JPWO2014156689A1 - レーザ加工装置及びレーザ加工方法 - Google Patents

レーザ加工装置及びレーザ加工方法 Download PDF

Info

Publication number
JPWO2014156689A1
JPWO2014156689A1 JP2015508284A JP2015508284A JPWO2014156689A1 JP WO2014156689 A1 JPWO2014156689 A1 JP WO2014156689A1 JP 2015508284 A JP2015508284 A JP 2015508284A JP 2015508284 A JP2015508284 A JP 2015508284A JP WO2014156689 A1 JPWO2014156689 A1 JP WO2014156689A1
Authority
JP
Japan
Prior art keywords
laser
laser light
condensing
modified
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015508284A
Other languages
English (en)
Other versions
JP6272302B2 (ja
Inventor
大祐 河口
大祐 河口
中野 誠
誠 中野
良太 杉尾
良太 杉尾
翼 廣瀬
翼 廣瀬
佳祐 荒木
佳祐 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Publication of JPWO2014156689A1 publication Critical patent/JPWO2014156689A1/ja
Application granted granted Critical
Publication of JP6272302B2 publication Critical patent/JP6272302B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0736Shaping the laser spot into an oval shape, e.g. elliptic shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/001Axicons, waxicons, reflaxicons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)

Abstract

加工対象物(1)にレーザ光(L)を集光させることにより、切断予定ライン(5)に沿って加工対象物(1)の内部に改質領域(7)を形成し、レーザ光を出射するレーザ光源と、レーザ光源により出射されたレーザ光(L)を変調する空間光変調器(203)と、空間光変調器(203)により変調されたレーザ光を加工対象物(1)に集光する集光光学系(204)と、を備え、空間光変調器(203)は、アキシコンレンズパターンを変調パターンとして表示することにより、レーザ光照射方向に沿って近接して並ぶ複数位置に集光点が形成されるようにレーザ光を集光させることで、加工品質を向上させる。

Description

本発明の一側面は、レーザ加工装置及びレーザ加工方法に関する。
従来のレーザ加工装置としては、加工対象物にレーザ光を集光させることにより、切断予定ラインに沿って加工対象物の内部に改質領域を形成するものが知られている(例えば、特許文献1参照)。このようなレーザ加工装置では、レーザ光源から加工対象物へ照射されるレーザ光を空間光変調器によって変調することにより、当該レーザ光を加工対象物の複数位置に集光することが図られている。
特開2011−51011号公報
ところで、上述したような従来技術では、近年における益々の普及拡大に伴い、加工品質を向上することが望まれており、例えば切断された加工対象物について、切断面の直進性を向上する要求や、抗折強度を向上させる要求等が高まっている。
本発明の一側面は、上記実情に鑑みてなされたものであり、加工品質を向上することができるレーザ加工装置及びレーザ加工方法を提供することを課題とする。
上記課題を解決するため、本発明者らは鋭意検討を重ねた結果、加工対象物においてレーザ光の集光部分をレーザ光入射方向に長尺形状(以下、「縦長」という)とし、縦長な改質領域を加工対象物に形成すると、加工対象物の内部で生じる亀裂(クラック)の量が低減し、切断面の直進性及び抗折強度が向上し、その結果、加工品質を向上できる可能性を見出した。
しかしこの場合、当該レーザ光の集光部分でエネルギ密度が低下してしまい、改質領域自体が形成されない虞や、加工の際に多くのエネルギが要される虞が懸念される。この点、本発明者らはさらに鋭意検討を重ね、空間光変調器を用いてレーザ光を適宜変調することにより、このような虞に対応できることを見出し、本発明を完成するに至った。
すなわち、本発明の一側面に係るレーザ加工装置は、加工対象物にレーザ光を集光させることにより、切断予定ラインに沿って加工対象物の内部に改質領域を形成するレーザ加工装置であって、レーザ光を出射するレーザ光源と、レーザ光源により出射されたレーザ光を変調する空間光変調器と、空間光変調器により変調されたレーザ光を加工対象物に集光する集光光学系と、を備え、空間光変調器は、アキシコンレンズパターンを変調パターンとして表示することにより、レーザ光照射方向に沿って近接して並ぶ複数位置に集光点が形成されるようにレーザ光を集光させる。
なお、「アキシコンレンズパターン」とは、アキシコンレンズの作用を実現するように生成された変調パターンを意味している(以下、同じ)。
このレーザ加工装置においては、アキシコンレンズパターンを変調パターンとして空間光変調器に表示することにより、レーザ光照射方向に沿って近接して並ぶ複数位置に集光点が形成されるようレーザ光を集光できる。これにより、擬似的に縦長となる集光部分がそのエネルギ密度を十分に維持したまま形成されることになり、その結果、縦長の改質領域が加工対象物に形成されることになる。このような改質領域によれば、上記知見と同様に、加工対象物の内部で生じる亀裂の量を低減でき、よって、切断面の直進性及び抗折強度を向上させ、加工品質を向上することが可能となる。
また、上記作用効果を奏するために、具体的には、レーザ加工装置は、切断予定ラインに沿って加工対象物の内部に改質スポットを複数形成し、複数の改質スポットによって改質領域を形成するものであって、空間光変調器は、レーザ光照射方向に沿って近接して並ぶ複数位置のぞれぞれに改質ドットを形成させ、複数の改質ドットは、レーザ光照射方向に長尺形状の改質スポットを構成してもよい。この場合、実質的に縦長の改質スポットが形成され、その結果、実質的に縦長の改質領域が形成されることになる。よって、上記知見と同様に、加工対象物の内部で生じる亀裂の量を低減でき、加工品質を向上することができる。
また、空間光変調器の表示部において、アキシコンレンズパターンは、入射するレーザ光に対し中心に位置する円領域と、円領域の周囲に画設され当該円領域と同心の複数の円環領域と、を有しており、円領域及び複数の円環領域では、径方向外側から内側に行くに従って明度が徐々に明るくなるように設定されている場合がある。
また、本発明の一側面に係るレーザ加工方法は、加工対象物にレーザ光を集光させることにより、切断予定ラインに沿って加工対象物の内部に改質領域を形成するレーザ加工方法であって、レーザ光源から出射されたレーザ光を空間光変調器によって変調し、空間光変調器で変調されたレーザ光を加工対象物に集光する工程を備え、レーザ光を集光する工程は、空間光変調器にアキシコンレンズパターンを変調パターンとして表示することにより、レーザ光照射方向に沿って近接して並ぶ複数位置に集光点が形成されるようにレーザ光を集光させる工程を含む。
このレーザ加工方法においても、擬似的に縦長となる集光部分がそのエネルギ密度を十分に維持したまま形成されることになり、その結果、縦長の改質領域が形成されることになる。よって、上記作用効果、すなわち、加工品質を向上することができるという作用効果が奏される。
本発明の一側面によれば、加工品質を向上することができるレーザ加工装置及びレーザ加工方法を提供することが可能となる。
改質領域の形成に用いられるレーザ加工装置の概略構成図である。 改質領域の形成の対象となる加工対象物の平面図である。 図2の加工対象物のIII−III線に沿っての断面図である。 レーザ加工後の加工対象物の平面図である。 図4の加工対象物のV−V線に沿っての断面図である。 図4の加工対象物のVI−VI線に沿っての断面図である。 実施形態に係る実施するレーザ加工装置を示す概略構成図である。 反射型空間光変調器の部分断面図である。 反射型空間光変調器の液晶層に表示されたアキシコンレンズパターンを示す図である。 レーザ加工の対象となる加工対象物を示す平面図である。 第1実施形態に係るレーザ加工方法を説明するための概略断面図である。 第1実施形態に係るレーザ加工方法により形成された改質スポットの一例を示す写真図である。 第1実施形態に係るレーザ加工方法の効果を説明するための写真図である。 第1実施形態に係るレーザ加工方法の効果を説明するための他の写真図である。 第2実施形態に係るレーザ加工方法を説明するための概略断面図である。 図15の続きを示す概略断面図である。 レーザ光の集光位置で発生する収差を説明するための図である。
以下、本発明の一側面に係る実施形態について、図面を参照して詳細に説明する。なお、以下の説明において同一又は相当要素には同一符号を付し、重複する説明を省略する。
本実施形態に係るレーザ加工装置及びレーザ加工方法では、加工対象物にレーザ光を集光させ、改質領域を切断予定ラインに沿って形成する。そこで、まず、改質領域の形成について、図1〜図6を参照して説明する。
図1に示すように、レーザ加工装置100は、レーザ光Lをパルス発振するレーザ光源101と、レーザ光Lの光軸(光路)の向きを90°変えるように配置されたダイクロイックミラー103と、レーザ光Lを集光するための集光用レンズ105と、を備えている。また、レーザ加工装置100は、集光用レンズ105で集光されたレーザ光Lが照射される加工対象物1を支持するための支持台107と、支持台107を移動させるためのステージ111と、レーザ光Lの出力やパルス幅、パルス波形等を調節するためにレーザ光源101を制御するレーザ光源制御部102と、ステージ111の移動を制御するステージ制御部115と、を備えている。
このレーザ加工装置100においては、レーザ光源101から出射されたレーザ光Lは、ダイクロイックミラー103によってその光軸の向きを90°変えられ、支持台107上に載置された加工対象物1の内部に集光用レンズ105によって集光される。これと共に、ステージ111が移動させられ、加工対象物1がレーザ光Lに対して切断予定ライン5に沿って相対移動させられる。これにより、切断予定ライン5に沿った改質領域が加工対象物1に形成される。なお、ここでは、レーザ光Lを相対的に移動させるためにステージ111を移動させたが、集光用レンズ105を移動させてもよいし、或いはこれらの両方を移動させてもよい。
加工対象物1としては、半導体材料で形成された半導体基板や圧電材料で形成された圧電基板等を含む板状の部材(例えば、基板、ウェハ等)が用いられる。図2に示すように、加工対象物1には、加工対象物1を切断するための切断予定ライン5が設定されている。切断予定ライン5は、直線状に延びた仮想線である。加工対象物1の内部に改質領域を形成する場合、図3に示すように、加工対象物1の内部に集光点(集光位置)Pを合わせた状態で、レーザ光Lを切断予定ライン5に沿って(すなわち、図2の矢印A方向に)相対的に移動させる。これにより、図4〜図6に示すように、改質領域7が切断予定ライン5に沿って加工対象物1の内部に形成され、切断予定ライン5に沿って形成された改質領域7が切断起点領域8となる。
なお、集光点Pとは、レーザ光Lが集光する箇所のことである。また、切断予定ライン5は、直線状に限らず曲線状であってもよいし、これらが組み合わされた3次元状であってもよいし、座標指定されたものであってもよい。また、切断予定ライン5は、仮想線に限らず加工対象物1の表面3に実際に引かれた線であってもよい。改質領域7は、連続的に形成される場合もあるし、断続的に形成される場合もある。また、改質領域7は列状でも点状でもよく、要は、改質領域7は少なくとも加工対象物1の内部に形成されていればよい。また、改質領域7を起点に亀裂が形成される場合があり、亀裂及び改質領域7は、加工対象物1の外表面(表面3、裏面21、若しくは外周面)に露出していてもよい。また、改質領域7を形成する際のレーザ光入射面は、加工対象物1の表面3に限定されるものではなく、加工対象物1の裏面21であってもよい。
ちなみに、ここでのレーザ光Lは、加工対象物1を透過すると共に加工対象物1の内部の集光点近傍にて特に吸収され、これにより、加工対象物1に改質領域7が形成される(すなわち、内部吸収型レーザ加工)。よって、加工対象物1の表面3ではレーザ光Lが殆ど吸収されないので、加工対象物1の表面3が溶融することはない。一般的に、表面3から溶融され除去されて穴や溝等の除去部が形成される(表面吸収型レーザ加工)場合、加工領域は表面3側から徐々に裏面側に進行する。
ところで、本実施形態で形成される改質領域7は、密度、屈折率、機械的強度やその他の物理的特性が周囲とは異なる状態になった領域をいう。改質領域7としては、例えば、溶融処理領域(一旦溶融後再固化した領域、溶融状態中の領域及び溶融から再固化する状態中の領域のうち少なくとも何れか一つを意味する)、クラック領域、絶縁破壊領域、屈折率変化領域等があり、これらが混在した領域もある。さらに、改質領域としては、加工対象物の材料において改質領域の密度が非改質領域の密度と比較して変化した領域や、格子欠陥が形成された領域がある(これらをまとめて高密転移領域ともいう)。
また、溶融処理領域や屈折率変化領域、改質領域の密度が非改質領域の密度と比較して変化した領域、格子欠陥が形成された領域は、さらに、それら領域の内部や改質領域と非改質領域との界面に亀裂(割れ、マイクロクラック)を内包している場合がある。内包される亀裂は、改質領域の全面に渡る場合や一部分のみや複数部分に形成される場合がある。加工対象物1としては、例えばシリコン(Si)、ガラス、シリコンカーバイド(SiC)、LiTaO又はサファイア(Al)を含む、又はこれらからなるものが挙げられる。
また、本実施形態においては、切断予定ライン5に沿って改質スポット(加工痕)を複数形成することによって、改質領域7を形成している。改質スポットとは、パルスレーザ光の1パルスのショット(つまり1パルスのレーザ照射:レーザショット)で形成される改質部分であり、改質スポットが集まることにより改質領域7となる。改質スポットとしては、クラックスポット、溶融処理スポット若しくは屈折率変化スポット、又はこれらの少なくとも1つが混在するもの等が挙げられる。この改質スポットについては、要求される切断精度、要求される切断面の平坦性、加工対象物の厚さ、種類、結晶方位等を考慮して、その大きさや発生する亀裂の長さを適宜制御することができる。
次に、第1実施形態について詳細に説明する。
図7は、本実施形態に係るレーザ加工方法を実施するレーザ加工装置を示す概略構成図である。図7に示すように、本実施形態のレーザ加工装置300は、レーザ光源202、反射型空間光変調器203、4f光学系241及び集光光学系204を筐体231内に備えている。レーザ光源202は、例えば1080nm〜1200nmの波長を有するレーザ光Lを出射するものであり、例えばファイバレーザが用いられている。ここでのレーザ光源202は、水平方向にレーザ光Lを出射するように、筐体231の天板236にねじ等で固定されている。
反射型空間光変調器203は、レーザ光源202から出射されたレーザ光Lを変調するものであり、例えば反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)が用いられている。ここでの反射型空間光変調器203は、水平方向から入射するレーザ光Lを変調すると共に、水平方向に対し斜め上方に反射する。
図8は、図7のレーザ加工装置の反射型空間光変調器の部分断面図である。図8に示すように、反射型空間光変調器203は、シリコン基板213、駆動回路層914、複数の画素電極214、誘電体多層膜ミラー等の反射膜215、配向膜999a、液晶層(表示部)216、配向膜999b、透明導電膜217、及びガラス基板等の透明基板218を備え、これらがこの順に積層されている。
透明基板218は、XY平面に沿った表面218aを有しており、該表面218aは反射型空間光変調器203の表面を構成する。透明基板218は、例えばガラス等の光透過性材料を主に含んでおり、反射型空間光変調器203の表面218aから入射した所定波長のレーザ光Lを、反射型空間光変調器203の内部へ透過する。透明導電膜217は、透明基板218の裏面上に形成されており、レーザ光Lを透過する導電性材料(例えばITO)を主に含んで構成されている。
複数の画素電極214は、複数の画素の配列に従って二次元状に配列されており、透明導電膜217に沿ってシリコン基板213上に配列されている。各画素電極214は、例えばアルミニウム等の金属材料からなり、これらの表面214aは、平坦且つ滑らかに加工されている。複数の画素電極214は、駆動回路層914に設けられたアクティブ・マトリクス回路によって駆動される。
アクティブ・マトリクス回路は、複数の画素電極214とシリコン基板213との間に設けられ、反射型空間光変調器203から出力しようとする光像に応じて各画素電極214への印加電圧を制御する。このようなアクティブ・マトリクス回路は、例えば図示しないX軸方向に並んだ各画素列の印加電圧を制御する第1のドライバ回路と、Y軸方向に並んだ各画素列の印加電圧を制御する第2のドライバ回路とを有しており、制御部250(後述)によって双方のドライバ回路で指定された画素の画素電極214に所定電圧が印加されるよう構成されている。
なお、配向膜999a,999bは、液晶層216の両端面に配置されており、液晶分子群を一定方向に配列させる。配向膜999a,999bは、例えばポリイミドといった高分子材料からなり、液晶層216との接触面にラビング処理等が施されたものが適用される。
液晶層216は、複数の画素電極214と透明導電膜217との間に配置されており、各画素電極214と透明導電膜217とにより形成される電界に応じてレーザ光Lを変調する。すなわち、アクティブ・マトリクス回路によって或る画素電極214に電圧が印加されると、透明導電膜217と該画素電極214との間に電界が形成される。
この電界は、反射膜215及び液晶層216のそれぞれに対し、各々の厚さに応じた割合で印加される。そして、液晶層216に印加された電界の大きさに応じて液晶分子216aの配列方向が変化する。レーザ光Lが透明基板218及び透明導電膜217を透過して液晶層216に入射すると、このレーザ光Lは液晶層216を通過する間に液晶分子216aによって変調され、反射膜215において反射した後、再び液晶層216により変調されてから取り出されることとなる。
このとき、後述の制御部250によって透明導電膜217と対向する各画素電極214毎に電圧が印加され、その電圧に応じて、液晶層216において透明導電膜217と対向する各画素電極214に挟まれた部分の屈折率が変化される(各画素に対応した位置の液晶層216の屈折率が変化する)。かかる屈折率の変化により、印加した電圧に応じて、レーザ光Lの位相を液晶層216の画素毎に変化させることができる。つまり、ホログラムパターンに応じた位相変調を画素毎に液晶層216によって与える(すなわち、変調を付与するホログラムパターンとしての変調パターンを反射型空間光変調器203の液晶層216に表示させる)ことができる。
その結果、変調パターンに入射し透過するレーザ光Lは、その波面が調整され、該レーザ光Lを構成する各光線において進行方向に直交する所定方向の成分の位相にずれが生じる。従って、反射型空間光変調器203に表示させる変調パターンを適宜設定することにより、レーザ光Lが変調(例えば、レーザ光Lの強度、振幅、位相、偏光等が変調)可能となる。
本実施形態の反射型空間光変調器203では、後述するように、アキシコンレンズパターンを変調パターンとして液晶層216に表示することにより、加工対象物1に照射されるレーザ光Lに対し、レーザ光照射方向に沿って近接して並ぶ複数位置に集光点が形成されるよう加工対象物1に集光させる変調が施される。これにより、図11に示すように、当該複数位置のそれぞれに改質ドットdが形成される。
これら複数の改質ドットdは、多点細長改質スポットとなる1つの改質スポットSxを構成する。改質スポットSxは、液晶層216に変調パターンを表示させずにレーザ加工を施した改質スポットに比べ、レーザ光照射方向に長尺形状(縦長)とされる。つまり、複数の改質ドットdは、レーザ光照射方向に沿って近接し連なるように密に並んでおり、これら複数の改質ドットdが一纏まりとされてなる改質スポットSxは、レーザ光照射方向の寸法がその交差方向の寸法よりも特に長くなるような細長形状を有する。
図7に戻り、4f光学系241は、反射型空間光変調器203によって変調されたレーザ光Lの波面形状を調整するものである。この4f光学系241は、第1レンズ241a及び第2レンズ241bを有している。レンズ241a,241bは、反射型空間光変調器203と第1レンズ241aとの距離が第1レンズ241aの焦点距離f1となり、集光光学系204とレンズ241bとの距離がレンズ241bの焦点距離f2となり、第1レンズ241aと第2レンズ241bとの距離がf1+f2となり、且つ第1レンズ241aと第2レンズ241bとが両側テレセントリック光学系となるように、反射型空間光変調器203と集光光学系204との間に配置されている。この4f光学系241では、反射型空間光変調器203で変調されたレーザ光Lが空間伝播によって波面形状が変化し収差が増大するのを抑制することができる。
集光光学系204は、4f光学系241によって変調されたレーザ光Lを加工対象物1の内部に集光するものである。この集光光学系204は、複数のレンズを含んで構成されており、圧電素子等を含んで構成された駆動ユニット232を介して筐体231の底板233に設置されている。
以上のように構成されたレーザ加工装置300では、レーザ光源202から出射されたレーザ光Lは、筐体231内にて水平方向に進行した後、ミラー205aによって下方に反射され、アッテネータ207によって光強度が調整される。そして、ミラー205bによって水平方向に反射され、ビームホモジナイザ260によって強度分布が均一化されて反射型空間光変調器203に入射する。
反射型空間光変調器203に入射したレーザ光Lは、液晶層216に表示された変調パターンを透過することにより当該変調パターンに応じて変調され、その後、ミラー206aによって上方に反射され、λ/2波長板228によって偏光方向が変更され、ミラー206bによって水平方向に反射されて4f光学系241に入射する。
4f光学系241に入射したレーザ光Lは、平行光で集光光学系204に入射するよう波面形状が調整される。具体的には、レーザ光Lは、第1レンズ241aを透過し収束され、ミラー219によって下方へ反射され、共焦点Oを経て発散すると共に、第2レンズ241bを透過し、平行光となるように再び収束される。そしてレーザ光Lは、ダイクロイックミラー210,238を順次透過して集光光学系204に入射し、ステージ111上に載置された加工対象物1内に集光光学系204によって集光される。
また、本実施形態のレーザ加工装置300は、加工対象物1のレーザ光入射面を観察するための表面観察ユニット211と、集光光学系204と加工対象物1との距離を微調整するためのAF(AutoFocus)ユニット212と、を筐体231内に備えている。
表面観察ユニット211は、可視光VL1を出射する観察用光源211aと、加工対象物1のレーザ光入射面で反射された可視光VL1の反射光VL2を受光して検出する検出器211bと、を有している。表面観察ユニット211では、観察用光源211aから出射された可視光VL1が、ミラー208及びダイクロイックミラー209,210,238で反射・透過され、集光光学系204で加工対象物1に向けて集光される。そして、加工対象物1のレーザ光入射面で反射された反射光VL2が、集光光学系204で集光されてダイクロイックミラー238,210で透過・反射された後、ダイクロイックミラー209を透過して検出器211bにて受光される。
AFユニット212は、AF用レーザ光LB1を出射し、レーザ光入射面で反射されたAF用レーザ光LB1の反射光LB2を受光し検出することで、切断予定ライン5に沿ったレーザ光入射面の変位データを取得する。そして、AFユニット212は、改質領域7を形成する際、取得した変位データに基づいて駆動ユニット232を駆動させ、レーザ光入射面のうねりに沿うように集光光学系204をその光軸方向に往復移動させる。
さらにまた、本実施形態のレーザ加工装置300は、当該レーザ加工装置300を制御するためのものとして、CPU、ROM、RAM等からなる制御部250を備えている。この制御部250は、レーザ光源202を制御し、レーザ光源202から出射されるレーザ光Lの出力やパルス幅等を調節する。また、制御部250は、改質領域7を形成する際、レーザ光Lの集光点Pが加工対象物1の表面3から所定距離に位置し且つレーザ光Lの集光点Pが切断予定ライン5に沿って相対的に移動するように、筐体231、ステージ111の位置、及び駆動ユニット232の駆動の少なくとも1つを制御する。
また、制御部250は、改質領域7を形成する際、反射型空間光変調器203における各電極214に所定電圧を印加し、液晶層216に所定の変調パターンを表示させ、これにより、レーザ光Lを反射型空間光変調器203で所望に変調させる。
ここで、液晶層216に表示される変調パターンは、例えば、改質領域7を形成しようとする位置、照射するレーザ光Lの波長、加工対象物1の材料、及び集光光学系204や加工対象物1の屈折率等に基づいて予め導出され、制御部250に記憶されている。この変調パターンは、レーザ加工装置300に生じる個体差(例えば、反射型空間光変調器203の液晶層216に生じる歪)を補正するための個体差補正パターン、及び球面収差を補正するための球面収差補正パターン、アキシコンレンズパターンの少なくとも1つを含んでいる。
図9は、液晶層に表示されたアキシコンレンズパターンを示す図である。図中に示すアキシコンレンズパターンAxは、液晶層216の正面視における状態を示している。図9に示すように、アキシコンレンズパターンAxは、アキシコンレンズの作用を実現するように生成された変調パターンである。アキシコンレンズパターンAxは、レーザ光照射方向に沿って近接して並ぶ複数位置に集光点が形成されるように、レーザ光Lを加工対象物1に集光させる。換言すると、レーザ光照射方向に複数の強度分布を有するようにレーザ光Lを変調させる。ここでのアキシコンレンズパターンAxは、逆円錐状の光学パターンとされ、下凸状のものとされている。
このアキシコンレンズパターンAxは、具体的には、入射するレーザ光Lに対し中心に位置する円領域a1と、円領域a1の周囲に画設された複数の円環領域a2と、を有している。円環領域2aは、円領域a1と同心に形成され、円環形状又は円環形状の一部が切り欠かれて成る形状を有している。円領域a1及び複数の円環領域a2では、径方向外側から内側に行くに従って明度が徐々に明るくなるように設定されている。
このようなアキシコンレンズパターンAxを液晶層216に表示させてレーザ加工を行う場合、その円環領域a2の数(中心からの明度の折返し数)であるパラメータ数が大きいほど、レーザ光照射方向に沿って近接して並ぶ集光点の数(改質ドットdの数)が増加し、その結果、パラメータ数に応じた縦長の改質スポットSxが形成される。ここでは、パラメータ数が増減すると、レーザ光Lの手前側(上流側)において改質ドットdの数が増減し、ひいては、形成される改質スポットSxがレーザ光Lの手前側において伸縮する傾向を有する。
次に、上記レーザ加工装置300を用いたレーザ加工方法について詳細に説明する。
図10は本実施形態によるレーザ加工の対象となる加工対象物を示す平面図、図11は本実施形態におけるレーザ加工方法を説明するための断面図である。本実施形態のレーザ加工方法は、加工対象物1をレーザ加工して複数のチップを製造するためのチップの製造方法として用いられる。図10に示すように、加工対象物1は、シリコン基板、サファイア基板、SiC基板、ガラス基板(強化ガラス基板)、半導体基板又は透明絶縁基板等を含み、板状を呈している。加工対象物1の厚さは、150μm〜350μmとされており、ここでは、200μm又は250μmとされている。
この加工対象物1の表面3には、マトリックス状に並ぶように機能素子形成領域15が複数設けられている。また、加工対象物1の表面3上には、隣り合う機能素子形成領域15間を通るように延びる切断予定ライン5が複数設定されている。複数の切断予定ライン5は、格子状に延在しており、加工対象物1のオリエンテーションフラット6に対して略平行な方向に沿う切断予定ライン5a、及び略垂直な方向に沿う切断予定ライン5bを含んでいる。なお、加工対象物1がサファイア基板の場合には、そのC面が主面(表面3及び裏面21)とされ、切断予定ライン5がサファイア基板のR面に沿った方向に延びるよう設定される。
このような加工対象物1に対してレーザ加工を施す場合、まず、加工対象物1の裏面21にエキスパンドテープを貼り付け、該加工対象物1をステージ111上に載置する。続いて、図7,11に示すように、制御部250により反射型空間光変調器203を制御し、液晶層216にアキシコンレンズパターンAxを変調パターンとして表示させ、この状態で、加工対象物1の表面3をレーザ光入射面(レーザ光照射面)として加工対象物1にレーザ光Lをパルス照射し、レーザ光照射方向に沿って近接して並ぶ複数位置に集光点が形成されるようにレーザ光Lを加工対象物1に集光させる。これと共に、加工対象物1とレーザ光Lとを切断予定ライン5に沿って相対移動(スキャン)させる。
これにより、加工対象物1内の厚さ方向の所定深さに、レーザ光照射方向に沿って近接して並ぶ複数位置に形成された改質ドットdを有する縦長の改質スポットSxを、切断予定ライン5に沿って複数形成する。そして、これら複数の改質スポットSxによって改質領域7を形成する。その後、エキスパンドテープを拡張することで、改質領域7を切断の起点として加工対象物1を切断予定ライン5に沿って切断し、切断された複数のチップを半導体装置(例えばメモリ、IC、発光素子、受光素子等)として得る。
ここで、改質スポットSxを形成する際には、次のアキシコンレンズパターン作成工程(アキシコンレンズパターン作成制御)を実施してもよい。アキシコンレンズパターン作成工程では、例えば液晶層216に変調パターンを表示させずにレーザ加工を施して加工対象物1内に形成された通常の改質スポット(以下、単に「通常の改質スポット」ともいう)の状態に基づいて、制御部250によりアキシコンレンズパターンAxを作成する。
また、加工対象物1の材料やレーザ光Lのエネルギに起因して改質スポットSxにおけるレーザ光照射方向の長さが変化し、当該改質スポットSxの厚さ方向位置が変化する場合がある。そこで、改質スポットSxを形成する際には、次の集光点位置補正工程(集光点位置補正制御)を実施してもよい。
集光点位置補正工程では、形成しようとする改質スポットSxについてのレーザ光Lの最も奥側位置(最も裏面21位置)を基準にして、厚さ方向におけるレーザ光Lの集光点位置(Zハイト)を、例えば通常の改質スポットの状態に基づき補正する。これは、上述したように、改質スポットSxがレーザ光Lの手前側でパラメータ数に応じて伸縮する傾向を有することによる。
さらにまた、改質スポットSxを形成する際には、アキシコンレンズパターンAxのパラメータ数(円環領域a2の数)を調整するアキシコンレンズパターン調整工程(アキシコンレンズパターン調整制御)を実施してもよい。アキシコンレンズパターン調整工程では、形成しようとする改質スポットSx(改質領域7)におけるレーザ光照射方向の長さに応じて、アキシコンレンズパターンAxのパラメータ数を、例えば通常の改質スポットの状態に基づき設定する。具体的には、改質スポットSxをレーザ光照射方向に長くしたい場合には、パラメータ数を大きくする一方、短くしたい場合にはパラメータ数を小さくする。
以上、本実施形態では、改質領域7を形成する場合、アキシコンレンズパターンAxを変調パターンとして反射型空間光変調器203に表示することにより、レーザ光照射方向に近接して並ぶ複数位置に集光点が形成されるようレーザ光を集光できる。つまり、縦方向に細かな多点分岐させたレーザ光Lでレーザ加工(いわゆる、同時多点細長加工)を実施し、分岐した多点集光点を繋げるよう構成して、疑似的な縦長集光点を形成できる。これにより、レーザ光照射方向に近接して並ぶ複数の改質ドットdを有する改質スポットSxを形成できる。
この改質スポットSxによれば、擬似的(及び、実質的)に縦長となる集光部分がそのエネルギ密度を十分に維持したまま形成されることになり、ひいては、縦長の改質領域7が形成されることになる。よって、加工対象物1の内部で生じる亀裂の量を低減させ、また、当該亀裂を伸び難くすることができ、その結果、切断面の直進性の向上及び抗折強度の向上させることができ、加工品質を向上させることが可能となる。
また、改質領域7が縦長となることから、スループットを向上させることもできる。また、本実施形態は、亀裂の量を低減できることから、加工対象物1内の亀裂を制御したい場合(例えば、切断予定ライン5が結晶方位に沿わない場合、ガラス材料に対する加工の場合)に特に有効といえる。
なお、亀裂の量を低減できる上記作用効果は、加工対象物1がSiC基板又はサファイア基板の場合、C面方向への亀裂を低減する効果として顕著となる。また、通常、アキシコンレンズを用いた光学系により集光点を縦長にしようとすると、エネルギの密度が低下して正常な加工が困難、又は加工に多くのエネルギを必要とするのに対し、本実施形態では、上記のように、エネルギ密度を十分に維持してレーザ光Lを集光できる。また、空間位相変調器203を用いて縦長の改質スポットSxを形成することから、任意の位置に任意のピッチの改質領域7を瞬時に形成可能となる。
ちなみに、一般的に、加工対象物1がC面を主面とするサファイア基板の場合、サファイア基板において亀裂はR面に沿って延び難いことから、R面に沿う切断予定ライン5に沿って改質領域7を形成した場合、生じる亀裂が切断予定ライン5の交差方向に延び易く、その結果、切断予定ライン5の交差方向に沿って割れる虞が懸念される。これに対し、本実施形態は、亀裂の量を低減できることから当該虞を抑制できるため、切断予定ライン5がサファイア基板のR面に沿った方向に延びるように設定される場合に、特に有効なものとなる。また、加工対象物1が非晶質ガラスの場合、加工品質を向上させる上記作用効果は顕著となる。
図12は、本実施形態のレーザ加工方法により形成された改質スポットの一例を示す写真図である。図12では、加工対象物1を側方から見た状態を示しており、図示上下方向が厚さ方向に対応する。図12に示すように、本実施形態によれば、レーザ光照射方向に近接して並ぶ複数位置に集光点が形成され、これにより、レーザ光照射方向に近接して並ぶ複数の改質ドットdを有する縦長の改質スポットSxが形成されているのを確認できる。
図13は、本実施形態のレーザ加工方法の効果を説明するための写真図である。図13(a)は、液晶層216に変調パターンを表示させない状態で加工対象物1にレーザ光Lを照射し、加工対象物1内に改質スポットSyを形成した図である。図13(b)は、液晶層216にアキシコンレンズパターンAxを表示させた状態で加工対象物1にレーザ光Lを照射し、加工対象物1内に改質スポットSxを形成した図である。図13中の写真図は、改質スポットが形成された加工対象物1の内部を、レーザ光入射面から見た状態を示している。
図13に示すように、アキシコンレンズパターンAxを液晶層216に表示させて形成した縦長の改質スポットSxによれば、変調パターンを液晶層216に表示させずに形成した改質スポットSyに対し、加工対象物1の内部で生じる亀裂の量が低減されることを確認できる。
図14は、本実施形態のレーザ加工方法の効果を説明するための他の写真図である。図14(a)は、液晶層216に変調パターンを表示させない状態で加工対象物1にレーザ光Lを照射したときの切断面25yを示している。図14(b)は、液晶層216にアキシコンレンズパターンAxを表示させた状態で加工対象物1にレーザ光Lを照射したときの切断面25xを示している。図14では、加工対象物1を側方から見た状態を示しており、図示上下方向が厚さ方向に対応する。
図14に示すように、アキシコンレンズパターンAxを用いてレーザ加工を施すことにより、例えば厚さ方向の交差方向に延びる亀裂が特に低減される傾向にあり、切断面25xでは、液晶層216に変調パターンを表示させずにレーザ加工を施してなる切断面25yに対し、チップ端面の直進性が向上されることを確認できる。
また、液晶層216に変調パターンを表示させずに加工対象物1にレーザ加工を施してなるチップと、液晶層216にアキシコンレンズパターンAxを表示させて加工対象物1にレーザ加工を施してなるチップと、について、抗折強度を測定した結果を以下に示す。なお、ここでは、荷重方向をレーザ光入射面側としている。
変調パターンの表示無し :抗折強度 75.3MPa
アキシコンレンズパターンを表示 :抗折強度 109.6MPa
上記の抗折強度測定結果に示すように、アキシコンレンズパターンAxを用いてレーザ加工を施すことにより、液晶層216に変調パターンを表示させずにレーザ加工を施した場合に比べ、チップの抗折強度が向上されることを確認できる。
なお、光軸方向に近接して並ぶ複数位置に集光点が形成される(縦長の多点集光点が形成される)ため、以下の作用効果を奏する。改質領域7が切取り線状に形成されることから、改質領域7に沿って加工対象物1を切断し易くなる。これにより、劈開性や結晶方位に依存しないレーザ加工が容易に可能となる。また、1つの縦長集光点でレーザ光Lを集光させて改質領域7を形成した場合に比べ、少ないエネルギでレーザ加工が可能となり、加工対象物1内におけるレーザ光入射面から深い位置に改質領域7を形成する場合でも、十分なエネルギ密度を確保し易くなり、その結果、十分な大きさ(幅広)の改質領域7を形成できる。
また、一の集光点に対して光軸方向の直近位置に別の集光点が存在することから、加工対象物1において切断時の破壊力が強くなり、これにより、加工対象物1を容易に切断可能となる。一の集光点に対して別の集光点が加熱誘引効果をもたらすことになり、これにより、加工対象物1を容易に切断可能となる。レーザ光Lによる加工対象物1の改質時において応力解放効果を高めることができ、これにより、加工対象物1を容易に切断可能となる。
次に、第2実施形態について詳細に説明する。なお、本実施形態の説明では、上記実施形態と異なる点について主に説明する。
図15,16は、本実施形態におけるレーザ加工方法を説明するための断面図である。本実施形態では、加工対象物1にレーザ光Lを集光させることにより、レーザ光照射方向に沿って複数列(ここでは、3列)の改質領域7を、加工対象物1内に切断予定ライン5に沿って形成する。本実施形態では、厚物の加工対象物1を対象とすることができ、加工対象物1の厚さは、特に限定されるものではないが、例えば5000μmと厚いものでも適用可能であり、ここでは30μm〜2000μmとされている。
図15(a)に示すように、本実施形態では、まず、制御部250により反射型空間光変調器203を制御し、液晶層216に変調パターンを表示させない状態とする。この状態で、加工対象物1内の裏面21側に集光点を合わせ、表面3から加工対象物1にレーザ光Lをパルス照射すると共に、加工対象物1とレーザ光Lとを切断予定ライン5に沿って相対移動させる。その結果、加工対象物1内の裏面21側にて、通常の改質スポットSyが切断予定ライン5に沿って複数形成され、これら複数の改質スポットSyにより裏面側改質領域7が一列形成される。
続いて、図15(b)に示すように、制御部250により反射型空間光変調器203を制御し、液晶層216にアキシコンレンズパターンAxを表示させた状態とする。この状態で、加工対象物1内における表面3側と裏面21側との間(裏面側改質領域7と後述の表面側改質領域7との間、ここでは厚さ方向中央)に集光点を合わせ、表面3から加工対象物1にレーザ光Lをパルス照射する。これにより、加工対象物1内における表面3側と裏面21側との間において、レーザ光照射方向に沿って近接して並ぶ複数位置に集光点が形成されるようレーザ光Lを加工対象物1に集光させる。これに併せ、加工対象物1と当該レーザ光Lとを切断予定ライン5に沿って相対移動させる。
その結果、加工対象物1内の表面3側と裏面21側との間にて、レーザ光照射方向に沿って近接して並ぶ複数位置に形成された改質ドットdを有する縦長の改質スポットSxが、切断予定ライン5に沿って複数形成され、これら複数の改質スポットSxによって中間改質領域7が一列形成される。
最後に、図16に示すように、制御部250により反射型空間光変調器203を制御し、再び液晶層216に変調パターンを表示させない状態とする。この状態で、加工対象物1内の表面3側に集光点を合わせ、表面3から加工対象物1にレーザ光Lをパルス照射すると共に、加工対象物1とレーザ光Lとを切断予定ライン5に沿って相対移動させる。これにより、加工対象物1内の表面3側にて、通常の改質スポットSyが切断予定ライン5に沿って複数形成され、これら複数の改質スポットSyにより表面側改質領域7が一列形成されることとなる。
以上、本実施形態では、中間改質領域7を形成する場合、アキシコンレンズパターンAxを変調パターンとして反射型空間光変調器203に表示することにより、レーザ光照射方向に沿って近接して並ぶ複数位置に集光点が形成されるようレーザ光を集光できる。これにより、擬似的に縦長となる改質スポットSxがそのエネルギ密度を十分に維持したまま形成されることになり、その結果、縦長の中間改質領域7が形成されることになる。この中間改質領域7によれば、上記実施形態と同様に、加工対象物1の内部で生じる亀裂の量を低減でき、切断面の直進性及び抗折強度を向上させることができ、加工品質を向上させることが可能となる。
一方、本実施形態では、上述したように、裏面側改質領域7及び表面側改質領域7を形成する場合、アキシコンレンズパターンAxを変調パターンとして反射型空間光変調器203に表示させておらず、ここでは、変調パターンを無しとしている。そのため、裏面側改質領域7及び表面側改質領域7が縦長となって裏面21及び表面3にダメージ(打痕等)が生じ易くなるのを抑制できる。
すなわち、本実施形態においては、複数列の改質領域7を形成して厚物の加工対象物1をレーザ加工する場合、表面2及び裏面21に近い領域では、いわゆる同時多点細長加工(改質スポットSxの形成)を実施せず、加工対象物1の分割能力を高めつつ表面3及び裏面21のダメージ発生を抑制しながら、中央領域では、いわゆる同時多点細長加工を実施し、チップの直進性及び抗折強度を向上させることができる。よって、加工対象物1の分割能力は維持しながら、加工品質を向上させることが可能となる。
なお、本実施形態では、前述のように、加工対象物1の表面2側及び裏面21側において、通常の改質スポットSyを複数形成し、これら複数の改質スポットSyにより改質領域7,7を形成したが、これに代えて、多点細長改質スポットである改質スポットSxを形成し、これら複数の改質スポットSxにより改質領域7,7を形成してもよい。つまり、厚さ方向に複数列の改質領域7を加工対象物1に形成する場合、少なくとも1列の改質領域7を、多点細長改質スポットの改質スポットSxで形成すればよい。
以上、本発明の一側面に係る実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用してもよい。
例えば、上記第2実施形態では、改質領域7〜7をこの順に形成したが、これに限定されず、加工対象物1に形成される複数列の改質領域7の形成順序は順不同である。また、上記第2実施形態では、加工対象物1の内部において厚さ方向の位置が互いに異なる改質領域7を4列以上形成する場合もある。例えば、裏面側改質領域7を複数列形成してもよいし、中間改質領域7を複数列形成してもよいし、表面側改質領域7を複数列形成してもよい。
また、上記実施形態では、「レーザ光入射面」を表面3とし、「レーザ光入射面の反対面」を裏面21としたが、裏面21が「レーザ光入射面」とされる場合、表面3が「レーザ光入射面の反対面」となる。また、上記実施形態では、表面3及び裏面21の少なくとも一方に至る亀裂を改質領域7から発生させてもよい。なお、本発明の一側面は、上記レーザ加工装置又は方法により製造されたチップとして捉えることもできる。
図17は、レーザ光の集光位置で発生する収差を説明するための図である。レーザ光Lは、平面波(平面な波面(位相))であるとき、幾何学的に1点に集束する。一方、通常、平面波のレーザ光Lは様々な影響によって波面が変化するところ、加工対象物1内に集光されるレーザ光Lが1点に集束しないこと、すなわち収差が自然的に発生する場合がある。収差は、例えばザイデル収差(非点収差、コマ収差、球面収差、像面湾曲及び歪曲収差)を含み、また、縦方向(光軸方向に沿う方向)の収差である縦収差、及び、縦方向と交差する方向の収差である横収差を含む。
例えば図17に示すように、レーザ光Lが集光光学系204(図11参照)等により加工対象物1に集光される場合、集光過程で加工対象物1に入射されると、異なる入射角の光線が屈折(スネルの法則)によって異なる位置に集束する球面収差が自然的に発生する。つまり、図示するように、加工対象物1にレーザ光Lが集光されることに起因して、当該集光位置で収差が自然発生し、光軸方向に沿う収差の範囲(当該レーザ光Lの強度が加工閾値以上となる範囲)が基準収差範囲Hとして存在する。
ここで、このようなレーザ光Lの集光に起因して発生する球面収差等を含む収差(以下、「集光発生収差」という)に対して新たな収差を加えることにより、加工品質を制御できることが見出される。新たな収差を加える手法としては、上記実施形態のように、収差を付与する収差付与部として反射型空間光変調器203等の空間光変調器を用い、この空間光変調器によりレーザ光Lを位相変調することが挙げられる。位相変調とは、レーザ光Lが有する波面(位相)を任意形状に変調することである。
位相変調の例としては、例えば、アキシコンレンズの作用を実現する位相変調、回折格子の作用を実現する位相変調、所定の球面収差を発生させる位相変調等が挙げられる。当該位相変調の例のそれぞれは、例えば、反射型空間光変調器203に対して、アキシコンレンズパターン、回折格子パターン、所定の球面収差パターンのそれぞれを変調パターンとして表示させることで実施できる。ちなみに、新たな収差を加える手法として、収差を与えるレンズを用いる場合や、集光過程に媒質を挿入する場合もあり、これらの場合、当該レンズ及び当該媒質のそれぞれが収差付与部を構成する。
従って、上記実施形態においてレーザ光Lの集光位置では、アキシコンレンズパターンAxによる位相変調で付与された収差だけでなく、集光発生収差を含む場合がある。また、裏面側改質領域7及び表面側改質領域7を形成する際において反射型空間光変調器203の液晶層216に表示する変調パターンを無しとしたときにも、レーザ光Lの集光位置では、集光発生収差を含む場合がある。なお、アキシコンレンズパターンAxによる位相変調に対し、他の位相変調を加えてもよい(他のパターンの表示を液晶層216に加えてもよい)。
本発明の一側面によれば、加工品質を向上することができるレーザ加工装置及びレーザ加工方法を提供することが可能となる。
1…加工対象物、5,5a,5b…切断予定ライン、7…改質領域、7…裏面側改質領域(改質領域)、7…中間改質領域、7…表面側改質領域(改質領域)、100,300…レーザ加工装置、101,202…レーザ光源、203…反射型空間光変調器(空間光変調器)、204…集光光学系、216…液晶層(表示部)、a1…円領域、a2…円環領域、Ax…アキシコンレンズパターン、d…改質ドット、Sx…改質スポット、L…レーザ光。

Claims (4)

  1. 加工対象物にレーザ光を集光させることにより、切断予定ラインに沿って前記加工対象物の内部に改質領域を形成するレーザ加工装置であって、
    前記レーザ光を出射するレーザ光源と、
    前記レーザ光源により出射された前記レーザ光を変調する空間光変調器と、
    前記空間光変調器により変調された前記レーザ光を前記加工対象物に集光する集光光学系と、を備え、
    前記空間光変調器は、アキシコンレンズパターンを変調パターンとして表示することにより、レーザ光照射方向に沿って近接して並ぶ複数位置に集光点が形成されるように前記レーザ光を集光させる、レーザ加工装置。
  2. 前記レーザ加工装置は、前記切断予定ラインに沿って前記加工対象物の内部に改質スポットを複数形成し、複数の前記改質スポットによって前記改質領域を形成するものであって、
    前記空間光変調器は、前記レーザ光照射方向に沿って近接して並ぶ前記複数位置のぞれぞれに改質ドットを形成させ、
    複数の前記改質ドットは、前記レーザ光照射方向に長尺形状の前記改質スポットを構成する、請求項1記載のレーザ加工装置。
  3. 前記空間光変調器の表示部において、
    前記アキシコンレンズパターンは、入射する前記レーザ光に対し中心に位置する円領域と、前記円領域の周囲に画設され当該円領域と同心の複数の円環領域と、を有しており、
    前記円領域及び複数の前記円環領域では、径方向外側から内側に行くに従って明度が徐々に明るくなるように設定されている、請求項1又は2記載のレーザ加工装置。
  4. 加工対象物にレーザ光を集光させることにより、切断予定ラインに沿って前記加工対象物の内部に改質領域を形成するレーザ加工方法であって、
    レーザ光源から出射された前記レーザ光を空間光変調器によって変調し、前記空間光変調器で変調された前記レーザ光を前記加工対象物に集光する工程を備え、
    前記レーザ光を集光する工程は、
    前記空間光変調器にアキシコンレンズパターンを変調パターンとして表示することにより、レーザ光照射方向に沿って近接して並ぶ複数位置に集光点が形成されるように前記レーザ光を集光させる工程を含む、レーザ加工方法。
JP2015508284A 2013-03-27 2014-03-13 レーザ加工装置及びレーザ加工方法 Active JP6272302B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013065987 2013-03-27
JP2013065987 2013-03-27
PCT/JP2014/056725 WO2014156689A1 (ja) 2013-03-27 2014-03-13 レーザ加工装置及びレーザ加工方法

Publications (2)

Publication Number Publication Date
JPWO2014156689A1 true JPWO2014156689A1 (ja) 2017-02-16
JP6272302B2 JP6272302B2 (ja) 2018-01-31

Family

ID=51623672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015508284A Active JP6272302B2 (ja) 2013-03-27 2014-03-13 レーザ加工装置及びレーザ加工方法

Country Status (7)

Country Link
US (1) US9914183B2 (ja)
JP (1) JP6272302B2 (ja)
KR (1) KR102219653B1 (ja)
CN (1) CN105189025B (ja)
DE (1) DE112014001688B4 (ja)
TW (1) TWI651145B (ja)
WO (1) WO2014156689A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106414352B (zh) * 2014-05-29 2020-07-07 Agc株式会社 光学玻璃及玻璃基板的切断方法
JP6327524B2 (ja) * 2015-01-28 2018-05-23 株式会社東京精密 レーザーダイシング装置
JP6620976B2 (ja) * 2015-09-29 2019-12-18 株式会社東京精密 レーザー加工装置及びレーザー加工方法
US11471976B2 (en) 2016-03-10 2022-10-18 Hamamatsu Photonics K.K. Laser light radiation device and laser light radiation method
US10688599B2 (en) * 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
EP3412400A1 (en) * 2017-06-09 2018-12-12 Bystronic Laser AG Beam shaper and use thereof, device for laser beam treatment of a workpiece and use thereof, method for laser beam treatment of a workpiece
CN107262937B (zh) * 2017-07-06 2019-08-23 北京中科镭特电子有限公司 一种激光切划装置
JP2019051529A (ja) * 2017-09-13 2019-04-04 東芝メモリ株式会社 半導体製造装置
US11075496B2 (en) 2018-06-28 2021-07-27 Samsung Electronics Co., Ltd. Laser dicing device, method of laser beam modulation, and method of dicing a substrate
JP2020004889A (ja) * 2018-06-29 2020-01-09 三星ダイヤモンド工業株式会社 基板の分断方法及び分断装置
JP7088761B2 (ja) * 2018-07-05 2022-06-21 浜松ホトニクス株式会社 レーザ加工装置
JP6587115B1 (ja) * 2018-10-10 2019-10-09 株式会社東京精密 レーザー加工装置及びレーザー加工方法
JP7120904B2 (ja) 2018-10-30 2022-08-17 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
WO2020090894A1 (ja) 2018-10-30 2020-05-07 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
JP2020116599A (ja) * 2019-01-22 2020-08-06 東レエンジニアリング株式会社 レーザ加工装置およびレーザ加工方法
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
JP2022018505A (ja) * 2020-07-15 2022-01-27 浜松ホトニクス株式会社 レーザ加工方法、及び、半導体部材の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100025387A1 (en) * 2005-09-08 2010-02-04 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
JP2011002698A (ja) * 2009-06-19 2011-01-06 Nikon Corp 位相変調装置、及び位相変調装置を使った観察システム

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490849A (en) 1990-07-13 1996-02-13 Smith; Robert F. Uniform-radiation caustic surface for photoablation
JP4716663B2 (ja) 2004-03-19 2011-07-06 株式会社リコー レーザ加工装置、レーザ加工方法、及び該加工装置又は加工方法により作製された構造体
JP4692717B2 (ja) 2004-11-02 2011-06-01 澁谷工業株式会社 脆性材料の割断装置
DE102006042280A1 (de) * 2005-09-08 2007-06-06 IMRA America, Inc., Ann Arbor Bearbeitung von transparentem Material mit einem Ultrakurzpuls-Laser
JP2007142000A (ja) * 2005-11-16 2007-06-07 Denso Corp レーザ加工装置およびレーザ加工方法
JP4804911B2 (ja) 2005-12-22 2011-11-02 浜松ホトニクス株式会社 レーザ加工装置
WO2007085992A1 (en) 2006-01-24 2007-08-02 Ecole Polytechnique Federale De Lausanne (Epfl) Optical imaging system with extended depth of focus
EP2065120B1 (en) 2006-09-19 2015-07-01 Hamamatsu Photonics K.K. Laser processing method
DE102007024701A1 (de) 2007-05-25 2008-11-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Materialabtragung sowie Vorrichtung zur Durchführung des Verfahrens
JP4402708B2 (ja) 2007-08-03 2010-01-20 浜松ホトニクス株式会社 レーザ加工方法、レーザ加工装置及びその製造方法
WO2009063670A1 (ja) 2007-11-14 2009-05-22 Hamamatsu Photonics K.K. レーザ加工装置およびレーザ加工方法
JP5368033B2 (ja) 2008-09-01 2013-12-18 浜松ホトニクス株式会社 レーザ光照射装置およびレーザ光照射方法
JP5254761B2 (ja) * 2008-11-28 2013-08-07 浜松ホトニクス株式会社 レーザ加工装置
EP2394775B1 (en) 2009-02-09 2019-04-03 Hamamatsu Photonics K.K. Workpiece cutting method
JP5775265B2 (ja) 2009-08-03 2015-09-09 浜松ホトニクス株式会社 レーザ加工方法及び半導体装置の製造方法
JP5479925B2 (ja) 2010-01-27 2014-04-23 浜松ホトニクス株式会社 レーザ加工システム
JP5479924B2 (ja) 2010-01-27 2014-04-23 浜松ホトニクス株式会社 レーザ加工方法
US9259594B2 (en) * 2010-10-18 2016-02-16 Bwt Property, Inc. Apparatus and methods for deep tissue laser therapy
JP5670765B2 (ja) 2011-01-13 2015-02-18 浜松ホトニクス株式会社 レーザ加工方法
JP5844089B2 (ja) 2011-08-24 2016-01-13 浜松ホトニクス株式会社 レーザ加工方法
WO2013039162A1 (ja) 2011-09-16 2013-03-21 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
FR2989294B1 (fr) * 2012-04-13 2022-10-14 Centre Nat Rech Scient Dispositif et methode de nano-usinage par laser
JP6121733B2 (ja) * 2013-01-31 2017-04-26 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
US9517963B2 (en) 2013-12-17 2016-12-13 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10442719B2 (en) * 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100025387A1 (en) * 2005-09-08 2010-02-04 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
JP2011002698A (ja) * 2009-06-19 2011-01-06 Nikon Corp 位相変調装置、及び位相変調装置を使った観察システム

Also Published As

Publication number Publication date
DE112014001688T5 (de) 2015-12-17
CN105189025A (zh) 2015-12-23
WO2014156689A1 (ja) 2014-10-02
CN105189025B (zh) 2018-10-30
US20160052085A1 (en) 2016-02-25
KR102219653B1 (ko) 2021-02-25
KR20150133713A (ko) 2015-11-30
DE112014001688B4 (de) 2024-06-06
TW201505744A (zh) 2015-02-16
US9914183B2 (en) 2018-03-13
TWI651145B (zh) 2019-02-21
JP6272302B2 (ja) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6272302B2 (ja) レーザ加工装置及びレーザ加工方法
JP6272301B2 (ja) レーザ加工装置及びレーザ加工方法
JP6382796B2 (ja) レーザ加工装置及びレーザ加工方法
JP6272300B2 (ja) レーザ加工装置及びレーザ加工方法
JP6353683B2 (ja) レーザ加工装置及びレーザ加工方法
JP5632751B2 (ja) 加工対象物切断方法
JP5905274B2 (ja) 半導体デバイスの製造方法
WO2011093113A1 (ja) レーザ加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171228

R150 Certificate of patent or registration of utility model

Ref document number: 6272302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250