corporation Image processing device and substrate production system
JP6364837B2 (ja) * 2014-03-14 2018-08-01 オムロン株式会社 画像処理装置および領域分割方法
WO2017064786A1 (ja) * 2015-10-15 2017-04-20 ヤマハ発動機株式会社 部品実装装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124264A (ja) * 1998-10-20 2000-04-28 Matsushita Electric Ind Co Ltd バンプ付電子部品の実装装置
WO2015019487A1 (ja) * 2013-08-09 2015-02-12 富士機械製造株式会社 実装装置及び部品検出方法
WO2015049723A1 (ja) * 2013-10-01 2015-04-09 富士機械製造株式会社 組立機

Also Published As

Publication number Publication date
EP3407696A1 (en) 2018-11-28
EP3407696B1 (en) 2021-11-17
CN108702867B (zh) 2020-07-28
CN108702867A (zh) 2018-10-23
US10869421B2 (en) 2020-12-15
US20190029153A1 (en) 2019-01-24
JP6795520B2 (ja) 2020-12-02
EP3407696A4 (en) 2019-01-16
WO2017126025A1 (ja) 2017-07-27

Similar Documents

Publication Publication Date Title
JP4767995B2 (ja) 部品実装方法、部品実装機、実装条件決定方法、実装条件決定装置およびプログラム
JP6684792B2 (ja) 実装装置、撮像処理方法及び撮像ユニット
JP6487327B2 (ja) 実装検査装置
JP7002831B2 (ja) 部品実装機
WO2017126025A1 (ja) 実装装置および撮像処理方法
JP2013206912A (ja) 部品実装装置、基板検出方法及び基板製造方法
WO2016143058A1 (ja) 実装装置、撮像処理方法及び撮像ユニット
JP5755502B2 (ja) 位置認識用カメラ及び位置認識装置
JP6612845B2 (ja) 実装装置、撮像処理方法及び撮像ユニット
JP6475165B2 (ja) 実装装置
JP5296749B2 (ja) 部品認識装置および表面実装機
JP6904978B2 (ja) 部品装着機
JP5977579B2 (ja) 基板作業装置
JP2018037586A (ja) 実装装置
WO2020170349A1 (ja) 外観検査方法、実装機
JP6997069B2 (ja) 部品実装機
JP6789603B2 (ja) 実装装置
CN112314065B (zh) 安装机及安装系统
CN117280885A (zh) 识别装置以及识别方法
JP2005093906A (ja) 部品認識装置及び同装置を搭載した表面実装機並びに部品試験装置
JP2005235941A (ja) 表面実装機
JP2018186116A (ja) 対基板作業装置
JP2005150234A (ja) 部品認識装置、表面実装機および部品試験装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201112

R150 Certificate of patent or registration of utility model

Ref document number: 6795520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250