JPWO2016035286A1 - 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池 - Google Patents

二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池 Download PDF

Info

Publication number
JPWO2016035286A1
JPWO2016035286A1 JP2016546298A JP2016546298A JPWO2016035286A1 JP WO2016035286 A1 JPWO2016035286 A1 JP WO2016035286A1 JP 2016546298 A JP2016546298 A JP 2016546298A JP 2016546298 A JP2016546298 A JP 2016546298A JP WO2016035286 A1 JPWO2016035286 A1 JP WO2016035286A1
Authority
JP
Japan
Prior art keywords
secondary battery
mass
electrode
particulate polymer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016546298A
Other languages
English (en)
Other versions
JP6627763B2 (ja
Inventor
金田 拓也
拓也 金田
健太郎 早坂
健太郎 早坂
祐作 松尾
祐作 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2016035286A1 publication Critical patent/JPWO2016035286A1/ja
Application granted granted Critical
Publication of JP6627763B2 publication Critical patent/JP6627763B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/14Homopolymers or copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、二次電池に優れたレート特性およびサイクル特性を発揮させることが可能な二次電池電極用バインダー組成物の提供を目的とする。本発明の二次電池電極用バインダー組成物は、コア部と、前記コア部の外表面を部分的に覆うシェル部とを備えるコアシェル構造を有する第1粒子状重合体を含む。

Description

本発明は、二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池に関するものである。
リチウムイオン二次電池などの二次電池は、小型で軽量、且つエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。
ここで、リチウムイオン二次電池などの二次電池用の電極は、通常、集電体と、集電体上に形成された電極合材層とを備えている。そして、電極合材層は、例えば、電極活物質と、結着材を含むバインダー組成物などとを分散媒に分散させてなるスラリー組成物を集電体上に塗布し、塗布したスラリー組成物を乾燥させることにより形成される。
そこで、近年では、二次電池の更なる性能向上を達成すべく、電極合材層の形成に用いられるバインダー組成物中の結着材成分の改良が盛んに行われている。
例えば特許文献1では、脂肪族共役ジエン系単量体、アルキル基の炭素数が1〜3の(メタ)アクリル酸アルキルエステル系単量体、エチレン性不飽和カルボン酸系単量体、並びに芳香族ビニル系単量体および/またはシアン化ビニル系単量体を、それぞれ特定の割合で含む単量体組成物を乳化重合して得られ、且つ数平均粒子径およびジエチルカーボネートに対する膨潤度が特定の範囲内にある共重合体ラテックスが、結着性に優れるとの報告がなされている。そして特許文献1では、当該共重合体ラテックスを含むバインダー組成物を用いて電極を形成することで、二次電池の高率放電特性や充放電サイクル特性を向上させる技術が提案されている。
また、例えば特許文献2では、脂肪族共役ジエン系単量体、エチレン系不飽和カルボン酸系単量体、およびこれらと共重合可能な他の単量体を、それぞれ特定の割合で含む単量体組成物を乳化重合して得られる共重合体ラテックスであって、当該共重合体ラテックスの固形分100重量%に対する400メッシュの篩上に残る濾過残渣が0.01重量%以下である共重合体ラテックスを電極用の結着材として使用することで、均一性が高く、且つ集電体への結着性に優れる電極合材層を形成する技術が提案されている。
特開2010−146871号公報 特開2010−182439号公報
しかし、上記従来の結着材を用いたバインダー組成物には、当該バインダー組成物を用いて形成した二次電池のレート特性およびサイクル特性等の電気的特性を更に向上させるという点において改善の余地があった。
そこで、本発明は、二次電池に優れたレート特性およびサイクル特性を発揮させることが可能な二次電池電極用バインダー組成物を提供することを目的とする。
また、本発明は、二次電池に優れたレート特性およびサイクル特性を発揮させることができる電極合材層を形成可能な二次電池電極用スラリー組成物を提供することを目的とする。
更に、本発明は、二次電池に優れたレート特性およびサイクル特性を発揮させることが可能な二次電池用電極を提供することを目的とする。
そして、本発明は、レート特性およびサイクル特性に優れる二次電池を提供することを目的とする。
本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、上記従来の技術を用いたバインダー組成物を形成された電極合材層中では、特に電極合材層を高密度化した場合に、リチウムイオンなどのイオン伝導性が充分に確保されず、そのため十分な電気的特性が発揮されていないことに着目した。その上で、本発明者は、コア部と、前記コア部の外表面を部分的に覆うシェル部とを備えるコアシェル構造を有する粒子状重合体を電極用の結着材として使用することで、電極合材層の強度を確保しつつ、二次電池に優れたレート特性およびサイクル特性を発揮させることが可能であることを見出し、本発明を完成させた。
即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の二次電池電極用バインダー組成物は、コア部と、前記コア部の外表面を部分的に覆うシェル部とを備えるコアシェル構造を有する第1粒子状重合体を含むことを特徴とする。このように、シェル部が、コア部の外表面の全体を覆うのではなく、部分的に覆うコアシェル構造を備える粒子状重合体を含むバインダー組成物を使用すれば、当該バインダー組成物を用いて形成した二次電池に優れたレート特性およびサイクル特性を発揮させることができる。
ここで、本発明の二次電池電極用バインダー組成物は、前記コア部を構成する重合体の電解液膨潤度が300質量%以上900質量%以下であり、前記シェル部を構成する重合体の電解液膨潤度が100質量%超200質量%以下であることが好ましい。第1粒子状重合体のコア部を構成する重合体およびシェル部を構成する重合体のそれぞれが、上述の範囲内の電解液膨潤度を有する場合、二次電池のレート特性およびサイクル特性を更に向上させることができるからである。
なお、本発明において、コア部を構成する重合体、シェル部を構成する重合体の「電解液膨潤度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
また、本発明の二次電池電極用バインダー組成物は、前記コア部を構成する重合体のガラス転移温度が−60℃以上−15℃以下であり、前記シェル部を構成する重合体のガラス転移温度が40℃以上200℃以下であることが好ましい。第1粒子状重合体のコア部を構成する重合体およびシェル部を構成する重合体のそれぞれが、上述の範囲内のガラス転移温度を有する場合、電極合材層と集電体の間のピール強度に優れる電極が得られると共に、二次電池のレート特性を更に向上させることができるからである。
なお、本発明において、コア部を構成する重合体、シェル部を構成する重合体の「ガラス転移温度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
さらに、本発明の二次電池電極用バインダー組成物は、前記第1粒子状重合体中のシェル部の質量比率が3質量%以上35質量%以下であることが好ましい。第1粒子状重合体の質量に占めるシェル部の質量の比率が上述の範囲内であれば、電極合材層と集電体の間のピール強度に優れる電極が得られると共に、二次電池のレート特性とサイクル特性とを高い次元で両立させることができるからである。
なお、本発明において、第1粒子状重合体中の「シェル部の質量比率」は、本明細書の実施例に記載の算出方法を用いて算出することができる。
加えて、本発明の二次電池電極用バインダー組成物は、前記コア部を構成する重合体が、(メタ)アクリル酸エステル単量体単位を50質量%以上99.5質量%以下含むことが好ましい。第1粒子状重合体のコア部を構成する重合体が、(メタ)アクリル酸エステル単量体単位を上記割合で含有すれば、二次電池のレート特性を更に向上させることができるからである。
なお、本発明において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。
ここで、本発明の二次電池電極用バインダー組成物は、さらに第2粒子状重合体を含み、前記第2粒子状重合体が、電解液膨潤度が100質量%超200質量%以下であり、ガラス転移温度が−10℃以上40℃以下であることが好ましい。それぞれ上述の範囲内の電解液膨潤度およびガラス転移温度を有する第2粒子状重合体を第1粒子状重合体と併用すれば、電極合材層と集電体の間のピール強度に優れる電極が得られると共に、二次電池のレート特性およびサイクル特性を更に向上させることができるからである。
なお、本発明において、第2粒子状重合体の「電解液膨潤度」および「ガラス転移温度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
また、本発明の二次電池電極用バインダー組成物は、固形分換算で、前記第1粒子状重合体と前記第2粒子状重合体との合計100質量部当たり、前記第1粒子状重合体を30質量部以上95質量部以下含むことが好ましい。第1粒子状重合体の含有割合を上記範囲内とすれば、二次電池のレート特性とサイクル特性とを高い次元で両立させることができるからである。
さらに、本発明の二次電池電極用バインダー組成物は、前記第2粒子状重合体が、共役ジエン系単量体単位を5質量%以上70質量%以下含み、且つ、芳香族ビニル単量体単位を10質量%以上90質量%以下含むことが好ましい。第2粒子状重合体が共役ジエン系単量体単位および芳香族ビニル単量体単位を上記割合で含有すれば、二次電池のサイクル特性を更に向上させることができるからである。
加えて、本発明の二次電池電極用バインダー組成物は、前記第1粒子状重合体の個数平均粒子径が、前記第2粒子状重合体の個数平均粒子径の1倍以上5倍以下であることが好ましい。第1粒子状重合体および第2粒子状重合体の個数平均粒子径の比率を上記範囲内とすれば、二次電池のレート特性とサイクル特性とを高い次元で両立させることができるからである。
なお、本発明において、粒子状重合体の「個数平均粒子径」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の二次電池電極用スラリー組成物は、上述した二次電池電極用バインダー組成物の何れかと、電極活物質とを含むことを特徴とする。このように、第1粒子状重合体および第2粒子状重合体を含むバインダー組成物を使用すれば、二次電池に優れたレート特性およびサイクル特性を発揮させることができる電極合材層を形成可能な二次電池電極用スラリー組成物が得られる。
さらに、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の二次電池用電極は、上記二次電池電極用スラリー組成物を用いて得られる電極合材層を有することを特徴とする。このように、上述したスラリー組成物を用いて形成された電極合材層を備える電極によれば、二次電池に優れたレート特性およびサイクル特性を発揮させることができる。
ここで、本発明の二次電池用電極は、前記電極合材層の気孔率が10.7%以上24.1%以下であることが好ましい。電極合材層の気孔率を上記範囲内とすれば、電極合材層の高密度化を達成しつつ、二次電池に優れたレート特性およびサイクル特性を発揮させることができるからである。
なお、本発明において、「気孔率」とは、電極合材層の真密度に対する、電極合材層の真密度とかさ密度との差の割合を百分率で表した値であり、例えば下記の式を用いて算出することができる。
気孔率(%)=〔1−{(電極合材層の目付量/電極合材層の厚み)/電極合材層の真密度}〕×100
そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の二次電池は、正極、負極、セパレータおよび電解液を備え、前記正極および前記負極の少なくとも一方が上述した二次電池用電極の何れかであることを特徴とする。このように、上述した電極を正極および/または負極として使用すれば、レート特性およびサイクル特性に優れる二次電池が得られる。
本発明によれば、二次電池に優れたレート特性およびサイクル特性を発揮させることが可能な二次電池電極用バインダー組成物を提供することができる。
また、本発明によれば、二次電池に優れたレート特性およびサイクル特性を発揮させることができる電極合材層を形成可能な二次電池電極用スラリー組成物を提供することができる。
更に、本発明によれば、二次電池に優れたレート特性およびサイクル特性を発揮させることが可能な二次電池用電極を提供することができる。
また、本発明によれば、レート特性およびサイクル特性に優れる二次電池を提供することができる。
本発明の二次電池電極用バインダー組成物に含有される第1粒子状重合体の一例の構造を模式的に示す断面図である。
以下、本発明の実施形態について詳細に説明する。
ここで、本発明の二次電池電極用バインダー組成物は、二次電池電極用スラリー組成物を調製する際に用いることができる。そして、本発明の二次電池電極用バインダー組成物を用いて調製した二次電池電極用スラリー組成物は、二次電池の電極を形成する際に用いることができる。更に、本発明の二次電池は、本発明の二次電池用電極を用いたことを特徴とする。
(二次電池電極用バインダー組成物)
本発明の二次電池電極用バインダー組成物は、水系媒体を分散媒とした水系バインダー組成物であり、粒子状の結着材と、水とを含み、任意に、二次電池の分野において一般に使用されるその他の成分を更に含有する。そして、本発明の二次電池電極用バインダー組成物は、粒子状の結着材として、コア部と、前記コア部の外表面を部分的に覆うシェル部とを備えるコアシェル構造を有する粒子状重合体(第1粒子状重合体)を使用することを特徴とする。
<結着材>
結着材は、本発明のバインダー組成物と電極活物質とを含む二次電池電極用スラリー組成物を用いて集電体上に電極合材層を形成することにより製造した二次電池用電極において、電極合材層に含まれる成分が電極合材層から脱離しないように保持しうる成分である。一般的に、電極合材層中の粒子状の結着材は、電解液に浸漬された際に、電解液を吸収して膨潤しながらも粒子状の形状を維持し、電極活物質同士または電極活物質と集電体とを結着させ、電極活物質が集電体から脱落するのを防ぐ。また、結着材は、電極合材層に含まれる電極活物質以外の粒子をも結着し、電極合材層の強度を維持する役割も果たしている。
そして、本発明のバインダー組成物では、当該バインダー組成物を用いて形成した電極合材層を備える電極が、二次電池に優れたレート特性およびサイクル特性を発揮させることを可能とすべく、粒子状の結着材として、上述した特定のコアシェル構造を備える第1粒子状重合体を用いることを特徴とする。なお、本発明のバインダー組成物は、粒子状の結着材として、後述する第2粒子状重合体のような第1粒子状重合体以外の粒子状重合体を含んでいてもよい。
[第1粒子状重合体]
上述した通り第1粒子状重合体は、コア部と、コア部の外表面を覆うシェル部とを備えるコアシェル構造を有している。また、シェル部は、コア部の外表面を部分的に覆っている。即ち、第1粒子状重合体のシェル部は、コア部の外表面を覆っているが、コア部の外表面の全体を覆ってはいない。外観上、コア部の外表面がシェル部によって完全に覆われているように見える場合であっても、シェル部の内外を連通する孔が形成されていれば、そのシェル部はコア部の外表面を部分的に覆うシェル部である。したがって、例えば、シェル部の外表面(即ち、粒子状重合体の周面)からコア部の外表面まで連通する細孔を有するシェル部を備える粒子状重合体は、上記第1粒子状重合体に含まれる。
そして、このようなコアシェル構造を有する第1粒子状重合体を用いることで、二次電池の電気的特性を向上させることができる理由は、明らかではないが、以下の通りであると推察されている。
すなわち、第1粒子状重合体は、シェル部がコア部外表面を部分的に覆う構造を備えているため、得られる電極合材層において、第1粒子状重合体はシェル部および被覆されていないコア部外表面を介して電極活物質や集電体などと接着して電極合材層の強度を保持する。一方で、当該電極合材層には、粒子状重合体表面のシェル部により覆われていない箇所に由来する、イオン伝導可能な空隙が確保されることとなる。よって、上記第1粒子状重合体によれば、電極合材層において電極活物質を拘束しつつイオン伝導性が確保されるため、二次電池に優れたレート特性およびサイクル特性を発揮させることができると推察される。
ここで、第1粒子状重合体のシェル部は、複数のシェル部構造体からなることが好ましい。
具体的には、第1粒子状重合体の一例の断面構造を図1に示すように、第1粒子状重合体100は、コア部110および複数のシェル部構造体120からなるシェル部を備えるコアシェル構造を有することが好ましい。ここで、コア部110は、この第1粒子状重合体100においてシェル部構造体120よりも内側にある部分である。また、シェル部構造体120は、コア部110の外表面110Sを覆い、複数のシェル部構造体120からなるシェル部は、通常は第1粒子状重合体100において最も外側にある部分である。そして、複数のシェル部構造体120からなるシェル部は、コア部110の外表面110Sの全体を覆っているのではなく、コア部110の外表面110Sを部分的に覆っている。
なお、第1粒子状重合体は、所期の効果を著しく損なわない限り、上述したコア部およびシェル部以外に任意の構成要素を備えていてもよい。具体的には、例えば、第1粒子状重合体は、コア部の内部に、コア部とは別の重合体で形成された部分を有していてもよい。具体例を挙げると、第1粒子状重合体をシード重合法で製造する場合に用いたシード粒子が、コア部の内部に残留していてもよい。ただし、所期の効果を顕著に発揮する観点からは、第1粒子状重合体はコア部およびシェル部のみを備えることが好ましい。
[[コア部]]
−コア部の性状−
コア部を構成する重合体(以下、「コア部の重合体」と略記する場合がある。)の電解液膨潤度は、好ましくは300質量%以上、より好ましくは400質量%以上、更に好ましくは500質量%以上であり、好ましくは900質量%以下、より好ましくは800質量%以下、更に好ましくは700質量%以下である。コア部の重合体の電解液膨潤度を300質量%以上にすることにより、イオン伝導性が確保され、二次電池のレート特性などの電気的特性を向上させることができる。一方、コア部の重合体の電解液膨潤度を900質量%以下にすることにより、電極活物質を十分に拘束することができ、二次電池のサイクル特性を向上させることができる。
また、コア部を構成する重合体のガラス転移温度は、好ましくは−60℃以上、より好ましくは−55℃以上、更に好ましくは−50℃以上、特に好ましくは−40℃以上であり、好ましくは−15℃以下、より好ましくは−25℃以下、更に好ましくは−30℃以下である。コア部の重合体のガラス転移温度を−60℃以上にすることにより、第1粒子状重合体の結着性を高めて、バインダー組成物を用いて形成した電極合材層を有する電極のピール強度を向上させることができる。また、コア部の重合体のガラス転移温度を−15℃以下にすることにより、電極合材層を形成する際のプレス加工による電極活物質の変形が抑制され、その結果、二次電池のレート特性を向上させることができる。
なお、コア部の重合体の電解液膨潤度およびガラス転移温度は、特に限定されることなく、コア部の重合体の形成に使用する単量体の種類および量、並びに、コア部の重合体の分子量および架橋密度などを変更することにより調整することができる。
−コア部の組成−
なお、第1粒子状重合体のコア部の重合体としては、任意の重合体を使用することができる。そして、コア部の重合体としては、例えば、(メタ)アクリル酸エステル単量体単位を含む共重合体(A)を使用することができる。そこで、以下では、第1粒子状重合体のコア部の重合体の一例として、(メタ)アクリル酸エステル単量体単位を含む共重合体(A)について説明する。
なお、本明細書において「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の構造単位(繰り返し単位)が含まれている」ことを意味する。
ここで、共重合体(A)の(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、特に限定されることなく、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、t−ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n−テトラデシルアクリレート、ステアリルアクリレート等のアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、t−ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2−エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n−テトラデシルメタクリレート、ステアリルメタクリレート等のメタクリル酸アルキルエステルなどが挙げられる。中でも、アクリル酸アルキルエステルが好ましく、エチルアクリレート、n−ブチルアクリレート、2−エチルヘキシルアクリレートがより好ましく、n−ブチルアクリレートが更に好ましい。
なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
そして、共重合体(A)における(メタ)アクリル酸エステル単量体単位の割合は、好ましくは20質量%以上、より好ましくは50質量%以上、更に好ましくは70質量%以上、特に好ましくは90質量%以上であり、また、好ましくは99.5質量%以下、より好ましくは99質量%以下、更に好ましくは98質量%以下である。コア部の重合体中の(メタ)アクリル酸エステル単量体単位の割合が上記範囲内であれば、二次電池に優れたレート特性を発揮させることができる。
また、共重合体(A)は、上述した(メタ)アクリル酸エステル単量体単位に加え、任意に、エチレン性不飽和カルボン酸単量体単位、シアン化ビニル系単量体単位、共役ジエン系単量体単位、およびその他の単量体単位を含み得る。
ここで、共重合体(A)のエチレン性不飽和カルボン酸単量体単位を形成し得るエチレン性不飽和カルボン酸単量体としては、特に限定されることなく、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸などのモノカルボン酸およびジカルボン酸、並びに、その無水物等が挙げられる。中でも、エチレン性不飽和モノカルボン酸単量体が好ましく、アクリル酸およびメタクリル酸がより好ましく、メタクリル酸が更に好ましい。
なお、エチレン性不飽和カルボン酸単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
なお、共重合体(A)におけるエチレン性不飽和カルボン酸単量体単位の割合は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、更に好ましくは0.3質量%以上であり、好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは5質量%以下である。
また、共重合体(A)のシアン化ビニル系単量体単位を形成し得るシアン化ビニル系単量体としては、特に限定されることなく、アクリロニトリル、メタクリロニトリル、α−クロロアクリロニトリル、α−エチルアクリロニトリルなどが挙げられる。中でも、アクリロニトリルが好ましい。
なお、シアン化ビニル系単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
そして、共重合体(A)におけるシアン化ビニル系単量体単位の割合は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下である。
また、共重合体(A)の共役ジエン系単量体単位を形成し得る共役ジエン系単量体としては、特に限定されることなく、1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−クロル−1,3−ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類の脂肪族共役ジエン単量体などが挙げられる。中でも、1,3−ブタジエンが好ましい。
なお、共役ジエン系単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
ここで、共重合体(A)は、(メタ)アクリル酸エステル単量体単位の割合が少ない場合(例えば15質量%以上25質量%以下)に、共役ジエン系単量体単位を含むことが好ましい。このような場合、共重合体(A)における共役ジエン系単量体単位の割合は、好ましくは5質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上であり、また、好ましくは70質量%以下、より好ましくは55質量%以下、更に好ましくは50質量%以下である。
その他の単量体単位の例としては、下記の任意の単量体を重合して得られる単量体単位が挙げられる。なお、任意の単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
任意の単量体としては、例えば、アリルメタクリレート、N−メチロールアクリルアミドなどの架橋性単量体、スチレン、クロロスチレン、ビニルトルエン、t−ブチルスチレン、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α−メチルスチレン等のスチレン系単量体;アクリルアミド、メタクリルアミドなどの不飽和カルボン酸アミド単量体;ビニルスルホン酸、スチレンスルホン酸、アリルスルホン酸、スルホエチルメタクリレート、スルホプロピルメタクリレート、スルホブチルメタクリレートなどのスルホン酸基含有単量体およびそのアルカリ金属塩;フッ素含有(メタ)アクリル酸エステル単量体が挙げられる。
そして、共重合体(A)におけるその他の単量体単位の割合は、好ましくは0質量%以上30質量%以下、より好ましくは0質量%以上25質量%以下である。
なお、上述した共重合体(A)よりなるコア部の重合体は、後述する通り例えば上述した単量体を含むコア部用単量体組成物を水系溶媒中で重合することにより製造することができる。そして、コア部用単量体組成物中の各単量体の含有割合は、通常、所望のコア部の重合体における、対応する各繰り返し単位(単量体単位)の含有割合と同様にする。
[[シェル部]]
−シェル部の性状−
シェル部を構成する重合体(以下、「シェル部の重合体」と略記する場合がある。)の電解液膨潤度は、好ましくは100質量%超、より好ましくは105質量%以上、更に好ましくは110質量%以上であり、好ましくは200質量%以下、より好ましくは170質量%以下、更に好ましくは140質量%以下である。シェル部の重合体の電解液膨潤度を100質量%超にすることにより、イオン伝導性が確保され、二次電池のレート特性などの電気的特性を向上させることができる。一方、シェル部の重合体の電解液膨潤度を200質量%以下にすることにより、電極活物質を十分に拘束することができ、二次電池のサイクル特性を向上させることができる。
また、シェル部を構成する重合体のガラス転移温度は、好ましくは40℃以上、より好ましくは60℃以上、更に好ましくは80℃以上であり、好ましくは200℃以下、より好ましくは160℃以下、更に好ましくは140℃以下である。シェル部の重合体のガラス転移温度を上述の範囲内にすることで、第1粒子状重合体の結着性を高めて、バインダー組成物を用いて形成した電極合材層を有する電極のピール強度を向上させることができる。
−シェル部の組成−
なお、第1粒子状重合体のシェル部の重合体としては、任意の重合体を使用することができる。そして、シェル部の重合体としては、例えば、芳香族ビニル単量体単位と、エチレン性不飽和カルボン酸単量体単位とを含む共重合体(B)を使用することができる。そこで、以下では、第1粒子状重合体のシェル部の重合体の一例として、芳香族ビニル単量体単位およびエチレン性不飽和カルボン酸単量体単位を含む共重合体(B)について説明する。
ここで、共重合体(B)の芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、特に限定されることなく、スチレン、α−メチルスチレン、ビニルトルエン、ジビニルベンゼン等が挙げられる。中でも、スチレンが好ましい。
なお、芳香族ビニル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
そして、共重合体(B)における芳香族ビニル単量体単位の割合は、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上であり、また、好ましくは99質量%以下、より好ましく98質量%以下、更に好ましくは97質量%以下である。
ここで、共重合体(B)のエチレン性不飽和カルボン酸単量体単位を形成し得るエチレン性不飽和カルボン酸単量体としては、特に限定されることなく、「コア部の組成」の項で挙げたものを使用することができる。中でも、アクリル酸およびメタクリル酸がより好ましく、メタクリル酸が更に好ましい
なお、共重合体(B)におけるエチレン性不飽和カルボン酸単量体単位の割合は、好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは3質量%以上であり、好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下である。
また、共重合体(B)は、上述した芳香族ビニル単量体単位およびエチレン性不飽和カルボン酸単量体単位に加え、その他の単量体単位を含み得る。
共重合体(B)におけるその他の単量体単位としては、「コア部の組成」で列挙された全ての単量体単位から芳香族ビニル単量体単位およびエチレン性不飽和カルボン酸単量体単位を除いたものが挙げられる。
そして、共重合体(B)における芳香族ビニル単量体単位およびエチレン性不飽和カルボン酸単量体単位以外のその他の単量体単位の割合は、好ましくは0質量%以上30質量%以下、より好ましくは0質量%以上25質量%以下である。
なお、上述した共重合体(B)よりなるシェル部の重合体は、後述する通り例えば上述した単量体を含むシェル部用単量体組成物をコア部の形成後に水系溶媒中で重合することにより製造することができる。そして、シェル部用単量体組成物中の各単量体の含有割合は、通常、所望のシェル部の重合体における、対応する各繰り返し単位(単量体単位)の含有割合と同様にする。
[[第1粒子状重合体の性状]]
−シェル部の質量比率−
第1粒子状重合体中のシェル部の質量比率は、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上であり、好ましくは35質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下である。第1粒子状重合体の質量に占めるシェル部の質量の比率が3質量%以上であることで、二次電池のサイクル特性を向上させることができる。一方、第1粒子状重合体の質量に占めるシェル部の質量の比率が35質量%以下であることで、バインダー組成物を用いて得られる電極合材層のイオン伝導性が確保され、レート特性などの電気的特性を向上させることができる。また、電極合材層と集電体の間のピール強度を向上させることができる。
−個数平均粒子径−
また、第1粒子状重合体は、個数平均粒子径が、100nm以上であることが好ましく、150nm以上であることがより好ましく、200nm以上であることが更に好ましく、300nm以上であることが特に好ましく、1000nm以下であることが好ましく、800nm以下であることがより好ましく、600nm以下であることが更に好ましく、400nm以下であることが特に好ましい。第1粒子状重合体の個数平均粒子径が上記範囲内にあることで、電極活物質の膨張および収縮の抑制と電極合材層の抵抗の低減とを良好に達成することができるからである。
なお、第1粒子状重合体の個数平均粒子径は、例えば、乳化剤の量、単量体の量などを調整することで、適宜調整することができる。
[[第1粒子状重合体の製造方法]]
そして、上述したコアシェル構造を有する第1粒子状重合体は、例えば、コア部の重合体の単量体と、シェル部の重合体の単量体とを用い、経時的にそれらの単量体の比率を変えて段階的に重合することにより、製造することができる。具体的には、第1粒子状重合体は、先の段階の重合体を後の段階の重合体が順次に被覆するような連続した多段階乳化重合法および多段階懸濁重合法によって製造することができる。
そこで、以下に、多段階乳化重合法により上記コアシェル構造を有する第1粒子状重合体を得る場合の一例を示す。
重合に際しては、常法に従って、乳化剤として、例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム等のアニオン性界面活性剤、ポリオキシエチレンノニルフェニルエーテル、ソルビタンモノラウレート等のノニオン性界面活性剤、またはオクタデシルアミン酢酸塩等のカチオン性界面活性剤を用いることができる。また、重合開始剤として、例えば、t−ブチルパーオキシ−2−エチルヘキサノエート、過硫酸カリウム、キュメンパーオキサイド等の過酸化物、2,2’−アゾビス(2−メチル−N−(2−ハイドロキシエチル)−プロピオンアミド)、2,2’−アゾビス(2−アミジノプロパン)塩酸塩等のアゾ化合物を用いることができる。
重合の方法としては、コア部用単量体組成物を重合してコア部の重合体を形成する工程(コア部形成工程)と、前記コア部の重合体を含む重合系内にシェル部用単量体組成物を添加し、当該シェル部用単量体組成物を重合することで前記コア部の外表面を部分的に覆うシェル部の重合体を形成する工程(シェル部形成工程)を経る方法を採用することができる。
そして、具体的な重合手順としては、まずコア部形成工程において、水などの重合溶媒に、コア部を形成する単量体および乳化剤を混合してなるコア部用単量体組成物に、重合開始剤を入れ、一括で乳化重合することによってコア部を構成する粒子状の重合体を得る。さらにシェル部形成工程において、このコア部を構成する粒子状の重合体の存在下にシェル部を形成する単量体を含むシェル部用単量体組成物の重合を行うことによって、上述したコアシェル構造を有する第1粒子状重合体を得ることができる。
ここで、シェル部用単量体組成物は、複数回に分割して、もしくは、連続して、重合系に供給することが好ましい。この際、コア部の外表面をシェル部によって部分的に覆う観点から、重合系内へのシェル部用単量体組成物の添加は、短時間で行うことが好ましい。シェル部用単量体組成物の添加開始から添加終了までの時間(添加時間)は、生産スケールなどにより異なるが、好ましくは1時間以下、より好ましくは40分以下、更に好ましくは20分以下、より一層好ましくは10分以下、特に好ましくは5分以下、最も好ましくは3分以下(実質的に一括添加)である。
このような手法を採用することにより、シェル部を構成する重合体が粒子状に形成されシェル部構造体となり、このシェル部構造体がコア部と結合することで、コア部を部分的に覆うシェル部を形成することができる。
また、シェル部の重合体を形成する単量体として重合溶媒に対して親和性の低い単量体を用いると、コア部を部分的に覆うシェル部を形成し易くなる傾向がある。従って、重合溶媒が水の場合、シェル部の重合体を形成する単量体は、疎水性単量体を含むことが好ましく、芳香族ビニル単量体を含むことが特に好ましい。
更に、シェル部の重合に用いる乳化剤量を少なくしたり、シェル部の重合の際の温度を上昇させたりすると、コア部を部分的に覆うシェル部を形成し易くなる傾向がある。従って、適宜乳化剤量や重合温度を調整することによっても、コア部を部分的に覆うシェル部を形成することができる。
[第2粒子状重合体]
本発明のバインダー組成物は、上述の第1粒子状重合体に加え、電解液膨潤度が100質量%超200質量%以下であり、且つ、ガラス転移温度が−10℃以上40℃以下である第2粒子状重合体を含むことが好ましい。そして、第2粒子状重合体は、本発明のバインダー組成物を用いて電極合材層を形成した際に、主に、良好な結着性を発揮すると共に、膨張および収縮する電極活物質を十分に拘束して電極の膨れを抑制する機能を発揮する。
なお、本発明において第1粒子状重合体に含まれる重合体は、第2粒子状重合体には含まれないものとする。
−電解液膨潤度−
ここで、第2粒子状重合体の電解液膨潤度は、100質量%超200質量%以下であることが必要であり、120質量%以上であることが好ましく、140質量%以上であることがより好ましく、180質量%以下であることが好ましく、160質量%以下であることがより好ましい。第2粒子状重合体の電解液膨潤度を100質量%超にすることにより、イオン伝導性の低下を抑制して二次電池のレート特性などの電気的特性が低下するのを抑制することができる。また、第2粒子状重合体の電解液膨潤度を200質量%以下にすることにより、電極活物質が十分に拘束でき、その結果、二次電池のサイクル特性が向上する。
−ガラス転移温度−
また、第2粒子状重合体のガラス転移温度は、−10℃以上40℃以下であることが必要であり、−5℃以上であることが好ましく、0℃以上であることがより好ましく、30℃以下であることが好ましく、20℃以下であることがより好ましく、15℃以下であることが更に好ましい。第2粒子状重合体のガラス転移温度を上述の範囲内にすることにより、結着性が十分に向上し、その結果、バインダー組成物を用いて形成した電極合材層を有する電極のピール強度が向上する。また、第2粒子状重合体のガラス転移温度を40℃以下とすることにより、プレス加工時の電極活物質の変形を抑制することができ、その結果、二次電池のレート特性が向上する。
なお、第2粒子状重合体の電解液膨潤度およびガラス転移温度は、特に限定されることなく、第2粒子状重合体の形成に使用する単量体の種類および量、並びに、第2粒子状重合体の分子量および架橋密度などを変更することにより調整することができる。
−個数平均粒子径−
また、第2粒子状重合体は、個数平均粒子径が、100nm以上であることが好ましく、120nm以上であることがより好ましく、200nm以下であることが好ましく、170nm以下であることがより好ましい。個数平均粒子径が上記範囲内にあることで、電極活物質の膨張および収縮の抑制と電極合材層の抵抗の低減とを良好に達成することができる。
ここで、上述した第1粒子状重合体および第2粒子状重合体の個数平均粒子径は、第1粒子状重合体の個数平均粒子径が、第2粒子状重合体の個数平均粒子径の1倍以上であることが好ましく、1.5倍以上であることがより好ましく、2倍以上であることが更に好ましく、5倍以下であることが好ましく、4倍以下であることがより好ましく、3倍以下であることが更に好ましい。第1粒子状重合体および第2粒子状重合体の個数平均粒子径の粒子径比(第1粒子状重合体/第2粒子状重合体)を上記範囲内とすれば、第1粒子状重合体および第2粒子状重合体の夫々に所期の機能を良好に発揮させ、二次電池のレート特性とサイクル特性とを高い次元で両立させることができる。
−重合体組成−
なお、第2粒子状重合体を構成する重合体としては、上述した性状を有し、且つ、分散媒としての水系媒体中において粒子状態で存在する重合体であれば、任意の重合体を使用することができる。具体的には、第2粒子状重合体を構成する重合体としては、特に限定されることなく、例えば、共役ジエン系単量体単位および芳香族ビニル単量体単位を有する共重合体(C)を使用することができる。そこで、以下では、第2粒子状重合体を構成し得る重合体の一例として、共役ジエン系単量体単位および芳香族ビニル単量体単位を有する共重合体(C)について説明する。
ここで、共重合体(C)の共役ジエン系単量体単位を形成し得る共役ジエン系単量体としては、特に限定されることなく、「第1粒子状重合体」の項で挙げたものを使用することができる。中でも、1,3−ブタジエンが好ましい。
なお、共役ジエン系単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
そして、共重合体(C)における共役ジエン系単量体単位の割合は、好ましくは5質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上であり、また、好ましくは70質量%以下、より好ましくは55質量%以下、更に好ましくは40質量%以下である。第2粒子状重合体中の共役ジエン系単量体単位の割合が上記範囲内であれば、二次電池に優れたサイクル特性を発揮させることができる。
また、共重合体(C)の芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、特に限定されることなく、「第1粒子状重合体」の項で挙げたものを使用することができる。中でも、スチレンが好ましい。
なお、芳香族ビニル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
そして、共重合体(C)における芳香族ビニル単量体単位の割合は、好ましくは10質量%以上、より好ましくは30質量%以上、更に好ましくは50質量%以上であり、また、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下である。第2粒子状重合体中の芳香族ビニル単量体単位の割合が上記範囲内であれば、二次電池に優れたサイクル特性を発揮させることができる。
なお、共重合体(C)は、上述した共役ジエン系単量体単位および芳香族ビニル単量体単位以外の単量体単位を有していてもよい。
具体的には、共重合体(C)は、共役ジエン系単量体単位および芳香族ビニル単量体単位に加え、エチレン性不飽和カルボン酸単量体単位、シアン化ビニル系単量体単位、(メタ)アクリル酸エステル単量体単位、ヒドロキシアルキル基を含有する不飽和単量体単位、不飽和カルボン酸アミド単量体単位等を含むことができる。
ここで、共重合体(C)のエチレン性不飽和カルボン酸単量体単位を形成し得るエチレン性不飽和カルボン酸単量体としては、特に限定されることなく、「第1粒子状重合体」の項で挙げたものを使用することができる。中でも、アクリル酸、メタクリル酸およびイタコン酸が好ましい。
なお、エチレン性不飽和カルボン酸単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
そして、共重合体(C)におけるエチレン性不飽和カルボン酸単量体単位の割合は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、更に好ましくは0.3質量%以上であり、好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは5質量%以下である。
また、共重合体(C)のシアン化ビニル系単量体単位を形成し得るシアン化ビニル系単量体としては、特に限定されることなく、「第1粒子状重合体」の項で挙げたものを使用することができる。中でも、アクリロニトリル、メタクリロニトリルが好ましい。
なお、シアン化ビニル系単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
そして、共重合体(C)におけるシアン化ビニル系単量体単位の割合は、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、好ましくは10質量%以下、より好ましくは8質量%以下である。
更に、共重合体(C)の(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、特に限定されることなく、「第1粒子状重合体」の項で挙げたものを使用することができる。
なお、(メタ)アクリル酸エステル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
そして、共重合体(C)における(メタ)アクリル酸エステル単量体単位の割合は、好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは5質量%以下である。
また、共重合体(C)のヒドロキシアルキル基を含有する不飽和単量体単位を形成し得るヒドロキシアルキル基を含有する不飽和単量体としては、例えば、β−ヒドロキシエチルアクリレート、β−ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3−クロロ−2−ヒドロキシプロピルメタクリレート、ジ−(エチレングリコール)マレエート、ジ−(エチレングリコール)イタコネート、2−ヒドロキシエチルマレエート、ビス(2−ヒドロキシエチル)マレエート、2−ヒドロキシエチルメチルフマレートなどが挙げられる。中でも、β−ヒドロキシエチルアクリレートが好ましい。
なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
そして、共重合体(C)におけるヒドロキシアルキル基を含有する不飽和単量体単位の割合は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、更に好ましくは0.3質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下である。
更に、共重合体(C)の不飽和カルボン酸アミド単量体単位を形成し得る不飽和カルボン酸アミド単量体としては、例えば、アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、N,N−ジメチルアクリルアミド等が挙げられる。中でも、アクリルアミド、メタクリルアミドが好ましい。
なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
そして、共重合体(C)における不飽和カルボン酸アミド単量体単位の割合は、好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは5質量%以下である。
なお、上述した共重合体(C)よりなる第2粒子状重合体は、例えば、上述した単量体を含む第2粒子状重合体用単量体組成物を水系溶媒中で重合することにより製造することができる。ここで、第2粒子状重合体用単量体組成物中の各単量体の含有割合は、通常、所望の第2粒子状重合体における、対応する各繰り返し単位(単量体単位)の含有割合と同様にする。
ここで、重合様式は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合反応としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。なお、高分子量体が得やすいこと、並びに、重合物がそのまま水に分散した状態で得られるので再分散化の処理が不要であり、そのままバインダー組成物の製造に供することができることなど、製造効率の観点からは、乳化重合法が特に好ましい。なお、乳化重合は、常法に従い行うことができる。
そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤、連鎖移動剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とする。また重合に際しては、シード粒子を採用してシード重合を行ってもよい。また、重合条件も、重合方法および重合開始剤の種類などにより任意に選択することができる。
なお、上述した重合方法によって得られる重合体粒子の水系分散液は、例えばアルカリ金属(例えば、Li、Na、K、Rb、Cs)の水酸化物、アンモニア、無機アンモニウム化合物(例えばNH4Clなど)、有機アミン化合物(例えばエタノールアミン、ジエチルアミンなど)などを含む塩基性水溶液を用いて、pHが通常5〜10、好ましくは5〜9の範囲になるように調整してもよい。
[粒子状重合体の含有量]
ここで、本発明のバインダー組成物は、第1粒子状重合体の含有量が、固形分換算で、第1粒子状重合体と第2粒子状重合体との合計100質量部当たり、30質量部以上であることが好ましく、50質量部以上であることがより好ましく、70質量部以上であることが更に好ましく、95質量部以下であることが好ましく、90質量部以下であることがより好ましく、85質量部以下であることが更に好ましい。第1粒子状重合体の含有量を上記範囲内とすれば、二次電池のレート特性とサイクル特性とを高い次元で両立させることができる。
<その他の成分>
本発明のバインダー組成物は、上記粒子状の結着材(第1粒子状重合体および第2粒子状重合体)の他に、水溶性重合体、導電助剤、補強材、レベリング剤、粘度調整剤、電解液添加剤等の成分を含有していてもよい。これらは、電池反応に影響を及ぼさないものであれば特に限られず、公知のもの、例えば国際公開第2012/115096号に記載のものを使用することができる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<バインダー組成物の調製>
本発明のバインダー組成物は、上記各成分を分散媒としての水系媒体中に分散させることにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記各成分と水などの水系媒体とを混合することにより、バインダー組成物を調製することができる。
なお、各粒子状重合体は、水系溶媒中で単量体組成物を重合して調製した場合には、水分散液の状態でそのまま混合することができる。また、粒子状重合体を水分散液の状態で混合する場合には、水分散液中の水を上記水系媒体として使用してもよい。
(二次電池電極用スラリー組成物)
本発明の二次電池電極用スラリー組成物は、水系媒体を分散媒とした水系スラリー組成物であり、電極活物質と、上述したバインダー組成物とを含む。即ち、本発明の二次電池電極用スラリー組成物は、電極活物質と、上述した第1粒子状重合体と、水などの分散媒とを少なくとも含み、任意に、第2粒子状重合体およびその他の成分を更に含有する。そして、本発明の二次電池電極用スラリー組成物は、上述したバインダー組成物を含んでいるので、当該スラリー組成物を用いて形成された電極合材層を有する電極は、当該電極を用いた二次電池に優れたレート特性およびサイクル特性を発揮させることができる。
なお、以下では、一例として二次電池電極用スラリー組成物がリチウムイオン二次電池電極用スラリー組成物である場合について説明するが、本発明は下記の一例に限定されるものではない。
<電極活物質>
電極活物質は、リチウムイオン二次電池の電極(正極、負極)において電子の受け渡しをする物質である。そして、リチウムイオン二次電池の電極活物質(正極活物質、負極活物質)としては、通常は、リチウムを吸蔵および放出し得る物質を用いる。
[正極活物質]
具体的には、正極活物質としては、遷移金属を含有する化合物、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属との複合金属酸化物などを用いることができる。なお、遷移金属としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
ここで、遷移金属酸化物としては、例えばMnO、MnO2、V25、V613、TiO2、Cu223、非晶質V2O−P25、非晶質MoO3、非晶質V25、非晶質V613等が挙げられる。
遷移金属硫化物としては、TiS2、TiS3、非晶質MoS2、FeSなどが挙げられる。
リチウムと遷移金属との複合金属酸化物としては、層状構造を有するリチウム含有複合金属酸化物、スピネル型構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コバルト酸化物(LiCoO2)、リチウム含有ニッケル酸化物(LiNiO2)、Co−Ni−Mnのリチウム含有複合酸化物(Li(Co Mn Ni)O2)、Ni−Mn−Alのリチウム含有複合酸化物、Ni−Co−Alのリチウム含有複合酸化物、LiMaO2とLi2MbO3との固溶体などが挙げられる。なお、Co−Ni−Mnのリチウム含有複合酸化物としては、Li[Ni0.5Co0.2Mn0.3]O2、Li[Ni1/3Co1/3Mn1/3]O2などが挙げられる。また、LiMaO2とLi2MbO3との固溶体としては、例えば、xLiMaO2・(1−x)Li2MbO3などが挙げられる。ここで、xは0<x<1を満たす数を表し、Maは平均酸化状態が3+である1種類以上の遷移金属を表し、Mbは平均酸化状態が4+である1種類以上の遷移金属を表す。このような固溶体としては、Li[Ni0.17Li0.2Co0.07Mn0.56]O2などが挙げられる。
なお、本明細書において、「平均酸化状態」とは、前記「1種類以上の遷移金属」の平均の酸化状態を示し、遷移金属のモル量と原子価とから算出される。例えば、「1種類以上の遷移金属」が、50mol%のNi2+と50mol%のMn4+から構成される場合には、「1種類以上の遷移金属」の平均酸化状態は、(0.5)×(2+)+(0.5)×(4+)=3+となる。
スピネル型構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム(LiMn24)や、マンガン酸リチウム(LiMn24)のMnの一部を他の遷移金属で置換した化合物が挙げられる。具体例としては、LiNi0.5Mn1.54などのLis[Mn2-tMct]O4が挙げられる。ここで、Mcは平均酸化状態が4+である1種類以上の遷移金属を表す。Mcの具体例としては、Ni、Co、Fe、Cu、Cr等が挙げられる。また、tは0<t<1を満たす数を表し、sは0≦s≦1を満たす数を表す。なお、正極活物質としては、Li1+xMn2-x4(0<X<2)で表されるリチウム過剰のスピネル化合物なども用いることができる。
オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、オリビン型リン酸鉄リチウム(LiFePO4)、オリビン型リン酸マンガンリチウム(LiMnPO4)などのLiyMdPO4で表されるオリビン型リン酸リチウム化合物が挙げられる。ここで、Mdは平均酸化状態が3+である1種類以上の遷移金属を表し、例えばMn、Fe、Co等が挙げられる。また、yは0≦y≦2を満たす数を表す。さらに、LiyMdPO4で表されるオリビン型リン酸リチウム化合物は、Mdが他の金属で一部置換されていてもよい。置換しうる金属としては、例えば、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、BおよびMoなどが挙げられる。
[負極活物質]
また、負極活物質としては、例えば、炭素系負極活物質、金属系負極活物質、およびこれらを組み合わせた負極活物質などが挙げられる。
ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいい、炭素系負極活物質としては、例えば炭素質材料と黒鉛質材料とが挙げられる。
炭素質材料は、炭素前駆体を2000℃以下で熱処理して炭素化させることによって得られる、黒鉛化度の低い(即ち、結晶性の低い)材料である。なお、炭素化させる際の熱処理温度の下限は特に限定されないが、例えば500℃以上とすることができる。
そして、炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
ここで、易黒鉛性炭素としては、例えば、石油または石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。
また、難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
黒鉛質材料は、易黒鉛性炭素を2000℃以上で熱処理することによって得られる、黒鉛に近い高い結晶性を有する材料である。なお、熱処理温度の上限は、特に限定されないが、例えば5000℃以下とすることができる。
そして、黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛などが挙げられる。
ここで、人造黒鉛としては、例えば、易黒鉛性炭素を含んだ炭素を主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
また、金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。金属系活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)およびその合金、並びに、それらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが用いられる。これらの中でも、金属系負極活物質としては、ケイ素を含む活物質(シリコン系負極活物質)が好ましい。シリコン系負極活物質を用いることにより、リチウムイオン二次電池を高容量化することができるからである。
シリコン系負極活物質としては、例えば、ケイ素(Si)、ケイ素を含む合金、SiO、SiOx、Si含有材料を導電性カーボンで被覆または複合化してなるSi含有材料と導電性カーボンとの複合化物などが挙げられる。なお、これらのシリコン系負極活物質は、1種類を単独で用いてもよいし、2種類上を組み合わせて用いてもよい。
ケイ素を含む合金としては、例えば、ケイ素と、アルミニウムと、鉄などの遷移金属とを含み、さらにスズおよびイットリウム等の希土類元素を含む合金組成物が挙げられる。
SiOxは、SiOおよびSiO2の少なくとも一方と、Siとを含有する化合物であり、xは、通常、0.01以上2未満である。そして、SiOxは、例えば、一酸化ケイ素(SiO)の不均化反応を利用して形成することができる。具体的には、SiOxは、SiOを、任意にポリビニルアルコールなどのポリマーの存在下で熱処理し、ケイ素と二酸化ケイ素とを生成させることにより、調製することができる。なお、熱処理は、SiOと、任意にポリマーとを粉砕混合した後、有機物ガス及び/又は蒸気を含む雰囲気下、900℃以上、好ましくは1000℃以上の温度で行うことができる。
Si含有材料と導電性カーボンとの複合化物としては、例えば、SiOと、ポリビニルアルコールなどのポリマーと、任意に炭素材料との粉砕混合物を、例えば有機物ガスおよび/または蒸気を含む雰囲気下で熱処理してなる化合物を挙げることができる。また、SiOの粒子に対して、有機物ガスなどを用いた化学的蒸着法によって表面をコーティングする方法、SiOの粒子と黒鉛または人造黒鉛をメカノケミカル法によって複合粒子化(造粒化)する方法などの公知の方法でも得ることができる。
<バインダー組成物>
リチウムイオン二次電池電極用スラリー組成物に配合し得るバインダー組成物としては、水と、第1粒子状重合体と、任意に第2粒子状重合体とを含む本発明の二次電池電極用バインダー組成物を用いることができる。
なお、バインダー組成物の配合量は、特に限定されることなく、例えば電極活物質100質量部当たり、固形分換算で、第1粒子状重合体および第2粒子状重合体が合計で0.5質量部以上3.0質量部以下となる量とすることができる。
<その他の成分>
スラリー組成物に配合し得るその他の成分としては、特に限定することなく、本発明のバインダー組成物に配合し得るその他の成分と同様のものが挙げられる。また、その他の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<スラリー組成物の調製>
上述したスラリー組成物は、上記各成分を分散媒としての水系媒体中に分散させることにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記各成分と水系媒体とを混合することにより、スラリー組成物を調製することができる。なお、上記各成分と水系媒体との混合は、通常、室温〜80℃の範囲で、10分〜数時間行うことができる。
ここで、水系媒体としては、通常は水を用いるが、任意の化合物の水溶液や、少量の有機媒体と水との混合溶液などを用いてもよい。なお、水系媒体として使用される水には、バインダー組成物が含有していた水も含まれ得る。
(二次電池用電極)
本発明の二次電池電極用バインダー組成物を用いて調製した上記二次電池電極用スラリー組成物(負極用スラリー組成物および正極用スラリー組成物)は、二次電池用電極(負極および正極)の製造に用いることができる。
ここで、二次電池用電極は、集電体と、集電体上に形成された電極合材層とを備え、電極合材層には、少なくとも、電極活物質と、上述した第1粒子状重合体とが含まれている。なお、電極合材層中に含まれている各成分は、上記二次電池電極用スラリー組成物中に含まれていたものであり、それら各成分の好適な存在比は、スラリー組成物中の各成分の好適な存在比と同じである。
そして、上記二次電池用電極は、本発明の二次電池電極用バインダー組成物を使用しているので、二次電池に優れたレート特性およびサイクル特性を発揮させることができる。
<二次電池用電極の製造方法>
なお、本発明の二次電池用電極は、例えば、上述した二次電池電極用スラリー組成物を集電体上に塗布する工程(塗布工程)と、集電体上に塗布された二次電池電極用スラリー組成物を乾燥して集電体上に電極合材層を形成する工程(乾燥工程)とを経て製造される。即ち、本発明の二次電池用電極中の電極合材層は、本発明の二次電池電極用スラリー組成物の乾燥物よりなる。なお、上述した第1粒子状重合体および/または第2粒子状重合体に含まれる重合体が、架橋性単量体由来の単量体単位(架橋性単量体単位)を含む場合には、当該架橋性単量体単位を含む重合体は、二次電池電極用スラリー組成物の乾燥時、または、乾燥後に任意に実施される熱処理時に架橋されていてもよい(即ち、本発明の二次電池用電極中の電極合材層は、上述した第1粒子状重合体および/または第2粒子状重合体の架橋物を含んでいてもよい)。
[塗布工程]
上記二次電池電極用スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる電極合材層の厚みに応じて適宜に設定しうる。
ここで、スラリー組成物を塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。中でも、負極に用いる集電体としては、銅箔が特に好ましい。また、正極に用いる集電体としては、アルミニウム箔が特に好ましい。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[乾燥工程]
集電体上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上の電極用スラリー組成物を乾燥することで、集電体上に電極合材層を形成し、集電体と電極合材層とを備える二次電池用電極を得ることができる。
なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、電極合材層に加圧処理(プレス加工)を施してもよい。プレス加工により、電極合材層と集電体との密着性を向上させることができる。また、電極合材層を高密度化し、二次電池を小型化することができる。
さらに、電極合材層が硬化性の重合体を含む場合は、電極合材層の形成後に前記重合体を硬化させることが好ましい。
ここで、電極合材層にプレス加工を施して電極合材層を高密度化する場合、電極合材層の気孔率が、好ましくは10.7%以上、より好ましくは15.2%以上、更に好ましくは17.4%以上となるようにプレス加工を施すとよく、また、好ましくは24.1%以下、より好ましくは22.8%以下、更に好ましくは21.9%以下となるようにプレス加工を施すとよい。本発明の二次電池電極用バインダー組成物を使用すれば、特に気孔率を24.1%以下として電極合材層を高密度化した場合に、他のバインダー組成物を用いた場合と比較して二次電池に優れたレート特性およびサイクル特性を発揮させることができる。なお、気孔率を10.7%未満とした場合には、本発明の二次電池電極用バインダー組成物を使用した場合であっても、レート特性およびサイクル特性が低下する虞がある。
そして、電極合材層が例えば負極合材層の場合には、負極合材層のかさ密度は、1.70g/cm3以上とすることが好ましく、1.73g/cm3以上とすることがより好ましく、1.75g/cm3以上とすることが更に好ましく、2.00g/cm3以下とすることが好ましく、1.90g/cm3以下とすることがより好ましく、1.85g/cm3以下とすることが更に好ましい。本発明の二次電池電極用バインダー組成物を使用すれば、かさ密度を1.70g/cm3以上として負極合材層を高密度化した場合であっても、他のバインダー組成物を用いた場合と比較して二次電池に優れたレート特性およびサイクル特性を発揮させることができる。なお、かさ密度が2.00g/cm3超となるまで高密度化した場合には、本発明の二次電池電極用バインダー組成物を使用した場合であっても、レート特性およびサイクル特性が低下する虞がある。
(二次電池)
本発明の二次電池は、正極と、負極と、電解液と、セパレータとを備え、正極および負極の少なくとも一方として、本発明の二次電池用電極を用いたものである。そして、本発明の二次電池は、本発明の二次電池用電極を備えているので、レート特性およびサイクル特性に優れている。
なお、以下では、一例として二次電池がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。
<電極>
上述のように、本発明の二次電池用電極が、正極および負極の少なくとも一方として用いられる。即ち、リチウムイオン二次電池の正極が本発明の電極であり負極が他の既知の負極であってもよく、リチウムイオン二次電池の負極が本発明の電極であり正極が他の既知の正極であってもよく、そして、リチウムイオン二次電池の正極および負極の両方が本発明の電極であってもよい。
<電解液>
電解液としては、溶媒に電解質を溶解した電解液を用いることができる。
ここで、溶媒としては、電解質を溶解可能な有機溶媒を用いることができる。具体的には、溶媒としては、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン等のアルキルカーボネート系溶媒に、2,5−ジメチルテトラヒドロフラン、テトラヒドロフラン、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート、酢酸メチル、ジメトキシエタン、ジオキソラン、プロピオン酸メチル、ギ酸メチル等の粘度調整溶媒を添加したものを用いることができる。
電解質としては、リチウム塩を用いることができる。リチウム塩としては、例えば、特開2012−204303号公報に記載のものを用いることができる。これらのリチウム塩の中でも、有機溶媒に溶解しやすく、高い解離度を示すという点より、電解質としてはLiPF6、LiClO4、CF3SO3Liが好ましい。
<セパレータ>
セパレータとしては、例えば特開2012−204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、リチウムイオン二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系の樹脂(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)からなる微多孔膜が好ましい。
<リチウムイオン二次電池の製造方法>
リチウムイオン二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。リチウムイオン二次電池の内部の圧力上昇、過充放電などの発生を防止するために、必要に応じて、ヒューズ、PTC素子などの過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。リチウムイオン二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
実施例および比較例において、第1粒子状重合体のコア部を構成する重合体およびシェル部を構成する重合体、並びに第2粒子状重合体の電解液膨潤度、ガラス転移温度、第1粒子状重合体および第2粒子状重合体の個数平均粒子径、第1粒子状重合体中のシェル部の質量比率、電極のピール強度、気孔率およびかさ密度、二次電池のレート特性およびサイクル特性は、それぞれ以下の方法を使用して評価した。
<電解液膨潤度>
第1粒子状重合体のコア部およびシェル部の調製に使用した単量体組成物を使用し、コア部およびシェル部の重合条件と同様の重合条件で測定試料となる重合体(コア部の重合体、シェル部の重合体)の水分散液をそれぞれ作製した。
上述のコア部の重合体およびシェル部の重合体、並びに第2粒子状重合体の水分散液をそれぞれ50%湿度、23〜25℃の環境下で3日間乾燥させて、厚み3±0.3mmに成膜した。成膜したフィルムを直径12mmに裁断し、精秤した。
裁断により得られたフィルム片の質量をW0とする。このフィルム片を、50gの電解液(組成:濃度1.0MのLiPF6溶液(溶媒はエチレンカーボネート/エチルメチルカーボネート=3/7(重量比)の混合溶媒、添加剤としてビニレンカーボネート2体積%(溶媒比)を添加))に、60℃の環境下で72時間浸漬し、膨潤させた。その後、引き揚げたフィルム片(膨潤後)を軽く拭いた後、質量W1を計測した。
そして、下記式にしたがって膨潤度(質量%)を算出した。
膨潤度(質量%)=(W1/W0)×100
<ガラス転移温度>
コア部の重合体およびシェル部の重合体、並びに第2粒子状重合体の水分散液をそれぞれ乾燥させて測定試料を準備した。そして、示差熱分析測定装置(エスアイアイ・ナノテクノロジー社製、製品名「EXSTAR DSC6220」)を用いてガラス転移温度を測定した。
具体的には、測定試料10mgをアルミパンに計量し、リファレンスとして空のアルミパンを用い、測定温度範囲−100℃〜500℃の間で、昇温速度10℃/分、常温常湿下で、DSC曲線を測定した。この昇温過程で、微分信号(DDSC)が0.05mW/分/mg以上となるDSC曲線の吸熱ピークが出る直前のベースラインと、吸熱ピーク後に最初に現れる変曲点でのDSC曲線の接線との交点から、ガラス転移温度を求めた。
<個数平均粒子径>
粒子状重合体(第1粒子状重合体、第2粒子状重合体)の個数平均粒子径は、レーザー回折・散乱式粒度分布測定装置(ベックマン・コールター社製、LS230)を用いて測定した。
具体的には、粒子状重合体を含む水分散液について、レーザー回折・散乱式粒度分布測定装置を用いて粒子状重合体の粒子径−個数積算分布を測定し、積算分布の値が50%となる粒子径を個数平均粒子径とした。
<第1粒子状重合体中のシェル部の質量比率>
第1粒子状重合体中のシェル部の質量比率は、コア部形成用単量体組成物に含まれる全単量体の質量の合計M1とシェル部形成用単量体組成物に含まれる全単量体の質量の合計M2とから以下の式で算出した。
シェル部の質量比率(質量%)={M2/(M1+M2)}×100
<電極のピール強度>
作製したリチウムイオン二次電池用負極を、幅1.0cm×長さ10cmの矩形に切って試験片とし、負極合材層側の表面を上にして固定した。そして、試験片の負極合材層側の表面にセロハンテープを貼り付けた。この際、セロハンテープはJIS Z1522に規定されるものを用いた。その後、試験片の一端からセロハンテープを50mm/分の速度で180°方向(試験片の他端側)に引き剥がしたときの応力を測定した。測定を10回行い、応力の平均値を求めて、これをピール強度(N/m)とし、以下の基準で評価した。ピール強度が大きいほど、集電体に対する負極合材層の結着性が優れていることを示す。
A:ピール強度が8N/m以上
B:ピール強度が5N/m以上8N/m未満
C:ピール強度が3N/m以上5N/m未満
D:ピール強度が3N/m未満
<気孔率およびかさ密度>
作製したリチウムイオン二次電池用負極の負極合材層の気孔率およびかさ密度は、以下の式に基づいて算出した。なお、負極合材層の真密度は、負極用スラリー組成物中に含まれている固形分の密度(理論値)より算出した。
かさ密度(g/cm3)=負極合材層の目付量/負極合材層の厚み
気孔率(%)={1−(負極合材層のかさ密度/負極合材層の真密度)}×100
<二次電池のレート特性>
作製したパウチ型のリチウムイオン二次電池を、24時間静置した後に、0.2Cの充放電レートにて4.4Vまで充電し3.0Vまで放電する操作を行った。その後、25℃で0.2Cの充電レートで4.4Vまで充電し、1.0Cの放電レートで3.0Vまで放電する充放電サイクルと、3.0Cの放電レートで3.0Vまで放電する充放電サイクルとを、それぞれ行った。1.0Cにおける電池容量に対する3.0Cにおける電池容量の割合を百分率で算出して充放電レート特性とし、下記の基準で評価した。充放電レート特性の値が高いほど、内部抵抗が小さく、高速充放電が可能であり、レート特性に優れていることを示す。
A:充放電レート特性が70%以上
B:充放電レート特性が65%以上70%未満
C:充放電レート特性が60%以上65%未満
D:充放電レート特性が60%未満
<二次電池のサイクル特性>
作製したパウチ型のリチウムイオン二次電池を、24時間静置した後に、0.2Cの充放電レートにて4.4Vまで充電し3.0Vまで放電する操作を行い、初期容量C0を測定した。さらに、45℃環境下で、1.0Cの充放電レートで4.4Vまで充電し、3.0Vまで放電する充放電サイクルを繰り返し、300サイクル後の容量C1を測定した。そして、高温サイクル特性を、ΔC=(C1/C0)×100(%)で示す容量維持率にて評価した。この容量維持率の値が高いほど、放電容量の低下が少なく、高温サイクル特性に優れていることを示す。
A:容量維持率ΔCが80%以上
B:容量維持率ΔCが75%以上80%未満
C:容量維持率ΔCが70%以上75%未満
D:容量維持率ΔCが70%未満
(実施例1)
<第1粒子状重合体の調製>
攪拌機を備えた反応器に、(メタ)アクリル酸エステル単量体としてブチルアクリレート76.8部(コア部中96.0%)、エチレン性不飽和カルボン酸単量体としてメタクリル酸1.6部(コア部中2.0%)、シアン化ビニル系単量体としてアクリロニトリル1.6部(コア部中2.0%)、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.3部、重合開始剤として過硫酸アンモニウム0.3部、イオン交換水300部を入れ、十分に攪拌した後、70℃に加温して4時間反応を進行させた(コア部形成工程)。次いで、芳香族ビニル単量体としてスチレン19.0部(シェル部中95%)、エチレン性不飽和カルボン酸単量体としてメタクリル酸1.0部(シェル部中5%)を、添加時間2分以内に重合系内に添加した。添加終了後、80℃に加温して3時間反応を進行させた(シェル部形成工程)。こうして得られた重合体を含んだ水分散液を30℃以下まで冷却した。
走査型電子顕微鏡(SEM)により、シェル部がコア部の外表面を部分的に覆っている(複数のシェル部構造体がコア部の外表面に存在している)第1粒子状重合体の水分散液が得られたことを確認した。また、上述した方法で、第1粒子状重合体の個数平均粒子径、並びに、コア部の重合体とシェル部の重合体の電解液膨潤度およびガラス転移温度を測定した。結果を表2に示す。
<第2粒子状重合体の製造>
攪拌機を備えた5MPa耐圧容器に、共役ジエン系単量体として1,3−ブタジエン33.2部、エチレン性不飽和カルボン酸単量体としてイタコン酸3.8部、芳香族ビニル単量体としてスチレン62.0部、ヒドロキシアルキル基を含有する不飽和単量体として2−ヒドロキシエチルアクリレート1部、分子量調整剤としてt−ドデシルメルカプタン0.3部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.3部、イオン交換水150部、および、重合開始剤として過硫酸カリウム1.0部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却して反応を停止した。得られた共重合体を含んだ水分散液に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。更にその後、30℃以下まで冷却した。これにより、第2粒子状重合体の水分散液を得た。そして、上述した方法で、第2粒子状重合体の個数平均粒子径、電解液膨潤度およびガラス転移温度を測定した。結果を表2に示す。
<リチウムイオン二次電池負極用スラリー組成物の調製>
ディスパー付きのプラネタリーミキサーに、負極活物質として人造黒鉛(比表面積:3.6m2/g、体積平均粒子径:20μm)98.0部と、粘度調整剤としてのカルボキシメチルセルロースナトリウム塩(CMC−Na)の1%水溶液を固形分相当で1部とを加えた。そして、これらの混合物をイオン交換水で固形分濃度60%に調整した後、25℃で60分混合した。
次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分混合し混合液を得た。
次いで、上記の混合液に、第1粒子状重合体の水分散液および第2粒子状重合体の水分散液を表2に示す比率(第1粒子状重合体:第2粒子状重合体(質量比)=80:20)で混合してなるバインダー組成物を固形分相当で1部添加すると共にイオン交換水を添加し、最終固形分濃度が50%となるように調整して、さらに10分間混合した。これを減圧下で脱泡処理して、負極用スラリー組成物を得た。
<リチウムイオン二次電池用負極の作製>
調製した負極用スラリー組成物を厚さ15μmの銅箔(集電体)の上にコンマコーターで塗付量が13.5〜14.5mg/cm2となるように塗布し、乾燥させた。なお、乾燥は、70℃のオーブン内で銅箔を0.5m/分の速度で2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。次に、得られた負極原反をロールプレス機にて負極合材層のかさ密度が1.82g/cm3となるようプレスし、負極とした。なお、プレス後の負極合材層の目付量は14.0mg/cm2であり、気孔率は18.8%であった。
そして、作製した負極について、ピール強度を評価した。結果を表2に示す。
<リチウムイオン二次電池用正極の作製>
プラネタリーミキサーに、正極活物質としてLiCoO296.0部、導電助剤としてアセチレンブラック2.0部(電気化学工業(株)製、HS−100)、結着材としてPVDF(ポリフッ化ビニリデン、(株)クレハ化学製KF−1100)2.0部を投入し、さらに全固形分濃度が67%となるようにN−メチルピロリドンを加えて混合して、正極用スラリー組成物を得た。
そして、得られた正極用スラリー組成物を厚さ20μmのアルミ箔(集電体)の上にコンマコーターで塗布し、乾燥させた。なお、乾燥は、60℃のオーブン内でアルミ箔を0.5m/分の速度で2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して正極原反を得た。次に、得られた正極原反をロールプレス機にて正極合材層のかさ密度が3.5g/cm3となるようにプレスし、正極を得た。
<リチウムイオン二次電池の作製>
単層のポリプロピレン製セパレータ(幅65mm、長さ500mm、厚さ25μm;乾式法により製造;気孔率55%)を用意し、5cm×5cmの正方形に切り抜いた。また、電池の外装として、アルミ包材外装を用意した。
そして、作製した正極を、4cm×4cmの正方形に切り出し、集電体側の表面がアルミ包材外装に接するように配置した。次に、正極の正極合材層側の表面上に、正方形のセパレータを配置した。更に、作製した負極を、4.2cm×4.2cmの正方形に切り出し、セパレータ上に、負極合材層側の表面がセパレータに向かい合うよう配置した。その後、電解液として濃度1.0MのLiPF6溶液(溶媒はエチレンカーボネート/エチルメチルカーボネート=3/7(重量比)の混合溶媒、添加剤としてビニレンカーボネート2体積%(溶媒比)を添加)を充填した。更に、アルミ包材外装の開口を密封するために、150℃のヒートシールをしてアルミ包材外装を閉口し、リチウムイオン二次電池を製造した。
作製したリチウムイオン二次電池について、レート特性およびサイクル特性を評価した。結果を表2に示す。
(実施例2〜5、13、14)
表1に示す単量体を表1に示す量で使用した以外は実施例1と同様にして、第1粒子状重合体を調製した。なお、これらの第1粒子状重合体は、実施例1で使用したものとシェル部の質量比率が異なるが、コア部、シェル部の組成自体は実施例1と同じである。走査型電子顕微鏡(SEM)により、これらの第1粒子状重合体のシェル部がコア部の外表面を部分的に覆っている(複数のシェル部構造体がコア部の外表面に存在している)ことを確認した。また、上述した方法で、第1粒子状重合体の個数平均粒子径、並びに、コア部の重合体とシェル部の重合体の電解液膨潤度およびガラス転移温度を測定した。結果を表2に示す。
そして、当該第1粒子状重合体を使用した以外は実施例1と同様にして、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例6〜9、15、16)
第1粒子状重合体の水分散液および第2粒子状重合体の水分散液を表2に示す比率で使用した以外は、実施例1と同様にして、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例10)
表1に示す単量体を表1に示す量で使用した以外は実施例1と同様にして、第1粒子状重合体を調製した。走査型電子顕微鏡(SEM)により、この第1粒子状重合体のシェル部がコア部の外表面を部分的に覆っている(複数のシェル部構造体がコア部の外表面に存在している)ことを確認した。また、上述した方法で、第1粒子状重合体の個数平均粒子径、並びに、コア部の重合体とシェル部の重合体の電解液膨潤度およびガラス転移温度を測定した。結果を表2に示す。
そして、当該第1粒子状重合体を使用した以外は実施例1と同様にして、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例11)
リチウムイオン二次電池用負極を作製する際に、負極原反をロールプレス機にて負極合材層のかさ密度が1.65g/cm3となるようプレスした以外は実施例1と同様にして、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製した。なお、負極合材層の気孔率は26.4%であった。
そして、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例12)
シェル部用単量体組成物の添加時間を30分に変更した以外は、実施例1と同様にして、第1粒子状重合体を調製した。走査型電子顕微鏡(SEM)により、この第1粒子状重合体のシェル部がコア部の外表面を部分的に覆っている(複数のシェル部構造体がコア部の外表面に存在している)ことを確認した。また、上述した方法で、第1粒子状重合体の個数平均粒子径、並びに、コア部の重合体とシェル部の重合体の電解液膨潤度およびガラス転移温度を測定した。結果を表2に示す。
そして、当該第1粒子状重合体を使用した以外は実施例1と同様にして、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例17)
第2粒子状重合体を使用せず、第1粒子状重合体の量を1部とした以外は、実施例1と同様にして、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして評価を行った。結果を表2に示す。
(比較例1)
シェル部用単量体組成物の添加時間を180分に変更した以外は、実施例1と同様にして、第1粒子状重合体を調製した。走査型電子顕微鏡(SEM)により、この第1粒子状重合体のシェル部がコア部の外表面の全体を覆っていることを確認した。また、上述した方法で、第1粒子状重合体の個数平均粒子径、並びに、コア部の重合体とシェル部の重合体の電解液膨潤度およびガラス転移温度を測定した。結果を表2に示す。
そして、当該第1粒子状重合体を使用した以外は実施例1と同様にして、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして評価を行った。結果を表2に示す。
(比較例2)
リチウムイオン二次電池用負極を作製する際に、負極原反をロールプレス機にて負極合材層のかさ密度が1.65g/cm3となるようプレスした以外は比較例1と同様にして、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製した。なお、負極合材層の気孔率は26.4%であった。
そして、実施例1と同様にして評価を行った。結果を表2に示す。
なお、下記の表1、表2において使用した略称の意味は以下の通りである。
BA:ブチルアクリレート(アクリル酸エステル単量体)
MAA:メタクリル酸(エチレン性不飽和カルボン酸単量体)
AN:アクリロニトリル(シアン化ビニル系単量体)
BD:1,3−ブタジエン(共役ジエン系単量体)
ST:スチレン(芳香族ビニル単量体)
CMC−Na:カルボキシメチルセルロースナトリウム塩
Figure 2016035286
Figure 2016035286
表2の実施例1〜17より、シェル部がコア部の外表面を部分的に覆うコアシェル構造を有する第1粒子状重合体を用いれば、ピール強度に優れる電極、並びに、レート特性およびサイクル特性に優れる二次電池が得られることが分かる。
また、表2の比較例1、2よりシェル部がコア部の外表面の全体を覆うコアシェル構造を有する第1粒子状重合体を用いると、電極合材層の密度を高めた場合には特に、電極のピール強度の向上と、二次電池のレート特性およびサイクル特性の向上とを並立させることができないことが分かる。
そして、表2の実施例1、2〜5、13、14より、第1粒子状重合体中のシェル部の質量比率を調整することにより、電極のピール強度、並びに二次電池のレート特性およびサイクル特性を更に向上させうることがわかる。
また、表2の実施例1、6〜9、15〜17より、第1粒子状重合体と第2粒子状重合体の量比を調整することにより、電極のピール強度、並びに二次電池のレート特性およびサイクル特性を更に向上させうることがわかる。
加えて、表2の実施例1、10より、第1粒子状重合体のコア部の組成を変更することにより、二次電池のレート特性を更に向上させうることがわかる。
更に、表2の実施例1は実施例11と同等の性能を発揮しているのに対し、比較例1は比較例2よりもピール強度、レート特性およびサイクル特性に劣っていることから、シェル部がコア部の外表面を部分的に覆うコアシェル構造を有する第1粒子状重合体を用いれば、電極合材層の密度を高めた場合には特に、電極のピール強度の向上と、二次電池のレート特性およびサイクル特性の向上とを良好に並立させ得ることが分かる。
本発明によれば、二次電池に優れたレート特性およびサイクル特性を発揮させることが可能な二次電池電極用バインダー組成物を提供することができる。
また、本発明によれば、二次電池に優れたレート特性およびサイクル特性を発揮させることができる電極合材層を形成可能な二次電池電極用スラリー組成物を提供することができる。
更に、本発明によれば、二次電池に優れたレート特性およびサイクル特性を発揮させることが可能な二次電池用電極を提供することができる。
また、本発明によれば、レート特性およびサイクル特性に優れる二次電池を提供することができる。
100 第1粒子状重合体
110 コア部
110S コア部の外表面
120 シェル部構造体

Claims (13)

  1. コア部と、前記コア部の外表面を部分的に覆うシェル部とを備えるコアシェル構造を有する第1粒子状重合体を含む、二次電池電極用バインダー組成物。
  2. 前記コア部を構成する重合体の電解液膨潤度が300質量%以上900質量%以下であり、
    前記シェル部を構成する重合体の電解液膨潤度が100質量%超200質量%以下である、請求項1に記載の二次電池電極用バインダー組成物。
  3. 前記コア部を構成する重合体のガラス転移温度が−60℃以上−15℃以下であり、
    前記シェル部を構成する重合体のガラス転移温度が40℃以上200℃以下である、請求項1又は2に記載の二次電池電極用バインダー組成物。
  4. 前記第1粒子状重合体中のシェル部の質量比率が3質量%以上35質量%以下である、請求項1〜3の何れかに記載の二次電池電極用バインダー組成物。
  5. 前記コア部を構成する重合体が、(メタ)アクリル酸エステル単量体単位を50質量%以上99.5質量%以下含む、請求項1〜4の何れかに記載の二次電池電極用バインダー組成物。
  6. さらに第2粒子状重合体を含み、
    前記第2粒子状重合体が、電解液膨潤度が100質量%超200質量%以下であり、かつガラス転移温度が−10℃以上40℃以下である、請求項1〜5の何れかに記載の二次電池電極用バインダー組成物。
  7. 固形分換算で、前記第1粒子状重合体と前記第2粒子状重合体との合計100質量部当たり、前記第1粒子状重合体を30質量部以上95質量部以下含む、請求項6に記載の二次電池電極用バインダー組成物。
  8. 前記第2粒子状重合体が、共役ジエン系単量体単位を5質量%以上70質量%以下含み、且つ、芳香族ビニル単量体単位を10質量%以上90質量%以下含む、請求項6又は7に記載の二次電池電極用バインダー組成物。
  9. 前記第1粒子状重合体の個数平均粒子径が、前記第2粒子状重合体の個数平均粒子径の1倍以上5倍以下である、請求項6〜8の何れかに記載の二次電池電極用バインダー組成物。
  10. 請求項1〜9の何れかに記載の二次電池電極用バインダー組成物と、電極活物質とを含む、二次電池電極用スラリー組成物。
  11. 請求項10に記載の二次電池電極用スラリー組成物を用いて得られる電極合材層を有する、二次電池用電極。
  12. 前記電極合材層の気孔率が10.7%以上24.1%以下である、請求項11に記載の二次電池用電極。
  13. 正極、負極、セパレータおよび電解液を備え、
    前記正極および前記負極の少なくとも一方が、請求項11または12に記載の二次電池用電極である、二次電池。
JP2016546298A 2014-09-05 2015-08-26 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池 Active JP6627763B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014181328 2014-09-05
JP2014181328 2014-09-05
PCT/JP2015/004296 WO2016035286A1 (ja) 2014-09-05 2015-08-26 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池

Publications (2)

Publication Number Publication Date
JPWO2016035286A1 true JPWO2016035286A1 (ja) 2017-06-15
JP6627763B2 JP6627763B2 (ja) 2020-01-08

Family

ID=55439372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016546298A Active JP6627763B2 (ja) 2014-09-05 2015-08-26 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池

Country Status (5)

Country Link
US (1) US10290873B2 (ja)
JP (1) JP6627763B2 (ja)
KR (1) KR102418499B1 (ja)
CN (1) CN106663813B (ja)
WO (1) WO2016035286A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087827A1 (ja) * 2017-10-30 2019-05-09 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
JP7306271B2 (ja) * 2017-12-27 2023-07-11 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および、非水系二次電池
US20200399458A1 (en) * 2018-03-07 2020-12-24 Zeon Corporation Binder composition for non-aqueous secondary battery electrode and method of producing same, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
CN108598486B (zh) * 2018-05-10 2021-08-24 李强 锂离子电池水性粘合剂及其制备方法
JP7327398B2 (ja) 2018-06-29 2023-08-16 日本ゼオン株式会社 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子
US11575133B2 (en) * 2019-04-26 2023-02-07 Samsung Sdi Co., Ltd. Binder for non-aqueous electrolyte rechargeable battery, negative electrode slurry for rechargeable battery including the same, negative electrode for rechargeable battery including the same, and rechargeable battery including the same
JP7461110B2 (ja) * 2019-04-26 2024-04-03 三星エスディアイ株式会社 非水電解質二次電池用バインダー組成物、二次電池負極用スラリー、二次電池用負極、および二次電池
JP2021102710A (ja) * 2019-12-25 2021-07-15 旭化成株式会社 非水系二次電池用重合体組成物及び非水系二次電池
CN115485900A (zh) * 2020-05-29 2022-12-16 日本瑞翁株式会社 全固态二次电池用浆料组合物、含固态电解质层及全固态二次电池
CN114520329A (zh) * 2020-11-19 2022-05-20 比亚迪股份有限公司 粘接剂及其制备方法和浆料
WO2023200253A1 (ko) * 2022-04-14 2023-10-19 주식회사 엘지화학 이차전지용 바인더 조성물 및 이를 포함하는 이차전지용 전극 합제
CN115050963B (zh) * 2022-06-29 2024-05-10 上海道赢实业有限公司 一种用于锂离子电池负极的粘结剂及其制备方法和用途
WO2024024912A1 (ja) * 2022-07-29 2024-02-01 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
CN115692716B (zh) * 2022-12-28 2023-03-31 宁德新能源科技有限公司 一种用于正极极片的粘结剂、正极极片和电化学装置
CN116854952B (zh) * 2023-08-07 2024-05-07 深圳中兴新材技术股份有限公司 极性聚烯烃微球及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077212A1 (ja) * 2011-11-22 2013-05-30 Jsr株式会社 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、保護膜形成用スラリー、保護膜、および蓄電デバイス

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3721727B2 (ja) * 1997-07-04 2005-11-30 Jsr株式会社 電池電極用バインダー
JP3637351B2 (ja) * 2004-09-07 2005-04-13 松下電器産業株式会社 非水電解質二次電池
JP5201313B2 (ja) * 2007-03-30 2013-06-05 日本ゼオン株式会社 電気化学素子用電極およびその製造方法
JP5259373B2 (ja) 2008-12-19 2013-08-07 日本エイアンドエル株式会社 非水電解液二次電池電極用バインダー
JP5729799B2 (ja) 2009-02-03 2015-06-03 日本エイアンドエル株式会社 二次電池電極用バインダー
JP5570393B2 (ja) 2010-11-11 2014-08-13 東洋化学株式会社 電極用バインダー
CN103384932A (zh) 2011-02-23 2013-11-06 日本瑞翁株式会社 二次电池用负极、二次电池、负极用浆料组合物及二次电池用负极的制造方法
JP5617725B2 (ja) 2011-03-28 2014-11-05 日本ゼオン株式会社 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP5843092B2 (ja) * 2011-06-14 2016-01-13 トヨタ自動車株式会社 リチウムイオン二次電池
CN103636027B (zh) 2011-07-01 2015-10-21 日本瑞翁株式会社 二次电池用多孔膜、制造方法及用途
WO2013080989A1 (ja) * 2011-11-28 2013-06-06 日本ゼオン株式会社 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池
JP2015028840A (ja) * 2011-11-29 2015-02-12 日立マクセル株式会社 非水電解液電池用セパレータおよび非水電解液電池
CN104011920B (zh) * 2011-12-27 2016-06-29 日本瑞翁株式会社 二次电池用正极及其制造方法、浆液组合物以及二次电池
JP6222102B2 (ja) 2012-11-09 2017-11-01 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極及びその製造方法、並びにリチウムイオン二次電池
WO2015111663A1 (ja) * 2014-01-27 2015-07-30 日本ゼオン株式会社 リチウムイオン二次電池用電極及びリチウムイオン二次電池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077212A1 (ja) * 2011-11-22 2013-05-30 Jsr株式会社 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、保護膜形成用スラリー、保護膜、および蓄電デバイス

Also Published As

Publication number Publication date
CN106663813A (zh) 2017-05-10
KR20170053615A (ko) 2017-05-16
KR102418499B1 (ko) 2022-07-06
US20170256800A1 (en) 2017-09-07
JP6627763B2 (ja) 2020-01-08
US10290873B2 (en) 2019-05-14
WO2016035286A1 (ja) 2016-03-10
CN106663813B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
JP6627763B2 (ja) 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
KR102178203B1 (ko) 리튬 이온 2 차 전지 부극용 슬러리 조성물, 리튬 이온 2 차 전지용 부극 및 리튬 이온 2 차 전지
JP7054623B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
JP7020118B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
JP6645430B2 (ja) 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
JP6601413B2 (ja) 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
JP6593320B2 (ja) リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
US10249879B2 (en) Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery
WO2019208419A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー組成物、蓄電デバイス用電極、および蓄電デバイス
JP2016171074A (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP6874690B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2020004332A1 (ja) 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子
JP6115468B2 (ja) 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池用負極および二次電池
JP6455015B2 (ja) 二次電池用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
JP6579250B2 (ja) 二次電池用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20190625

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6627763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250