JPWO2014119588A1 - 光情報記録媒体及び記録再生装置 - Google Patents

光情報記録媒体及び記録再生装置 Download PDF

Info

Publication number
JPWO2014119588A1
JPWO2014119588A1 JP2014559703A JP2014559703A JPWO2014119588A1 JP WO2014119588 A1 JPWO2014119588 A1 JP WO2014119588A1 JP 2014559703 A JP2014559703 A JP 2014559703A JP 2014559703 A JP2014559703 A JP 2014559703A JP WO2014119588 A1 JPWO2014119588 A1 JP WO2014119588A1
Authority
JP
Japan
Prior art keywords
super
recording
optical
laser beam
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014559703A
Other languages
English (en)
Other versions
JP5968472B2 (ja
Inventor
中井 賢也
賢也 中井
正幸 大牧
正幸 大牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5968472B2 publication Critical patent/JP5968472B2/ja
Publication of JPWO2014119588A1 publication Critical patent/JPWO2014119588A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24053Protective topcoat layers lying opposite to the light entrance side, e.g. layers for preventing electrostatic charging
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24065Layers assisting in recording or reproduction below the optical diffraction limit, e.g. non-linear optical layers or structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • G11B7/1263Power control during transducing, e.g. by monitoring
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B2020/1291Formatting, e.g. arrangement of data block or words on the record carriers wherein the formatting serves a specific purpose
    • G11B2020/1292Enhancement of the total storage capacity
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2541Blu-ray discs; Blue laser DVR discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2595Super-resolution optical discs, i.e. optical discs wherein the size of marks is below the optical diffraction limit
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/0037Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00454Recording involving phase-change effects

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

光情報記録媒体(1)は、記録層(11)と、集光光学系により集光されたレーザ光束の照射を受けることにより、集光光学系の光学性能とレーザ光束(26)の波長とで定まる回折限界よりも小さい長さを有する当該記録マークから情報を再生可能とする超解像機能層(12)と、保護層(13)とを備える。レーザ光束に対する保護層(13)の屈折率をnとし、レーザ光束の波長をλとし、記録マークの深さをdsとしたとき、超解像機能層(12)は、当該集光されたレーザ光束の照射を受けたとき、記録層上に、前記記録マークを照射する中心光と該中心光よりも外側領域を照射する周辺光とからなる集光スポットを形成する。さらに、光情報記録媒体(1)は、周辺光に対する中心光の位相差がプラスであり且つds>λ/4nの条件、及び、周辺光に対する前記中心光の位相差がマイナスであり且つds<λ/4nの条件のいずれか一方を満たす。

Description

本発明は、光ディスクなどの光情報記録媒体及び記録再生装置に関し、特に、超解像機能層を含む光情報記録媒体に関する。
CD(Compact Disc)、DVD(Digtal Versatile Disc:デジタル多用途ディスク)及びBD(Blu−ray Disc:ブルーレイディスク;登録商標)といった光ディスクは、レーザ光の照射を受けて映像データ及び音楽データなどの情報の記録、並びに、記録情報の再生を行うことを目的として使用される光情報記録媒体である。光ディスクは、世代を重ねるにつれて大容量の発展を続けている。例えば、CDについては、光透過層であるディスク基板の厚みが約1.2mm、レーザ光波長が約780nm、対物レンズの開口数(NA:Numerical Aperture)が0.45であり、650MBの容量が実現されている。また、CDよりも後の世代のDVDでは、光透過層であるディスク基板の厚みが約0.6mm、レーザ光波長が約650nm、NAが0.6であり、4.7GBの容量が実現されている。DVDは、例えば、厚みが約0.6mmのディスク基板を2枚互いに貼り合わせることで作製され、約1.2mmの厚みを有する。
更なる高記録密度を有するBDの規格では、情報記録面を被覆する保護層(光透過層)の厚みが約0.1mm、レーザ光波長が約405nm、NAが0.85である。単一の情報記録面を有する単層BDは約25GBの容量を有し、2層の情報記録面を有する2層ディスクは約50GBの大容量を有するため、高精細なハイビジョン映像の長時間のデータをBDに記録することができる。
ハイビジョン映像の解像度以上の高解像度を有する次世代高精細映像及び立体映像などのように一般ユーザーが扱うデータの量は膨大なものに増えていくと予想されており、BDの容量を超える大容量なデータを蓄積可能な大容量光ディスクが求められている。
上記したように光ディスクの大容量化は、レーザ光波長の短波長化と対物レンズの高NA化とにより対物レンズの焦点面における集光スポットサイズを微小化するとともに、記録層のトラック上の記録マークのサイズを微小化することで達成されてきた。しかしながら、集光スポットサイズの微小化には、対物レンズの光学性能とレーザ光波長とで定まる物理的限界が存在する。具体的には、レーザ光波長λと対物レンズのNAとで決まる回折限界λ/(4NA)が、再生可能な記録マークのサイズの限界であるといわれていた。
近年、その物理的限界を超えて高密度記録再生を実現するものとして、レーザ光強度に応じて光学特性(光吸収特性及び/又は光透過特性など)が非線形に変化する超解像機能層を有する光ディスク(以下「超解像光ディスク」とも呼ぶ。)が注目されている。この超解像機能層にレーザ光の集光スポットが照射されると、その照射領域のうち光強度の強い、あるいは、温度の高い局所的な部分で屈折率などの光学特性が変化し、その局所的な部分(以下「開口部」とも呼ぶ。)によって集光スポット径が小さくなる。このため、超解像光ディスクを用いれば、従来使用されていたBD用の光ヘッドを備えた記録再生装置によって、BDの回折限界λ/(4NA)よりも小さい記録マークから情報を再生することが可能となる。よって、超解像光ディスクを用いれば、例えば、波長405nmのレーザ光とNA=0.85の対物レンズとを用いる記録再生装置によって、BDの記録密度よりも高い記録密度によるデータの記録及び再生を実現することができる。
しかしながら、超解像光ディスクの更なる高記録密度化及び大容量化の要求がある。このため、超解像光ディスクの超解像機能層に用いることができる好適な材料の選択とともに、超解像光ディスクの層構造及び記録マークの最適化が望まれている。
超解像光ディスクに関する先行技術文献としては、例えば、特許第3866016号公報(特許文献1)、特表2007−506219号公報(特許文献2)及び特開2009−37698号公報(特許文献3)が挙げられる。また、超解像光ディスクの光学特性を測定する方法が下記の非特許文献1に開示されている。
特許文献1,2には、超解像構造を有する光ディスクが開示されている。この光ディスクにおいては、超解像ピット(回折限界よりも小さな凹凸状の記録マーク)のピット深さが、非超解像ピット(回折限界よりも大きな凹凸状の記録マーク)のピット深さと比べて浅くされる。これにより、超解像ピットの再生信号の変調量を増加させることができる。
また、特許文献3には、超解像層を有する光学情報記録媒体が開示されている。この光学情報記録媒体では、媒体への熱負荷を軽減して再生性能を確保するために、全てのピット深さがλ/(10n)からλ/(6n)までの範囲内に限定されている。なお、λはレーザ光の波長を示し、nはレーザ光が透過する基板の屈折率を示す。
特許第3866016号公報 特表2007−506219号公報 特開2009−37698号公報(段落0010〜0012など)
Shuichi Ohkuboほか2名、"Temperature dependence of optical constants for InSb films including molten phases"、 Applied Physics Letters 92、 011919 (2008).
超解像光ディスクについては、回折限界よりも小さな記録マークから得られる再生信号の強度又は振幅を最大限に大きくすることが望まれる。しかしながら、特許文献1〜3に開示されているピット深さの設定条件は、超解像構造又は超解像層の反射率、透過率及び位相などの光学特性に関し、これら光学特性の組み合わせの限定された設定条件を示しているに過ぎない。超解像光ディスクの構造に関する設定条件の選択性を拡げるためにも、再生信号振幅を大きくするための他の好適な設定条件が求められている。
上記に鑑みて、本発明の目的は、超解像ピットから得られる再生信号振幅を最適化し得る構造を有する光情報記録媒体、並びに、前記光情報記録媒体に情報データを記録及び前記光情報記録媒体から情報データを再生する記録再生装置を提供することである。
本発明の一態様による光情報記録媒体は、少なくとも1つの記録マークが形成された記録層と、集光光学系により集光されたレーザ光束の照射を受けることにより、前記集光光学系の光学性能と前記レーザ光束の波長とで定まる回折限界よりも小さい長さを有する当該記録マークから情報を再生可能とする超解像機能層と、前記記録層及び前記超解像機能層を被覆し、前記レーザ光束を透過させる保護層とを備え、前記レーザ光束に対する前記保護層の屈折率をnとし、前記レーザ光束の波長をλとし、前記記録マークの深さをdとしたとき、前記超解像機能層は、当該集光されたレーザ光束の照射を受けたとき、前記記録層上に、前記記録マークを照射する中心光と該中心光よりも外側領域を照射する周辺光とからなる集光スポットを形成し、前記周辺光に対する前記中心光の位相差がプラスであり、且つ、d>λ/4nの条件式を満たすように構成されたことを特徴とする。
本発明の他の態様による光情報記録媒体は、少なくとも1つの記録マークが形成された記録層と、集光光学系により集光されたレーザ光束の照射を受けることにより、前記集光光学系の光学性能と前記レーザ光束の波長とで定まる回折限界よりも小さい長さを有する当該記録マークから情報を再生可能とする超解像機能層と、前記記録層及び前記超解像機能層を被覆し、前記レーザ光束を透過させる保護層とを備え、前記レーザ光束に対する前記保護層の屈折率をnとし、前記レーザ光束の波長をλとし、前記記録マークの深さをdとしたとき、前記超解像機能層は、当該集光されたレーザ光束の照射を受けたとき、前記記録層上に、前記記録マークを照射する中心光と該中心光よりも外側領域を照射する周辺光とからなる集光スポットを形成し、前記周辺光に対する前記中心光の位相差がマイナスであり、且つ、d<λ/4nの条件式を満たすように構成されたことを特徴とする。
本発明のさらに他の態様による光情報記録媒体は、少なくとも1つの記録マークが形成された記録層と、集光光学系により集光されたレーザ光束の照射を受けることにより、前記集光光学系の光学性能と前記レーザ光束の波長とで定まる回折限界よりも小さい長さを有する当該記録マークから情報を再生可能とする超解像機能層と、前記記録層及び前記超解像機能層を被覆し、前記レーザ光束を透過させる保護層とを備え、前記レーザ光束に対する前記保護層の屈折率をnとし、前記レーザ光束の波長をλとし、前記記録マークの深さをdとしたとき、前記超解像機能層は、前記回折限界よりも小さい長さを有する当該記録マークの深さdが0からλ/2nの範囲において、再生信号振幅が最大となる第1種のピークと、前記第1種のピークに対応する再生信号振幅よりも小さい値で極大となる第2種のピークとの両方を生じさせるように構成されたことを特徴とする。
本発明のさらに他の態様による記録再生装置は、少なくとも1つの記録マークが形成された記録層と、光ヘッドの集光光学系により集光された照射レーザ光束の照射を受けることにより、前記集光光学系の光学性能と前記照射レーザ光束の波長とで定まる回折限界よりも小さい長さを有する当該記録マークから情報を再生可能とする超解像機能層と、前記記録層及び前記超解像機能層を被覆し、前記レーザ光束を透過させる保護層とを備えた光情報記録媒体に情報データを記録又は前記光情報記録媒体から情報データを再生する記録再生装置である。記録再生装置は、前記光情報記録媒体に前記照射レーザ光束を照射し、前記光情報記録媒体からの戻りレーザ光束を検出する前記光ヘッドと、前記光ヘッドを駆動し、前記光情報記録媒体に情報データを記録するときの前記照射レーザ光束の照射強度を制御するレーザ駆動部と、前記光情報記録媒体の種類を判定するディスク種類判定部と、前記超解像機能層が前記照射レーザ光束の照射を受けたとき、前記記録層上に、前記照射レーザ光束によって形成される集光スポットの中心光と該中心光よりも外側領域を照射する周辺光において、前記周辺光に対する前記中心光の位相差と、前記中心光と該中心光よりも外側領域を照射する前記周辺光の反射率の比率とに基づいて、前記照射レーザ光束の照射強度の設定情報を保持する設定情報記憶部と、前記ディスク種類判定部で判定されたディスク種類情報に基づいて、前記設定情報記憶部に保持される前記照射レーザ光束の照射強度の設定情報の中から、前記照射レーザ光束の照射強度を選択し、該選択された照射強度の設定情報を前記レーザ駆動部に送出して前記レーザ光束の照射強度を設定するレーザ照射強度設定部とを備えたことを特徴とする。
本発明が適用された光情報記録媒体は、超解像ピットから得られる再生信号振幅を最適化し得る構造を有するので、高密度記録を実現することができるとともに、再生信号品質の向上を実現することができる。
また、本発明が適用された記録再生装置は、上記光情報記録媒体に対する高密度記録を実現することができるとともに、上記光情報記録媒体からの再生信号の品質の向上を実現することができる。
(A)は、本発明の実施の形態1に係る光情報記録媒体の構造例を示す概略断面図であり、(B)は、光情報記録媒体の超解像機能層の一例を示す概略断面図である。 光情報記録媒体の記録層に記録された情報ピット群を概略的に示す平面図である。 ピット深さに対する超解像ピットの再生信号振幅の変化を示すグラフである。 ピット深さに対する再生信号振幅の変化を示すグラフである。 各位相差における、ピット深さに対する再生信号振幅の変化を示すグラフである。 (A)は、本発明の実施の形態2に係る記録再生装置にローディングされた記録型の光情報記録媒体の構成例を示す概略断面図であり、(B)は、超解像機能層の一例を示す概略断面図であり、(C)は、超解像機能層の他の例を示す概略断面図である。 実施の形態2に係る記録再生装置の主要な構成を概略的に示すブロック図である。
実施の形態1.
図1(A)は、本発明の実施の形態1に係る光情報記録媒体1の構成例を示す概略断面図である。この光情報記録媒体1は、再生専用(Read Only)型の超解像光ディスクの一例である。図1(A)に示されるように、この光情報記録媒体1は、基板10と、この基板10上(図1(A)においては、基板10の下側の面上)に形成された記録層11と、この記録層11上(図1(A)においては、記録層11の下側の面上)に形成された超解像機能層12と、これら記録層11及び超解像機能層12を被覆するように超解像機能層12上(図1(A)においては、超解像機能層12の下側の面上)に形成された保護層13とを有する。
基板10は、例えば、ポリカーボネート又はガラスなどの材料で構成される。保護層13は、記録再生装置の光ヘッド、すなわち、光ピックアップ(例えば、後述の図7に示される光ピックアップ40)の対物レンズなどの集光光学系25により集光されたレーザ光束26を透過させる透光性材料からなる。保護層13は、例えば、薄い透光性樹脂シートを透明接着層を介して超解像機能層12に貼り付けたり、又は、スピンコート法により超解像機能層12に紫外線硬化樹脂を塗布しこれを紫外線照射で硬化させたりすることで形成される。
記録層11の光入射側の面(図1(A)においては、記録層11の下側の面)には、凹状の記録マークすなわちピットが形成されている。記録層11は、例えば、エンボス加工により形成されたピット列及び/又は溝からなる微細な凹凸パターンと、この凹凸パターン上に形成されたアルミニウムなどの反射膜とで構成される。記録マークであるピットは、集光光学系25のNA(開口数)とレーザ光束26の波長λとで定まる回折限界λ/(4NA)よりも小さいサイズのピット(超解像ピット)をも含む。
超解像機能層12は、レーザ光束26の照射を受けて超解像現象を起こし、集光光学系25の光学性能とレーザ光束26の波長λとで定まる回折限界よりも小さい長さを有する記録マークからの情報の、再生装置(光ディスクプレーヤ)による再生(以下「超解像再生」とも呼ぶ。)を可能とするものである。超解像機能層12は、記録層11に隣接するように形成され、且つ、記録層11と保護層13との間に介在している。超解像機能層12は、保護層13を透過したレーザ光束26の集光スポットの照射を受ける間、屈折率などの光学特性が変化する特性(例えば、非線形光吸収特性又は非線形光特性)を有するものである。レーザ光束26の集光スポットの照射を受けた超解像機能層12には、光学特性が変化した局所的な領域すなわち光学的な開口部12aが形成される。この光学的な開口部12aによって、記録層11上における集光スポット径が小さくなり、回折限界よりも小さいサイズの記録マークを高い分解能で検出し、当該記録マークから情報を再生することができる。
図1(B)は、光情報記録媒体1の超解像機能層12の構造例を示す概略断面図である。図1(B)に示されるように、超解像機能層12は、例えば、誘電体層121、干渉層122、非線形材料層123、干渉層124及び誘電体層125を含んで、且つ、これらの層121〜125を積層させて構成される。非線形材料層123では、集光されたレーザ光束26の照射を受けることによって、光の吸収熱及び/又は電子励起などの現象による光学特性の変化が起こり、集光スポット内の局所的な領域に屈折率の変化が生じる。当該局所的な領域の屈折率変化により、その領域の光の反射率及び位相が変化する。本出願では、このような集光スポット内の屈折率変化を伴う局所的な領域を「開口部」又は「光学的な開口部」と呼ぶ。
非線形材料層123の構成材料は、光学的な開口部12aを形成し得るものであれば、特に限定されない。その構成材料として、例えば、Ge−Sb−Te系材料、Ag−In−Sb−Te系材料、Sb−Te系材料、及びIn−Sb系材料の内の何れか1つ以上の材料を使用することができる。あるいは、ZnOなどの金属酸化物材料により非線形材料層123を構成してもよい。
超解像機能層12全体の光学特性は、誘電体層121、干渉層122、非線形材料層123、干渉層124及び誘電体層125からなる多層膜構造における内部多重反射光の重ね合わせにより定まる。このような内部多重反射光の重ね合わせにより、超解像機能層12の反射率と光の位相変化量が決まる。
なお、超解像機能層12の構造は、図1(B)に示した内部構造に限定されない。例えば、超解像機能層12は、必ずしも、図1(B)で例示した誘電体層121、干渉層122、干渉層124及び誘電体層125の全ての層を含む必要はなく、これらの層のうちの一部を必要に応じて省略してもよい。逆に、図1(B)で例示した誘電体層121、干渉層122、干渉層124及び誘電体層125以外に、必要に応じて層を追加してもよい。
なお、超解像再生機構を有する光情報記録媒体に関しては、超解像現象を起こす方式として、特許文献1に開示されているヒートモード方式(超解像機能層12のビームスポット照射領域で温度を一定値以上として光学特性を変化させる方式)もしくはフォトンモード方式(超解像機能層12のビームスポット照射領域でフォトン量を一定値以上として光学特性を変化させる方式)が存在する。また、超解像再生機構を有する光情報記録媒体に超解像現象を起こす方式として、特許文献1に開示されているように、超解像機能層で再生光パワーに対する温度変化又は光量変化による反射率変化をほとんど生じさせない方式も存在する。
超解像機能層12としては、様々な種類の構成材料と膜構造を有するものが考えられる。実施の形態1に係る光情報記録媒体1では、超解像機能層12は、集光スポットよりも小さなサイズの局所的な、且つ、光学的な開口部12aの光学特性と光学的な開口部12aの周辺部の光学特性との間に差を生じさせ、この結果、回折限界以下の小さな記録マークから情報を再生可能とする構造を有していればよい。後述するように、光情報記録媒体1は、このような構造であっても、再生光パワーに対する反射率変化をほとんど生じさせず、温度変化又は光量変化による反射率変化を利用しない超解像機能層を有する光情報記録媒体1を実現することができる。
光学的な開口部12aとその周辺部での各光学特性は、反射率と位相などの光学パラメータに帰着される。光学的な開口部12aの前記光学パラメータは、超解像再生時のある高温状態下での光学特性から算出又は実験的に求められるものであり、また、その周辺部での光学パラメータは、前記超解像再生時のある高温状態に至るまでの比較的低温状態下での光学特性から算出又は実験的に求められるものである。以下、光学的な開口部12aの反射光と光学的な開口部12aの周辺部の反射光との間の位相差Δφ、及び、光学的な開口部12aの周辺部での反射率Rnrに対する光学的な開口部12aの反射率Rsrの比率Rsr/Rnrという2つのパラメータを用いて本実施の形態を説明する。ここで、位相差Δφは、光学的な開口部12aの周辺部に対する光学的な開口部12aの反射光の位相差である。
図2は、光情報記録媒体1の記録層11に記録された情報ピット群を概略的に示す平面図である。情報ピット群は、図2に示されるように、回折限界λ/(4NA)よりも小さいマーク長を有する超解像ピット111と、回折限界λ/(4NA)以上のマーク長を有する非超解像ピット110とからなり、これら超解像ピット111及び非超解像ピット110は、光情報記録媒体1のタンジェンシャル方向(X軸方向)の情報トラックに沿って配列されている。情報トラックは、光ディスクである光情報記録媒体1の径方向(Z軸方向)に対し垂直な方向に延在している。
図2には、この記録層11に形成された集光スポット32も模式的に示されている。集光スポット32は、情報トラックを照射する中心光32cと、その外側領域を照射する周辺光32pとからなる。中心光32cは、超解像機能層12において光学特性が局所的に変化した光学的な開口部12aで発生した局在光である。周辺光32pは、光学的な開口部12aの光学特性とは異なる光学特性の領域(光学的な開口部12aの周辺の領域)で発生した光である。
以下、超解像ピット111から得られる再生信号振幅のピット深さに対する依存性をシミュレーションにより得た結果について説明する。本発明者は、このシミュレーションにより得られた結果から、超解像ピット111から得られる再生信号振幅を大きくすることができる超解像機能層12の光学特性及びピット深さの設定条件を見出した。このような設定条件は、上記特許文献1〜3には開示されていない。
図3は、シミュレーションにより得られた、ピット深さに対する超解像ピット111の再生信号振幅の変化を示すグラフである。図3のグラフにおいて、横軸は、ピット深さを示し、縦軸は、正規化された再生信号振幅を示している。このシミュレーションでは、超解像ピット111として、マーク長L1が75nmのピットが使用され、波長405nmのレーザ光が使用された。超解像現象が発生するとき、図2の中心光32cの領域と周辺光32pの領域との境界で反射率は急峻に変化する。
図3には、光学的な開口部12aの反射率Rsrと光学的な開口部12aの周辺部の反射率Rnrとの比率(反射率比率)Rsr/Rnrを1±0.5とし、光学的な開口部12aの反射光(中心光32c)と光学的な開口部12aの周辺部の反射光(周辺光32p)との間の位相差Δφを±30度とした場合の結果が示されている。ここで、反射率Rsr及び反射率Rnrの各々は、光の振幅反射率である。光学的な開口部12aの反射光の光パワー(光電力)は、反射率Rsrの2乗に比例し、光学的な開口部12aの周辺部の反射光の光パワー(光電力)は、反射率Rnrの2乗に比例する。
図3の結果から、超解像機能層12の光学特性(反射率比率Rsr/Rnr及び位相差Δφ)の設定に応じて、超解像ピット111から得られる再生信号振幅が最大ピークを形成するピット深さが異なることが分かる。一般的に、超解像効果を利用しないBD及びDVDなどの従来の光ディスクでは、再生信号振幅が理論上最大となるピット深さは、λ/(4n)である。なお、λはレーザ光束の波長を示し、nは保護層13の屈折率を示す。ところが、超解像ピット111を再生する場合、従来の光ディスクで再生信号振幅が理論上最大となるピット深さλ/(4n)を基準とし、このピット深さλ/(4n)よりも浅い側で最大ピークが形成される場合と、ピット深さλ/(4n)よりも深い側で最大ピークとなる場合とが存在している。また、前記最大ピークが存在するピット深さとはピット深さλ/(4n)を基準に対称的な位置に前記最大ピークの値よりも小さい値を持つ極大ピークが存在する。すなわち、前記従来の光ディスクで再生信号振幅が最大となるようにピット深さλ/(4n)が設定されても、超解像ピット111から得られる再生信号振幅の最大化又は増大化を図ることが難しい。
本出願では、超解像機能層12の光学特性の設定ごとに存在する再生信号振幅の前記最大ピーク及び前記極大ピークを、それぞれ、第1種のピーク及び第2種のピークと呼ぶこととする。
図3において、浅い側で最大ピーク(第1種のピーク)を形成する光学特性の条件は、以下の2つの場合(光学特性条件(a)及び(b))である。
(a)反射率比率Rsr/Rnr=1+0.5、且つ、位相差Δφ=−30度の場合、
(b)反射率比率Rsr/Rnr=1−0.5、且つ、位相差Δφ=+30度の場合。
これら光学特性条件(a)及び(b)のいずれか場合は、特許文献1〜3で説明されている条件、すなわち、ピット深さがλ/(4n)より浅いときに、超解像ピットから得られる再生信号強度が最大ピークを形成する条件を表しているといえる。
一方、図3において、深い側で最大ピーク(第1種のピーク)を形成する光学特性の条件は、以下の2つの場合(光学特性条件(c)及び(d))である。
(c)反射率比率Rsr/Rnr=1+0.5、且つ、位相差Δφ=+30度の場合、
(d)反射率比率Rsr/Rnr=1−0.5、且つ、位相差Δφ=−30度の場合。
このように、ピット深さがλ/(4n)より深い側で超解像ピット111から得られる再生信号強度が最大ピークを形成した結果については、特許文献1〜3には開示されていない。ピット深さがλ/(6n)より浅い条件だけではなく、ピット深さがλ/(6n)より深い側にも最大ピークが得られる条件は存在する。
図3の反射率比率Rsr/Rnr及び位相差Δφのそれぞれの大きさに限ることなく、反射率比率Rsr/Rnr及び位相差Δφを更に変更して行なったシミュレーション結果も、図3と同様な傾向を示した。
上記の反射率比率Rsr/Rnr及び位相差Δφに関する光学特性条件のそれぞれについて、ピット深さλ/(4n)における再生信号振幅を基準に、当該再生信号振幅よりも大きい再生信号振幅が得られるピット深さの条件は、実施の形態1の光情報記録媒体1の好適なピット深さの条件といえる。このようなピット深さは、第1種のピークに対応するピット深さに存在する。ただし、「第1種のピークに対応するピット深さ」とは、(第1種のピークに対応するピット深さ)±(製造誤差)を含む範囲、すなわち、第1種のピークに対応するピット深さ付近の範囲である。このとき、第2種のピークは、ピット深さλ/(4n)での再生信号振幅より小さいので、実施の形態1の光情報記録媒体1の好適なピット深さの条件に該当しない。
以下、第1種のピークについて説明する。図3より、光学特性条件(a)及び(b)のいずれかの場合、実施の形態1の光情報記録媒体1の好適なピット深さdについては、ピット深さdをλ/(16.7n)以上、且つ、λ/(4n)未満の範囲に限定することで超解像ピット111から得られる再生信号振幅を大きくすることができる。このとき、再生信号振幅が最大ピークとなるピット深さは、略λ/(6.25n)である。
上記光学特性条件(c)及び(d)のいずれかの場合、実施の形態1の光情報記録媒体1の好適なピット深さdについては、ピット深さdをλ/(4n)より大きく、且つ、λ/(2.27n)以下の範囲に限定することで超解像ピット111から得られる再生信号振幅を大きくすることができる。このとき、再生信号振幅が最大ピークとなるピット深さは、略λ/(2.89n)である。
更に、ピット深さdを以下に説明する範囲に設定することにより、再生信号振幅の最大ピーク値の80%以上を確保することができる。すなわち、光学特性条件(a)及び(b)のいずれかの場合は、ピット深さdを、λ/(10.5n)以上、且つ、λ/(4.6n)以下の範囲に限定することが好ましい。また、光学特性条件(c)及び(d)のいずれかの場合は、ピット深さdを、λ/(3.56n)以上、且つ、λ/(2.46n)以下の範囲に限定することが望ましい。すなわち、光学特性条件(a)及び(b)のいずれかの場合は、式(1)を満たし、光学特性条件(c)及び(d)のいずれかの場合は、式(2)を満たすことが望ましい。
λ/(3.56n)≦d≦λ/(2.46n) ・・・(1)
λ/(6n)≦d≦λ/(4.6n) ・・・(2)
実施の形態1に係る光情報記録媒体1に、非超解像ピット110と超解像ピット111が混在して構成されるデータ列が記録される場合、λ/(4n)付近から小さい側又は大きい側に離れたピット深さを選択すると、非超解像ピット110から得られる再生信号振幅は、その最大ピークから低下してしまう。よって、非超解像ピット110から得られる再生信号振幅は、できる限り大きくすることが望ましい。非超解像ピット110から得られる再生信号振幅が最大ピークとなるλ/(4n)にピット深さをできる限り近づけておくことは、トータルとしての再生信号品質を確保する観点から望ましい。
上記の理由から、光学特性条件(a)及び(b)のいずれかの場合には、ピット深さdをλ/(6.25n)以上、且つ、λ/(4n)未満の範囲に限定することが好ましい。また、光学特性条件(c)及び(d)のいずれかの場合には、ピット深さdをλ/(4n)より大きく、且つ、λ/(2.89n)以下の範囲に限定することが好ましい。
特許文献1〜3に開示されているピット深さの範囲であるλ/(10n)からλ/(6n)までを除外して考えると、光学特性条件(a)及び(b)のいずれかの場合には、ピット深さdをλ/(16.7n)以上、且つ、λ/(4n)未満の範囲内に限定することが望ましく、ピット深さλ/(4n)における再生信号振幅よりも大きい再生信号振幅を確保することができる。更に、ピット深さdをλ/(6n)以上、且つ、λ/(4.6n)以下の範囲内に限定することが望ましく、この場合には、再生信号振幅としてその最大ピークの80%以上を確保することができる。この場合でも、超解像ピット111から得られる再生信号振幅を大きくすることができる。
以上のように、超解像機能層12のそれぞれの光学特性条件下で、ピット深さに対する再生信号振幅の特性上に存在する前記第1種のピークの付近のピット深さを選択することで、従来の光ディスクで再生信号振幅が理論上最大となるピット深さλ/(4n)を選択した場合よりも、超解像ピット111の再生信号振幅の増大化を図ることができる。
また、上記の第1種のピークに関する光学特性条件(a),(b),(c)及び(d)のように、光学的な開口部12aの反射光と光学的な開口部12aの周辺部の反射光との間の位相差Δφの極性がプラスであるか又はマイナスであるかという第1の事象と、超解像機能層12の光学特性である反射率変化率Rsr/Rnrが1より大きいか又は1より小さいかという第2の事象との組み合わせに基づいて、超解像ピット111の深さd及び非超解像ピット110の深さを設定することができる。
さらに、上記に説明した一連の特性から、際立って再生信号振幅が大きくなる条件が以下の通り存在する。
浅い側(すなわち、ピット深さがλ/(4n)より小さい側)で、際立って再生信号振幅の最大ピーク(第1種のピーク)が大きくなる条件は、反射率比率Rsr/Rnrが1以上、且つ、位相差Δφの極性がマイナスの場合(第1の場合)である。
また、深い側(すなわち、ピット深さがλ/(4n)より大きい側)で、際立って再生信号振幅の最大ピーク(第1種のピーク)が大きくなる条件は、反射率比率Rsr/Rnrが1以上、且つ、位相差Δφの極性がプラスの場合(第2の場合)である。
したがって、上記の際立って再生信号振幅が大きくなる条件に設定することで、すなわち、上記第1の場合又は上記第2の場合のいずれかに設定することによって、再生装置による再生時に、良好な再生信号品質を得ることができる。
これにより、超解像機能層12の光学特性である反射率比率Rsr/Rnrの大きさと位相差Δφの極性との組み合わせに応じて、超解像ピット111から得られる再生信号振幅が大きくなるピット深さdの設定を行なうことができる。逆に、あるピット深さdに対して、超解像機能層12の反射率比率Rsr/Rnrの大きさと位相差Δφの極性とが所望の組み合わせとなるように、超解像機能層12の材料と膜構造とを決定していくことも可能となる。
超解像機能層12の反射率及び位相については、その構成材料の複素屈折率(=n+i・k)と膜構造のパラメータを示す各膜の厚みが分かれば、反射率及び位相を求めることができる。ここで、nは屈折率、kは消衰係数、iは−1の平方根である。解像機能層12の反射率及び位相を求めるためには、超解像機能層12を実際に基板上にスパッタリングなどの方法で蒸着させたテストサンプルを用いて、実験的に反射率と位相を求めればよい。このような超解像機能層12の光学特性を測定する方法は、例えば、上記非特許文献1に開示されている。
次に、光学的な開口部12aとその周辺部との間の反射率の差を実質的に生じさせないタイプの超解像機能層12を有する光情報記録媒体1について説明する。このタイプの超解像機能層12では、再生光パワーに対する反射率変化がほとんど無く、温度変化又は光量変化による反射率変化は利用されない。
このような光情報記録媒体1の超解像ピット111から得られる再生信号振幅とピット深さdとの間の関係をシミュレーションにより確認した。図4は、このシミュレーションの結果を示すグラフである。図4のグラフにおいて、横軸は、ピット深さを示し、縦軸は、正規化された再生信号振幅を示している。このシミュレーションでは、超解像ピット111として、マーク長Lが75nmのピットが使用され、波長405nmのレーザ光が使用された。超解像現象が発生するとき、図2の中心光32cの領域と周辺光32pの領域との境界で反射率はほとんど変化しない。本シミュレーションでは、再生光の低パワーでの非超解像再生時とその高パワーでの超解像再生時とで反射率そのものが変化しないということは、超解像再生時に生じる光学的な開口部12aの反射率とその周辺部の反射率との間の差が小さい状態にあるものと考えられる。
図4は、反射率比率Rsr/Rnrが、0.95≦Rsr/Rnr≦1.05を満たし、実質的に1であるとの条件を仮定したときの、超解像ピット111から得られる再生信号振幅とピット深さdとの関係を示すものである。このような反射率変化が非常に小さな超解像機能層12の場合でも、光学的な開口部12aの反射光(中心光)と光学的な開口部12aの周辺部の反射光(周辺光)との間の位相差Δφが生じるので、回折限界以下の小さなサイズを有する超解像ピット111からも情報を再生することができることが分かる。
図4のグラフによれば、図3のグラフの場合と同様に、ピット深さの変化に対して、再生信号振幅の最大ピーク(第1種のピーク)と前記最大ピークとなる値よりも小さい値を持つ極大ピーク(第2種のピーク)とが存在する。
まず、第1種のピークについて説明する。位相差Δφの極性がマイナスとなる超解像機能層12の場合には、ピット深さdをλ/(4n)よりも浅くすることで再生信号振幅を大きくすることができる。一方、位相差Δφの極性がプラスとなる超解像機能層12の場合には、ピット深さdをλ/(4n)よりも深くすることで再生信号振幅を大きくすることができることがわかる。
このように反射率変化がほとんど生じ無い超解像機能層12を有する光情報記録媒体では、光学的な開口部12aの反射光(中心光)と光学的な開口部12aの周辺部の反射光(周辺光)との間の位相差Δφの極性がプラスであるか、又はマイナスであるかという事象に基づいて、超解像ピット111の深さd、及び、非超解像ピット110の深さを設定することができる。
ある特定のピット深さdで第1種のピーク及び第2種のピークを持つ特性が明確となるのは、位相差の絶対値|Δφ|が10度以上の場合である。明確な再生信号強度の増大効果が得るため、又は、ピット深さdが浅い場合又は深い場合の明確な選択を可能とするためには、位相差の絶対値|Δφ|は10度以上とすることが望ましい。例として、図5に、反射率比率Rsr/Rnr=1.5で、位相差Δφを5度、8度、10度、15度、20度に変化させたときの特性を示す。位相差Δφが10度以上で明確な再生信号強度の増大効果が得られる。
光学的な開口部12aとその周辺部との間の反射率の差を実質的に生じさせないタイプの超解像機能層12を有する光情報記録媒体1の場合は、反射率比率Rsr/Rnrは、ピット深さを決定する際の光学特性条件から除外されてよく、上記の位相差Δφに関してのみ光学特性条件と考えることができる。それぞれの位相差Δφについて、ピット深さλ/(4n)における再生信号振幅を基準に、それよりも大きい再生信号振幅が得られるピット深さの条件が、実施の形態1の光情報記録媒体1の好適なピット深さの条件といえる。一般には、超解像機能層12は、回折限界よりも小さい長さを有する記録マークの深さdが0からλ/(2n)の範囲において、再生信号振幅が最大となる第1種のピークと、この第1種のピークに対応する再生信号振幅よりも小さい値で極大となる再生信号振幅の第2種のピークとの両方を生じさせるように構成されることが望ましい。
したがって、図4より、位相差Δφの極性がマイナスとなる超解像機能層12の場合、実施の形態1の光情報記録媒体1の好適なピット深さdについては、ピット深さdをλ/(25n)以上、且つ、λ/(4n)未満の範囲に限定することで超解像ピット111から得られる再生信号振幅を大きくすることができる。このとき、再生信号振幅が最大ピークとなるピット深さは、略λ/(7n)である。
位相差Δφの極性がプラスとなる超解像機能層12の場合、実施の形態1の光情報記録媒体1の好適なピット深さdについては、ピット深さdをλ/(4n)より大きく、且つ、λ/(2.15n)以下の範囲に限定することで超解像ピット111から得られる再生信号振幅を大きくすることができる。このとき、再生信号振幅が最大ピークとなるピット深さは、略λ/(2.78n)である。
更に、ピット深さを以下に説明する範囲に設定することにより、再生信号振幅の最大ピーク値の80%以上を確保することができる。すなわち、位相差Δφの極性がマイナスとなる超解像機能層12の場合は、ピット深さdをλ/(11.2n)以上、且つ、λ/(5.2n)以下の範囲に限定することが好ましい。また、位相差Δφの極性がプラスとなる超解像機能層12の場合には、ピット深さdをλ/(3.22n)以上、且つ、λ/(2.4n)以下の範囲に限定することが好ましい。すなわち、位相差Δφの極性がマイナスとなる超解像機能層12の場合は、式(3)を満たし、位相差Δφの極性がプラスとなる超解像機能層12の場合は、式(4)を満たすことが望ましい。
λ/(11.2n)<d≦λ/(5.2n) ・・・(3)
λ/(3.22n)≦d≦λ/(2.4n) ・・・(4)
次に、第2種のピークについて述べる。図4によれば、第1種のピーク付近だけでなく、第2種のピーク付近にも、ピット深さλ/(4n)における再生信号振幅を基準に対して、それよりも大きい再生信号振幅が得られるピット深さの条件が存在する。したがって、記録マークの深さdを、第2種のピークが生じるピット深さとしても、大きい再生信号振幅が得られる。このようなピット深さは、第2種のピークに対応するピット深さに存在する。ただし、「第2種のピークに対応するピット深さ」とは、(第2種のピークに対応するピット深さ)±(製造誤差)を含む範囲、すなわち、第2種のピークに対応するピット深さ付近の範囲である。
具体的には、位相差Δφの極性がマイナスとなる超解像機能層12の場合、実施の形態1の光情報記録媒体1の好適なピット深さdについては、ピット深さdをλ/(22.2n)以上、且つ、λ/(6.58n)未満の範囲に限定することで超解像ピット111から得られる再生信号振幅を大きくすることができる。
位相差Δφの極性がプラスとなる超解像機能層12の場合、実施の形態1の光情報記録媒体1の好適なピット深さdについては、ピット深さdをλ/(2.98n)以上、且つ、λ/(2.2n)未満の範囲に限定することで超解像ピット111から得られる再生信号振幅を大きくすることができる。
更に、ピット深さを以下に説明する範囲に設定することにより、再生信号振幅の最大ピーク値の80%以上を確保することができる。すなわち、位相差Δφの極性がマイナスとなる超解像機能層12の場合は、ピット深さdをλ/(14.9n)以上、且つ、λ/(6.6n)以下の範囲に限定することが好ましい。また、位相差Δφの極性がプラスとなる超解像機能層12の場合は、ピット深さdをλ/(2.86n)以上、且つ、λ/(2.3n)以下の範囲に限定することが好ましい。
なお、フォトリソグラィー技術によってディスク原盤上にピットを形成する場合には、2種類の感度の異なるフォトレジストを重ねて積層し、露光強度をピット深さdに応じて変化させて、感光されるレジストの深さに変化を与える露光を行なえばよい。
以上では、超解像ピット111から得られる再生信号振幅を大きくするためのピット深さdに関して説明し、非超解像ピット110のピット深さについては特に限定をせずに説明した。非超解像ピット110からの情報再生では、光学的な開口部12aによるピット検出効果に比べ、超解像再生機構を持たない従来の光ディスクと同様、集光スポット32全体で検出する再生機構が支配的となる。よって、非超解像ピット110から得られる再生信号は、ほぼλ/(4n)のピット深さを有するときに最大振幅を形成し、λ/(4n)よりも浅い側と深い側に向かうにつれてその振幅が小さくなる。
また、ピット列からなる情報トラックで回折される光を用いてプッシュプル信号を検出することができるようにしておく場合は、非超解像ピット110から得られる再生信号振幅のSNR(信号対雑音比)とプッシュプル信号の振幅とは互いにトレードオフ関係にある。これに鑑みて、非超解像ピット111の深さをλ/(7n)からλ/(3n)までの範囲内に設定することが望ましい。
また、図3及び図4のシミュレーションは、マーク長L1が75nm、レーザ光の波長405nmとして得られたものであるが、これに限定するものではなく、対物レンズの開口数とレーザ光の波長とで決まる回折限界よりも記録マークの長さが小さいという関係が成立すればよい。
以上のように、超解像ピット111と非超解像ピット110のそれぞれから得られる再生信号振幅を最大とするピット深さは互いに異なるため、超解像ピット111と非超解像ピット110のそれぞれのピット深さを個別に設定することで、両方の振幅について最適化を行なうことができる。
超解像ピット111と非超解像ピット110のピット深さを個別に設定する場合には、超解像ピット111のピット深さdを上述の好適な範囲に設定し、且つ、非超解像ピット110の深さをλ/(7n)からλ/(3n)までの範囲内に設定することができる。
一方、全てのピットについて一律同じ値に設定する場合には、超解像ピット111の深さdの上記した好適範囲と、λ/(7n)からλ/(3n)までの範囲との重複範囲内に全てのピットの深さを設定することが望ましい。
このような場合、超解像ピット111と非超解像ピット110のそれぞれから得られる再生信号強度を最大とするピット深さは互いに異なるため、可能な限り超解像ピット111から得られる再生信号振幅の増大を図りつつ、比較的振幅が大きい非超解像ピット110から得られる再生信号強度を小さくして、全体として再生信号品質を満足させることが好ましい。
これにより、ROMディスクの場合にディスク原盤のピット深さを1種類にすることができるため、上述した同じディスク原盤上に複数のピット深さを設けるために、2種類の感光感度のフォトレジストを用いる必要がなく、比較的簡単な工程でディスク原盤を作製することができる。
なお、実施の形態1に係る光情報記録媒体1は、回折限界以上の長さを有する記録マークのみを用いる光ディスク(例えば、BD)が有する機能と同じ機能を少なくとも有する特性である下位互換性を持つように構成されている。ここで下位互換性を持つとは、回折限界以上の長さを有する記録マークのみを用いる光ディスク(下位の光情報記録媒体。例えば、BD)を記録または再生するのに用いる光源および対物レンズと同じ光の波長を有する光源および同じ開口数を有する対物レンズを備える光ディスク記録再生装置にて、本実施の形態に係る光情報記録媒体1(上位の光情報記録媒体)を記録または再生することが可能になることをいう。したがって、原理的には、実施の形態1に係る光情報記録媒体1は、既存の光ディスク再生装置によって、再生可能である。
以上、図面を参照して本発明に係る種々の実施の形態について述べたが、これらは本発明の例示であり、上記以外の様々な形態を採用することもできる。例えば、上記光情報記録媒体1の構造例はROMディスクの例であるが、これに限定されるものではない。上記のピット深さの好適な設定範囲は、超解像機能層を有する記録型の光情報記録媒体における記録マークの深さにも適用することができる。
実施の形態2.
以下に、本発明の実施の形態2に係る記録再生装置を説明する。実施の形態2に係る記録再生装置は、本発明が適用された光情報記録媒体2(超解像光ディスク2)に記録マークを形成することによって、超解像光ディスクに情報データを記録し、及び、光情報記録媒体2としての超解像光ディスク2(又は、実施の形態1に係る光情報記録媒体である超解像光ディスク1)に形成された記録マークから情報データを再生することができる装置である。
実施の形態1に係る光情報記録媒体1は、再生専用型の超解像光ディスクを一例としている。実施の形態1に係る光情報記録媒体1を用いた場合には、超解像機能層(図1(A)における符号12)において光学特性が局所的に変化した光学的な開口部(図1(A)における符号12a)の反射光(中心光)と光学的な開口部の周辺部の反射光(周辺光)との間の位相差に応じて、ピット深さdを適切に選択すれば、記録再生装置における再生信号の振幅を大きくすることができる。記録型の超解像光ディスクにおいても、再生専用型の超解像光ディスク(実施の形態1)の場合と同様に、記録型の超解像光ディスクに形成された記録マークの深さを、超解像機能層の反射率と、中心光と周辺光との間の位相差に応じて適切に選択することで、記録再生装置における再生信号の振幅を大きくすることができる。
図6(A)は、実施の形態2に係る記録再生装置で用いられる、記録型の光情報記録媒体である超解像光ディスク2の超解像機能層21の構成例を示す概略断面図であり、図6(B)は、超解像機能層21の一例を示す概略断面図である。また、図6(C)は、超解像機能層21の他の例を示す概略断面図である。
図6(A)に示されるように、この記録型の超解像光ディスク2は、ポリカーボネート又はガラスなどの基板20と、この基板20上に形成された超解像積層膜(超解像機能層)21と、超解像積層膜21を被覆する保護層22とを有する。保護層22は、光ピックアップの集光光学系25により集光されたレーザ光束26を透過させる材料からなる。保護層22は、例えば、薄い透光性樹脂シートを透明接着層を介して貼り付けたり、又は、スピンコート法により紫外線硬化樹脂を塗布し紫外線照射で硬化させたりすることで形成することができる。
超解像積層膜21は、図6(B)に例示されるように、誘電体層211、非線形材料層212、誘電体層213、記録層214、及び誘電体層215が積層された構造を有する。
記録層214は、例えば、白金酸化物(PtO)又は銀酸化物(AgO)又はパラジウム酸化物(PdO)などのような貴金属酸化物層を含む。記録層214の厚みは、数nmから数百nmまでの範囲内であることが望ましい。また、非線形材料層212は、例えば、Ge−Sb−Te系材料、Ag−In−Sb−Te系材料、Sb−Te系材料、及びIn−Sb系材料の内のいずれかの材料により形成することができる。このような記録層214に強度の高い記録用のレーザ光束が集光され照射されると、記録層214は、当該レーザ光束のエネルギーを吸収して局所的に熱分解し変形する。これにより、記録層214の中に、集光光学系25のNAとレーザ光束26の波長λとで定まる回折限界λ/(4NA)よりも小さいサイズの記録マーク(バブルピット)214a,214b,214c,214dが形成される。また、再生用のレーザ光束が集光され照射されたとき、非線形材料層212では、回折限界よりも小さい局所的な領域で光学特性が変化する超解像現象が起きて局在光が発生すると考えられる。局在光は、記録マーク214a,214b,214c,214dと作用することで再生光(光伝搬光)に変換される。
誘電体層211,213,215は、例えば、記録層214又は非線形材料層212の構成材料の熱拡散を防止する機能を有する。誘電体層211,213,215は、例えば、ZnS−SiO又はAlNを用いて形成することができる。誘電体層211,215を設けることで、記録層214又は非線形材料層212の再生耐久性を向上させることが可能となる。なお、必要に応じて、超解像積層膜21は、光を多重干渉させる干渉層を有していてもよい。
あるいは、超解像積層膜21は、図6(C)に例示されるように、誘電体層216、記録層217、誘電体層218、超解像マスク層219、及び誘電体層220を含むものであってもよい。記録層217は、例えば、図6(B)に例示されたような白金酸化物(PtO)又は銀酸化物(AgO)で構成することができる。また、超解像マスク層219は、例えば、Ge−Sb−Te系材料、Ag−In−Sb−Te系材料、Sb−Te系材料、及びIn−Sb系材料の内のいずれかの相転移材料により形成することができる。誘電体層216,218,220は、例えば、AlN又はSiNなどの窒化物材料を用いて形成することができる。再生用のレーザ光束が集光され照射されたとき、超解像マスク層219では、回折限界よりも小さい局所的な領域で光学特性が変化して光学的な微小開口部が形成される。この微小開口部で発生した局在光は、記録マーク217a,217b,217c,217dと相互作用することで再生光(伝搬光)に変換される。
なお、図6(B)及び(C)は、超解像積層膜21の構造の一例を示すものである。図6(A)から(C)は、超解像積層膜21の構造又は膜数又は構成材料などを、限定するものではない。例えば、超解像積層膜21は、光入射側から順に、誘電体層、白金酸化物(PtO)又は銀酸化物(AgO)で構成された超解像マスク層、誘電体層、Fe、Zn又はBiが添加されたGe−Sb−Te系といった相転移記録材料で構成された記録層、及び誘電体層が積層された構造を有していてもよい。この場合の誘電体層は、例えば、AlN又はSiNなどの窒化物材料を用いて形成することができる。
記録マーク(バブルピット)214a,214b,214c,214dは、再生専用型の超解像光ディスク(図1(A)における符号1)のピットと同様な役割を担う。
実施の形態2において説明する記録型の超解像光ディスク2の超解像機能層21は、前記バブルピットを形成するタイプに限定するものではなく、光の照射によって超解像光ディスク上に記録マークを形成することができる構造を有するものであれば他のタイプの超解像機能層であってもよい。
以下、実施の形態2に係る記録再生装置について説明する。実施の形態2に係る記録再生装置は、実施の形態1に係る光情報記録媒体1と同様に、記録型の超解像光ディスク2において再生信号振幅が大きくなる適切な記録マークの深さdとなるように、記録時の光の照射パターンを制御するものである。記録マークの深さdは、光の照射強度に依存して変化させることができ、光の照射強度を大きくした場合は記録マークの深さdを大きくすることができ、また、光の照射強度を小さくした場合は記録マークの深さdを小さくすることができる。
図7は、実施の形態2に係る記録再生装置の記録に関する主要な機能を担う構成を概略的に示す図である。図7に示されるように、実施の形態2に係る記録再生装置は、光ピックアップ(光ヘッド)40を有する。光ピックアップ40は、スピンドルモータの回転駆動力によって回転する光ディスクに照射されるレーザ光束を出射するレーザ光源と、回転する光ディスクで反射した戻りレーザ光束を検出する光検出部とを含む。また、実施の形態2に係る記録再生装置は、光ピックアップ40に搭載されているレーザ光源を発光させるためのレーザドライバ(レーザ駆動部)41と、光ピックアップ40の光検出部からの検出信号に基づいて、記録対象又は再生対象となる光ディスクの種類を判別するディスク種類判定部42とを有する。さらに、実施の形態2に係る記録再生装置は、光ディスクの種類と対応付けられた前記発光パターンに関する発光パラメータが記録保持されたメモリ(設定情報記憶部)43と、ディスク種類判定部42で得られた光ディスクの種類判定情報に基づいて、レーザドライバ41で用いられる発光パラメータをメモリ43から選択的に読み出し、読み出された発光パラメータをレーザドライバ41へ送出する発光パラメータ設定部(レーザ照射強度設定部)44とを有する。また、実施の形態2に係る記録再生装置は、光ピックアップ40の光検出部からの検出信号に基づいて再生信号を生成する再生回路と、装置全体の動作を制御する制御回路とを有する。
実施の形態2に係る記録再生装置では、光ピックアップ40により記録型の超解像光ディスク2の記録層に集光スポットを照射し、記録データから変換される記録マーク長のそれぞれに適合するように発光制御して記録を行なう。この発光制御では、再生時の再生信号品質が良好に保たれるように、記録マーク毎にレーザ光源の発光を行なう。この発光制御により、例えば、比較的短い記録マーク長からの再生信号の振幅が大きくなるような発光パターンで記録を行なうことで、再生信号波形の品質を良好にし、記録データの読み出し誤りを抑制する。
ディスク種類判定部42は、例えば、光ディスクからの反射光レベル、記録層の数、又は、光ディスクの、例えば、内周エリアに記載された超解像光ディスクであるか否か、及び、ディスク製造元などディスク属性に関わる情報に基づいて、超解像光ディスクの種類を特定する。
メモリ43には、予め対応付けされたディスクの種類と記録時の光の照射パターンが記録されている。この照射パターンは、製造元、製造時期などの付加情報により判定される超解像光ディスクの構造(超解像機能層又は記録層の材料又は各層の膜厚)を、予め把握しておき、ディスクの種類ごとに反射率比率Rsr/Rnrと位相差Δφを算出しておく。
ここで、反射率比率Rsr/Rnr、位相差Δφ、記録マーク深さdと再生信号振幅の関係は、実施の形態1において光情報記録媒体1の場合として示した図3及び図4のような特性を既知とする。さらに、この既知の特性から、再生信号振幅を大きくすることができる記録マーク深さdを決定し、決定された記録マーク深さが形成される記録時の光の照射パターンを予め決定しておく。これにより、ディスクの種類と、記録時の光の照射パターンを予め対応付けすることができる。
実施の形態1に係る光情報記録媒体の説明で述べた反射率比率Rsr/Rnr、位相差Δφ、記録マーク深さdと再生信号振幅の関係に基づき、特に、以下のように、ディスクの種類と記録時の光の照射パターンを対応付けることは、際立って再生信号振幅の最大ピーク(第1種のピーク)を大きくするために有効となる。
すなわち、ディスク種類判定部42において、反射率比率Rsr/Rnrが1以上、且つ、位相差Δφの極性がマイナスとなる超解像機能層と記録層を有する光ディスクであると判定されたとき、記録マーク深さdがλ/(4n)より小さくなるように、記録時の光の照射強度を小さく設定する発光パラメータを選択し、レーザドライバ41で駆動することにより、再生時の再生信号振幅を効率的に増大することができる。
また、ディスク種類判定部42において、反射率比率Rsr/Rnrが1以上、且つ、位相差Δφの極性がプラスとなる超解像機能層と記録層を有する光ディスクであると判定されたとき、記録マーク深さdがλ/(4n)より大きくなるように、記録時の光の照射強度を大きく設定する発光パラメータを選択し、レーザドライバ41で駆動することにより、再生時の再生信号振幅を効率的に増大することができる。
また、実施の形態1に係る光情報記録媒体1の説明で述べたと同様に、第1種のピーク及び第2種のピークを持つ特性が明確となるのは、位相差の絶対値|Δφ|が10度以上の場合である。明確な再生信号強度の増大効果を得るため、又は、記録マーク深さdが浅い場合又は深い場合の明確な選択を可能とするためには、位相差の絶対値|Δφ|は10度以上とすることが望ましい。
以上に説明したように、実施の形態2に係る記録再生装置によれば、超解像機能層21の光学特性である反射率比率Rsr/Rnrの大きさと位相差Δφの極性との組み合わせに応じて対応付けされた記録型の超解像光ディスクについて、再生時に良好な再生信号品質を得るための記録時の光の照射強度、又は、発光パターンを効率的に設定することが可能となる。
なお、光情報記録媒体2は、回折限界以上の長さを有する記録マークのみを用いる光ディスク(例えば、BD)が有する機能と同じ機能を少なくとも有する特性である下位互換性を持つように構成されている。したがって、光情報記録媒体2は、既存の光ディスク再生装置(例えば、BDプレーヤ)によって既存の光ディスクと同様に使用することができる。
1 光情報記録媒体(超解像光ディスク)、 10 基板、 11 記録層、 111 超解像ピット、 110 非超解像ピット、 12 超解像機能層(超解像積層膜)、 12a 光学的な開口部、 121 誘電体層、 122 干渉層、 123,212 非線形材料層、 124 干渉層、 125 誘電体層、 13 保護層、 25 集光光学系、 32 集光スポット、 32c 中心光、 32p 周辺光、 2 光情報記録媒体(超解像光ディスク)、 20 基板、 21 超解像機能層(超解像積層膜)、 211,213,215,220 誘電体層、 212 非線形材料層、 214,217 記録層、 214a〜214d,217a〜217d 記録マーク、 219 超解像マスク層、 22 保護層、 40 光ピックアップ(光ヘッド)、 41 レーザドライバ(レーザ駆動部)、 42 ディスク種類判定部、 43 メモリ(設定情報記憶部)、 44 発光パラメータ設定部(レーザ照射強度設定部)。
本発明の一態様による光情報記録媒体は、少なくとも1つの記録マークが形成された記録層と、集光光学系により集光されたレーザ光束の照射を受けることにより、前記集光光学系の光学性能と前記レーザ光束の波長とで定まる回折限界よりも小さい長さを有する当該記録マークから情報を再生可能とする超解像機能層と、前記記録層及び前記超解像機能層を被覆し、前記レーザ光束を透過させる保護層とを備え、前記レーザ光束に対する前記保護層の屈折率をnとし、前記レーザ光束の波長をλとし、前記記録マークの深さをdとしたとき、前記超解像機能層は、当該集光されたレーザ光束の照射を受けたとき、前記記録層上に、前記記録マークを照射する中心光と該中心光よりも外側領域を照射する周辺光とからなる集光スポットを形成し、前記周辺光に対する前記中心光の位相差がプラスの場合には>λ/4nの条件式を満たし、前記周辺光に対する前記中心光の位相差がマイナスの場合にはd <λ/4nの条件式を満たすように構成されたことを特徴とする。
本発明他の態様による光情報記録媒体は、少なくとも1つの記録マークが形成された記録層と、集光光学系により集光されたレーザ光束の照射を受けることにより、前記集光光学系の光学性能と前記レーザ光束の波長とで定まる回折限界よりも小さい長さを有する当該記録マークから情報を再生可能とする超解像機能層と、前記記録層及び前記超解像機能層を被覆し、前記レーザ光束を透過させる保護層とを備え、前記レーザ光束に対する前記保護層の屈折率をnとし、前記レーザ光束の波長をλとし、前記記録マークの深さをdとしたとき、前記超解像機能層は、前記回折限界よりも小さい長さを有する当該記録マークの深さdが0からλ/2nの範囲において、再生信号振幅が最大となる第1種のピークと、前記第1種のピークに対応する再生信号振幅よりも小さい値で極大となる第2種のピークとの両方を生じさせるように構成され、前記記録マークの深さd は、前記第1種のピークが生じるピット深さ又は前記第2種のピークが生じるピット深さであることを特徴とする。
本発明のさらに他の態様による記録再生装置は、上記光情報記録媒体に情報データを記録又は前記光情報記録媒体から情報データを再生する記録再生装置であって、前記光情報記録媒体に前レーザ光束を照射し、前記光情報記録媒体からの戻りレーザ光束を検出す光ヘッドと、前記光ヘッドを駆動し、前記光情報記録媒体に情報データを記録するときの前レーザ光束の照射強度を制御するレーザ駆動部と、前記光情報記録媒体の種類を判定するディスク種類判定部と、前記超解像機能層が前レーザ光束の照射を受けたとき、前記記録層上に、前レーザ光束によって形成される集光スポットの中心光と該中心光よりも外側領域を照射する周辺光において、前記周辺光に対する前記中心光の位相差と、前記中心光と該中心光よりも外側領域を照射する前記周辺光の反射率の比率とに基づいて、前レーザ光束の照射強度の設定情報を保持する設定情報記憶部と、前記ディスク種類判定部で判定されたディスク種類情報に基づいて、前記設定情報記憶部に保持される前レーザ光束の照射強度の設定情報の中から、前レーザ光束の照射強度を選択し、該選択された照射強度の設定情報を前記レーザ駆動部に送出して前記レーザ光束の照射強度を設定するレーザ照射強度設定部とを備えたことを特徴とする。

Claims (12)

  1. 少なくとも1つの記録マークが形成された記録層と、
    集光光学系により集光されたレーザ光束の照射を受けることにより、前記集光光学系の光学性能と前記レーザ光束の波長とで定まる回折限界よりも小さい長さを有する当該記録マークから情報を再生可能とする超解像機能層と、
    前記記録層及び前記超解像機能層を被覆し、前記レーザ光束を透過させる保護層と
    を備え、
    前記レーザ光束に対する前記保護層の屈折率をnとし、前記レーザ光束の波長をλとし、前記記録マークの深さをdとしたとき、
    前記超解像機能層は、当該集光されたレーザ光束の照射を受けたとき、前記記録層上に、前記記録マークを照射する中心光と該中心光よりも外側領域を照射する周辺光とからなる集光スポットを形成し、前記周辺光に対する前記中心光の位相差がプラスであり、且つ、d>λ/4nの条件式を満たすように構成された
    ことを特徴とする光情報記録媒体。
  2. 少なくとも1つの記録マークが形成された記録層と、
    集光光学系により集光されたレーザ光束の照射を受けることにより、前記集光光学系の光学性能と前記レーザ光束の波長とで定まる回折限界よりも小さい長さを有する当該記録マークから情報を再生可能とする超解像機能層と、
    前記記録層及び前記超解像機能層を被覆し、前記レーザ光束を透過させる保護層と
    を備え、
    前記レーザ光束に対する前記保護層の屈折率をnとし、前記レーザ光束の波長をλとし、前記記録マークの深さをdとしたとき、
    前記超解像機能層は、当該集光されたレーザ光束の照射を受けたとき、前記記録層上に、前記記録マークを照射する中心光と該中心光よりも外側領域を照射する周辺光とからなる集光スポットを形成し、前記周辺光に対する前記中心光の位相差がマイナスであり、且つ、d<λ/4nの条件式を満たすように構成された
    ことを特徴とする光情報記録媒体。
  3. 請求項1又は2に記載の光情報記録媒体であって、
    前記位相差の絶対値は、10度以上であることを特徴とする光情報記録媒体。
  4. 少なくとも1つの記録マークが形成された記録層と、
    集光光学系により集光されたレーザ光束の照射を受けることにより、前記集光光学系の光学性能と前記レーザ光束の波長とで定まる回折限界よりも小さい長さを有する当該記録マークから情報を再生可能とする超解像機能層と、
    前記記録層及び前記超解像機能層を被覆し、前記レーザ光束を透過させる保護層と
    を備え、
    前記レーザ光束に対する前記保護層の屈折率をnとし、前記レーザ光束の波長をλとし、前記記録マークの深さをdとしたとき、
    前記超解像機能層は、前記回折限界よりも小さい長さを有する当該記録マークの深さdが0からλ/2nの範囲において、再生信号振幅が最大となる第1種のピークと、前記第1種のピークに対応する再生信号振幅よりも小さい値で極大となる第2種のピークとの両方を生じさせるように構成された
    ことを特徴とする光情報記録媒体。
  5. 請求項4に記載の光情報記録媒体であって、
    前記記録マークの深さdは、前記第1種のピークが生じるピット深さであることを特徴とする光情報記録媒体。
  6. 請求項4に記載の光情報記録媒体であって、
    前記記録マークの深さdは、前記第2種のピークが生じるピット深さであることを特徴とする光情報記録媒体。
  7. 請求項1から6のいずれか1項に記載の光情報記録媒体であって、
    前記記録層に形成され前記回折限界以上の長さを有する記録マークの深さは、前記回折限界よりも小さい長さを有する当該記録マークの深さdと異なる深さであって、前記回折限界以上の長さを有する当該記録マークの深さとλ/4nとの差は、回折限界よりも小さい長さを有する前記記録マークの深さdとλ/4nとの差に比べて小さい
    ことを特徴とする光情報記録媒体。
  8. 請求項1から7のいずれか1項に記載の光情報記録媒体であって、
    前記記録マークは、前記記録マークの深さdを有するピットであることを特徴とする光情報記録媒体。
  9. 請求項1から8のいずれか1項に記載の光情報記録媒体であって、
    前記回折限界以上の長さを有する記録マークのみを用いる光ディスクが有する機能と同じ機能を少なくとも有する特性である下位互換性を有することを特徴とする光情報記録媒体。
  10. 請求項9に記載の光情報記録媒体であって、
    前記回折限界以上の長さを有する記録マークのみを用いる光ディスクは、ブルーレイディスクであることを特徴とする光情報記録媒体。
  11. 少なくとも1つの記録マークが形成された記録層と、
    光ヘッドの集光光学系により集光された照射レーザ光束の照射を受けることにより、前記集光光学系の光学性能と前記照射レーザ光束の波長とで定まる回折限界よりも小さい長さを有する当該記録マークから情報を再生可能とする超解像機能層と、
    前記記録層及び前記超解像機能層を被覆し、前記レーザ光束を透過させる保護層と
    を備えた光情報記録媒体に情報データを記録又は前記光情報記録媒体から情報データを再生する記録再生装置であって、
    前記光情報記録媒体に前記照射レーザ光束を照射し、前記光情報記録媒体からの戻りレーザ光束を検出する前記光ヘッドと、
    前記光ヘッドを駆動し、前記光情報記録媒体に情報データを記録するときの前記照射レーザ光束の照射強度を制御するレーザ駆動部と、
    前記光情報記録媒体の種類を判定するディスク種類判定部と、
    前記超解像機能層が前記照射レーザ光束の照射を受けたとき、前記記録層上に、前記照射レーザ光束によって形成される集光スポットの中心光と該中心光よりも外側領域を照射する周辺光において、前記周辺光に対する前記中心光の位相差と、前記中心光と該中心光よりも外側領域を照射する前記周辺光の反射率の比率とに基づいて、前記照射レーザ光束の照射強度の設定情報を保持する設定情報記憶部と、
    前記ディスク種類判定部で判定されたディスク種類情報に基づいて、前記設定情報記憶部に保持される前記照射レーザ光束の照射強度の設定情報の中から、前記照射レーザ光束の照射強度を選択し、該選択された照射強度の設定情報を前記レーザ駆動部に送出して前記レーザ光束の照射強度を設定するレーザ照射強度設定部と
    を備えたことを特徴とする記録再生装置。
  12. 請求項11に記載の記録再生装置であって、
    前記光情報記録媒体は、請求項1から10のいずれか1項に記載の光情報記録媒体であることを特徴とする記録再生装置。
JP2014559703A 2013-02-04 2014-01-29 光情報記録媒体及び記録再生装置 Expired - Fee Related JP5968472B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013019500 2013-02-04
JP2013019500 2013-02-04
PCT/JP2014/051894 WO2014119588A1 (ja) 2013-02-04 2014-01-29 光情報記録媒体及び記録再生装置

Publications (2)

Publication Number Publication Date
JP5968472B2 JP5968472B2 (ja) 2016-08-10
JPWO2014119588A1 true JPWO2014119588A1 (ja) 2017-01-26

Family

ID=51262301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014559703A Expired - Fee Related JP5968472B2 (ja) 2013-02-04 2014-01-29 光情報記録媒体及び記録再生装置

Country Status (4)

Country Link
US (1) US9472231B2 (ja)
JP (1) JP5968472B2 (ja)
TW (1) TW201503121A (ja)
WO (1) WO2014119588A1 (ja)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3866016B2 (ja) 1999-07-02 2007-01-10 Tdk株式会社 光情報媒体およびその再生方法
JP2001236656A (ja) 2000-02-17 2001-08-31 Victor Co Of Japan Ltd 情報記録媒体
JP2004296050A (ja) 2003-02-12 2004-10-21 Toshiba Corp 光ディスクならびに光ディスク装置
JP2006277929A (ja) * 2003-02-12 2006-10-12 Toshiba Corp 光ディスク装置
JP2005078782A (ja) 2003-09-04 2005-03-24 Tdk Corp 光記録媒体及びその製造方法、並びに、光記録媒体に対するデータ記録方法及びデータ再生方法
KR20050029765A (ko) * 2003-09-22 2005-03-28 삼성전자주식회사 고밀도 재생전용 광디스크 및 그 제조방법
US20050157631A1 (en) * 2003-12-30 2005-07-21 Samsung Electronics Co., Ltd Information storage medium and method and apparatus for reproducing information recorded on the same
JP4508100B2 (ja) * 2005-12-21 2010-07-21 Tdk株式会社 超解像光記録媒体への情報記録方法及び情報記録装置
JP4705530B2 (ja) 2006-08-07 2011-06-22 株式会社リコー 光記録媒体とその基板、及び該基板の成形用スタンパ
JP4685754B2 (ja) * 2006-12-28 2011-05-18 株式会社日立製作所 トラッキング方法
JP4720778B2 (ja) * 2007-04-25 2011-07-13 株式会社日立製作所 情報記録媒体の評価方法
JP4903081B2 (ja) 2007-05-17 2012-03-21 株式会社日立製作所 光ディスク媒体及びトラッキング方法
JP2009037698A (ja) * 2007-08-02 2009-02-19 Nec Corp 光学情報記録媒体及び光学情報再生方法
JP5282935B2 (ja) * 2008-03-26 2013-09-04 日本電気株式会社 光学情報記録媒体
CN103052986B (zh) 2010-07-30 2015-06-17 三菱电机株式会社 光信息记录介质和驱动装置

Also Published As

Publication number Publication date
JP5968472B2 (ja) 2016-08-10
US20150332726A1 (en) 2015-11-19
US9472231B2 (en) 2016-10-18
TW201503121A (zh) 2015-01-16
WO2014119588A1 (ja) 2014-08-07

Similar Documents

Publication Publication Date Title
JP5627687B2 (ja) 光情報記録媒体及び駆動装置
JP5422009B2 (ja) 光情報記録媒体
JP2006269040A (ja) 光情報記録媒体、及び光情報記録媒体再生装置
KR20080091830A (ko) 최적 레이저 빔 파워를 결정하는 방법 및 광 기록 매체
JP2008535136A (ja) ハイブリッドディスク及び該ディスクに/からデータを記録及び/または判読する方法
JP5968472B2 (ja) 光情報記録媒体及び記録再生装置
JP4209416B2 (ja) 光情報記録媒体、及び光情報記録媒体再生装置
JP5563480B2 (ja) 情報記録媒体、再生装置および再生方法
JP6063624B2 (ja) 光情報記録媒体、再生装置および再生方法
JP4372776B2 (ja) 光情報記録媒体及び光情報記録媒体再生装置
JP5563643B2 (ja) 光情報記録媒体
EP1998326A1 (en) Optical disk, optical disk mastering method and optical disk playback apparatus
JP2006040445A (ja) 光ディスク及び情報再生装置
JP2011159376A (ja) 光学ドライブ装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160705

R150 Certificate of patent or registration of utility model

Ref document number: 5968472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees